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INTRODUCTION

High chlorophyll surface plumes originating from
the world’s major river deltas are often seen as promi-
nent features in ocean color satellite images. Such
plumes can extend far into the open ocean. For exam-
ple, the Amazon and the Orinoco river plumes have
been observed to extend as much as 1000 km into the
western oligotrophic Atlantic Ocean and Caribbean
Sea, respectively (Müller-Karger et al. 1989, 1995,
Longhurst 1993). 

The prominent river plume in the Gulf of Mexico
(GOM) originates from the Mississippi River. The
Mississippi discharges ca. 536 ± 130 km3 of nutrient-
rich water onto the northern GOM shelf each year,
making it the 6th largest river worldwide (Dai &
Trenberth 2002). Exacerbated by heavy fertilization of

large areas within the Mississippi watershed (>2 mil-
lion t of nitrogen fertilizer yr–1) the river carries a very
high nitrate (111 ± 4.3 µM) and phosphate (7 ±
0.4 µM) load as it reaches the delta (Amon & Benner
1997). During most of the year, this leads to massive
phytoplankton blooms along the Louisiana and Texas
coastlines, which receive most of the Mississippi
plume freshwater input. In some instances, however,
particularly during the summer months when local
wind forcing and surface circulation are favorable, the
Mississippi River plume instead reaches hundreds
of kilometers into the eastern oligotrophic Gulf of
Mexico. Under these circumstances ocean color
images have shown the Mississippi plume to extend
along the Florida shelf break as far as the Dry Tortu-
gas or even the Florida Straits (Müller-Karger et al.
1991, Wawrik et al. 2003). 
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No targeted survey of the plume in this environment
has thus far been conducted to study the plume’s effect
on oligotrophic ocean ecology, phytoplankton com-
position and nutrient cycling. Previous studies of the
plume have primarily been concerned with the
plume’s impact on coastal ecosystems in the northern
GOM shelf region. The plume has, however, been
shown to greatly enhance oligotrophic surface produc-
tivity and phytoplankton species composition in the
oligotrophic GOM (Wawrik et al. 2003). 

On the shelf, nutrients, irradiance and primary pro-
duction of the Mississippi River plume have been stud-
ied extensively (Lohrenz et al. 1990, 1994, 1999, Dortch
& Whitledge 1992, Pakulski et al. 1995, 2000). Produc-
tivity in the most coastal region of the plume is initially
limited by turbidity, and highest productivity occurs at
intermediate salinities as the plume matures. Nutrients
display distinct non-conservative mixing behavior
along the salinity gradient of the plume, and both sili-
cate as well as nitrogen have been reported to limit
productivity in the higher salinity portions of the
plume. High productivity in the plume has been impli-
cated in the formation of extensive regions of hypoxia
in bottom waters along the Louisiana and Texas shelf
during summer stratification (Dortch et al. 1994, Eadie
et al. 1994, Rabalais et al. 1994, 1996, Justic et al. 1996). 

Nitrogen mineralization rates in the Mississippi
River plume area have been measured using High
Performance Liquid Chromatography (HPLC) in iso-
tope dilution and enrichment experiments (Gardner et
al. 1993). It was found that highest ammonium regen-
eration rates occurred in samples from shallow depths
where primary and bacterial production was high. In
the Mississippi plume region, ammonium regeneration
rates, bacterial production, and amino acid turnover
have been observed to be greatest at intermediate
salinities during the summer (Cotner & Gardner 1993).

In order to determine the effect of the offshore Mis-
sissippi River plume on nitrogen cycling in the oligo-
trophic Gulf of Mexico, we measured the concentra-
tions and relative uptake rates of dissolved inorganic
nitrogen (DIN) species along a transect of the plume
from offshore to onshore. Our results indicate that
nitrate concentrations averaged over 9-fold higher
than ammonium concentrations in the plume, yet
uptake rates of ammonium were almost 7-fold greater
than nitrate uptake rates. Recycled production thus
dominated within the plume, an observation that was
corroborated by the presence of a numerically domi-
nant population of Synechococcus. In a companion
study, we explore the importance of the offshore plume
to oligotrophic productivity in the Gulf and describe
phytoplankton species dynamics using molecular
techniques and pigment analysis (Wawrik & Paul 2004,
this issue).

MATERIALS AND METHODS

Gulf of Mexico sampling. Surface samples were ob-
tained aboard the RV ‘F. G. Walton-Smith’ between July
16 and 26, 2001, along the approximate axis of the off-
shore Mississippi River plume. For a more detailed de-
scription of our sampling strategy as well as a color Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) satellite
image of the sampling region, please refer to Wawrik &
Paul (2004). 

Ambient nutrient concentrations. Water from each
depth of the vertical profile was filtered through
precombusted (450°C for 2 h) Whatman GF/F filters.
Concentrations of nitrate, phosphate and silicate were
measured with a Technicon AutoAnalyzer. Concentra-
tions of NH4

+ were measured manually with the
phenol/hypochlorite technique (Grasshoff et al. 1999). 

Uptake and regeneration of inorganic nitrogen.
Rates of ammonium and nitrate uptake were measured
in duplicate with 15N tracer techniques using 0.05 µM
tracer additions as previously described (Bronk et al.
1998). All 15N tracer incubations were done in on-deck
flow-through incubators under simulated in situ light
and temperature conditions. Light was attenuated with
blue Plexiglas shields and neutral density screens. Ex-
periments were done in 1 l polyethylene terephthalate
copolyester, glycol modified (PETG) bottles, and sam-
ples were incubated for ~3 h. At the end of each incu-
bation, samples were filtered through precombusted
(450°C for 2 h) GF/F filters. Filters were subsequently
dried and analyzed on a Europa GEO20/20 mass spec-
trometer with an automated nitrogen carbon analyser
(ANCA) sample processing unit. The filtrates from the
ammonium incubations were collected and frozen for
later determination of the atom% enrichment of the
NH4

+ pool. The ammonium pool was isolated using the
solid phase extraction technique (Dudek et al. 1986,
Brzeninski 1987). All NH4

+ uptake rates were cor-
rected for isotope dilution (Glibert et al. 1982). 

14C-carbon fixation. Photosynthetic carbon fixation
was measured as a modification of the methods of
Carpenter & Lively (1980) as modified in Wawrik et al.
(2003) and described in Wawrik & Paul (2004).

rbcL mRNA analysis. mRNA was extracted from
seawater using RNeasy spin columns (Qiagen) as de-
scribed elsewhere (Paul 2001). Briefly, between 200 and
800 ml seawater samples were treated with 0.1% v/v
DEPC (diethyl-pyrocarbonate; Sigma Chemical) and fil-
tered onto 25 mm, 0.45 µm HV polyvinylidene difluoride
filters (Millipore Durapore). Filters were stored in liquid
nitrogen in 750 µl of RLT lysis buffer (Qiagen) together
with 0.2 g of baked, muffled glass beads (Biospec Prod-
ucts). Cell lysis was achieved by bead-beating. The
lysate was then extracted following the RNeasy kit (Qi-
agen) protocol. Samples were split 3 ways. One-third
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was digested with DNAse-free RNAse and one-third
was digested with RQ1-DNAse. RNA was then immobi-
lized onto Zeta-Probe charged nylon filters (Bio-Rad) by
dot-blotting and UV-crosslinking. Duplicate samples
were probed with form IA, form IB and form ID rbcL
probes as previously described (Watson & Tabita 1996,
Paul et al. 1999). Riboprobes labeled with 35S-UTP (uri-
dine triphosphate) were prepared by in vitro transcrip-
tion. Dot blots were analyzed using a BioRad Model
GS363 Molecular Imager. Standard curves were made
from opposite orientation in vitro transcripts generated
from the same rbcL clones used to make the ribo-probes.

Flow cytometry. Samples of 1 ml were fixed with
20 µl of 10% para-formaldehyde and frozen in liquid
nitrogen. Prochlorococcus, Synechococcus and pico-
eucaryotic algal populations were then quantified us-
ing a Becton Dickinson FACSCalibur flow cytometer
outfitted with a 488 nm, 15 mW Argon laser. Forward
angle light scatter, right angle light scatter, green
(530 ± 30 nm), orange (585 ± 30 nm) and red (650 ±
30 nm) fluorescence parameters were collected for each
event. Purple-yellow calibration beads (2.2 µm,
Spherotech) were added to each sample to permit nor-
malization of all fluorescence signals. Data were col-
lected using CellQuestTM software (V. 3, Becton Dickin-
son 1996) and analyzed using CYTOWIN software
(Vaulot et al. 1989); www.sb-roscoff.fr/Phyto/cyto.html
#cytowin). Event rates were recorded for each sample
and abundances were corrected for volume analyzed
and enumeration efficiency factor. The efficiency factor
was calculated from event rate and counts for series of
known concentrations of calibration beads.

Assessment of nutrient limitation. To investigate
potential nutrient limitation ratios of DIN, phosphate
and silicate were calculated and compared to typical
Redfield ratios. Ratios of N:P were determined by
adding measurements of ammonium and nitrate +
nitrite (NH4 + NOx). Ratios of N:P ≥ 30 were taken to
potentially indicate phosphate limitation, and ratios
≤10 to indicate potential nitrogen limitation (Healey &
Hendzel 1979, Healey 1985, Suttle & Harrison 1988,
Dortch & Whitledge 1992). Ratios of Si:N much greater
than 1 are thought to indicate nitrogen limitation,
whereas ratios much smaller than 1 may indicate sili-
cate limitation (Brzezinski 1985, Levasseur & Therri-
ault 1987, Dortch & Whitledge 1992). For the purpose
of this study, Si:N ratios of 0.8 and 1.2 were assumed to
indicate silicate and nitrogen limitation, respectively.
Silicate limitation may also be indicated by Si:P ratios
≥3 (Harrison et al. 1977, Dortch & Whitledge 1992).

RESULTS

Sampling was initiated on the West Florida Shelf and
proceeded from offshore to onshore along the plume
axis (Fig. 1). On our return trip, we sampled the most
distal plume station (Stn 7) and an offshore/oligotrophic
reference station (Stn 8). Stns 1 and 8 were outside the
plume while Stns 2 to 7 were located within. A discus-
sion of salinity, productivity and composition of phyto-
plankton along this transect together with a more
detailed summary of our sampling strategy is found in
the companion paper (Wawrik & Paul 2004). 

Nitrate and ammonium concentrations

Ammonium concentrations varied 2.5-fold and
ranged between 0.18 and 0.44 µM (Fig. 2A). No
discernable pattern in the variability of ammonium
concentrations was observed. Nitrate concentrations
varied much more dramatically and increased 69-fold
from 0.036 to 2.5 µM between Stn 8 and their peak at
Stn 4 (Fig. 2A). Nitrate concentrations were signifi-
cantly greater in plume samples than in non-plume
samples (Student’s t = 1.9, p = 0.1). Nitrate concentra-
tions were significantly greater in samples from Stns 2
through 5 than in the remaining plume samples (t =
5.9, p = 0.004). 

Ammonium and nitrate uptake

Despite greater nitrate concentrations in the plume,
ammonium uptake was much higher than nitrate up-
take. Ammonium uptake ranged between 16.5 nM h–1

177

Fig. 1. Chlorophyll a surface concentrations as measured by
SeaWiFS (Sea-Viewing Wide Field-of-view Sensor) in our
sampling region. Image was converted to black and white. A
color image showing the plume can be found in Wawrik &
Paul (2004, this issue). Lighter shades of gray indicate higher
surface chl a. Concentrations in near-shore regions are often
heavily influenced and potentially biased by the presence of
colored dissolved organic matter, bottom reflectance and
suspended sediment. Land and clouds are black. Station

locations are indicated
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at our most oceanic plume station (Stn 7) and 260 nM
h–1 at Stn 3 and increased toward the Mississippi Delta
(Fig. 2B). Ammonium uptake in non-plume samples
averaged 18.7 nM h–1. Nitrate uptake rates ranged be-
tween 3.1 and 25 nM h–1, and were on average almost
7-fold lower than ammonium uptake rates within the
plume and almost 24-fold lower outside. Uptake aver-
aged 1.03 nM h–1 in non-plume samples. Data analysis
also revealed that nitrate uptake was significantly cor-
related to the ratio of dissolved nitrate to dissolved am-
monium (R2 = 0.79, p = 0.003). The exception was Stn 6,
where an intermediate nitrate uptake rate of 15.7 µM
h–1 coincided with the lowest nitrate concentration

measured anywhere in the plume. Nitrate uptake rates
were significantly correlated to ammonium uptake
rates along our transect (R2 = 0.78, p = 0.004).

Phosphate and silicate

Phosphate concentrations along the transect were
between 0.085 and 0.104 µM (Fig. 2C). Concentrations
were significantly higher in non-plume samples rela-
tive to plume samples (t = 3.4, p = 0.01). The N:P ratio
was calculated by adding dissolved nitrate and ammo-
nium concentrations and dividing this number by dis-
solved phosphate (Fig. 2C). Silicate varied more than
8-fold within the plume, ranging between 0.17 µM at
Stn 4 and 1.38 µM at Stn 3. There was no obvious
pattern of silicate concentrations along the plume, and
concentrations at non-plume stations were not
significantly different from those within the plume. 

Analysis of nutrient ratios indicated that phosphate
limitation of phytoplankton growth may have occurred
at Stns 4 and 5 (Table 1). Based on N:P and Si:N ratios,
nitrogen was limiting at non-plume Stns 1 and 8.
Ratios of N:P also suggested potential nitrogen limita-
tion at Stns 6 and 7. There was no evidence for nitro-
gen limitation at the remaining plume stations, which
contained ample nitrate. Based on Si:N and Si:P ratios,
silicate appeared limiting in the central portion of the
plume surveyed here. Non-plume stations did not
appear to be silica limited.

178

Fig. 2. Ambient nutrient concentrations and DIN uptake rates
along our sampling transect from nearshore (Stn 6) to offshore
(Stn 7); Stns 8 and 1 were outside the plume. (A) Ammonium
(M) and nitrate (j) concentrations in the plume in µM. (B) Up-
take rates of ammonium (M) and nitrate (j) in nM h–1 l–1 as
measured by 15N tracer technique. Also shown is the rate of
ammonium regeneration (d). (C) Ambient concentrations of
orthophosphate (d) in µM and N:P ratio (M). (Note: ‘A’ after

station number designates surface water)

Stn N:P Si:N Si:P N:P Si:N Si:P
P N N Si Si

6 04.09 0.87 03.55 – + – – –
5 29.58 0.36 10.60 + – – + –
4 31.11 0.06 01.84 + – – + +
3 27.36 0.56 15.46 – – – + –
2 21.59 0.33 07.16 – – – + –
7 06.07 0.42 02.54 – + – + +
8 02.04 5.00 10.22 – + + – –
1 03.83 1.34 05.12 – + + –

Table 1. Nitrate (N), phosphate (P) and silicate (Si) limitation
in the plume. N:P, Si:N and Si:P ratios are shown. Based on
these ratios limitation by N, P and Si is determined using
published ratios. +: limitation by a particular nutrient; –: no

evidence for limitation observed based on nutrient ratios
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Carbon fixation and f-ratio

Carbon fixation in non-plume samples aver-
aged 0.53 µg C l–1 h–1 and steadily increased
almost 25-fold along the plume to a rate of
16.2 µg l–1 h–1 at Stn 6 (Fig. 3A). Variability in
carbon fixation along the transect was not corre-
lated with ammonium or nitrate uptake, but
rather displayed a negative correlation with
salinity (R2 = 0.74, p = 0.006). The f-ratio is the
fraction of ‘new’ to total production, and is
calculated by dividing nitrate uptake by nitrate
plus ammonia uptake (Eppley 1981). The f-ratios
were lowest in non-plume samples, where they
averaged 0.053, and were significantly higher in
the plume (t = 2.8, p = 0.029). There was no
significant correlation of the f-ratio to any other
parameter described here. Assuming that all
ammonium uptake leads to primary production in
the plume, and assuming a Redfield ratio of 6.6
for C:N uptake, we calculated the percent carbon
fixation due to ammonium assimilation (Fig. 3B).
This percentage was significantly correlated to
ambient silicate concentrations in our sampling
region (p = 0.034, R2 = 0.75). 

Flow cytometry

Synechococcus was more abundant at the more
coastal stations, reaching a maximum of 2.3 × 105

cells ml–1 at Stn 5, but declining in the central
portion of the plume (Fig. 4A). At Stns 2 and 7,
Synechococcus was no longer significantly ele-
vated over surface abundance at non-plume sites.
With the exception of Stn 3, Prochlorococcus was
not abundant in plume surface samples. Counts in
the plume were <104 cells ml–1 at Stns 2, 6 and 7
and <2 × 104 cells ml–1 at Stns 4 and 5. At Stn 3,
Prochlorococcus was present at an abundance of
1.68 × 105 cells ml–1. This cell density was even
2.6-fold greater than concentrations observed at
the most oligotrophic site (Stn 8). The picoeukary-
otes fraction counted by flow cytometry includes
small red-fluorescing cells such as prymnesio-
phytes, pelagophytes, diatoms, cryptophytes,
chlorophytes and others. The concentration of
picoeukaryotes increased steadily from offshore to
onshore ranging between 9.5 × 102 cells ml–1 and
4.5 × 103 cells ml–1. The abundance of pico-
eukaryotes was significantly positively correlated
with rates of carbon fixation (R2 = 0.86, p = 0.001)
and negatively correlated with salinity (R2 = 0.80,
p = 0.003).
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Fig. 3. (A) Carbon fixation (C fix) (Z) in µg C fix l–1 h–1 and f-ratio
(j) along our transect. The f-ratio is calculated as the ratio
between nitrate and nitrate + ammonium uptake. (B) Ambient
silicate concentrations (d) in µM and the % C fix accounted for by
ammonium uptake (M) assuming a Redfield ratio of 6.6 for C:N
uptake. (Note: ‘A’ after station number designates surface water) 

Fig. 4 (A) Results from flow cytometry analysis. Shown are Pro-
chlorococcus (M), Synechococcus (d) and the number of pico-
eukaryotes (f) ml–1. (B) Detected levels of form IA (d), form IB (M)
and form ID (j) rbcL mRNA along our sampling transect. (Note: ‘A’

after station number designates surface water) 



Aquat Microb Ecol 35: 175–184, 2004

rbcL mRNA expression

The dominant rbcL transcript observed at all stations
sampled was the alpha-cyanobacterial form IA of this
gene. Form IA rbcL mRNA concentrations ranged
between 0.01 ng l–1 at Stn 1 and 0.081 ng l–1 at Stn 2,
and in average exceeded form IB and ID transcript
levels by 8.8- and 8.0-fold, respectively. Form IA and
IB rbcL mRNA concentrations were well correlated (R2

= 0.84, p = 0.008) and increased significantly between
the west Florida shelf and the Mississippi Delta
(Fig. 4B). Form IB expression, which ranged between
0.0011 ng l–1 at Stn 1 and 0.0090 ng l–1 at Stn 5, was
also significantly correlated to carbon fixation (R2 =
0.70, p = 0.05), while form IA and form ID were not.
The greatest range in expression values was observed
for form ID transcript, which varied almost 24-fold
between lowest values at Stn 1 (0.0014 ng l–1) and their
high at Stn 4 (0.033 ng l–1). Form ID expression was sig-
nificantly correlated to in situ concentrations of ammo-
nium (R2 = 0.74, p = 0.037) and the ratio of nitrate to
nitrate uptake (R2 = 0.84, p = 0.008). We observed no
significant correlations between the forms of rbcL
quantified here and our flow cytometry counts for
picoeukaryotes, Synechococcus and Prochlorococcus.

DISCUSSION

The Mississippi River plume, extending westward on
the continental shelf, has been studied intensely. Data
presented here represents the first targeted survey and
transect of the relatively high-salinity and offshore
portion of the Mississippi plume that periodically
wanders into the oligotrophic NE GOM. 

Low ammonium concentrations have been reported
for the plume (0.29 to 2.5 µM) along the entire salinity
gradient (Pakulski et al. 1995). In transects extending
offshore from the Southwest Pass and the Atchafalaya
River, ammonium concentrations ranging between 0
and 2.6 µM were measured, with concentrations peak-
ing at mid salinities (Gardner et al. 1997). Similar
results (with concentrations up to 3.58 µM ammonium
at mid salinities) were obtained in a similar survey of
the Southwest Pass discharge region (Bode & Dortch
1996). Ammonium concentrations reported here for the
offshore plume were in the lower range of these previ-
ously reported values. Potential ammonium uptake
rates in the coastal Mississippi River plume have been
reported in the range between 0.4 and 1.8 µM h–1

(Gardner et al. 1997) and up to 4.4 µM h–1 (Bode &
Dortch 1996), while ammonium regeneration rates
ranged between 0.08 and 0.75 µM h–1 (Gardner et al.
1997) and 0.03 and 1.09 µM h–1 (Bode & Dortch 1996).
Both studies observed peak uptake and regeneration

rates at intermediate salinities. Ammonium uptake and
regeneration rates reported here are consistent with
these observations recorded previously and support
the hypothesis that the most intense recycled produc-
tion occurs at intermediate salinities. In the offshore
plume, nitrate exceeded ammonium at all but our most
inshore plume station, while ammonium exceeded
nitrate concentrations at our non-plume oligotrophic
stations. Despite higher nitrate concentrations, sub-
micromolar levels of ammonium were the preferred
source of nitrogen, and production was fueled by high
levels of ammonium regeneration (Fig. 1C). The domi-
nance of regenerated production in the offshore plume
is in contrast to the coastal plume, which exhibits high
rates of nitrate driven new production.

Not all nitrate uptake represents new production,
however. Evidence has been reported for intense nitri-
fication in the plume, particularly at intermediate
salinities (Pakulski et al. 1995). Nitrate found in off-
shore plume waters may thus be, at least in part, re-
cycled, blurring the distinction between new and re-
cycled production commonly used. It should be noted
that, if this were the case, our nitrate uptake measure-
ments may be an underestimate of actual rates, due to
isotope dilution of the nitrate pool during incubations.
One possible indication for nitrification is the strong
non-conservative mixing behavior of nitrate concen-
trations along our sampling transect (with peak values
at Stns 4 and 6). It is possible that this increase in
nitrate was due to the activity of nitrifying bacteria,
although Mississippi outflow heterogeneity should not
be discounted.

Ammonium is thought to be the preferred source of
nitrogen for phytoplankton growth. This preference is
mediated by specific cell-surface associated trans-
porters, which follow substrate dependent Michaelis-
Menten enzyme kinetics. It is further thought that
oceanic species are adapted to their environment by
possessing high substrate affinities (Dugdale & Goer-
ing 1967) and that nitrate uptake may be dramatically
reduced by the presence of even low concentrations of
ammonium (Wheeler & Kokkinakis 1990). In the field,
uptake kinetics of natural phytoplankton assemblages
have been studied by the addition of 10 to 1000 nM
15NH4

+ and 15NO3
– (Harrsion et al. 1996). Almost with-

out exception, the Michaelis-Menten equation was an
appropriate descriptor of uptake kinetics in samples
from a wide range of physical, chemical and biological
conditions. Ammonium was preferred over nitrate
across a large spectrum of nitrogen concentrations and
inhibited nitrate uptake with an inhibition half-satura-
tion parameter (Ki) of 40 to 50 nM. Significant inhibi-
tion of nitrate uptake by ammonium has also been
reported by other authors (Wheeler & Kokkinakis
1990). Ammonium only accounted for <1% of total
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DIN, yet accounted for 44 to 89% of total N assimila-
tion, and nitrate assimilation was negatively correlated
with ambient ammonium concentrations (Wheeler &
Kokkinakis 1990). These observations held only par-
tially true for the offshore Mississippi River plume
stations of this study where ammonium uptake was
clearly dominant, despite low concentrations. Nitrate
uptake in the plume, however, was both positively and
significantly correlated with ammonium uptake and
the nitrate to ammonium ratio. One possible explana-
tion for this observation may be that nitrate transport
and reduction pathways are expressed only when
sufficient nitrate is present and when ammonium con-
centrations are insufficient to repress their expression.
As a result, a high ratio of nitrate to ammonium
combined with more favorable uptake enzyme kinetics
and cellular demand could result in conditions more
favorable to the utilization of nitrate. 

Nutrient discharge by the Mississippi River has been
implicated in sustaining high levels of primary produc-
tivity in the northern GOM (Riley 1937, Sklar & Turner
1981, Lohrenz et al. 1990, Redalje et al. 1994, Wawrik
et al. 2003). As Mississippi River water enters the
northern GOM, it carries a high load of nitrate
(between 20 and 200 µM, depending on the season;
Lohrenz et al. 1999), but only low concentrations of
orthophosphate (between 0.3 and 5 µM; Lohrenz et al.
1999). Ammonium as well as nitrite are also not
present in significant quantities (Antweiler et al. 1995).
Productivity in the discharge area is initially limited by
the availability of light due to high turbidity of the river
water. As a result of the interplay between the avail-
ability of nutrients and turbidity, the highest productiv-
ity in the plume is most often found in regions of inter-
mediate salinities to be between 10 and 30‰ (Lohrenz
et al. 1990, 1999, Dagg & Whitledge 1991, Dortch &
Whitledge 1992, Hitchcock & Whitledge 1992), where
high nutrient water is no longer limited by light avail-
ability. Additionally, factors other than light have also
been implicated in constraining biomass and produc-
tivity, even in the most turbid portions of the plume
(Lohrenz et al. 1990). Both phosphate and silicate have
been found to limit phytoplankton productivity in the
Mississippi Delta region (Smith & Hitchcock 1994,
Nelson & Dortch 1996). As river water mixes into the
oceanic end-member, nitrate and silicate are rapidly
depleted from the plume, while supporting intense
new production. Nitrate concentrations usually
approach the limits of detection at salinities greater
than 30 to 33‰ (Lohrenz et al. 1990). 

It has been hypothesized that at least 1 or more nutri-
ents (in particular nitrogen) will eventually become
limiting in the plume (Sklar & Turner 1981, Lohrenz et
al. 1990), as has been observed for silicate in the
Hudson River plume (Malone et al. 1980). Dortch &

Whitledge (1992) specifically addressed the hypothesis
that nitrogen or silica may become limiting to produc-
tivity in the Mississippi River plume and nearby
regions. Using ratios of cellular-free amino acids to
protein (AA/Pr) as well as ambient nutrient concentra-
tions, they concluded that nitrogen limitation was not
wide spread in the plume and was most likely to occur
during summer months at high salinities. Nutrient
ratios indicated that silicate was at least as likely to be
limiting. 

Although nutrient ratios should be interpreted with
caution, since they only possess limited use as a pre-
dictor of nutrient limitation, several observations can
be made based on our measurements (Table 1). Nitro-
gen appeared not to be limiting phytoplankton bio-
mass in the plume, at least at stations with ≥1 µM
nitrate. This notion is supported by ammonium regen-
eration rates, which were on average 2.5-fold greater
than ammonium uptake in plume samples, indicating
that the rate of DIN supply was more than sufficient to
support the observed rates of primary production. The
nutrient most likely limiting in the offshore plume,
based on nutrient ratios, was silicate, followed by or in
combination with phosphate. Phosphate was relatively
depleted and near the detection limits at all our sta-
tions, indicating that it may have been a limiting
nutrient throughout. N:P ratios however indicated that
phosphate may have been particularly scarce at
stations where Synechococcus was dominating over
diatoms (Stns 3 through 5; Wawrik & Paul 2004).
During the past century, nitrate loading of the Missis-
sippi River has at least doubled, while silica concentra-
tions have been reduced by half, reducing the Si:N
ratio in river discharge from 4:1 to 1:1 (Turner & Rabal-
ais 1991, Rabalais et al. 2002). These changes poten-
tially influenced the size and type of diatoms found in
the Mississippi watershed, favoring small, less heavily
silicified forms or even non-silicified phytoplankton.
Silica limitation, however, is not thought to ultimately
limit phytoplankton biomass and may only result in the
adjustment of the ambient species composition, which
could have large implications for food web dynamics,
nutrient cycling and the rate of carbon sequestration.
Also, less silicified populations of diatoms may exhibit
lower cellular Si:N ratios, potentially alleviating
silicate limitation in the plume.

Analysis of pigment data and the composition of
rbcL cDNA clone libraries obtained from our plume
samples, indicated that the offshore plume was
divided into a more coastal diatom dominated, a cen-
tral Synechococcus dominated and a more oceanic
diatom dominated region (Wawrik & Paul 2004). Flow
cytometry supports these observations (Fig. 4A).
Numerically, Synechococcus was the principle phyto-
plankter at all plume stations and was particularly

181



Aquat Microb Ecol 35: 175–184, 2004

abundant at intermediate salinity stations (30.8 to
31.5‰), where pigments indicated their dominance
(Wawrik & Paul 2004). Similar observations for Syne-
chococcus have been reported for the dilution zone of
the Yangtze River, China, where abundance ranged
between 102 and 105 cells ml–1 in the summer (Vaulot
& Xiuren 1988) and increased in the offshore direc-
tion. Highest abundance was observed at salinities
between 25 and 30‰. Further offshore plume stations
were dominated by diatoms as indicated by pigment
ratios (Wawrik & Paul 2004), despite indications of
silica limitation in this region. This suggests that fac-
tors other than silica or nitrogen limitation may be
controlling phytoplankton composition and dynamics
in the most offshore portion of the plume. This point is
particularly well illustrated by the observation of a
large population of Prochlorococcus at Stn 3, which
coincided with the highest ammonium uptake rates
measured in the plume. Stn 3, which was located on
the edge of the plume, contained a phytoplankton
community most similar to our non-plume stations
(Wawrik & Paul 2004), but otherwise exhibited
characteristics (salinity, nutrient concentrations, am-
monium uptake rate and productivity) very similar to
adjacent and more centrally located Stns 2 and 4. The
large numbers of Prochlorococcus at Stn 3 is a some-
what surprising finding, since this organism is typi-
cally not abundant in plume surface waters (Wawrik
et al. 2003).

It is also interesting to note that despite the numeri-
cal dominance of Synechococcus in the plume, carbon
fixation was most tightly correlated with flow cyto-
metry counts for picoeukaryotes. Unfortunately we
performed no size-fractionation experiments and it
was thus difficult to assign either productivity or nitro-
gen uptake measurements to individual components of
the phytoplankton using our data. Clone library data
indicated the presence of a large number of diatom
species, which may have dominated some portions of
the plume based on pigment information (Wawrik &
Paul 2004). Since diatoms are thought to be capable of
supporting their growth using ammonium, it is possi-
ble that the high rates of ammonium uptake and pri-
mary productivity we observed were at least in part
due to the presence of a diverse group of these organ-
isms. Phaeodactylum tricornutum, for example, has
been shown to assimilate both L-arginine and ammo-
nium simultaneously and individually at a rate suffi-
cient for growth (Flynn & Wright 1986). Alternatively, a
diverse group of green algae was also present in the
plume and was actively transcribing their carbon fixa-
tion genes. Form IB rbcL mRNA concentrations were
significantly correlated with carbon fixation (R2 = 0.5, p
= 0.05, N = 8), while form ID (diatom/chromophytes)
rbcL was not. 

The most abundant form of rbcL transcript found at
all stations was nonetheless the form IA (α-cyanobac-
terial) type, corroborating the observation that Syne-
chococcus numerically dominated that plume. Both the
cyanobacterial and chromophytic algal rbcL forms
(form IA and ID respectively) were not significantly
correlated with carbon fixation, exemplifying the
highly variable abundance and contribution to total chl
a of these organisms in our sampling region. In addi-
tion, it is possible that chemolithotrophic nitrifying
bacteria (which also contain a form IA or the RubisCO
gene) may have influenced our form IA signal and
obscured its correlation with productivity. Considering
evidence of nitrification in the plume (Pakulski et al.
1995), it is feasible that high levels of form IA rbcL
were in part due to the presence of such organisms.
Form ID rbcL expression was the most variable,
increasing 24-fold between non-plume and plume
stations. Expression was significantly greater in the
plume, but most tightly correlated to the ratio between
dissolved nitrate and nitrate uptake, indicating that
chromophytic algae were particularly successful
where other nitrate using phytoplankton may have
been less abundant or less active. 

Together, these observations suggest that an intense
bloom of diatoms in the near-shore plume (based upon
coastal sampling by others), where nitrate levels are
high and silica is not limiting, is replaced by smaller,
ammonium preferring cells, in particular Synechococ-
cus as plume water moves into the oligotrophic GOM.
New production becomes negligible as recycling of
sub-micromolar ammonium ensues in the offshore
portion of the plume.
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