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Gaussians versus back-to-back exponentials: a numerical study

M.G. Humpherysa, C. Donnellya, A.J. Greera, W.J. Kosslerb
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Abstract

The underlying magnetic field distribution in many samples studied by the μSR technique is asymmetric. Despite this, quite

often fit functions assuming symmetric (Gaussian) distributions are used. Here, a back-to-back exponential function, which can

be made asymmetric with fit parameters, is studied numerically alongside a Gaussian function to see how well each fits symmetric

and asymmetric simulated data. Both fit symmetric data well, but the back-to-back exponential is found to be superior for fitting

asymmetric data.
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1. Motivation for this work

Many materials studied by μSR, like the high-Tc superconductors YBCO, many of the La series, and even the

pnictides, yield asymmetry data that when Fourier transformed show an underlying asymmetric field distribution[1,

2, 3, 4, 5]. However, many of the functions used to fit the data have the following (Gaussian) form:

P(t) = a ·G(t) cos(ωt + φ) (1)

where G(t) is the Gaussian relaxation function

G(t) = e−
σ2 t2

2 , (2)

a is the polarization asymmetry, ω is the average precession frequency, φ is the initial phase angle, and σ is the second

moment of the assumed underlying Gaussian field distribution. Theoretical calculations for ideal, triangular magnetic

flux line lattices in superconductors also show very asymmetric field distributions[6, 7, 8]. A function which can be

asymmetric, and with fit parameters which determine its asymmetry, should give more meaningful results with such

materials.

2. The back-to-back function

In this work we chose a back-to-back exponential function, which can be made asymmetric by varying decay

parameters[6, 7, 9, 10]. Here, we have followed what was done in reference [9]. The frequency space representation
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can be defined by the following

n(ω) =

{
a e(ω−ωp)τL (ω < ωp)

a e(ωp−ω)τR (ω > ωp)
(3)

where ωp is the the frequency of the peak of the distribution, a is a normalization constant, and τL and τR are decay

parameters to the left and right of the peak, respectively. This function, once properly normalized, has an analytical

Fourier transform which can be used to fit transverse field μSR asymmetry data in time space:

P(t) = A
[
(r1(t) + r2(t)) cos(ωt + φ) + t(r1(t)/τL − r2(t)/τR) sin(ωt + φ)

]
(4)

where

r1(t) = τR
(τL+τR)(1+(t/τL)2)

r2(t) = τL
(τL+τR)(1+(t/τR)2) (5)

Once values for τL and τR are found from a fit, we can calculate the second and third moments of the resulting

distribution. These are

√〈(Δω)2〉 =
√
τ2

R+τ
2
L

τLτR

3
√〈(Δω)3〉 =

3
√

2τ3
L−2τ3

R
τLτR

(6)

3. The Plan

This function has been used to fit data previously[9], but in that work no direct comparison to Gaussian fits was

made. So, it was determined that a numerical technique was in order to see how the back-to-back and Gaussian

functions compared. With a numerical simulation we would know the underlying parameters used, and then be able

to test unequivocally how well each function fit. Our aim here was to see if the back-to-back function could fit as well

or better than the Gaussian, and how to interpret the results of such fits.

We developed a plan to pit the Gaussian fit function versus the back-to-back function. Data of varying statistics

were generated with P(t) being both Gaussian (equation 1) and back-to-back (equation 4), keeping other parameters

the same for both. Noise was introduced to the data by using a Poisson deviate routine [11], thus better approximating

real data[8, 12]. This noisy data was multiplied by et/τμ and the average value subtracted off. Fits were then done to the

data using both Gaussian fit functions and back-to-back functions. We hoped to try to answer the following questions:

1.) How well does a back-to-back function fit data derived from a Gaussian distribution, and how do statistics affect

this? 2.) How well does a Gaussian function fit data derived from a symmetric back-to-back distribution, and how

do statistics affect this? 3.) How well does a Gaussian function fit data derived from an asymmetric back-to-back

function, and how do statistics affect this? 4.) At what level of asymmetry does the Gaussian fit fail to give reliable

results, and how do statistics affect this?

4. Results

For data derived from a Gaussian distribution results are shown in figure 1 on the left panel as a function of total

events in the histogram. It can be seen here that both fit functions mimic each other almost exactly point by point,

but there is a clear separation between fits, with the back-to-back results always being greater than the corresponding

Gaussian values. This is due to the nature of the underlying functions, as shown in the right panel of the figure. Here,

a frequency space Gaussian of second moment 0.25 μs−1 has been generated and a frequency space back-to-back

function has been fit to it. The back-to-back (symmetric) fit yields a second moment value of 0.36(1) μs−1. This

is due to the tails of the back-to-back function (which are truncated in the figure). The separation between the two

second moments varies as a function of the second moment value, and the two values become indistinguishable by

� 0.05 μs−1.

A second investigation was to generate data from a symmetric back-to-back function and then to fit this data with

both Gaussian and back-to-back functions. Results of this are shown in figure 2. The left panel is fits to data with a

second moment of 0.20 μs−1, and the behavior is almost identical to that in the left panel of figure 1. We believe this

is for the same reason. The right panel shows fits to data that had a second moment of 0.04 μs−1. Here we see that the
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Figure 1. The left panel is results from fitting both Gaussian and back-

to-back exponentials to data derived from a Gaussian line shape. The

back-to-back results mimic the Gaussian data exactly, but are displaced

vertically. The right hand panel shows a frequency space Gaussian func-

tion (points) that has been fit with a back-to-back function (curve). The

second moments of each are given in the text.

0 50 M
Total Events

0.16

0.17

0.18

0.19

0.2

S
ec

on
d 

M
om

en
t (

μs
-1

)

Gaussian
back to back

0 50 M
Total Events

0

0.01

0.02

0.03

0.04

0.05

S
ec

on
d 

M
om

en
t (

μs
-1

)

Figure 2. Fit results for both Gaussian and back-to-back functions whe

applied to data generated from a symmetric back-to-back function. Fo

the left panel, the second moment was 0.20 μs−1 and for the right panel

was 0.04 μs−1.

data are almost indistinguishable, and this is interpreted as resulting from the fact that the Gaussian and back-to-back

frequency representations, for such small widths, are essentially identical.

A third investigation was to generate data from an asymmetric back-to-back function and then to fit this data with

Gaussians and back-to-back functions. Data again look quite similar to that shown above when in that representation.

However, we feel a more useful representation for this is as shown in figure 3. The dashed (dotted) line shows the

actual values for the second (third) moment calculated from the τL and τR used to generate the data. It can be seen that

the Gaussian fits give incorrect second moment values everywhere, but that the discrepancy is worse as the asymmetry

grows. The value 1/τR = 0.2 μs−1 corresponds to a symmetric back-to-back situation, and so the separation at this

point is essentially what was seen in the earlier figures. It can also be seen in the inset that the two curves are beginning

to diverge as the origin is approached. This indicates the frequency space function moving away from a symmetric

situation in the other direction, and one can see the third moment going negative below the value 1/τR = 0.2 μs−1.

These results strongly suggest that Gaussian fitting functions can give misleading results for any data whose

Fourier transform shows an asymmetric field distribution. Even for a second moment as small as 0.1 μs−1 the differ-

ence between the two is 0.04 μs−1. Typical Gaussian-fit second moments for YBCO at low T are in the 1 to 3 μs−1

range, and the pnictides come in around 0.25 μs−1. These results suggest that a back-to-back function can better fit

the underlying asymmetry, yield more reliable second moments, and also give third moments.
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Figure 3. Fit results for both Gaussian and back-to-back functions when applied to data generated from an asymmetric back-to-back function. The

parameter τL was held fixed at 5.0 μs and τR was varied. There were ∼ 7 × 106 events for each histogram. The inset is a magnified view near the

origin. The figure is discussed in the text.

5. Conclusion

We have discussed a numerical study comparing a back-to-back exponential fitting function in time space to the

more standard Gaussian fitting function for transverse field μSR data analysis. It was shown, using simulated noisy

data, that both functions’ results mimic each other, but are separated vertically, for symmetric data derived from either.

However, for asymmetric data the Gaussian fits do not well represent the underlying asymmetric line shape, whereas

the back-to-back function fits quite well for all asymmetries and yields both second and third moment information.
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