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ABSTRACT

The photo tactic  responses o f Pagurus longicarpus stage 1 larvae 
were observed under various l ig h t  in te n s i t ie s  and s a l in i t ie s .  No 
d iffe rence  was detected in  the photo tactic  response o f the larvae when 
exposed to 240 fc and 24 f c .  Larvae tested at th e i r  hatching s a l in i t y  
(18 °/oo) swam upward more s trong ly  than larvae hatched in 18 °/oo 
water, and then acclimated fo r  24 hours and tested at 24 °/oo .

An apparatus was designed and developed s p e c i f ic a l ly  to  te s t  
avoidance o f po llu ted water layers by crustacean la rvae. In th is  
apparatus larvae are presented w ith  a d is c o n t in u ity  o f ch lo r ine  or 
other fa c to r  in th e i r  natural v e r t ic a l m igration path.

Only starved and l ig h t  adapted larvae o f Palaemonetes sp. were 
v e r t i c a l ly  photo tactic  under the conditions imposed during te s t in g .  
This observation may demonstrate an important surv iva l mechanism fo r  
s tarv ing larvae and may be a fa c to r  in f luenc ing  v e r t ic a l m ig ra tion .

Palaemonetes sp. stage 2 larvae did not a c t ive ly  avoid or prefer 
ch lor inated water layers o f 1 . 0  to 1 2 . 0  mg/ 1  chlorine-produced 
oxidants (CPO) under the conditions imposed by these experiments. 
Larvae passively sank to the bottom of the te s t  chambers only a f te r  
s u f f ic ie n t  exposure to  ch lo rine  to become immobilized. The rate at 
which the a c t iv i t y  o f the larvae declined was in d ire c t  re la t io n  to 
concentration and l ig h t  in te n s i ty .  M o r ta l i ty  o f Palaemonetes sp. 
larvae cu ltured in clean water a f te r  avoidance te s t in g  was d i r e c t ly  
proportional to  CPO concentration.

x



BEHAVIORAL RESPONSES OF DECAPOD LARVAE 

TO LIGHT, SALINITY AND CHLORINE



INTRODUCTION

Chlorine enters the estuarine environment from two major sources, 

although many minor sources (discussed la te r )  account fo r  s ig n i f ic a n t  

q uan tit ies  of ch lo r ine  in  some local areas. One major source o f 

ch lo r ine  p o l lu t io n  is  cooling water from power p lan ts . In th is  case 

ch lo r ine  is  used to  contro l fo u lin g  organisms and bac te ria l slime in  

the cooling and condensing systems o f power p lan ts . This is  necessary 

because any re s t r ic t io n  in water flows and heat t ra n s fe r  caused by 

aquatic organisms g rea tly  reduces the e f f ic ie n c y  of power production. 

Chlorine is  the primary anti fo u lin g  agent in use at present because i t  

is  cheaper, simpler to  use and more e f f ic ie n t  than other chemical or 

mechanical methods (Beauchamp, 1969; Brungs, 1973; Cough!an and 

Whitehouse, 1978; Draley, 1972; J o l le y  et a K ,  1978; White, 1972).

The other major source o f ch lo r ine  introduced in to  estuaries is 

from wastewater treatment p lan ts . Chlorine has many properties which 

make i t  the chemical o f choice fo r  wastewater d is in fe c t io n .  I t  has 

adequate bac te r ic ida l properties which e f fe c t iv e ly  contro l pathogenic 

organisms. Chlorine also helps reduce biochemical oxygen demand, aids 

in water c la r i f i c a t io n ,  contro ls  f l i e s  and reduces odors (Brungs,

1973; Ingol s et al_., 1953; M orr is , 1975; White, 1972).
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Various indus tr ies  use ch lo r ine  in  many aspects o f manufacture, 

p r im a r i ly  to  contro l pest organisms (insects and b a c te r ia ) ,  e .g . in 

food processing and pulp and paper production. Chlorine is  also used 

in the aluminum industry  to  oxid ize im purit ies  during manufacture 

(Brungs, 1973; White, 1972).

T o x ic i ty  and behavioral studies invo lv ing  ch lo r ine  are d i f f i c u l t  

to  compare because o f the complex chemistry o f ch lo r in e , espec ia lly  in 

seawater. In fresh water, calcium hypochlorite  added to  water 

hydrolyzes to  form hypochlorous acid and hypochlorite  ion .

Ca (0C1>2 + 2H20 £ Ca+2  + 20H' + 2H0C1 J  2H+ + 20C1"

At pH 8.0 the hypochlorous acid (H0C1) to  hypochlorite  ion (0C1") 

ra t io  is  approximately 1:3. When ammonia or organic amines are 

present, they react viith the ch lo r ine  to  form chloramines:

NH3 + H0C1 J  NH2CI + H2O monochiorami ne

NH2 CI + H0C1 J  NHCI2 + H2O dichiorami ne

(urea) NH2 -CO-NH2 + 2H0C1 t- 4HC1-C0-NHC1 monochloramine (organic)
or
2 NH2 CI + H2 CO3 dichloramine (organic) (White, 1972) 

R-C-NHo + H0C1 + R-C-NHC1

R-C-NHC1 + HOC! R-C-NHCI2 (Lewis, 1966)

Nitrogen t r i c h lo r id e  is  also known to ex is t  but only at pH values less 

than 4. Therefore i t  is  o f no concern in environmental work.

The proportions o f monochloramine and dichloramine e x is t in g  at 

any time depends on the temperature, pH, and chiorine:ammonia ra t io .
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At a chiorine:ammonia ra t io  (by weight) o f 5:1 the re la t iv e  

percentages o f the monochloramine to  dichloramine are: at pH 5, 16:84

and at pH 8 .0 , 85:15 (Lewis, 1966).

Sa lt water reactions w ith ch lo r ine  are more complex because o f 

the presence of bromide (about 65 ppm in seawater) (Carpenter, 1977; 

Carpenter and Smith, 1978; Johannesson, 1955; Johnson, 1977; Lewis,

1966; Sugam and Helz, 1977; Wong and Davidson, 1977). At the pH o f 

seawater (about 8 .0 ) hypochlorous acid w i l l  react w ith  bromide to  form 

hypobromous acid in the absence o f ammonia and other in te r fe r in g  

agents:

H0C1 + Br" ^  HOBr + C l”

The hypochlorite  ion w i l l  also react w ith bromide to form the 

analogous hypobromite ion:

0C1" + Br“ -* OBr" + Cl"

The bromine species react with NHg in an analogous manner to ch lo rine  

species to form bromamines. Bromamines may coexist w ith chioramine in 

varying proportions depending on pH, s a l in i t y ,  ammonia to halogen 

ra t io  (Inman and Johnson, 1978; Lewis,1966; Macalady et  ̂ a]_ . , 1977;

Sugam and Helz, 1977), and, most im portan tly , the k in e t ics  o f the 

ch lo r ine  and bromine reactions in  re la t io n  to  ammonia (Johnson, 1977).

Dibromamine is  the predominant form produced in estuarine and 

ocean environments (Inman and Johnson 1978). Dibromamine does not 

pe rs is t as long as monochloramine. In some s itu a t io n s  i t  is  fu r th e r  

oxidized to  bromate at a ra te th a t appears to be affected most by
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u l t r a - v io le t  l ig h t  (Macalady et aj_.s 1977). In other cases 

dibromamine decays to  bromide. When the ammonia concentration is  

greater than 0.5 mg/1 and the ch lo rine  concentration is  less than 

2.5 mg/1, dibromamine and monochloramine coex is t.  At ammonia 

concentrations higher than 1 . 0  mg/ 1  monochl oramine becomes the major 

component o f the to ta l  oxidant concentration. At less than 0.4 mg/1 

ammonia-nitrogen and s u f f i c ie n t ly  large doses o f c h lo r in e , 

tribromamine and hypobromous acid are the major products. These 

bromine reactions which occur in estuarine water and seawater upon 

add it ion  o f ch lo r ine  have been la rg e ly  ignored u n t i l  recen tly , but 

appear to be responsible fo r  the predominant forms o f oxidants in 

estuarine water and seawater (Inman and Johnson 1978).

In add it ion to the inorganic chlorine-produced halogen species 

mentioned above, many reactions occur between various organics present 

in the water and the ox ida tive  halogens making id e n t i f ic a t io n  of 

p o te n t ia l ly  to x ic  organic halogen products extremely d i f f i c u l t  (Brungs 

1976; Carlson et aj_., 1978 Christman et a l 1978; Glaze and Peyton, 

1978; Hsu and Shimizu, 1977; J o l le y ,  1973, 1977; Morris and Baum,

1978; Noack and Doerr, 1978; Rockwell and Larson, 1978; Stanbro,

1977). The organic halogen products are probably not produced in high 

concentrations but some o f them are p o te n t ia l ly  to x ic  (J o l le y ,  1973).

The exact halogen species produced upon ch lo r in a t io n  o f estuarine 

waters cannot be predicted because o f the number o f competing 

reactions possib le. For th is  reason the term ch lo r ine  produced
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oxidant (CPO) is  preferred over to ta l residual ch lo r ine  (TRC) in  th is  

study when re fe r r in g  to  concentration.

The adverse e f fe c ts  o f ch lo r ine  on aquatic organisms has been 

well substantiated fo r  a wide va r ie ty  o f taxonomic groups inc lud ing 

phytoplankton, protozoans, r o t i f e r s ,  o ligochaetes, molluscs, 

crustaceans and f i n f i s h .  Brungs (1973, 1976), Mattice and Z i t t e l

(1976) and Whitehouse (1975) have reviewed studies on ch lo r ine  

t o x ic i t y .  In the review by Brungs (1973), an upper l im i t  o f 0.002 

mg/1 TRC ( to ta l  residual ch lo r ine )  was proposed as appropriate to 

pro tect most aquatic organisms. Brungs (1976) revised the estimated 

safe value to 0.003 mg/1 TRC fo r  freshwater organisms. These "safe" 

values were based mainly on data fo r  freshwater organisms.

Mattice and Z i t t e l  (1976) agreed with Brungs (1973) c lose ly  in 

estimating a "safe" chronic t o x ic i t y  threshold (0.0015 mg/1 TRC) but 

spec if ied  tha t th is  value was fo r  freshwater organisms. They found 

s a lt  water organisms to  be less sens it ive  w ith a threshold o f t o x ic i t y  

estimated to  be 0.02 mg/1 TRC. The leve ls  recommended as safe fo r  

freshwater organisms are below the l im i t s  o f  d e te c ta b i l i t y .

Few acute ch lo r ine  t o x ic i t y  tes ts  have been performed on la rva l 

decapod species. Roberts (1978) and Roberts e t al_. (1979) tested the 

t o x ic i t y  o f ch lo r inated estuarine water to stage 1 larvae o f Panopeus 

h e rb s t i i  and Pagurus long icarpus. The 96 hour LC50 values were 0.04 

to 0 . 1 2  mg/ 1  and 0.062 to 0 . 1 0 2  mg/ 1  fo r  these species, re sp e c t ive ly .

No ch lo r ine  t o x ic i t y  data were found fo r  Palaemonetes sp. larvae which 

were used as te s t organisms in th is  study.
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The t o x ic i t y  o f CPO to  Homarus americanus larvae was studied by 

Capuzzo e t aj_. (1976). Exposure to  concentrations o f 2.89 mg/1 

residual free ch lo r ine  and 0.32 mg/1 residual chloramine fo r  periods 

up to  one hour produced f i f t y  percent m o r ta l i ty  a f te r  48 hours. 

Respiration was depressed at 0.05 mg/1 applied chloramine and 5.0 mg/1 

applied free  ch lo r in e . These values seem high because the 

concentrations in the re sp ira t io n  experiments were measured in  terms 

o f applied dose ra ther than the residual concentration to  which the 

larvae were a c tu a lly  exposed.

Authur et aj_. (1975) examined chronic e ffe c ts  o f ch lorinated 

sewage on freshwater organisms. The most sens it ive  organism tested 

was Daphnia magna which was affected by 0.010 mg/1 TRC. No chronic 

t o x ic i t y  te s ts  are reported using ch lo r ine  alone or ch lor inated sewage 

in s a lt  water.

In behavioral tes ts  organisms may detect and react to sublethal 

leve ls  o f po llu ta n ts  (L a rr ick  e t al_. , 1978). Observation of 

avoidance-preference behavior is  one approach tha t has been used 

extensive ly  to  assess the response o f aquatic organisms when 

encountering a p o l lu ta n t .  There are three possible responses an 

organism can e xh ib it  when encountering a p o l lu ta n t:  avoidance,

preference or ambivalence. An avoidance reaction to  a to x ic  

concentration o f a p o llu ta n t would con tr ibu te  to  the surviva l and well 

being o f an organism (La rr ick  et aX., 1978). Preference of to x ic  

leve ls  o f a p o l lu ta n t  on the other hand would produce much more
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serious e ffe c ts  than might otherwise occur because th is  behavior would 

increase the p ro b a b i l i ty  o f  any given animal being a ffec ted .

Shelford and A llee  (1913) were the f i r s t  to  te s t  avoidance using 

a countercurrent chamber. This apparatus has subsequently been used 

ex tens ive ly , mainly fo r  te s t in g  the reactions o f freshwater f is h  to  

po llu ta n ts  (Cherry, Hoehn e t al_., 1977; Cherry, La rr ick  et al_., 1977; 

Jones, 1947, 1951; Scherer, 1977; Sprague, 1968; Sprague and Drury, 

1969). Some estuarine f is h  have also been tested with th is  type o f 

apparatus (Lewis and L iv ingston , 1977; L iv ingston et 1976;

Meldrim and Fava, 1977; Meldrim et  al_., 1974; Middaugh e t al_., 1977).

The double-Y maze is  another apparatus tha t has been used by some 

researchers to  determine avoidance behavior o f organisms mainly to 

pes tic ides , (Folmar, 1976; Hansen, 1969; Hansen et a K ,  1972; Hansen 

e t al . ,  1973; Hansen e t a\_c , 1974; Kynard, 1974). Organisms in both 

apparatuses were exposed to d is c o n t in u it ie s  o f the p o llu ta n t in the 

horizonta l plane. The avoidance o f organisms to  gradients o f 

po llu tan ts  has also been studied (Hog!und, 1951, 1961; Hoglund and 

Astrand, 1973; Jones e t al_., 1956; Lindahl and Marcstrom, 1958).

Avoidance reactions o f f is h  to many kinds of po llu tan ts  have been 

well reviewed by La rr ick  et a l . (1978). L i t t l e  work has been done on 

avoidance te s t in g  w ith  marine invertebrates and none w ith invertebra te  

la rvae. Hansen et  jal_. (1973, 1974) tested the avoidance behavior of 

two shrimp species to  pestic ides and herb ic ides. Maciorowski et a l .

(1977) tested the avoidance of copper by Gammarus la c u s t r is . Costa 

(1966) showed tha t Gammarus pulex avoid various concentrations of
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chloroform, ethyl a lcoho l, fo rm alin  and various metals. Meldrim 

et  aj_. (1974) b r ie f l y  examined the avoidance behavior o f Palaemonetes 

pugio, Crangon septemspinosa and Ca llinectes sapidus exposed to 

ch lo r ine  res idua ls . A l l  studies except those o f Hansen employed a 

She lfo rd-A llee  apparatus.

Chlorine avoidance studies are d i f f i c u l t  to  evaluate and compare 

because o f the complex and dynamic nature o f  ch lo r ine  reactions in 

water. Many fac to rs  in receiv ing waters a f fe c t  the form in which 

ch lo r ine  ex is ts  in  water such as, pH, ammonia concentra tion, s a l in i t y ,  

bromine concentrations, temperature and organic compounds. In 

seawater the oxidants measured include not only ch lo r ine  but also 

bromine species and re la ted halogenated compounds. There is  also 

disagreement regarding what form o f halogen (ch lo r in e )  is  the most 

important to measure (Sprague and Drury, 1969; Meldrim et al_., 1974).

Most avoidance studies o f ch lo r ine  fo r  f is h  have been performed 

in freshwater w ith a few studies in estuarine water (Cherry, Hoehn et_ 

al . ,  1977; Cherry, L a rr ick  et a K , 1977; Fava and Tsa i, 1976; Meldrim 

and Fava, 1977; Meldrim et_ a_l_., 1974; Middaugh et al_., 1977).

Depending on the sp e c if ic  conditions imposed on the f is h ,  the 

threshold avoidance (THA) concentrations ranged from 0.049 - 0.26 mg/1 

TRC with 50% avoidance occurring at concentrations from 0.03 to  

0.64 mg/1 TRC.

Only one study was conducted te s t in g  avoidance o f ch lorinated 

water by inve r te b ra te s . Meldrim et  aj_. (1974) conducted a few 

ch lo r ine  avoidance tes ts  w ith three decapod species, Palaemonetes
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pugio, Crangon septemspinosa and Ca llinectes sapidus. Threshold 

avoidance concentrations were approximately 0.04 mg/1, 0.085 mg/1 and 

0.10 mg/1 free  residual c h lo r in e ,  re spec tive ly . Approximate values 

are given because Meldrim e t a l . (1974) did no data reduction on these 

te s ts .

Avoidance studies using invertebra te  larvae have been thus fa r  

concerned only w ith  s a l in i t y  (Harder, 1952, 1954, 1957, 1968; Lance, 

1962; Roberts, 1971b; S ca rra tt  and Raine, 1967). These studies used a 

v e r t ic a l  d is c o n t in u ity  apparatus cons is ting  o f cy linders  in  which 

water of low s a l in i t y  rested on top o f high s a l in i t y  water. The te s t 

protocol o f  these experiments was s im ila r  to  the protocol used in the 

present study.

Responses to  natural fac to rs  are important considerations when 

studying avoidance behavior. L ig h t ,  temperature, pressure, s a l in i t y  

and feeding are fac to rs  known to  a f fe c t  la rva l behavior. Thorson 

(1964) in a comprehensive review paper recorded tha t out o f 141 

species of early  stage meroplankton studied, 81% were p o s it iv e ly  

pho to tactic  and migrated to  surface water laye rs , 12% seemed 

in d i f fe re n t  and 6% of the larvae were negative ly p h o to ta c t ic .

Subsequent studies have confirmed tha t the vast m a jo r ity  o f early  

stage zooplankton are p o s i t iv e ly  pho to tactic  (Bardolph and Staun,

1978; Forward, 1974; Forward and Costlow, 1974, Latz and Forward,

1977; S u lk in , 1971).

Thorson (1964) and Forward (1974) report tha t high l ig h t  

in te n s i t ie s  may induce negative phototaxis in normally photopositive
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la rvae . Temperature increases are thought to induce photonegative 

responses in  larvae although th is  has not been well studied (Ewald 

1912; Thorson 1964). An increase in  pressure genera lly  causes upward 

swimming and increased pho to tactic  response (reviewed b r ie f l y  by 

Sul k in ,  1971). S a l in i ty  decreases have been shown to  cause downward 

movements o f larvae even in  the presence o f l i g h t  as shown by 

avoidance studies noted e a r l ie r  (Thorson, 1964; Latz and Forward,

1977).

Crustacean larvae move p r im a r i ly  in  the v e r t ic a l  plane. This 

behavior is  associated w ith  the search fo r  food and w ith u t i l i z a t io n  

by larvae o f the net flows o f water layers w ith in  estuaries to 

maintain themselves in an environment favorable fo r  development. Many 

fac to rs  in the environment are known to a f fe c t  v e r t ic a l m ig ra tion .

L ight in te n s ity  and s a l in i t y ,  two major fac to rs  o f importance, are 

subjects o f th is  study. In add it ion  to environmental fa c to rs ,  

po llu tan ts  may a f fe c t  the behavior and there fo re  the a b i l i t y  o f larvae 

to surv ive . Chlorine introduced in to  estuaries by power plants and 

sewage treatment p lants is  genera lly  found in  surface plumes and thus 

may a f fe c t  the v e r t ic a l  m igration o f la rvae. Reactions o f crustacean 

larvae to ch lo rina ted  water layers are also explored in th is  study.

Crustacean larvae are important to estuarine ecosystems. Some 

species are o f economic s ign if icance  while others serve as an 

important step in the food webs of other organisms. Therefore, i t  is  

important to study the responses o f these organisms to fac to rs  they 

may encounter in the environment.
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The primary ob jectives o f  th is  study were 1) to  determine the 

v e r t ic a l  phototrophic behavior o f decapod larvae under d i f fe re n t  

conditions o f l ig h t  and s a l in i t y ;  2 ) to  develop an apparatus th a t can 

be used to  te s t  the reactions o f decapod larvae to  non-conservative 

p o llu tan ts  such as ch lo r ine  in the v e r t ic a l plane; and 3) to  use the 

apparatus to  determine whether decapod larvae can detect and avoid 

CPO.



MATERIALS AND METHODS 

Maintenance o f  Laboratory Breeding Stock and Test Organisms

Adult Pagurus longicarpus were obtained from the York River near 

Gloucester P o in t,  V irg in ia  or from Cedar Is land near Wachapreague, 

V i rg in ia .  Wachapreague crabs were slowly acclimated to  the ambient 

s a l in i t y  o f the York River at the V irg in ia  In s t i tu te  o f Marine Science 

p ie r ( - 2 0  °/oo) in  three equal steps over three days.

Adult crabs were maintained on a sea tab le  receiv ing a continuous 

supply o f u n f i l te re d  or 10 urn f i l t e r e d  estuarine water. A layer of 

subtidal sand was provided as a substrate fo r  the crabs which provided 

some food as well as a "normal" environment. Crabs were fed pieces of 

frozen f is h  every other day w ith Purina Marine Chov^ added 

p e r io d ic a l ly  as a food supplement. Uneaten food was removed the 

fo llow ing  day.

A 14 hour l i g h t : 10 hour dark photoperiod was maintained by means 

of a t im er which con tro lled  two 30 W fluorescent bulbs (day ligh t 

white) located d i r e c t ly  above the sea ta b le .  During the summer the 

photoperiod was increased by l ig h t  entering through windows adjacent 

to  the sea tab les . Water temperature was maintained at a minimum of 

20°C. During summer months ambient temperature was used. During the

VIRGINIA INSTITUTS
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w in te r the heated water was v igorous ly  aerated to protect the crabs 

from a i r  embolisms caused by the sudden heating o f a i r  saturated 

w ater.

Adult crab populations were examined weekly fo r  ovigerous 

females. Ovigerous crabs were placed in a p lex ig lass holding tank 

(F ig . 1A), receiv ing 1 pm f i l t e r e d  estuarine water (b ) .  Water was 

discharged through outflow  port ( c ) ,  located near the top o f the tank. 

Hatched larvae in the outflow  were trapped in  a 254 ym mesh screened 

basket conta in ing f re sh ly  hatched Artemi a n a u p l i i .  The receiv ing 

basket was immersed in a water bath (e ) .  The basket was examined fo r  

la rvae, stocked w ith fresh food, and cleaned every morning (hatching 

usually  took place during the n ight or ea rly  morning). Newly hatched 

zoeae were trans fe rred  to 20.3 cm glass f in g e r  bowls. Larvae were 

trans fe rred  to clean water and fed d a i ly .  Culture techniques were 

patterned a f te r  Roberts (1971a, 1972, 1974).

Palaemonetes sp. adults were co llec ted  w ith a dip net from a 

marsh near Mumfort Island in  Wicomico, V irg in ia .  These shrimp were 

id e n t i f ie d  as pugio based on ro s tra l spine c h a ra c te r is t ie s  (Gosner, 

1971). However, using several other d iagnostic  characters as w e ll ,  i t  

was la te r  found tha t the population was a mixture of P_. pugio, P_. 

vu lga ri s and £ . in term edius.

Adult shrimp were held in a 379-1i t e r  rectangular f ibe rg lass  

tank. U n f i l te re d  aerated estuarine water flowed through the tank. A 

minimum temperature o f 23°C was maintained during the w in ter when 

induced spawning was attempted ( L i t t l e ,  1968). During the summer,
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ambient temperature was used. Adult shrimp were fed b i ts  o f  f is h  

every two days and le f t - o v e r  Artemi a naup lii d a i ly .  The 14L:10D 

photoperiod was provided by two 30 W fluorescent bulbs (d ay l ig h t 

white) con tro l le d  by a t im e r.  During the summer the photoperiod was 

extended by l ig h t in g  from nearby windows.

Ovigerous females were trans fe rred  to  a 38 l i t e r  aquarium 

equipped with an aquarium f i l t e r .  Freshly hatched Artemi a naup li i  

were introduced d a i ly .  Adult shrimp w ith eggs in an advanced stage of 

development (eyespots v is ib le )  were transfe rred  to a larva c o l le c to r  

(F ig .  IB ) .  The la rva  c o l le c to r  used fo r  Palaemonetes sp. d i f fe re d  

s l ig h t l y  from the one used fo r  P̂ . long icarpus. Shrimp w i l l  eat eggs 

o f f  the pleopods o f other shrimp or newly hatched la rvae. This 

c o l le c to r  prevents loss o f larvae or eggs through cannibalism. I t  

consists o f a p lex ig lass tank (a) w ith four cy linders  suspended from 

the top (b ) .  The bottoms o f the cy linders have 1 mm nylon mesh 

screens attached.

One gravid shrimp was placed in each basket. The top o f the 

basket was covered w ith  black p lex ig lass (c) to  exclude l i g h t ,  thereby 

reducing the tendency fo r  newly hatched larvae to swim upward in the 

tube. Water pumped in to  the top o f the baskets at a ra te  o f  about 

20  ml/min provided c i r c u la t io n  through the tubes which helped flush 

out hatched larvae. Water and larvae exited the holding tank via a 

port (d) located at the top o f the tank which led to a submerged 

screened basket id e n t ica l to  the one used to c o l le c t  P_. 1 ongicarpus 

larvae except tha t the water was rec ircu la ted  to the baskets holding
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adu lt shrimp. The baskets were rinsed w ith  hot tap water ( 55°C) 

d a i ly  and washed w ith  A lc o n o ^  along w ith  the tubes and tank every 2 

days.

Shrimp larvae were cu ltured in a s im ila r  fashion to  those o f  F\ 

longicarpus (F loyd, 1977; Provenzano and Goy, 1976). Culture 

temperatures ranged from 20° to  25°C and ambient s a l in i t y  was used 

except during acclim ation fo r  te s ts .

Behavioral Testing Apparatus

The apparatus used to  evaluate the response o f larvae to 

ch lo r ina ted  estuarine water layers was developed s p e c i f ic a l ly  to  deal 

w ith the fac to rs  imposed by the non-conservative nature o f ch lo r ine  

and the normal tendency o f most decapod larvae to  move in a v e r t ic a l 

plane. A two-layered flow ing water column was produced in the 

apparatus w ith  ch lo r ine  added to  the upper la ye r .  Chlorine "decays" 

ra p id ly  and must be replenished constantly  in  order to maintain 

constant CPO leve ls  throughout a te s t  period. Larvae introduced in to  

the lower CPO-free layer were induced to swim towards the upper 

ch lo r ina ted  water laye r by an overhead l ig h t  source where they 

encountered the ch lo r ina ted  w ater. V isua lly  observed reactions o f the 

larvae to  the concentration d is c o n t in u ity  were recorded at regular 

in te rv a ls  during each experiment.

The f in a l  design fo r  the apparatus is  shown in Figure 2.

Rhodamine B and Fluorescene dyes were used to  demonstrate tha t the two 

water layers remained d isc re te .  D is t r ib u t io n  o f dye in the te s t
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chamber was observed fo r  periods exceeding one hour w ith  no 

s ig n i f ic a n t  mixing (F ig . 3 ) .  Visual observations were checked by 

analyzing water samples from each water laye r using a Cary-14 scanning 

spectrophotometer to  detect small amounts o f dye.

Each te s t  chamber (F ig . 2) was jacketed in  a water bath to  

provide thermal in s u la t io n .  Temperature contro l was found to  be 

c r i t i c a l  to maintenance o f d isc re te  water laye rs . Water entered the 

water bath through a port (a) at one end and exited through a port (b) 

at the same end a f te r  passing around the te s t  chamber. Water entered 

the te s t  chamber through two in f lo w  ports (c and d ) ,  one fo r  the upper 

layer and one fo r  the lower la ye r .  Incoming water to the upper layer

passed from a chamber (e) through a d i f fu s e r  p la te  ( f )  in to  a second

chamber (g) and thence in to  the te s t  chamber through a d i f fu s e r  p late

and nylon mesh screen ( h , 254 ym mesh s iz e ) .  Incoming water to  the

lower layer followed a s im ila r  path from a chamber ( 1 ) ,  through a 

d i f fu s e r  p la te  (m) in to  another chamber (n) and then through a 

d i f fu s e r  p la te and nylon mesh screen (h ) .  The layers flov/ed across 

the te s t  chamber and out through a nylon mesh screen and d i f fu s e r  

p late ( i ) in to  chambers j  (upper laye r) and o (lower laye r) and o u t le t  

ports (k) and (p) respec tive ly . The bottom, back and top edges o f the 

te s t  chambers were painted du ll black to prevent undesired sca tte r ing  

o f l i g h t .  The chamber backs were divided h o r iz o n ta l ly  in to  quarters 

so tha t la rva l pos it ion  could be accurate ly determined. Paralax e rro r  

re s u lt in g  from the fixed  observation port was assumed to  be 

in s ig n i f ic a n t  although th is  was not tes ted .
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Two id e n t ica l te s t  chambers were enclosed in  a l ig h t  proof 

chamber which e lim inated outside influences th a t  might a f fe c t  la rva l 

behavior (F ig . 4 ) .  Two 30 W fluorescent tubes (cool white or day ligh t 

white) provided l ig h t  to  a t t ra c t  larvae in to  the upper layers o f  the 

te s t  chambers (a ) .  L ight was d irected  in to  the chambers (k) through 

l ig h t  "tunne ls" (b) to  minimize re f le c t io n s  o f f  the sides o f the te s t  

chambers which might modify the o r ie n ta t io n  o f  the la rvae . Neutral 

density  f i l t e r s  (c) were placed over the tunnels to  reduce l ig h t  

in te n s i ty  when necessary. A black b a f f le  (d) excluded l ig h t  from the 

rest o f  the apparatus. The te s t  chambers rested on a black p la tform  

(e) supported by four rods ( f ) .  A blower which c ircu la te d  a i r  w ith in  

the enclosure to  maintain temperature was attached beneath the 

p la tform  (g) w ith  a black f le x ib le  hose to e lim inate  v ib ra t io n .

The enclosure cover was gasketed and a l l  water l in e s  entering the 

l ig h t -p ro o f  enclosure were covered with opaque tubing to exclude 

extraneous l i g h t .  The enclosure cover was f i t t e d  w ith  two observation 

ports (h) which v/ere plugged when not in  use.

Water De livery Systemhi-  ■ ■ +* U

F i l te re d  (1 ym) estuarine water was delivered to the te s t  

chambers from a storage tank (a, F ig . 5 ) . S a l in i ty  was adjusted when 

necessary to  20 °/oo s a l in i t y  using well water or Ins tant Ocear!® Sea 

S a lts .  The water was aerated and used w ith in  two days. Water was 

pumped (b) through a heat exchange water bath (c) in to  a header tank 

(d) which contained a heat sensor tha t con tro lled  the heat exchanger.
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Excess water in the header tank was returned to the storage tank (a ) .  

This con figu ra t ion  not only conserved water during experiments but 

allowed water to c i rc u la te  in  a closed loop fo r  12 hours p r io r  to 

experiments a llow ing accurate temperature adjustment ( j^0 .25°C ).

Water from header tank (d) flowed via siphons to  two subsid iary 

header tanks (e and f ) .  A thermoregulator sensor and Vycof^ heater, 

both attached to c o n t ro l le r  ( 1 ) ,  were immersed in header tank (e) 

which supplied water fo r  the upper layers o f the te s t  chambers. The 

heater was used to ra ise the temperature o f the upper v/ater layer 

0.5°C above temperature o f the lower water layer which insured layer 

separation. Water in header tank (e) was s t i r re d  to insure a 

homogeneous temperature throughout the tank. Header tank ( f )  was 

id e n t ica l to (e) except tha t i t  did not contain a heater or s t i r r e r .  

Excess water entering tanks (e and f )  exited through constant level 

standpipes and flowed back to  storage tank (a ) .

Water supplying the upper and lower water layers o f  the te s t  

chambers f 1 owed from th e i r  respective supply tanks through jacketed 

siphons and tubes (m) and through flow  meters (k ) .  Flow rates of 

water entering the te s t  chambers were con tro lled  by means o f screw 

clamps located ju s t  outside the l ig h t -p ro o f  enclosure and by varying 

the re la t iv e  heights of the water supply tanks (e and f ) .  A stock 

so lu t ion  o f ca lc iu m ‘hypoch lorite  was stored in a l ig h t -p ro o f  container 

( j ) .  A p e r is ta l t i c  pump ( i )  in jec ted  the stock so lu t ion  through a 

10 gauge hypodermic needle located ju s t  before the water supply tubing 

entered the l ig h t -p ro o f  enclosure.
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Inside the enclosure water flowed through the te s t  chambers (h 

and g) and exited through tubes attached to  labora to ry  stands ( i ) .

The outflow  rates matched the in f lo w  rates ( ~  50 ml/min) which were 

con tro l le d  by ad justing  the height o f  the e x i t  tubes on the labora to ry  

stands.

Measurement of Chlorine Concentration

The concentration o f ch lo r ine  stock so lu tions was measured by the 

iodometric t i t r a t i o n  method described in APHA (1975). The ch lo r ine  

concentration in  both layers o f the te s t  chamber were measured by 

amperometric t i t r a t i o n  using a Sargent Welsh Model P Amperometric 

T i t r a to r  in  conjunction w ith  a ro ta t in g  mercury-platinum electrode and 

a calomel reference e lec trode . A s t r ip  chart recorder (1 mv f u l l  

scale) was used to  am plify the signal during the t i t r a t i o n  which 

f a c i l i t a te d  end point de tec t ion .

A 50 ml a l iq u o t of water was used fo r  each t i t r a t i o n .  One ml of 

5% KI followed by 1 ml o f pH4 b u ffe r  was added to  the sample. The 

sample was immediately t i t r a t e d  w ith  0.005 N phenyl arsine oxide u n t i l  

no change in curren t was noted on the s t r ip  chart recorder (Standard 

Methods, 1975).

Protocols f o r  S a l in i ty  and L igh t In te n s ity  Tests

Three sets o f experiments were conducted using stage 1 larvae o f 

P. 1ongicarpus. Experiments 1 through 4 were conducted to insure tha t 

larvae in both te s t  chambers behave s im i la r ly  when exposed to 

iden t ica l conditions o f l i g h t ,  temperature and s a l in i t y .  In
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experiments 5 and 6 the response of the larvae under d i f fe re n t  

in te n s i t ie s  o f  l i g h t  was measured. The l i g h t  in te n s i t ie s  used 

throughout the present experiments were 240 and 24 fc  which are 

equivalent to 2583 and 258.3 Lumens m- 2, respe c t ive ly .  In experiments 

7 through 12 the e f fe c t  o f s a l in i t y  on the response o f larvae was 

evaluatedc

These tes ts  were conducted under s ta t ic  cond it ions . Test 

chambers were rectangular w ith  the same dimensions as the actual te s t  

chamber o f the f low-through chambers described p rev ious ly , placed in 

the same l ig h t  box. Water temperature during a l l  the te s ts  was held 

constant at 24 +_ 1°C.

Newly hatched larvae were placed in 20.3 cm f in g e r  bowls 

(~100/bowl) at the appropriate s a l in i t ie s .  Larvae were fed Artemi a 

naup li i  at a density o f 15 to 20 per ml u n t i l  two hours p r io r  to 

te s t in g .  Larvae in clean water w ithout food were dark-adapted fo r  

2 hours p r io r  to  te s t in g .

T h ir ty  a c t iv e ly  swimming larvae (1 day o ld) were introduced in to  

the bottom of each te s t  chamber through a canula. Larvae were 

observed fo r  one hour. The number of larvae in the upper h a lf  o f each 

chamber was recorded every f iv e  minutes. At the end o f  the experiment 

larvae were recovered, counted and examined fo r  physical damage. Two 

experiments could be conducted in  a day, one between 1030 and 1130 EST 

and one between 1345 and 1445 EST. Replicate experiments were not 

conducted on the same day and the treatments w ith in  experiments were 

a lte rnated between the te s t  chambers.
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Protocol To Test E ffec ts  o f I l lu m in a t io n  and Feeding Regimes

Newly hatched Palaemonetes sp~. larvae were normally p o s i t iv e ly  

pho to tac tic  in the h o r iz o n ta l,  but not in  the v e r t ic a l  plane. L ight 

adaption and s ta rva tion  seemed to  induce larvae to  become v e r t i c a l ly  

pho topos it ive . Several experiments were conducted to  confirm th is .

The two-layered chambers were used fo r  these experiments. The 

te s t in g  procedures were id e n t ica l to  those used in ch lo r ine  tes ts  

described in the ch lo r ine  avoidance section (see page 28). Flow rates 

fo r  the upper and lower water layers were approximately 54 ml/min. 

S a l in i ty  was adjusted to 20 °/oo and temperature was maintained at 

24 + 1°C. A ll tes ts  were in i t ia te d  between 0700-0800 to  avoid 

possible e f fe c ts  o f d iurnal rhythms.

Approximately 12 hours before the te s t  50 larvae were transfe rred  

to  each o f two 10 cm f in g e r  bowls. Larvae in  one bowl were fed 

Artemi a , at a density  o f 20/m l, while larvae in the other bowl were 

not fed. Both bowls were placed under f luorescent l ig h ts  u n t i l  the 

experiment was started (-11 hours l ig h t  adaption). Each experiment 

was conducted twice at each l ig h t  in te n s i ty  (240 and 24 f c ) .  The 

e f fe c t  of dark adaptation vs l ig h t  adaptation was tested in a single 

experiment. The te s t  procedure fo r  dark vs l ig h t  adaption was s im ila r  

to the s ta rva tion  experiments except a l l  larvae were starved 12 hours 

p r io r  to te s t in g  and one set o f larvae was dark adapted fo r  12 hours, 

the other set l ig h t  adapted fo r  12 hours to  240 f c .
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Protocol f o r  Chlorinated Water Tests

Water fo r  each te s t  was f i l t e r e d  to 1 pm, adjusted to  a s a l in i t y  

o f 20 +_ 1 ° /o o , aerated fo r  24 hours and kept at 24 + 0.25°C fo r  a l l  

experiments.

A ll experiments were in i t ia te d  between 0800 and 1000 hours to  

e lim inate  e f fe c ts  o f  d iu rna l rhythms. At the s ta r t  o f  each experiment 

the in f low  rates were measured by flow  meters which were ca lib ra ted  by 

d ire c t  measurements w ith a graduated c y l in d e r .  The e x i t  tube flow  

rates were adjusted to match the measured in f lo w  rates fo r  each water 

laye r + 1 m l. Flow rates fo r  each water layer were approximately 

55 m l/m in .

When a l l  f low  rates were adjusted the siphons supplying the water 

baths surrounding the te s t  chambers were s ta rted . The te s t  system was 

operated fo r  15 minutes to a llow the water temperature in the upper 

water layer to e q u i l ib ra te .  Chlorine was introduced in to  the upper 

layer of the tes t chamber and allowed to reach a constant 

concentration over 5-20 minutes. Constant CP0 concentration was 

considered achieved when two consecutive concentration measurements 

(taken every 5 minutes) were equal. Chlorine concentration o f the 

te s t  water was measured in samples co llec ted  from the ou tflow  ports . 

Concentrations tested were 1 .0 , 5.0 and 11.0 mg/1 CP0. The re ten tion  

time fo r  the water in the te s t  chambers was ca lcu lated to be 

10 minutes based on in f lo w  rates and the volume o f the te s t  chambers. 

Chlorine concentration o f both water layers were measured at the 

beginning* middle and end o f each experiment.
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To s ta r t  an experiment, 30 a c t iv e ly  swimming stage 2 larvae o f 

Palaemonetes sp. were trans fe rred  by p ipe tte  in to  each o f two 10 ml 

beakers. Larvae were s low ly poured in to  te s t  and contro l chambers 

through a N a lg e n ^  funnel extended w ith  a glass tube to  the bottom o f  

each chamber. This method o f in trod u c t io n  produced less mechanical 

damage to  larvae than in trod u c t io n  through a canula.

Two minutes was allowed fo r  acclimation before the f i r s t  

observation was recorded. The number o f  larvae in  each horizonta l 

quarter o f te s t  and contro l chambers were recorded every f iv e  minutes 

fo r  one hour along w ith observations regarding type o f behavior, 

espec ia lly  te lson f l i p s ,  ac tive  swimming and passive sinking (Roberts, 

1971b).

At the conclusion o f the experiments the number o f larvae 

recovered from each chamber was recorded, and in  many cases, the 

larvae were staged to  confirm tha t they were stage 2. A fte r  some 

experiments, the chambers were operated w ithout ch lo r ine  in fus ion  

before the larvae were recovered. The recovered larvae were cu ltured 

to  determine whether the b r ie f  ch lo r ine  exposure increased the 

m o r ta l i ty  ra te .  Chlorine tes ts  were rep lica ted  two to  three times at 

each concentration and l ig h t  in te n s i ty .

Data Analysis

In experiments to  te s t the reactions o f P_. 1 ongicarpus larvae to 

s a l in i t y  and l ig h t  in te n s i ty ,  the proportion o f larvae in the upper 

halves of the chambers were p lo tted  over t im e. A Wilcoxon Sign Rank
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Test (WSRT) (Sokal and R oh lf, 1969) was used to  compare the 

d iffe rences in  response o f the larvae to  each treatment. This method 

could not be used to  compare re p l ica te s  because the responses o f  the 

larvae were obviously d i f fe re n t  between re p l ic a te  te s ts .  An important 

assumption of the WSRT is  th a t  each observation is  independent o f a l l  

o thers. In these experiments the pos it ion  o f a la rva  at a s p e c if ic  

time is dependent on i t s  previous p o s it io n .  This method o f analysis 

is  not s t r i c t l y  appropriate but is  the best s ta t is t i c a l  te s t  found.

In experiments to examine the responses o f larvae o f Palaemonetes 

sp ., histograms were constructed to  show the de ta iled  d is t r ib u t io n  o f 

larvae in each v e r t ic a l  quarter o f chambers over t im e. Larvae res ting  

on the bottom o f the chambers were not counted. Also shown on the 

histograms are the to ta l number o f larvae counted ( to  the l e f t  o f each 

histogram) and the number o f larvae recovered from each chamber (to  

the r ig h t ) .

A c t iv i t y  and o r ie n ta t io n  indices were used by Roberts (1971b) to 

describe la rva l behavior in te s ts  in  which la rva l d is t r ib u t io n  was the 

measure o f response. Both indices are used here to analyze reactions 

to ch lo r ina ted  water laye rs . The a c t i v i t y  index ( l j \ ) , was used to 

determine the number o f ac tive  swimming larvae in the te s t  chambers 

over time. I/\ is  the number o f larvae counted in a l l  four quarters o f 

the te s t in g  chambers divided by the number o f larvae recovered from 

the chambers at the te rm ination  o f the experiment m u lt ip l ie d  by 1 0 0 .

The o r ie n ta t io n  index ( I 0 ) devised by Lagerspetz and M a tt i la  (1961) is  

defined by the expression:
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Ny - Nl

I0 =--------  x 100
Ng + Nl

where Ng = the number o f larvae in  the upper two quarters o f

the chambers

Nl = the number o f larvae in  the lower two quarters o f  

the chambers

The o r ie n ta t io n  index has a range of +100 to  -100. Preference fo r  the 

upper h a lf  o f  the chamber is  ind icated by p o s it iv e  values (+ 1 0 0  

ind ica tes 1 0 0% preference) and avoidance o f the upper h a lf  o f  the 

chamber is  ind icated by negative values.

I/\ was p lo tted  over time fo r  each experiment. A leas t squares 

l in e  was f i t t e d  to  the data only to  show general trends o f  la rva l 

a c t i v i t y  and is  not meant to imply tha t the a c t i v i t y  trend is  s t r i c t l y  

l in e a r .  The ind ices , l j\ and I 0 , were p lo tted  against each other in 

order to characterize the behavior o f contro l and experimental larvae 

in  te s ts .  The numbers next to each po in t on the p lo ts  correspond to  

the sequential observation o rder. An observation was taken every 

5 minutes over the course o f each experiment.

Means o f I 0 and I/\ fo r  each experiment ( I 0 and I/\) were compared 

between experiments. Interexperimental comparisons were also made by 

comparing the d iffe rences between te s t and contro l indices and are 

represented by A l0 and A l^ where:

Alo = I 0 contro l - I 0 te s t 

and

Al/\ = l / \  contro l - I/\ te s t



Pos it ive  values o f the A I0 and Ala indices ind ica te  a greater 

la rva l response in the contro l treatment index than in  the 

corresponding te s t  treatment index. The separation o f  points fo r  te s t  

and contro l treatments was confirmed by d iscr im inan t analysis 

(Tatsuoka 1971). The Wilkes Lambda (A) po rt ion  o f d isc r im inan t 

analysis compares the re la t iv e  distances o f the centro ids o f  two data 

groups ( te s t  and c o n t ro l ) .  The Chi squared (x^) te s t  associated w ith 

(A) s t a t i s t i c a l l y  determines the discreteness o f  two data groups.

Cumulative m o r ta l i ty  curves were constructed fo r  experiments in  

which recovered larvae were cu ltu re d .



RESULTS

E ffe c t o f  Test Chambers

Under a l l  conditions tes ted , when l ig h t  in te n s i ty  and s a l in i t y  

were the same in  both chambers there were no s ig n i f ic a n t  d ifferences 

detected in the photo tac tic  response o f IP. 1 ongicarpus la rvae. 

Duplicate experiments conducted at 240 fc  and 18 °/oo s a l in i t y  showed 

no s ig n i f ic a n t  d if fe rence  w ith in  experiments in  overa ll photo tactic  

response (a = 0.01) using the Wilcoxon Sign Rank Test (WSRT) (Table 

1 ).  A d i f fe rence  was detected between experiments in  the response o f 

larvae in  the l e f t  hand chambers (WSRT = 4 .1 * * ) ,  but not in  the r ig h t  

hand chambers (WSRT = 19.4 ns). This demonstrates tha t the 

re p e a ta b i l i ty  o f  the experiments is  poor due to  the d iffe rence  in 

response between batches o f la rvae . There is  no d is t in c t  temporal 

pattern o f  response o f larvae over the 65 minute te s t  period 

(F ig .  6 A). An average of  60% o f the larvae were in the upper h a lf  of 

the chambers throughout these experiments.

Duplicate experiments were also conducted at 24 fc  and 18 °/oo 

s a l i n i t y  in both chambers. The resu lts  were s im i la r  to  those o f the 

240 fc  18 °/oo s a l in i t y  experiments. There was no s ig n i f ic a n t  

d if fe rence  between the responses o f larvae in  the two chambers w ith in  

the experiments (Table 1). Highly s ig n i f ic a n t  d iffe rences were found

33
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Table 1. Wilcoxon Sign Rank Test Values fo r  the E ffec ts  o f L igh t 
In te n s i ty ,  Chamber E ffec ts  and S a l in i ty  on Stage 1 
£.• 1 ongicarpus Larvae. -

Exp.
L igh t In te n s ity  

( fc )
Temp
(°C)

Sa li n i ty  
(° /oo )

L e ft  or Right 
Chamber WSRT1

1 240 24 18 L 19 ns
240 24 18 R

2 240 24 18 L 15 ns
240 24 18 R

3 24 24 18 L 12.5 ns
24 24 18 R

4 24 24 18 L 26.0 ns
24 24 18 R

5 240 24 18 R Q**
24 24 18 L

6 24 24 18 L 1 0 .0  ns
240 24 18 R

7 240 24 18 L Q **

240 24 24 R

8 240 24 18 R 1 .0 **
240 24 24 L

9 240 24 18 R 24.0 ns
240 24 24 L

10 24 24 18 L 24.0 ns
24 24 24 R

11 24 24 18 R 1 .0 **
24 24 24 L

12 24 24 18 L 1.5**
24 24 24 R

ifh e  s ig n if icance  level fo r  a l l  WSRT values as a = .05 is  12.
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between experiments (WSRT = 0 .0 **  fo r  both chambers). As can be seen 

from Figure 6 B, over 65% o f the larvae were in  the upper h a l f  o f  the 

chambers a f te r  30 minutes in  one experiment (w ith  an increasing 

response over time) while in  the dup lica te  experiment less than 55% o f 

the larvae were in the upper chamber h a l f .

E f fe c t  o f  L igh t In te n s ity

The percentage o f larvae in  the upper h a lf  o f the te s t  chambers 

was greater in the 24 fc 18 °/oo treatments than the 240 fc  18 °/oo

treatments (F ig .  7 ) .  In experment 5 (F ig . 7) h igh ly  s ig n i f ic a n t

overa ll d iffe rences in the percentage o f larvae in  the upper chamber 

halves between l ig h t  in te n s i t ie s  were found (Table 1) w ith  the 24 fc 

treatment producing a greater pho to tac tic  response than the 240 fc 

treatm ent. In experiment 6 there was a n o n -s ig n if ica n t d if fe rence  

between percentage o f larvae in the upper layer between 24 fc  and 

240 fc  l ig h t  in te n s i t ie s  (Table 1 ). The percentage o f the larvae in 

the upper laye r in experiment 6 was greater than in experiment 5 

(69 and 79% mean response fo r  experiment 6 , 46 and 23% fo r  experiment 

5 ) . In experiment 6 , the percentage of larvae in the upper layers in 

the 24 fc  treatment and 240 fc  treatment was almost equal at the 

beginning of the experiment. The response o f larvae exposed to  240 fc

was greater than th a t o f  larvae exposed to 24 fc  fo r  the f i r s t  37

minutes. A fte r  37 minutes the percentage o f larvae in the upper layer 

exposed to 24 fc  surpassed tha t o f larvae exposed to 240 fc  and 

remained higher u n t i l  the te rm ination  o f the experiment.
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E ffe c t o f S a lin i ty

Larvae did not respond to d iffe rences in  s a l in i t y  in  a consistent 

manner. Three experiments (experiments 7, 8 , and 9) were performed 

comparing the response to  s a l in i t ie s  o f 18 °/oo and 24 °/oo at a l ig h t  

in te n s i ty  o f 240 f c .  In two experiments (experiments 7 and 8 ) there 

were s ig n i f ic a n t  d if fe rences in  the percentage o f larvae in  the upper 

laye r (Table 1 ) , w ith  the 18 °/oo treatment producing a greater 

response (F ig . 8 A). In experiment 9 there were no s ig n i f ic a n t  

d iffe rences in  la rva l responses to  the treatments (Table 1 ). Although 

more larvae were in the upper layer when exposed to  18 °/oo than 

24 °/oo s a l in i t y  during the i n i t i a l  38 minutes o f the te s t ,  the 

reverse was true  during the remainder o f the te s t .

In experiments 10 through 12 larvae were tested at 18 °/oo and 

24 °/oo under a 24 fc l ig h t  in te n s ity  regime. Larvae in two 

experiments (experiments 11 and 12, F ig . 8 B) exh ib ited  s ig n i f ic a n t  

d iffe rences in  responses to s a l in i t y  (Table 1) w ith  the larvae exposed 

to  18 °/oo treatments having a greater percentage o f larvae in the 

upper layer than those exposed to 24 °/oo s a l in i t y .  The larvae in 

experiment 10 had a greater i n i t i a l  response in  the 18 °/oo treatment 

but a f te r  28 minutes the reverse was observed.

In an e f f o r t  to  more c le a r ly  characterize the response o f P_.

1 ongicarpus larvae to environmental cond it ions , re su lts  from a l l  

s im i la r  experiments were pooled by averaging the percentage o f larvae 

in the upper layer fo r  each 5 minute observation period (F ig . 9 ) .  Mo 

c lea r la rva l response to  l ig h t  in te n s ity  was seen. The larvae had a
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greater i n i t i a l  response at 240 f c ,  18 °/oo and 24 f c ,  24 °/oo but 

larvae in 24 f c ,  18 °/oo and 240 f c ,  24 ° /oo , re sp e c t ive ly ,  became 

more photopositive  a f te r  a period o f time®

Larvae were more s trong ly  photopositive  at 18 °/oo than 24 °/oo 

regardless o f l ig h t  in te n s i ty .

The e f fe c t  o f time o f day on la rva l response was also examined. 

Responses to the treatments 240 f c ,  18 °/oo and 24 f c ,  18 °/oo were 

analyzed fo r  temporal e f fe c ts .  Tests were always started  between 1030 

to  1100 hours (AM) or 1330 to 1400 hours (PM). The larvae in  the 

240 f c , 18 °/oo treatments showed a greater overa ll response, in  the 

AM (60.0%) as opposed to  PM (46.5%) while the larvae in  the 24 f c , 18 

°/oo treatments showed the reverse (AM=43.3%, PM=60.5%).

E ffe c t o f  Feeding

In pre lim inary experiments, Palaemonetes sp® larvae did not 

respond to  v e r t ic a l  pho tostim u la tion . Changes in  l ig h t  in te n s i ty ,  

wavelength, s a l in i t y ,  la rva l stage and water q u a l i ty  did not induce 

po s it ive  phototropism in  the v e r t ic a l  plane. In several extended 

te s ts  ( -24 hours) i t  was noticed tha t the larvae gradua lly  become 

photopositive® I t  was hypothesized tha t food depriva tion  was the main 

reason fo r  th is  behavioral change. Tests were conducted to  confirm 

th is  hypothesis. At both l ig h t  in te n s i t ie s ,  unfed larvae demonstrated 

a greater photopositive  response than fed larvae® More unfed larvae 

than fed larvae entered the upper h a l f  o f  the water column at 240 fc 

(F ig . 10) than 24 fc  (F ig . 11). Most larvae in the upper h a lf  o f  the
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chamber at 240 fc  were concentrated in the upper quarter while at 

24 fc  the larvae were more evenly d is t r ib u te d  throughout the upper 

h a lf  o f the te s t  chamber. There was no consis tent re la t io n s h ip  in  the 

precentage of unfed larvae ac tive  w ith  time a t e i th e r  l i g h t  in te n s i ty  

(F ig . 12). In experiments 13 (240 fc )  and 16 (24 fc )  the a c t i v i t y  o f  

unfed larvae decreased over time while in  experiments 14 (240 fc )  and 

15 (24 fc )  the a c t i v i t y  o f unfed larvae increased over t im e. The 

a c t i v i t y  o f fed larvae decreased over time in  a l l  experiments. At 

240 fc  the a c t i v i t y  o f  unfed larvae was always greater than tha t o f 

fed larvae a f te r  approximately 11 minutes (F ig .  12A) and at 24 fc  the 

same is  true  a f te r  23 minutes (F ig .  12B).

Unfed larvae occupied a higher pos it ion  in  the chambers than fed 

larvae as shown in the p lo ts  o f  I 0 vs I j\ (F ig . 13). The d iffe rences 

in  mean o r ie n ta t io n  ind ices ( a I 0 = I 0 unfed - I 0 fed) were 52.3 

(experiment 13) and 55.5 (experiment 14) at 240 fc  and 51.8 

(experiment 15) and 16.4 (experiment 16) at 24 f c .  The d if fe rence  in  

the response of the larvae in experiment 16 is  probably not 

s ig n i f ic a n t  when considering ju s t  I 0 values but because o f the I/\ 

d if fe rences the two treatments are g rap h ica l ly  separated very w e l l .

The I/\ values were 17.8 (experiment 13) and 27.4 (experiment 14) at 

240 fc  compared to 5.4 (experiment 15) and 38.0 (experiment 16) at 

24 fc .  No consis tent e f fe c ts  o f l i g h t  in te n s i ty  on the response o f 

the larvae was found. The Chi“ Squared (x ^ ) values (Table 2) confirm 

tha t the responses o f fed and unfed larvae were s ig n i f ia n t ly  d i f fe re n t  

in a l l  experiments.
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Table 2. Wilkes Lambda (A) -and x 2 Values fo r  Stage 2
Palaemonetes sp. Larvae Experiments (x^a = 0.001).

Exp. Mean Dose 
(mg/1 CPO)

L0 ( fc ) (A) (x2 ) Df

13 FVU* 240 .227 34.13 2

14 FVU 240 .268 30.30 2

15 FVU 24 .389 22.17 1

16 FVU 24 .312 26.77 2

17 LVD** 240 .385 22.44 1

18 0 .8 8 6 240 .265 30.56 2

19 1.17 240 .082 58.75 1

20 1.32 24 .260 31.65 1

21 1.37 24 .309 27.02 2

22 4.29 240 .545 13.97 2

23 4.78 240 .178 39 .6 6 2

24 5.77 24 .184 38.96 2

25 6.41 24 .396 21.79 1

26 6.78 24 .216 36 .05 1

27 11.54 240 .095 54.08 2

28 12.43 240 .1 0 2 52.45 2

29 11.61 24 .2 0 1 36.87 2

30 12.07 24 .347 24.36 2

* FVU = Fed versus unfed.
**LVD = L igh t versus dark adapted.
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E ffe c t o f L ig h t Adaptation

Based on a s ing le  experiment f t  appears th a t  dark adapted starved 

larvae are not as photopositive  as l ig h t  adapted starved larvae during 

a one hour te s t  period (F ig . 14).

The number o f larvae ac tive  over time is  shown in Figure 15A.

The a c t i v i t y  o f dark adapted larvae decreased over time while the 

a c t i v i t y  of l ig h t  adapted larvae increased s l ig h t l y  over t im e.

The p lo t  o f I 0 vs I/\ (F ig . 15B) shows th a t  l i g h t  adapted larvae 

were more photopositive  and more ac tive  than dark adapted la rvae . The 

A I 0 ( a I 0 = I 0 l i g h t  adapted - I 0 dark adapted) was 60.6 and the A I A 

(a Ia = I A l ig h t  adapted - I 0 dark adapted) was 16.4 between the two 

treatment groups. The responses o f l i g h t  adapted and dark adapted 

larvae were s ig n i f ic a n t ly  d i f fe re n t  as ind icated by the x 2 value in 

Table 2.

E ffe c t of Chlorinated Mater

Representative histograms o f the responses o f larvae to ch lo r ine  

and l ig h t  in te n s i ty  (F igs . 16, 17 and 18) show tha t more contro l 

larvae were in the upper h a lf  o f the te s t  chambers than larvae exposed 

to  ch lo r ina ted  water. This d if fe rence  was more pronounced at 240 fc 

than at 24 fc fo r  any given CPO concentra tion .

The decrease in  a c t i v i t y  o f larvae in the chambers conta in ing the 

ch lo r ina ted  water layers over time is  shown in Figures 19, 20 and 21.

At the lowest concentration tested (1.0 mg/1 CPO) at each l ig h t
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PE
RC

EN
T 

AC
TIV

E 
LA

RV
AE

 
(I

. 
) 

PE
RC

EN
T 

AC
TI

VE
 

LA
R

V
A

E
(I

a) 
PE

RC
EN

T 
AC

TI
VE

 
LA

RV
AE

 
(I

55
Exp. 22 Di = 4.29 mg/I. CPO Exp. 23 Di =4.78 m g/I. CPO

8 0 -,
<t

7 0 -

6 0 -

50 •o

4 0 -

30 •o
2 0 -

10-

27 32 37 42 47 52
TIME (min )

57 62

B
Exp.24 Di = 5.77

A --------
70 -j *

6 0 -  *-=-r—------------------

Exp. 25 Di = 6.41 
A ---------

50

40

30

2 0 -|

10

0

~ S S T

A_A_______ ________ _ ~A A
A  A

A

c
”1------ 1------ 1------ 1------ 1------ 1------ 1------ 1------ 1-------1------ r~
12 17 2 2 2 7 3 2 37 4 2 4 7  5 2 57 62

TIME (min)

9 0 —t

8 0 - Exp. 26 Di = 6.78 mg/l. CPO

7 0 -

6 0 -

5 0 -

40

30

2 0 -

2 12 17 22 27 57 627 32 37 42 47 52
TIME (min.)

Figure 20. Percent o f larvae ac t ive  over time fo r  te s t  (dots) and 
contro l ( t r ia n g le s )  stage 1 Palaemonetes sp. larvae at 
*5.0  mg/l CPO and 240 fc  (A) and 24 fc  (B,C).



56

Exp. 27 Di = 11 .54mg /  I. CPO Exp. 28 Di = 12.43 m g /l. CPO

ui<>cc<
— I

7 0 -
<2S

6 0 -
LU
>  5 0 -j-o
<  4 0 -

3  3 0 -
£CLUQ- 2 0 -

0 -

2 7 12 17 22 27 32 42 4737 52 57 62
TIME (min.)

B

<
H

UI<>
cc<

<

UJo
UJ
a.

Exp 29 Di = 1.61 mg/l. CPO Exp 30 Di =
A

12.07 mg/

9 0 -

8 0 -

7 0 - A
A

A
A

6 0 - ▲ A A A A A A

5 0 -
o

A A
- -a r  —

A

•

----- -A —

* A A A
A

4 0 -

30-1

o A
o

0

~o .

■ o • •
-A. ._. _ •

2 0 -

' ........ oo ...... O
o

0 
o

 1
...

..i 
.

—T----- ..... T---- -- 1' 1 ••• T...... ... . .. — I— I ..........."1“  1 1 ------- . . . .
12

TIM E ( min )

Figure 21 „ Percent o f larvae ac tive  over time fo r  te s t  (dots) and 
contro l ( t r ia n g le s )  stage 1 Palaemonetes sp. larvae a t 
-12.0 mg/l CPO.
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in te n s i ty  (experiments 18 and 2 0 ) larvae exposed to  ch lo r ine  showed 

s l ig h t l y  increasing a c t i v i t y  over time. In the other two experiments 

at 1.0 mg/l CPO as well as a l l  experiments at 5.0 and 12.0 mg/l CPO 

la rva l a c t i v i t y  decreased over time in  the ch lo r ina ted  treatments.

Only two cases o f decreasing a c t i v i t y  o f contro l larvae occurred, one 

at 1.0 mg/l CPO - 240 fc  (experiment 18) and one at 5.0 mg/l CPO - 

24 fc (experiment 26).

In a l l  cases a f te r  42 minutes, the proportion o f ac tive  larvae in 

contro l chambers exceeded th a t o f larvae in  chambers receiv ing 

ch lo r ina ted  w a te r. At the highest CPO concentrations tested and 

240 fc  (F ig . 21A), there were no cases in  which the a c t i v i t y  o f 

contro l larvae was equalled or exceeded by tha t o f larvae exposed to 

ch lo r in e . At 12 mg/l CPO 24 fc  (experiments 29 and 30) the a c t iv i t y  

o f control larvae was not equaled or exceeded by th a t o f te s t  larvae 

a f te r  3 minutes. However, the d iffe rence  is  more pronounced in the 

240 fc te s ts .  This ind ica tes tha t the higher concentrations o f 

ch lo r ine  a ffected the larvae fa s te r  and to  a greater degree than the 

lower concentra tions. Further, higher l ig h t  in te n s i t ie s  caused a more 

rapid decrease in a c t i v i t y  when larvae were exposed to  CPO than lower 

l ig h t  in te n s i t ie s .

P lots of I 0 vs l j\  fo r  a l l  o f these experiments (F igs . 22-24) show 

th a t contro l larvae occupy a higher pos it ion  in the te s t  chambers and 

are more active  than the larvae in chambers receiv ing ch lor inated 

water. Larvae in  ch lo r ina ted  chambers occupied a progressive ly lower 

p o s it ion  over time w ith in  a l l  experiments. The pos it ion  o f contro l
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larvae in the chambers was in  most cases higher at the end o f the te s t  

than at the beginning.

At both l ig h t  in te n s i t ie s  I 0  is  more important than I a in  

separating the responses o f  the te s t  and contro l larvae at the lowest 

CPO concentra tion . Ia becomes more important than I 0 at the two 

higher CPO concentra tions. This ind icates th a t larvae in  the te s t  

chambers were only s l i g h t l y  a ffected by ch lo r ine  at the lowest 

concentration since they did not swim upward as a c t iv e ly  as contro l 

la rvae . The number o f ac tive  larvae decreased w ith increasing 

concentration in d ic a t in g  th a t  larvae were being a ffec ted  by CPO as 

opposed to a c t iv e ly  avoiding i t .

There is  no c o r re la t io n  between te s t concentration and absolute 

Iq or lo  va^ues at e i th e r  l i g h t  in te n s i ty  (Table 3 ) .  The A l0 values 

(Table 3) ranged from 43.1 (1.37 mg/l CPO, 24 f c , experiment 21) to  

111.9 (11.54 mg/l CPO, 240 f c ,  experiment 27) in d ic a t in g  tha t there is  

a weak re la t io n sh ip  between CPO concentration and the degree o f 

photopositive  response o f  the larvae in  ch lo r ina ted  water. The Ala 

values are highest at the highest CPO concentra tions. This ind icates 

the d iffe rences in  a c t i v i t ie s  o f the larvae between the ch lorinated 

water layer and contro l treatments w ith in  experiments increase with 

increasing CPO concentra tion . No constant re la t io n sh ip  was observed 

between Ala and the two lov/er concentrations at e ith e r  l ig h t  

in te n s i ty .  No re la t io n s h ip  was found between l ig h t  in te n s i ty  and I 0 

(F igs . 22-24), I 0 or A l0 (Table 3 ). At the highest concentration 

tes ted , the re la t iv e  a c t i v i t y  (aI/\) o f  the 24 fc  treatments is  nearly
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Table 3. Mean O rien ta tion  Index ( I 0 ) and A c t iv i t y  Index (I/\)> Rela­
t iv e  Mean O rien ta t ion  Jndex (a! 0 ) ,  Mean A c t iv i t y  Index (1^) 
and R e la tive  Mean A c t iv i t y  Index (aT/\) f o r  Stage 2 
Palaemonetes sp. Larvae in  the C h lo r ina tion  Experiments.

Experiment Actual Test 
No. Concentration 

(mg/l CPO)

Lo
( fc )

Test
*o I a

Control
io  I a a I 0 a! a

18 0 .8 8 6 240 1.5 47.1 54.0 57.1 52.5 1 0 .0

19 1.17 240 -61.5 60.2 44.4 6 8 .6 105.9 8.4

22 4.29 240 -61.7 38.5 - 8 . 8 43.9 52.9 5.4

23 4.78 240 -37.2 49.4 44.7 68.5 81.9 19.1

27 11.54 240 -47.6 36.0 64.3 79.1 111.9 43.1

28 12.43 240 -59.5 35.7 27.5 72.3 87.0 36.7

20 1.32 24 - 2 2 .8 59.7 37.8 58.1 60.6 - 1 .6

21 1.37 24 -21.9 53.1 2 1 .2 62.1 43.1 9.0

24 5.77 24 -52.0 44.1 17.6 61.3 69.6 17.2

25 6.41 24 -56.9 45.6 -2.4 54.1 54.5 8.5

26 6.78 24 -48.1 42.0 42.2 48.8 90.3 6 . 8

29 11.64 24 -70.1 39.9 9.5 57.9 79.6 2 2 .8

30 13.07 24 -52.1 33.7 12.3 54.1 64.4 20.4
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double tha t o f the 240 fc  treatment. The Chi-squared (x^) values fo r  

a l l  experiments are a l l  h igh ly  s ig n i f ic a n t  (Table 2) in d ic a t in g  the 

discreteness o f the behavior o f te s t  and contro l larvae w ith in  

experiments. There is  no strong re la t io n s h ip  between Wilkes A and 

dose as can be seen from Figure 25A. In general, A decreases with 

increasing concentration a t both l ig h t  in te n s i t ie s  (the lower the A 

value, the greater the re la t iv e  distance between two groups).

Larvae from one experiment at each CPO concentration at 24 fc  

were retained and cu ltu red in unchlorinated water in  order to  evaluate 

the conditon o f larvae a f te r  te s t in g .  Larvae exposed to high CPO 

concentrations had greater m o r ta l i ty  rates than those exposed to low 

concentrations or co n tro ls  (F ig .  25B). At the two lower 

concentrations 50% m o r ta l i ty  occurred a f te r  approximately 62 hours 

while 50% m o r ta l i ty  fo r  larvae tested in the highest concentration 

occurred between 24 and 48 hours. The time i t  took fo r  f i f t y  percent 

o f the larvae to  die a f te r  CPO avoidance te s t in g  was approximately the 

same fo r  the two lower concentrations (1.32 and 5.77 mg/l CPO) but the 

cumulative m o r ta l i ty  fo r  the lower concentration at the end o f the 

cu ltu re  period was lower. A ll larvae exposed to the highest 

concentration (11.61 mg/l) died w ithout molting ( 1 0 0% m o r ta l i ty  w ith in  

100 hours). These data show th a t the larvae were p h y s io lo g ica l ly  

a ffected by the ch lo r ina ted  water and did not e f fe c t iv e ly  avoid the 

ch lo r ine  at any concentra tion .

No d is t in c t  avoidance behavior was observed during the te s ts .  No 

te l  son f l i p  responses were observed at any CPO concentration or l ig h t
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in te n s i t y .  Downward swimming was occasiona lly  observed at the low CPO 

concentration (~ 1.0 mg/1 CPO) at 24 fc  l i g h t  in te n s i ty .  Observed 

d is t r ib u t io n s  resulted from passive sinking which was fre q uen tly  

observed. Passive s ink ing seemed to  increase as the CPO concentration 

increased ir re s p e c t iv e  o f l i g h t  in te n s i ty  although th is  was not 

q u a n t i f ie d .



DISCUSSION

E ffe c t o f Environmental Variables

Stage 1 larvae o f P_. 1 ongicarpus were p o s i t iv e ly  pho to tac tic  in 

the v e r t ic a l  plane under the conditions imposed on them during 

te s t in g .  The percent o f  larvae active  in the chamber in  the present 

experiments agrees c lose ly  w ith  the re su lts  o f Roberts (1971b) where 

60 to  63% o f the larvae were active  under s im i la r  cond it ions . The 

higher I 0 found in th is  study than in  Roberts (1971b) is  probably due 

to  chamber depth (9.5 cm th is  study, 46 cm Roberts [1971b]).

There were no s ig n i f ic a n t  d iffe rences found in  the response of 

larvae betwen the two chambers when tested under id e n t ica l cond it ions . 

Therefore in  te s ts  in which each chamber had d i f fe re n t  treatments, any 

d if fe rence  in response is  concluded to  be due to the treatment.

There was great v a r ia b i l i t y  in the response o f  larvae to  the same 

sets o f conditions between te s ts .  One co n tr ib u t in g  fa c to r  to the 

v a r ia b i l i t y  o f response could be tha t a small number o f P_. intermedius 

and P_. vu lg a r is  larvae were used along with the £_. pugio la rvae.

Other fac to rs  could be the genetic v a r ia b i l i t y  w ith in  species, the 

d i f fe re n t  developmental rates fo r  la rva l batches or past n u t r i t io n a l  

and physio log ica l h is to ry  o f the adults before c o l le c t io n .  Culture 

technique or s l ig h t  va r ia t ion s  in  te s t in g  methodology might also 

account fo r  some o f the va r ia t io n  found but th is  was not tes ted .

66
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No d if fe rence  was detected between the responses o f the larvae 

exposed to  d i f fe re n t  l i g h t  in te n s i t ie s  in these experiments. No 

in form ation has been found dealing w ith  the e ffe c ts  o f  l i g h t  in te n s i ty  

on v e r t ic a l  pho to tac tic  responses o f crustacean larvae in  the 

labo ra to ry . In experiments on larvae of Rhithropanopeus h a r r i s i i  

tested in  the horizonta l plane Forward and Costlow (1974) found th a t 

in te n s i t ie s  between 0 .0 1  and 20  W/m  ̂ produced the greatest p o s it ive  

phototaxis w ith lesser responses at higher and lower in te n s i t ie s .

These in te n s i t ie s  are close to the l ig h t  in te n s i t ie s  used in these 

experiments (240 fc  = 3 . 8  W/m^, 24 fc~ 0.38 W/m"2).

Pos it ive  v e r t ic a l  phototropism in Palaemonetes sp. larvae had not 

been studied in  the labora to ry  p r io r  to  these te s ts .  Lyon (1906) 

found tha t Palaemonetes larvae were most photopositive  to blue l ig h t  

and hardly sens it ive  to red l ig h t  in  the horizonta l plane.

White (1924) working w ith  Palaemonetes vu lga ris  larvae agreed 

w ith  Lyon and q u a n tif ied  la rva l response to two l ig h t  sources of 

d i f fe re n t  in te n s i t ie s  positioned at r ig h t  angles to each other in the 

horizonta l plane.

In the present experiments Palaemonetes sp. larvae were not 

n a tu ra l ly  p o s i t iv e ly  pho to tac tic  in  the v e r t ic a l  plane. This lack o f 

v e r t ic a l  response in the labora to ry  was also observed by Thorne et a l . 

(1979) working w ith  Macrobrachiurn novaehollandiae la rvae. He 

speculated tha t th is  behavior is  an adaptive mechanism fo r  re ten tion  

o f larvae in the estuary.
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Baylor and Smith (1957) found th a t Daphnia magna when hungry 

respond d i f f e r e n t ly  to  l ig h t  than well fed Daphnia. They do not 

mention any e f fe c t  o f l i g h t  adaption. They did state th a t v e r t ic a l  

i l lu m in a t io n  e l ic i te d  food searching in  the horizonta l plane and 

horizonta l i l lu m in a t io n  e l ic i t e d  searching in the v e r t ic a l  plane.

Burton (1979) observed th a t newly hatched larvae o f Emerita 

analoga were photoposit ive  fo r  the f i r s t  four hours and then became 

s trong ly  photonegative. When the larvae were fed Artemi a naup li i  they 

remained photonegative, but when starved they became pho topos it ive .

He s ta tes , however, th a t the photoposit ive  response occured only in 

the horizonta l plane and not in  the v e r t ic a l  plane. Burton (1979) 

also found th a t larvae under increased hydros ta tic  pressure were 

photoposit ive  regardless o f the l ig h t  o r ie n ta t io n .  He suggested tha t 

n u t r i t io n a l  sta te aids in  mainta in ing pressure s e n s i t iv i t y  which 

a f fe c ts  depth re g u la t io n .

I t  was found in the present experiments tha t l ig h t-adap ted , 

starved larvae were s trong ly  photoposit ive  in  the v e r t ic a l  plane. 

Larvae tha t were ligh t-adapted  and fed and larvae tha t were 

dark-adapted and starved were not photoposit ive  in the v e r t ic a l  plane 

to any appreciable ex ten t. This behavior may have important surv iva l 

value. Larvae tha t are unable to  f in d  enough food in the lower water 

layers o f an estuary would, a f te r  a period of l ig h t  adaptation, swim 

toward the surface o f the water. In the upper water laye r o f the
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estuary the larvae would stand a good chance o f encountering food or 

be dispersed to another area w ith a b e tte r  supply o f food by the net 

downstream flow  o f the estuarine water. This s ta rv a t io n - l ig h t  

adaption behavior may also play a part in  the d iurna l m igration o f 

la rva e .

Cronin and Forward (1979) found tha t labora tory-reared 

R_* h a r r is i i  larvae e x h ib i t  only weak c ircad ian rhythms while  f ie ld  

co llec ted  larvae exh ib ited  strong c ir c a t id a l  rhythms. Larvae in  t h e i r  

experiments were fed on a random schedule. Therefore, the 

1aboratory-reared larvae may not have been conditioned to  a set rhythm 

based on l ig h t  and hunger (they were maintained on a 12 L:12D l ig h t  

regime). F ie ld  co llec ted  larvae on the other hand may have been 

conditioned to  migrate to  the surface in a t id a l  rhythm possib ly 

associated w ith food a v a i la b i l i t y .

Pearre (1973) studied Sag itta  elegans in the f i e ld  and 

labo ra to ry . He concluded tha t the d ie! m igration pattern detected in 

the f i e ld  was re la ted to  the degree o f s a t ia t io n  which in some way 

influenced the depth contro l mechanics o f th is  chaetognath.

Lang e t al_. (1980) found no major change in photoposit ive  and 

pho tok ine tic  response o f stage 2 larvae of Balanus improvisus th a t 

were starved fo r  24 hours.

In the present study, larvae o f Pagurus 1ongicarpus exh ib ited  a 

greater overa ll response in the v e r t ic a l  plane at 18 °/oo than at
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24 °/oo s a l in i t y  regardless o f l i g h t  in te n s i ty .  This is  contrary to 

what might be expected from the work o f Roberts (1971b). Work on 

species other than P̂ . longicarpus by Harder (1952a, b, 1954, 1957, 

1968), Lance (1962), Lagerspertz and M a t i l la  (1961), S ca rra tt  and 

Raine (1967), and Latz and Forward (1977) also appear to  disagree w ith  

the present study.

The response of larvae in  the present experiments may have been 

influenced by embryonic i r re v e rs ib le  adaptation to  18-20 °/oo s a l in i t y  

in the la rva l hatching system (Rosenberg and Costlow, 1979). This 

i r re v e rs ib le  s a l in i t y  adaptation could be responsible fo r  the lower 

a c t i v i t y  o f larvae at 24% s a l in i t y .  Latz and Forward (1977), however, 

found th a t  Rhithropanopeus h a r r i s i i  larvae exposed to  decreases in  

s a l in i t y  recovered th e i r  p o s it ive  v e r t ic a l  phototaxis a f te r  ten 

minutes. The responses o f  larvae subjected to  s a l in i t y  increases, 

such as those in the present experiments, have not been studied in the 

v e r t ic a l  plane. In the horizonta l plane s a l in i t y  increases caused 

Balanus perfora tus larvae to become photoposit ive  (Ewald 1912).

A d if fe rence  in  la rva l response o f  Pagurus longicarpus at 

d i f fe re n t  times o f the day was only weakly apparent in these 

experiments. Cronin and Forward (1979) found th a t  1aboratory-reared 

R_. h a r r i s i i  larvae had weak d ie l rhythms while  f ie ld -caugh t larvae had 

strong c i r c a t id a l  rhythms. The larvae used in  the present experiments 

were obtained from females induced to spawn in  January. These resu lts  

tend to agree w ith Cronin and Forward (1979) in tha t weak d ie l rhythms 

appear to be present in labora to ry  reared populations.
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E ffe c t  of Chlorinated Water on V e rt ica l Movement o f Larvae

There is  no c lea r evidence o f active  avoidance o f  ch lo r ina ted  

water by decapod la rvae . Active avoidance behaviors such as te l son 

f l i p s  and downward swimming as described by Roberts (1971b) fo r  

Pagurus longicarpus larvae exposed to  s a l in i t y  d is c o n t in u it ie s  were 

never observed. The d iffe rences  in  the number o f  larvae observed in 

the upper layers o f te s t  and contro l chambers suggest avoidance o f the 

ch lo r ina ted  water layers by the la rvae. D irec t observation reveals 

these re su lts  are not the product o f ac tive  avoidance behavior but 

ra ther passive sink ing a f te r  the larvae were adversely a ffected by the 

ch lo r ine  in the upper water la y e r .  There were more larvae in the 

upper layers o f contro l chambers than te s t  chambers regardless o f 

l ig h t  in te n s ity  and CPO concentra tions. Further, the a c t iv i t y  index 

fo r  larvae exposed to  CPO was less than th a t o f contro l larvae which 

means tha t the larvae were not simply re tre a t in g  to the lower 

unchlorinated la ye r ,  but were s inking to  the bottom of the chambers. 

There was also no accumulation o f larvae near the CPO d is c o n t in u ity  as 

might be expected i f  larvae were a c t iv e ly  avoiding the upper 

ch lo r ina ted  la y e r .

The number o f ac tive  larvae in the ch lo r ina ted  te s t chambers 

(Figso 19-21) decreased over time while the a c t i v i t y  in  contro l 

chambers increased or remained constant. The d if fe rence  showed up 

most c le a r ly  at 12.0 mg/1 CPO.

A greater d if fe rence  between the a c t iv i t y  o f contro l and te s t 

larvae occurred at 240 f c ,  than at 24 fc  l i g h t  in te n s i ty .  This may be
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due to increased a t t ra c t io n  o f larvae toward the l ig h t  source at the 

higher in te n s i ty .  This would cause the larvae at the high l ig h t  

in te n s i ty  to  become a ffected more ra p id ly  and to a greater degree than 

the larvae at the low l i g h t  in te n s i ty .

Roberts (1971b) used a c t i v i t y  ( I / \ )  and o r ie n ta t io n  ( I 0 ) ind ices 

to  describe the reactions o f  Pagurus longicarpus larvae to  s a l in i t y  

d is c o n t in u i t ie s .  He examined these indices separately and these two 

components o f  la rva l response in  his n a rra t iv e .  The two ind ices are 

p lo tted  against each other in  the present study in  order to 

characterize  la rva l response to  each treatment much l ik e  a 

temperature-sal i n i t y  diagram is  used to characterize water masses. 

G raph ica lly  th is  method o f  comparison appears to  separate te s t  and 

contro l responses extremely w e l l .  This was confirmed by the 

Wilkes-Lamda and x2 d isc r im inan t analysis method fo r  comparing means 

and variances, re spe c t ive ly ,  fo r  discreteness o f grouped data. This 

graphical method also e a s ily  ind ica tes whether the a c t i v i t y  o f larvae 

or th e i r  pos it ion  in the water column contribu tes most to the 

separation o f the data fo r  the two groups.

The decreasing I 0 values fo r  larvae in the ch lor inated chambers 

over time ind ica te  tha t larvae did not i n i t i a l l y  avoid the ch lo r ina ted  

wafer but occupied a lower pos it ion  in the chambers as they became 

inc reas ing ly  a ffected by the c h lo r in e .  The I 0 values averaged ( I 0 ) 

fo r  each experiment show no pattern re la t in g  to concentration or l ig h t  

in te n s i ty  between experiments but th is  is  most l i k e ly  due to 

d if fe rence  in the inherent a c t iv i t y  between batches o f la rvae. The
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d if fe rence  between averaged contro l and te s t  I 0 values (A l0 ) was 

p o s it iv e ,  which ind ica tes  th a t larvae in contro l chambers occupied a 

higher pos it ion  in the water column. Differences in  the re la t iv e  

pos it ion  o f contro l and te s t  larvae (A l0 ) increased w ith  

concentra tion . A s l ig h t  e f fe c t  o f l ig h t  in te n s i ty  may e x is t  but th is  

is  not c le a r .  The A l0 values would seem to  ind ica te  weak la rva l 

avoidance, but th is  is  most l i k e l y  an a r t i f a c t  re s u lt in g  from counting 

CPO affected (s lugg ish) larvae in the lower two quarters o f the te s t  

chamber which could not maintain higher pos it ions in the te s t in g  

chambers.

The I/\ values fo r  larvae exposed to ch lo rina ted  water decrease 

over time. The d iffe rence  in  a c t i v i t y  between te s t  and contro l larvae 

became more apparent w ith increasing concentra tion. The a c t iv i t y  of 

contro l larvae ( I/ \)  genera lly  increased or stayed the same over time. 

The averaged lj\  values ( I/\) o f the te s t  larvae decreased with 

increasing CPO concentra tions. The re la t iv e  d iffe rences between Al 

values fo r  te s t and contro l la rva l a c t iv i t y  ind ica te  tha t larvae 

exposed to 240 fc  were in  general a ffected more ra p id ly  and to a 

greater extent than larvae tested at 24 fc espe c ia l ly  at 12.0 rng/1 CPO 

where the re la t iv e  a c t i v i t y  o f larvae exposed to  240 fc  was only h a lf  

th a t  o f the larvae at 24 f c .

The d iffe rences between treatments w ith in  experiments increased 

s ig n i f ic a n t ly  w ith  increasing concentration in  a l l  experiments as 

evidenced by the Wilkes Lambda (A) values (F ig .  25A). There also 

appeared to  be an in te ra c t io n  o f l ig h t  and CPO concentration at 240 fc
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producing greater d if fe rences in response between the te s t  and contro l 

larvae than at 24 fc .

Since post-exposure m o r ta l i ty  was proportional to  CPO 

concentration and since no d is t in c t  ac tive  avoidance behavior was 

observed, i t  is  concluded tha t larvae in these experiments did not 

avoid ch lo r ina ted  water layers but swam in to  them. Larvae became 

inc reas ing ly  a ffec ted  by the CPO as concentration and time increased.

The one most obvious explanation fo r  the lack o f avoidance 

behavior by the larvae is  tha t they cannot detect ch lo r ine  in the 

water. A l te rn a te ly  larvae may p re fe r ch lo r ina ted  water. In th is  case 

I 0 values would have been high i n i t i a l l y  and decreased over time as 

larvae became incapac ita ted . This was not what occurred. A th i r d  

p o s s ib i l i t y  is  tha t a l l  ch lo r ine  concentrations were so high th a t upon 

i n i t i a l  contact w ith  the ch lo r ine  the receptors o f the larvae were 

incapacitated and hence the larvae could not respond to  CPO. Another 

explanation fo r  lack o f avoidance behavior is  th a t the method used to 

induce the larvae to become v e r t i c a l ly  photopos it ive , (s ta rva t io n  and 

l ig h t  adaption), overrode the avoidance response the larvae might 

otherwise have e xh ib ite d .

Studies of avoidance o f ch lo r ine  by f is h  ind ica te  tha t f is h  

detect and avoid CPO (Cherry, L a rr ick  et. aj_., 1977; Cherry, Hoehn et 

a l . ,  1977; Middaugh et_ al_., 1977; Meldrim and Fava, 1977; field rim et 

al . ,  1974; Fava and Tsa i, 1976). Meldrim et. al . (1974) reported 

avoidance reactions by adu lt Palaemonetes pugio, Crangon septemspinosa 

and C a ll inec tes  sapidus. However, i f  the data fo r  the inve rteb ra te
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species were tested s t a t i s t i c a l l y  i t  is  possible tha t no s ig n i f ic a n t  

avoidance occurred. The fa c t  th a t f is h  avoid CPO and a decapod larva 

does not, demonstrates th a t you cannot make general ecological 

statements about the behavior o f  a l l  aquatic organisms by studying a 

few. Much more'work on inverteb ra te  avoidance behavior needs to  be 

done.



CONCLUSIONS

1. An apparatus to  te s t  avoidance o f  po llu ted  water by la rva l 

decapods in  a flow ing system was designed, b u i l t  and tes ted . This 

apparatus is  espec ia lly  su ited to  te s t  la rva l responses to  

non-conservative po llu ta n ts  such as ch lo r in e .

2. No d if fe rence  in pho to tac tic  response was detected when 

larvae of P_. 1 ongicarpus were exposed to 240 fc and 24 fc  at 18 °/oo 

s a l i  n i t y .

3. Stage 1 larvae o f P̂ . 1 ongi carpus gave a greater photo tactic

response in  the morning at 240 fc  than at 24 f c .  In the afternoon the

larvae gave a greater pho to tactic  response at 24 fc than at 240 fc 

l i g h t  in te n s i ty .

4 . Stage 1 larvae o f P_. 1 ongi carpus were more p o s i t iv e ly

photo tac tic  at t h e i r  hatching s a l in i t y  o f 18 °/oo a f te r  24 hours than

when acclimated fo r  24 hours to  24 °/oo s a l in i t y  a f te r  hatching in

18 °/oo water regardless o f  l i g h t  in te n s i ty .

5. Larvae o f Palaemonetes sp. must be starved and l ig h t  adapted 

in  order to induce them to  become photoposit ive  in  the v e r t ic a l  plane.

6 . Under the conditions imposed by these experiments, larvae o f 

Palaemonetes sp. ne ithe r avoided nor preferred ch lo rina ted  water

76
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layers o f 1.0 to 12.0 mg/1 CPO. Larvae gradua lly  decreased in 

a c t i v i t y  and occupied lower pos it ions w ith in  the CPO treated chambers 

as time and CPO concentration increased.

7. The e f fe c ts  o f l i g h t  in te n s i ty  on CPO avoidance by 

Palaemonetes sp. larvae were d i f f i c u l t  to evaluate because o f the 

v a r ia b i l i t y  in  response o f  larvae between experiments. There is  some 

evidence to  ind ica te  tha t larvae tested at 240 fc  became affected by 

the CPO more ra p id ly  and to  a greater extent than larvae tested at 24 

fc  in te n s i ty  at the same CPO concentra tion .

8 . Exposure o f larvae to  CPO during the course o f the ch lo r ine  

avoidance experiments resulted in post-exposure m o r ta l i ty  proportional 

to  the te s t  concentra tion.
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