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Modification of electromagnetic structure functions for the �Z-box diagram

Benjamin C. Rislow and Carl E. Carlson

Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
(Received 15 May 2013; published 29 July 2013)

The �Z-box diagram for parity violating elastic e-p scattering has recently undergone a thorough analysis

by several research groups. Though all now agree on the analytic form of the diagram, the numerical results

differ due to the treatment of the structure functions, F�Z
1;2;3ðx;Q2Þ. Currently, F�Z

1;2;3ðx;Q2Þ at low Q2 and

W2 must be approximated through the modification of existing fits to electromagnetic structure function

data. We motivate and describe the modification used to obtain F�Z
1;2ðx;Q2Þ in our previous work. We also

describe an alternative modification and compare the result to our original calculation. Finally, we present a

new modification procedure to acquire F�Z
3 ðx;Q2Þ in the resonance region and calculate the axial

contribution to the �Z-box diagram. Details of these modifications will illuminate where discrepancies

between the groups arise and where future improvements can be made.

DOI: 10.1103/PhysRevD.88.013018 PACS numbers: 12.15.Lk, 13.40.Ks

I. INTRODUCTION

Parity violating e-p scattering experiments performed at
momentum transfers away from the Z-pole are used to test
the Standard Model prediction of the running of sin 2�W .
TheQweak experiment at Jefferson Lab [1] aims to perform
a 0.3% measurement of sin 2�W at a momentum transfer
of Q2 ¼ 0:026 GeV2. To obtain this desired precision, all
radiative corrections must be known to an even higher
precision. Up to one loop order, the weak charge of the
proton at zero momentum transfer is given by [2]

Qp
W ¼ ð1þ��þ�eÞð1� 4sin 2�Wð0Þ þ �0

eÞ þhWW

þhZZ þ Reh�Z: (1)

Here, �e and �0
e are electron vertex corrections, �� is

the W and Z mass renormalization, and 1� 4sin 2�Wð0Þ is
the one loop value of the weak mixing angle evaluated at
Q2 ¼ 0. The WW- and ZZ-box diagrams, hWW and hZZ,
are dominated by large momentum exchange and can be
calculated using perturbative QCD. A different technique
is required to calculate the �Z-box diagram due to lowQ2

contributions. Gorchtein and Horowitz [3] used a disper-
sion relation to evaluate the �Z-box diagram at zero mo-
mentum transfer and obtained a result that was larger than
expected [2]. Sibirtsev et al. [4] used the same technique
and found an analytic result that was greater by a factor of
2. This discrepancy inspired a third calculation [5] that
agreed with the Sibirtsev et al. result. After reevaluating
their work, Gorchtein et al. [6] confirmed the factor of 2.
All three groups now agree on the analytic form of the �Z
box. The imaginary vector portion is

ImhV
�ZðEÞ ¼

�em

ð2MEÞ2
Z s

W2
�

dW2

�
Z Q2

max

0
dQ2 F

�Z
1 ðx;Q2Þ þ AF�Z

2 ðx;Q2Þ
1þQ2=M2

Z

;

(2)

where

A ¼ ð2MEÞ2 � 2MEðW2 �M2 þQ2Þ �M2Q2

Q2ðW2 �M2 þQ2Þ : (3)

In the above equationsM is the mass of the proton, E is the
lab energy of the incoming electron, s ¼ M2 þ 2ME,
W2

� ¼ ðMþm�Þ2, m� is the mass of the pion, and
Q2

max ¼ ðs�M2Þðs�W2Þ=s. The fine structure constant
�emðQ2 ¼ 0Þ is used because the integral receives most of
its support from low Q2. The dispersion relation that
relates ImhV

�Z to RehV
�Z is

RehV
�ZðEÞ ¼

2E

�

Z 1

��

dE0

E02 � E2
ImhV

�ZðE0Þ; (4)

where �� ¼ ðW2
� �M2Þ=2M.

TheQweak experiment ran at an incoming electron energy
of E ¼ 1:165 GeV. Table I shows the numerical RehV

�Z

results obtained by each group at this energy. The differ-

ences occur because of the models used for theF�Z
1;2 structure

functions. Currently, there are no data for these structure
functions at low Q2 and W2 and each group performed
calculations using their own modifications to electromag-
netic structure functions. The PVDIS experiment [8] at
Jefferson Lab has several data points for the deuteron’s

F�Z
1;2;3 in the resonance region. These data will be insufficient

to produce a model-independent fit, but provide a first step
in testing the validity of the modifications [9].
The axial contribution to the �Z-box has also recently

undergone analysis. The axial contribution to Imh�Z is

ImhA
�ZðEÞ ¼

1

ð2MEÞ2
Z s

M2
dW2

Z Q2
max

0
dQ2�emðQ2Þ

� geVðQ2Þ
geA

BF�Z
3 ðx;Q2Þ

1þQ2=M2
Z

; (5)

where
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B ¼ 2ME

W2 �M2 þQ2
� 1

2
: (6)

The weak couplings for the electron are given by geV ¼
T3
e � 2Qesin

2�WðQ2Þ, and geA ¼ T3
e . The axial integral

receives support from high Q2 and we allow both �em

and sin 2�W to run. The dispersion relation that relates
ImhA

�Z to RehA
�Z is

RehA
�ZðEÞ ¼

2

�

Z 1

��

dE0 E0

E02 � E2
ImhA

�ZðE0Þ: (7)

Blunden et al. [10] obtained axial results of the same
order of magnitude as RehV

�Z. Repeating a similar analysis

we have also calculated RehA
�Z. The two results for the

axial contribution at the Qweak energy are reported in
Table II. As with the RehV

�Z calculation, differences be-

tween the axial results occur because of the structure
function treatment.

The goal of our paper is to describe our modifications to
the electromagnetic structure functions. In Sec. II we

present the steps taken to obtain F�Z
1;2 in the resonance

region. We focus attention on this region since most of
the support for the vector �Z-box integral comes from low
Q2. These steps were not described in detail in our pre-
vious work and will allow a more thorough assessment of
our RehV

�Z calculation. In Sec. III we describe an alter-

native modification for obtaining F�Z
1;2 in the resonance

region. This modification is similar to the one used by
Gorchtein et al. [6] and the close agreement to our original
RehV

�Z result suggests both modifications are equally

valid, at least for the Qweak kinematics. In Sec. IV we

present our calculation of F�Z
3 in the resonance region that

parallels the analysis of Sec. II. We compare F�Z
3 and

RehA
�Z values to those obtained by Blunden et al.

Concluding remarks are contained in Sec. V.

II. MODIFICATION OF THE STRUCTURE
FUNCTIONS F��

1;2ðx;Q 2Þ ! F�Z
1;2ðx;Q2Þ IN

THE RESONANCE REGION

In our previous work we modified the Christy and
Bosted fit to electromagnetic data [11] in the resonance

region Q2 < 8 GeV2 and W < 2:5 GeV. Their fits for
F��
1 , �T , and �L account for the contributions of seven

resonances as well as a smooth background. Their descrip-
tion and computer code for their fit allowed us to separately
modify the resonances and the background.
To obtain the resonance part of F��

1 , Christy and Bosted

sum the contribution of each resonance, F��
1 jres. The reso-

nance part of F�Z
1 can be calculated by modifying the

summation by the insertion of corrective prefactors,

F�Z
1 ¼ X

res

Cres � F��
1 jres: (8)

The prefactors are simply a ratio of structure functions for
each of the resonances,

Cres ¼ F�Z
1

F��
1

��������res
: (9)

We next convert Cres into a ratio of helicity amplitudes.
Following the normalization of the Particle Data Group
[12], the resonant parts of these structure functions can
be expressed as a product of the polarization vector,

�
	
þ ¼ 1=

ffiffiffi
2

p ð0;�1;�i; 0Þ, and hadronic tensors,

F��ð�ZÞ
1

�����res
¼ �	�

þ ��þW
��ð�ZÞ
	�

¼ ð2ÞX



Z
d4zeiqzhN; sj��þ � J�ðZ;VÞyðzÞjres; 
i

� hres; 
j�þ � J�ð0ÞjN; si; (10)

whereN is a nucleon, 
 and s are the spin projections of the
resonance and nucleon, respectively, and � ðZ; VÞ is the
electromagnetic (neutral vector) current. The factor of 2 is
present in �Z exchange to account for the different
orderings.
The above amplitudes can be evaluated by considering

�þ � J as a quark operator embedded between SUð6Þ wave
function representations of the nucleon and resonances
[13]. This operator ignores the spatial wave functions, c ,
and acts only on the flavor,�, and spin, �, wave functions.
Because the colorless portion of the total hadronic wave
function is symmetric, we are free to operate only on the
third components of � and � and multiply the result by
three. The amplitude can be expressed as

hres;
j�þ � J�ðZ;VÞjN;si ¼ 3
D
c res�res�


�����eð3Þq ðgqð3ÞV Þ �uk0;
0�þ

��uk;s0
�����c N�N�s

E
; (11)

where k (k0) and s0 (
0) are the initial (final) momentum and
spin projection for the struck quark. The superscript (3)
over the quark electromagnetic and weak vector couplings,
eq and gqV , indicates that the operators are acting only on

the third quark.

TABLE II. RehA
�Z � 103 evaluated at E ¼ 1:165 GeV.

Blunden et al. [10] 3:7� 0:4
This work 4:0� 0:5

TABLE I. RehV
�Z � 103 evaluated at E ¼ 1:165 GeV.

Sibirtsev et al. [4] 4:7þ1:1
�0:4

Rislow and Carlson [5] 5:7� 0:9
Gorchtein et al. [6] 5:4� 2:0
Hall et al. [7] 5:60� 0:36
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Using unit normalized quark spinors,

up;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþmq

2mq

s

s

~�� ~p
2mq


s

0
@

1
A; (12)

and choosing a frame where the gauge boson is propagat-
ing in the z direction, the current reduces to

�uk0;
0�þ � �uk;s0 ¼
ffiffiffi
2

p
2mq


y

0 ½Pþ þ qzSþ�
s0 ; (13)

where mq is the constituent quark mass, Pþ ¼ k1 þ ik2,

Sþ ¼ 1=2ð�1 þ i�2Þ, qz is the momentum of the boson,
and 
s are the usual two spinors. The Wigner-Eckart
Theorem allows us to calculate a matrix element of Pþ
as a constant times a matrix element of Lþ.

After absorbing the spatial and momentum information,
as well as the quark mass coefficient, into parameters A
and B, Eq. (10) becomes

F��ð�ZÞ
1 jres ¼ 3hc N�N�sjeð3Þq ð2gqð3ÞV Þ½ALþ þ BSþ�y

� jc res�res�
i3hc res�res�
jeð3Þq

� ½ALþ þ BSþ�jc N�N�si: (14)

In terms of helicity amplitudes,

F��ð�ZÞ
1 jres ¼ A�


ð2AZ

ÞA�


; (15)

where the helicity amplitudes are given by

A�

ð2AZ


Þ ¼ 3hc N�N�sjeð3Þq ð2gqð3ÞV Þ
� ½ALþ þ BSþ�yjc res�res�
i; (16)


 is the spin projection of the resonance along the direction
of the gauge boson momentum, and �ðZÞ is the exchanged
boson.

The prefactor can now be expressed as

Cres ¼ 2

P

 A

�

A

Z

P


ðA�

Þ2

: (17)

In general, to calculate these amplitudes we operated the
Hamiltonian on the SUð6Þ spatial (c ), flavor (�), and spin
(�) wave functions of protons and resonances described by
Close [13]. As examples, the proton and D13ð1520Þ reso-
nance are members of the ð28; 56Þ and ð28; 70Þ multiplets,
respectively, and can be written as

j28; 56i ¼ 1ffiffiffi
2

p c S
L¼0;LZ¼0

�
�M;S�M;S

SZ¼�1=2 þ�M;A�M;A
SZ¼�1=2

�
(18)

j28; 70i ¼ X
JZ¼SZþLZ

hJ ¼ 3=2JZjLLZ; SSZi

� 1

2

�
cM;S

LLZ

�
�M;S�M;S

SZ
��M;A�M;S

SZ

�

þ cM;A
LLZ

�
�M;S�M;A

SZ
þ�M;A�M;S

SZ

��
: (19)

M; ðAÞS indicates a wave function with two elements that
are (anti)symmetric.
Inserting the Hamiltonian into the proton to D13ð1520Þ

helicity amplitudes gives

A�ðZÞ

¼1=2 ¼ 3� eð3Þq ðgqð3ÞV Þhc res�res�þ1=2

� j½ALþ þ BSþ�jc N�N�si
¼ 1ffiffiffi

6
p

�
�A10½euðguVÞ � edðgdVÞ�

� ffiffiffi
2

p
B10

�
5

3
euðguVÞ þ

1

3
edg

d
VÞ
��

(20)

and

A�ðZÞ

¼3=2 ¼ 3� eð3Þq ðgqð3ÞV Þhc res�res�þ3=2

� j½ALþ þ BSþ�jc N�N�si
¼ � 1ffiffiffi

2
p A10½euðguVÞ � edðgdVÞ�: (21)

The subscripts of A10 and B10 indicate the angular momen-
tum dependence of the resonance’s wave function.
Obtaining A10 and B10 without relying on hadronic wave

function requires additional phenomenological informa-
tion. Data for both of the D13ð1520Þ and F15ð1680Þ reso-
nances [14,15] show that the polarization ratio

A ¼
�����A�

1=2

�����2�
�����A�

3=2

�����2�����A�
1=2

�����2þ
�����A�

3=2

�����2
(22)

is close to �1 for photoproduction and approaches þ1 at
higherQ2 as the A�

1=2 amplitude dominates (in accord with

perturbative QCD). Looking at the expressions for the
D13ð1520Þ, we conclude that

A10ðQ2 ¼ 0Þ ¼ � ffiffiffi
2

p
B10ðQ2 ¼ 0Þ (23)

and expecting A�
1=2 to dominate by a power of Q2 at high

Q2, we choose a form with the correct limits

A10ðQ2Þ
B10ðQ2Þ ¼ � ffiffiffi

2
p

f1ðQ2Þ ¼ � ffiffiffi
2

p 1

1þQ2=�2
1

: (24)

We can now express A10 in terms of f1 and B10.
Substituting this new value of A10 into Eqs. (20) and (21)
leads to the prefactor of D13ð1520Þ,

CD13
¼ ð13 � f1Þð1� f1Þ þ 3f21

ð1� f1Þ2 þ 3f21
þQp;LO

W ; (25)
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where Qp;LO
W ¼ 1� 4sin 2�Wð0Þ. A parallel analysis

gives

CF15
¼

2
3 ð1� f2Þ

ð1� f2Þ2 þ 2f22
þQp;LO

W : (26)

We used �2
1 ¼ �2

2 ¼ 0:2 GeV2 in [5]. As a check, we can
compare our fits constructed using Close’s analysis with
amplitude fits from Mainz (MAID) [16]. Better agreement
can be obtained by setting �2

1 ¼ 0:256 GeV2 and �2
2 ¼

0:635 GeV2, but this more thorough analysis does not
change the overall RehV

�Z result by more than half a

percent.
Table III summarizes the helicity amplitudes and pre-

factors for each resonance in the Christy and Bosted fit.
The Roper resonance, P11ð1440Þ, belongs to the same
multiplet as the proton. ALþ does not contribute to the
amplitude since both the Roper and proton have zero
orbital angular momentum. Consequently, the amplitude
is only proportional to B00 and the Roper prefactor is
Q2-independent. For resonances with nonzero orbital an-
gular momentum, Cres isQ2-dependent. The two S11 states
belong to the same SUð6Þ multiplet as the D13ð1520Þ, so
A10 and B10 are the same for all three states, for valid SU(6)
symmetry. The S11 states can mix. We have written above
the results for the unmixed case. The unmixed �p ampli-
tude for the S11ð1650Þ is zero when the values of the quark
charges are inserted; this is the Moorhouse selection rule
[17]. If we neglect this amplitude also for the Z-boson case,
the amplitude listed for the S11ð1535Þ gives a ratio

CS11 ¼
1
3 þ 2f1

1þ 2f1
þQp;LO

W : (27)

Electroproduction of the S11ð1650Þ occurs because of mix-
ing with the bare S11ð1535Þ, and the above ratio is the same
for both the S11’s. We have checked that including mixing
makes little numerical difference.
Cres for I ¼ 3=2 resonances are calculated by consider-

ing only the �I ¼ 1 portion of the current. This term is
proportional to (eu � ed). By substituting vector charges,

Cres for I ¼ 3=2 resonances is found to be (1þQp;LO
W ).

The Christy-Bosted fit lies within 3% of nearly all
electromagnetic data points. Our modification undoubtedly
increases the uncertainty. To be conservative we estimated
our modifications increased the uncertainty to 10%.
The Christy-Bosted fit also accounts for a smooth back-

ground. To model the �Z-box background we considered
two limiting cases. In the low x limit, the light quark
distributions are expected to be equal and the corrective
coefficient is

Cbkgdjx!0 ¼
P

q¼u;d;s 2eqg
q
VfqðxÞP

q¼u;d;sðeqÞ2fqðxÞ
¼ 1þQp;LO

W : (28)

In the limit where there are only valence quarks,

Cbkgdjvalence quarks ¼
P

q¼u;u;d 2eqg
q
VfqðxÞP

q¼u;u;dðeqÞ2fqðxÞ
¼ 2

3
þQp;LO

W :

(29)

We used these limits as error bounds and their average as
the background correction. Approximately half of the total
contribution to RehV

�Z from the Christy-Bosted fit is due to

this background modification.

TABLE III. The seven Christy-Bosted resonances along with their electromagnetic helicity amplitudes and corresponding corrective
prefactors for both the proton and deuteron. The (pZ ! N�

p) helicity amplitudes are calculated by substituting eq ! gqV ¼
T3
q � 2eqsin

2�W . The (n� ! N�
n) and (nZ ! N�

n) helicity amplitudes are calculated by exchanging eu $ ed and guV $ gdA,

respectively, in the proton analysis. The corrective prefactor for the background is also included.

Resonance Proton electroproduction amplitudes Cp
res Cd

res

P33ð1232Þ A�
1=2 / ðeu � edÞ 1þQp;LO

W 1þQp;LO
W

S11ð1535Þ A�
1=2 ¼ 1ffiffi

6
p ð ffiffiffi

2
p

A10ðeu � edÞ � B10ð53 eu þ 1
3 edÞÞ 1=3þ2f1

1þ2f1
þQp;LO

W 2 ð1þ2f1Þð1=3þ2f1Þ
ð1þ2f1Þ2þð1=3þ2f1Þ2 þQp;LO

W

D13ð1520Þ A�
1=2 ¼ 1ffiffi

6
p ðA10ðeu � edÞ þ

ffiffiffi
2

p
B10ð53 eu þ 1

3 edÞÞ
ð1�f1Þð1=3�f1Þþ3f2

1

ð1�f1Þ2þ3f2
1

þQp;LO
W

2ð1�f1Þð1=3�f1Þþ6f2
1

ð1�f1Þ2þð1=3�f1Þ2þ6f2
1

þQp;LO
W

A�
3=2 ¼ 1ffiffi

2
p A10ðeu � edÞ

F15ð1680Þ A�
1=2 ¼

ffiffi
2
5

q
A20ð2eu þ edÞ þ

ffiffi
3
5

q
B20ð43 eu � 1

3 edÞ 2=3ð1�f2Þ
ð1�f2Þ2þ2f2

2

þQp;LO
W 4 1�f2

3ð1�f2Þ2þ6f2
2
þ4=3

þQp;LO
W

A�
3=2 ¼ 2ffiffi

5
p A20ð2eu þ edÞ

S11ð1650Þ A�
1=2 ¼ �

ffiffiffiffi
2
27

q
B10ðeu þ 2edÞ 1=3þ2f1

1þ2f1
þQp;LO

W 2 ð1þ2f1Þð1=3þ2f1Þ
ð1þ2f1Þ2þð1=3þ2f1Þ2 þQp;LO

W

P11ð1440Þ A�
1=2 ¼ B00ð43 eu � 1

3 edÞ 2=3þQp;LO
W 12=13þQp;LO

W

F37ð1950Þ A�
1=2 / ðeu � edÞ 1þQp;LO

W 1þQp;LO
W

Background 5
6 þQp;LO

W
9
10 þQp;LO

W
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F��
2 is related to F��

1 by

F��
2 ¼ Q2

p � q
�
1þ �L

�T

�
F��
1

1þ M2Q2

ðp�qÞ2
: (30)

We substituted F�Z
1 into the above expression to obtain

F�Z
2 . We also assumed the modifications were the same for

both the transverse and longitudinal cross sections.
Bosted and Christy [18] also have a fit for deuteron and

neutron electromagnetic data, which we used to modify the
deuteron structure functions in [9]. The corrective ratios
for the deuteron resonances are listed in Table III.
Following the above analysis for the proton background,

the limits to the deuteron background are 1þQp;LO
W and

4=5þQp;LO
W .

III. ALTERNATIVE MODIFICATION OF
F��

1;2ðx;Q2Þ ! F�Z
1;2ðx;Q 2Þ IN THE

RESONANCE REGION

The corrective prefactors for the Christy-Bosted fit can
be modeled using a different technique. The vector
contribution to the Z-boson transition amplitudes can be
isospin rotated into a sum of electromagnetic transition
amplitudes, p� ! N�

p and n� ! N�
n. Neglecting strange

quark contributions, these amplitudes are

hN�
pjJ�ðZ;VÞ	 jpi ¼ euðguVÞhN�

pj �u�	ujpi
þ edðgdVÞhN�

pj �d�	djpi (31)

and

hN�
njJ�	jni ¼ euhN�

nj �u�	ujni þ edhN�
nj �d�	djni: (32)

After performing an isopin rotation the neutron amplitude
becomes

hN�
njJ�	jni ¼ euhN�

pj �d�	djpi þ edhN�
pj �u�	ujpi: (33)

Further algebra on these amplitudes reveals

hN�
pjJZ;V	 jpi ¼ 1

2
ð1� 4sin 2�Wð0ÞÞhN�

pjJ�	jpi

� 1

2
hN�

njJ�	jni: (34)

Cres can now be written as

Cres ¼ Qp;LO
W �

P

 A

�;p

 A�;n


P

ðA�;p


 Þ2 : (35)

Here, p and n identify the nucleon as a proton or neutron,
respectively. Gorchtein et al. [6] constructed their Cres

expressions using photoproduction amplitudes listed in
the Particle Data Group [12]. Thus, their corrective pre-
factors lack Q2 dependence. To account for the ampli-
tudes’ Q2 dependence, fits from MAID [16] can also be
used.

Figure 1 shows RehV
�Z calculated using both the quark

model and MAID treatments of the structure functions.
Better agreement between MAID and the quark model was
naively expected as the MAID fits were used to parame-
trize �2

1;2. The overall smaller value for RehV
�Z calculated

by MAID is almost entirely due to the Roper resonance.
For the Roper, the quark model calculates a constant
corrective prefactors while the MAID ratio rapidly ap-

proaches Qp;LO
W as Q2 increases. The differences in the

Roper resonance corrective prefactors were also the
primary cause for the different deuteron asymmetry
predictions in [9].
Another notable feature of Fig. 1 is that RehV

�Z hardly

changes when the corrective ratios are calculated using
PDG photoproduction amplitudes in place of the
Q2-dependent quark model. RehV

�Z calculated using the

quark model also remains relatively unchanged when using
different values for �2

1;2 values. Both features are due to

lowQ2 values dominating the integral. Indeed, an analysis
of the integral indicates that the mean Q2 value is
0:4 GeV2. In applications with higher Q2, such as the
calculation of the deuteron asymmetry in [9], the quark
model and photoproduction corrective prefactors give
quite different values.
It is important to note that Gorchtein et al. [6] do not

use the Christy-Bosted background in their analysis. For
the background they instead use the average of two
Generalized Vector Dominance (GVD) models [19,20],
isospin rotated for application to the �Z box and extrapo-
lated down to the resonance region. This averaging is the
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FIG. 1 (color online). RehV
�Z as a function of incoming elec-

tron energy. The black curve is the result from our previous work
and uses helicity amplitudes given by the quark model. The blue,
dot dashed curve is the result using corrective ratios from the
PDG. The red, dashed line is the result from using corrective
ratios constructed with MAID helicity amplitudes. The dashed,
vertical line indicates the energy of the Qweak experiment. All
three models use the same modifications for isospin 3=2 reso-
nances and the smooth background.
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largest source of uncertainty for the Gorchtein et al.
calculation. Recently, it has been claimed that this
background uncertainty has been overestimated [7].

IV. MODIFICATION OF STRUCTURE FUNCTION
F��

3 ðx;Q2Þ ! F�Z
3 ðx;Q 2Þ AND THE

CALCULATION OF RehA
�Z

Blunden et al. [10] split their RehA
�Z analysis into elastic

(W2 ¼ M2), resonance (W2
� � W2 � 4 GeV2), and deep

inelastic scaling (W2 > 4 GeV2) regions. To allow for an
easier comparison between our analysis and theirs, we used
the same energy regions.

As previouslymentioned, the averageQ2 valuewithin the
RehV

�Z integral is about 0:4 GeV2. In contrast, the average

Q2 valuewithin theRehA
�Z integral is about 80 GeV2. Thus,

the axial contribution to the �Z-box diagram is less sensitive
to the modifications of the structure functions in the reso-
nance region.Because the axial box integral, Eq. (5), receives
strong support from high Q2, we follow the example of
Blunden et al. and use one loop running values of �ðQ2Þ
and sin 2�WðQ2Þ in its evaluation. Both running values are

calculated in theMS renormalization scheme.

In the scaling region, F�Z
3 can be directly calculated

using parton distribution functions (PDFs),

F�Z
3 ðx;Q2Þ ¼ X

q

2eqg
q
Aðqðx;Q2Þ � �qðx;Q2ÞÞ: (36)

Blunden et al. use PDFs from [21]. We chose PDFs given
by CTEQ [22]. CTEQ’s uncertainty for the up quark is
about 5% and 10% for the down quark. To once again be
conservative, we considered a 10% uncertainty for this fit.

For Q2 < 1 GeV2 and W2 > 4, we used the Model I
modification to the PDFs discussed by Blunden et al., with

�2 ¼ 0:7 GeV2 and Q2
0 ¼ 1 GeV2. Blunden et al. found

an uncertainty of 10% in this fit by varying �2 within a
reasonable range. For the elastic contribution, we also
follow the technique used by Blunden et al. [10].
The most significant departure from the Blunden et al.

analysis is in the resonance region. In this region Blunden

et al. constructed F�Z
3 using axial current parameters of

Lalakulich et al. [23]. Lalakulich et al. obtained their
parameters through a PCAC analysis of pionic decays of
baryons. Their fit accounts for four resonances but makes
no attempt at estimating a smooth background, defering the
determination of its form to future experiments. As an
aside, Lattice QCD calculations have reached a sufficient
level of accuracy to calculate axial form factors [24,25].
Instead of repeating the Blunden et al. resonance region

analysis, we constructed F�Z
3 by once again modifying the

Christy-Bosted fit. Not only does this modification provide
a smooth background, it also accounts for three more
resonances. In our analysis of the resonance region we
repeated the technique outlined in Sec. II. In the nonrela-

tivistic limit, j ~kj � mq, the axial current becomes

�uðk0; 
0Þ�þ � ��5uðk; s0Þ ¼
ffiffiffi
2

p

y

0Sþ
s0 : (37)

Continuing the use of the parameters in Sec. II, F�Z
3 can be

expressed as

F�Z
3 jN!res ¼ 3

2�

qz
hc N�N�sjð2gqð3ÞA Þ

�
2mq

qz
BSþ

�y
� jc res�res�
i3hc res�res�
jeð3Þq

� ½ALþ þ BSþ�jc N�N�si; (38)

where � is the energy of the exchanged boson. For our
calculation we took the mass of the struck quark mq to be

TABLE IV. The seven Christy-Bosted resonances along with their axial helicity amplitudes and corrective prefactors for both the
proton and deuteron. The neutron amplitude is calculated by exchanging guA $ gdA.

Resonance Proton axial current amplitudes Cp
res Cd

res

P33ð1232Þ AZ;A
1=2 / ðguA � gdAÞ 4mq�

q2z
2
4mq�

q2z
2
4mq�

q2z

S11ð1535Þ AZ;A
1=2 ¼ � 1ffiffi

6
p B10ð53guA þ 1

3g
d
AÞ 4mq�

q2z

1
3ð2f1þ1Þ

16mq�

3q2z

ð1þ2f1Þþð1=3þ2f1Þ
ð1þ2f1Þ2þð1=3þ2f1Þ2

16mq�

3q2z

D13ð1520Þ AZ;A
1=2 ¼

ffiffi
2
6

q
B10ð53 guA þ 1

3g
d
AÞ 4mq�

q2z

1�f1
ðf1�1Þ2þ3f2

1

16mq�

3q2z

ð1�f1Þ�ðf1�1=3Þ
ð1�f1Þ2þðf1�1=3Þ2þ6f1

1

16mq�

3q2z

AZ;A
3=2 ¼ 0

F15ð1680Þ AZ;A
1=2 ¼

ffiffi
3
5

q
B20ð43 guA � 1

3g
d
AÞ 4mq�

q2z

ð1�f2Þ
ð1�f2Þ2þ2f2

2

20mq�

3q2z

ð1�f2Þþ2=3
ð1�f2Þ2þ2f2

2
þ4=9

20mq�

3q2z

AZ;A
3=2 ¼ 0

S11ð1650Þ A�
1=2 ¼ �

ffiffiffiffi
2
27

q
B10ðguA þ 2gdAÞ 4mq�

q2z

1
3ð2f1þ1Þ

16mq�

3q2z

ð1þ2f1Þþð1=3þ2f1Þ
ð1þ2f1Þ2þð1=3þ2f1Þ2

16mq�

3q2z

P11ð1440Þ AZ;A
1=2 ¼ B00ð43guA � 1

3g
d
AÞ 4mq�

q2z

20mq�

3q2z

100mq�

13q2z

F37ð1950Þ AZ;A
1=2 / ðguA � gdA

4mq�

q2z
2
4mq�

q2z
2
4mq�

q2z

Background 5
3

9
5
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0.3 GeV. Table IV summarizes the corrective prefactors

to obtain F�Z
3 . As with the corrective prefactors for F�Z

1;2,

we estimate the uncertainty of the F�Z
3 prefactors to

be 10%.
The smooth background is once again modified by

taking the low x and valence quark limits. For low x, a
quark and antiquark are equally likely to be struck.
Thus,

Cbkgdjx!0 ¼
P

q¼u;d;s 2eqg
q
AfqðxÞ

1
2

P
q¼u;d;sðeqÞ2fqðxÞ

¼ 0: (39)

In the limit where valence quarks are equally likely to be
struck,

Cbkgdjvalence quarks ¼
P

q¼u;u;d 2eqg
q
AfqðxÞ

1
2

P
q¼u;u;dðeqÞ2fqðxÞ

¼ 10

3
: (40)

These limits were taken as the uncertainty bounds and their
average as the modification for the smooth background.

We also calculated F�Z
3 for the deuteron in [9]. The

corrective ratios for the deuteron resonances are listed in
Table IV. Following the above analysis for the proton
background, the limits to the deuteron background are
0 and 18=5.
Figures 2 and 3 display the results for RehA

�Z. As can be

seen, the scaling region dominates. At the Q2
weak energy,

RehA
�Z ¼ 0:0040� 0:0005.

V. CONCLUSIONS

Adding the axial box to our original vector box calcu-
lation [5], our constituent quark model yields a total
�Z-box value of

Reh�ZðE ¼ 1:165 GeVÞjtotal ¼ ð9:7� 1:4Þ � 10�3: (41)

The errors from both the axial and vector calculations were
added directly. If added in quadrature, the uncertainty
reduces to 1� 10�3.
The total �Z-box value from Blunden et al. [10] is

Reh�ZðE ¼ 1:165 GeVÞjtotal ¼ ð8:4þ1:1
�0:6Þ � 10�3: (42)

These two calculations are in agreement within uncer-
tainties. Each calculation also has error bounds below the
error budget of the Qweak experiment.
The question remains as to which calculations theQweak

Collaboration should use in their analysis. The disagree-
ment between the various calculations is largely due to the
treatment of the �Z structure functions in the resonance
region. We believe the collaboration will be equally well
served by either RehA

�Z calculation. RehA
�Z is not very

sensitive to the resonance region modifications since its

integrals get much of their support from high Q2. F�Z
3 in

the scaling region can be constructed using fits to parton
distribution data.
Which RehV

�Z calculation to use is more open to debate.

The vector integrals receive much of their support from the
resonance region and are thus sensitive to the modification

F��
1;2 ! F�Z

1;2 . In Sec. III we showed that there is little

difference between modifying the Christy-Bosted reso-
nance fits using our constituent quark model [5] or photo-
production amplitudes from the Particle Data Group (as in
[6]). Differences arise between [5,6] because of the treat-
ments of the resonance region background. We continue
modifying the Christy-Bosted background fit while
Gorchtein et al. modify two GVD fits to low Q2, high
W2 data and extrapolate them down to the resonance

Black Elastic
Blue Model I

Red Resonance

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

ELab GeV

R
e

ZA
E

L
ab

C
on

tr
ib

ut
io

ns

FIG. 2 (color online). Elastic (black, solid curve), resonance
(red, dashed curve), and model I (blue, dot dashed curve)
contributions to the axial box.
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FIG. 3 (color online). The axial box. We also add the axial
box to our previous vector calculation [5] to obtain the total box.
The dashed, vertical line indicates the energy of the Qweak

experiment.
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region. We believe our modification is more satsifactory

since it does not involve any extrapolations. We cannot

comment on the vector calculation of [4] since they

provide few details of their model.
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