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ABSTRACT

Chlorella sp* (isolated from the York River, Virginia) was 
cultured with varying lengths of light dark periods using hatch and 
cyclostat (u=. 288“day) techniques. Chi a./cell, N/cell and l^C uptake 
was found to be 4-6 times greater for batch cultures in logarithmic 
growth compared to stationary growth phase. These values changed on 
a day to day basis throughout the growth cycle from lag to stationary 
growth. The cyclostat cultures were similar to the stationary growth 
phase with respect to chi a./cell, N/cell and 14C uptake which was 
attributed to the low dilution rate utilized.

The effect of 8L/16D, 10L/14D, 12L/12D, 14L/10D and 16L/8D 
photoperiods upon the pattern of Pmax in cyclostat cultures was 
investigated. Except for the 10L/14D and 14L/10D photoperiods a 
bell shaped pattern of Pmax was observed. The maximum value occurred 
during the middle of the light period. A diurnal variation in alpha 
was not observed. I t  was concluded that photoperiod alone would not 
a lter the diurnal pattern of Pmax in an algal population.

As the length of the photoperiod increased Cas well as the 
to tal light energy/day) chi a./ cell and uptake/cell/hr. decreased.
I t  was concluded that the cells adapted to the Increase in light 
energy/day by decreasing carbon production/day, respiration and 
chi a /ce ll to maintain a constant C/N value.



ASPECTS OF 14C02 UPTAKE IN CYCLOSTAT GROWN CHLORELLA SP. 

POPULATIONS EXPOSED TO VARYING LENGTHS OF PHOTOPERIODS



INTRODUCTION

The daily periodicity in the ability  of algae to photo- 

synthesize has been cited by Holmes and Haxo ( 1 9 5 8 ) 9 Yentsch and 

Ryther (1957), Verduin (1957), Taguchi (19 76b), P latt and Jassby 

(19 76) and Gargas et al. (19 79) in natural populations and Eppley 

et al. (1971) and Eppley and Coatsworth (1968) in cultures. Variation 

in the light saturated uptake ability  of phytoplankton is of

ecological importance because of i ts  effect on primary production 

measurements and therefore, estimates of productivity of the ocean. 

Lorenzen (1963) points out that the variation cannot be directly 

related to fluctuations in ligh t intensity observed in the environment 

from sunrise to sunset. Gargas et al. (1979) and MacCaull and P latt 

(19 77) found that their estimates of daily primary productivity varied 

up to two-fold depending upon whether or not they corrected their 

■̂ C uptake measurements for diel variation.
i

Doty and Oguri's (1957) ipaper is one of the most often cited 

papers on diurnal variation in a natural algal population's ab ility  

to take up carbon under saturating light (Pmax) . Doty (19.59) published 

data that showed a correlation between latitude and the degree of 

variation in Pmax seen from sunrise to sunset. The lower the latitude 

that the measurements were made the greater the ratio of the maximum 

observed light saturated rate over the minimum observed value for a 

given day. Lorenzen (1963), using the Gaarder and Gran (1927) oxygen

2
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method to measure photosynthesis, published evidence that daylength, 

which varies with latitude and season, not latitude directly, was 

responsible for Doty’s (1959) observations.

Stross (1973) and MacCaull and P latt (19 77) concluded that 

photosynthetic rhythms observed in the field result from in trinsic  

oscillations within the phytoplankton cells and fluctuating environ­

mental factors. Diurnal variation in an algal c e ll’s physiological 

parameters that might influence photosynthetic rhythms include: 

nitrogen uptake (Goering et a l ., 1964), chlorophyll synthesis (Yentsch 

and Rhyther, 1957; and Shimada, 1958), n itra te  reductase activity 

(Eppley, Packard and Maclsaac, 1970), internal n itra te  concentration 

(Collos and Slawyk, 1976), ammonia uptake (Goering, Dugdale and Menzel, 

1964) and ce ll division (Smayda, 19 75).

Malone (1971) provides data that demonstates the role of 

the nutrient regime in controlling diurnal photosynthetic production. 

He reports that net-phytoplankton exhibited a maximum carbon uptake 

in the after regardless of the nutrient environment. Nanoplankton 

were found to show a morning maximum in a eutrophic environment. 

Malone's hypothesis is that phasing of the diurnal cycles of the
i

plankton reflects the inherent differences in the kinetics of carbon 

and nitrogen uptake and storage of photosynthate and nitrogen between 

the two phytoplankton size fractions under varying nutrient con­

centrations .

Paerl and Mackenzie (19 77) published data showing high rates 

of carbon uptake by nanoplankton relative to netplankton during the 

early daylight hours. During the afternoon and early evening the



netplankton showed an increasingly relative higher carbon uptake. Thes 

workers did not provide nutrient data but do support Malone’s obser­

vations . Both studies show the potential effect of community structure

i .e . the relative abundance of net and nanoplankton, on the diurnal 

rhythm of photosynthesis.

Haas (19 75) observed that the daily pattern of in situ  rate 

of photosynthesis by York river phytoplankton population changed with 

seasons. Maximum in situ  rates of photosynthesis did not always occur 

during the time of maximum incident light intensity.

The above studies document the occurrence of diel variation 

in photosynthetic carbon uptake by marine phytoplankton. Elucidation 

of the causative factors of the diel variation is hindered by numerous 

environmental variables which exhibit cycles that continuously impinge 

upon the natural populations. The primary objective of this study was 

to determine whether varying photoperiods can cause a systematic 

change in the time of occurrence of a cyclostat algal population’s 

maximum light-saturated ability  to take up -̂ CĈ * A secondary 

objective was to determine the variation in Pmax, alpha and I^ within 

and among photoperiods and whether quantitative values of chi a /ce ll,
i

C/N, and carbon production/biomass/hour are correlated with the length 

of the photoperiod to which algal population is exposed. Finally, 

i t  was intended that this study provide chemical and physiological 

data on a cyclostat grown alga at a fixed growth rate and various 

lengths of light/dark cycles.



MATERIALS AND METHODS

Batch culture experiments provided physiological data on 

Chlorella sp. throughout its  growth cycle to compare with subsequent 

values from steady state populations. Steady sta te  cultures provided 

a physiologically identical population from one day to the next. 

Although the steady state population’s physiological characteristics 

changed from hour to hour the pattern of change was the same for any 

given day. The steady state populations were exposed to various 

photoperiods and Pmax determined on the algae every two hours over a 

24 hour period for each photoperiod u tilized.

General Culture and Sampling Methods

The experimental organism, IA66 Chlorella sp., was isolated 

by Dr. Perkins from the York river. Growth media were enrichments of 

filte red  York river water for a ll  experiments except those done for 

growth rates of batch cultures and a ll cyclostat culture work. In the
i

la tte r  two cases a r t if ic ia l  sea water (McLachlan, 1974; Table I) was 

prepared, salin ity  15 o/oo. The enrichments consisted of f/2 media 

(Guillard and Ryther, 1962; Table II) added aseptically after the 

seawater had been autoclaved. Bacterial contamination was low in 

both the cyclostat culture and batch culture experiments and did not 

rise in batch cultures until s ta tic  growth phase was reached. Before 

in itia tion  of any experiments the algae were seria lly  diluted in 

autoclaved media.

5



TABLE I

McLachlan's a r t if ic ia l seawater

NaCl 11.58 g

MgS04 1.19 g

MgCl2 2.01 g

CaCl2 0.725

KC1 0.37

h3bo4 0.5 ml of solution with

KBr 0.5 ml of solution with

NaHC03 3.5 ml of solution with

add to 1 l i te r  of DÊ O

6



TABLE I I

f/2 media

To 200 ml DH20 add:Salt solution: 

NaN03

NaH2P04,H20 

Fe sequestrene 

Na2Si03*9H20 

Thiamine HCl .

Biotin 

Vitamin B̂ 2

1.5 g (varies).

0.1 g 

0.1 g 

0.1 g 

0.002 g 

0.001 g 

0.001 g

Trace metal solution: To 1000 ml DH20 add:

CuS04*5H20 0.0196 g

ZnS04*7H20 0.044 g

CoCl2*6H20 0.20 g

MnCl2*4H20 0.36 g

Na2Mo04*2H20 0.0126 g

To 1 l i te r  of s te rile  seawater add 10 ml of s te rile  

sa lt solution and 5 ml trace metal solution.
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Six replicate counts were made on a given sample preserved

in Lugol's solution using a Spencer Bright-line hemacytometer for

counting. In some cases cell lengths were measured using an ocular

micrometer (Taguchi (1976a) found no s ta tis tic a l differences in

the size of cells preserved with Lugol’s and unpreserved samples.

Chlorophyll a. concentrations was determined on three replicate one

ml samples. The samples were filte red  onto Whatman 25mm GF/C f ilte rs

and frozen until analyzed according to the method of Yentsch and

Menzel (1963). A Turner model 111 fluorometer was used. Nitrate

analysis was by the method of Wood et al. (1967).

The algae'were cultured at 15°C in a temperature controlled

growth chamber (Controlled Environments LTD. Winnipeg Canada, model

G-30) . The light intensity was 95 ]i Ein*m“ ŝ~̂ - except for the batch

—  2 —1culture diurnal Pmax experiments which were grown at 40 ]l Ein*m s 

(12L/12D). A Lamda LiCor model LI-185A quantum/radiometer/photometer 

was used to measure light when expressed as y Ein*m ^s where light 

is given in klux a panlux meter was used. The photoperiods used 

for the growth rates and cyclostat populations are given in the results 

section. The light source was two banks of six 40 watt "cool-white"
i

fluorescent tubes.

Batch Culture Growth

For batch cultures, an inoculum was transferred into s te rile  

1000 ml erelenmeyer flasks containing 500 ml of growth media.

Culture contents were mixed with Teflon-coated magnetic s tirring  bars 

(a magnetic s tir re r  was placed under each flask) and bubbled with air. 

the a ir passed through a moisture trap and then through s te rile  cotton
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f ilte rs  and tubes, into the flask.

Nitrogen/cell from the batch culture experiment was determined 

by dividing the nutrient concentration on day zero by the number of 

cells on the day no n itra te  was present. This value was considered a 

good approximation of cellular nitrogen in the cells when they were 

in the f i r s t  day of lag phase or two or three days into stationary 

phase. The preceding cell nitrogen value was taken times the number 

of cells inoculated into the media on day zero. This value was added 

to the n itrate  concentration of the media on day zero yielding the 

to tal amount of nitrogen available on day zero and then the difference 

divided by the cell concentration for the day to give N/cell.

Cyclostat Growth

The cyclostat culture vessel (Figure 1) had a volume of

2.5 lite rs  and was similar in design to that of Brewer and Goldman 

(1976). Air was passed through a .IN Ĥ PÔ  bath for ammonia removal, 

a moisture trap and finally a cotton wool f i l te r .  Air entered the 

vessel via a glass tube connected to a port at the base of the chamber.

A magnetic s tir re r  and s t i r  bar fac ilita ted  mixing. Media was 

perista ltica lly  pumped (Manostat Cassette Pump, Junior model) into 

the unit from 21 l i te r  supply bottles, each containing eight l i te rs  

of media. Details of media preparation and introduction into the 

cyclostat can be found in Appendix I . All glassware and associated 

tubing was autoclaved before a cyclostat experiment and isopropanol 

applied before joining cork to glass or tubing to glass. At no time 

during the runs were bacteria observed to build up in the supply 

lines leading into the culture vessel. Any time the chamber showed



F ig u r e  1

Schematic Diagram of Cyclostat Unit

Figure from Brewer and Goldman (1977). 1. media supply bottle;

2. cotton plug a ir intake; 3. fed lines; 4. p e ris ta ltic  pump;

5. clamped sampling tube; 6 . break line; 7. 2.5 l i te r  vessel;

8 . overflow port; 9. "cool-white" fluorescent lights; 10. overflow 

bottle; 11. magnetic s tirring  bar; 12. magnetic s tir re r; 13. a ir 

supply line; 14. cotton wool f i l te r ;  15. moisture trap; 16. .01N 

H3 PO4  acid wash bottle; 17. to a ir supply.
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bacteria growth on the walls, or at the end of an experiment, the 

whole assembly was broken down, washed and autoclaved. A new inoculum 

of algae was then used to s ta rt up the system again.

The cyclostat culture was started by fillin g  the unit with 

medium, adding a small inoculum of Chlorella sp. culture and then 

maintaining i t  as a batch culture for one-two days until an observable 

population developed. At this time media was pumped in at a flow rate 

of 30 ml/hr (held constant throughout a l l  experiments) resulting in 

a turnover time of 3.47 days, growth rate ]i of .288 The doublings/

day was equal to .416 calculated according to Goldman, McCarthy and 

Peavey, 1979). The cyclostat culture was maintained until steady 

state levels of cell populations were reached. Steady state was 

defined as the time when variation in cell number was less than + 10% 

for at least two consecutive days. Diel variation in cell numbers was 

found to be of no significance in determining steady sta te . The overflow 

was collected in a storage bottle for daily measurement of flow rate.

Cell nitrogen was estimated using equation 5 in Appendix II . 

Collos and Slawk (1979) found that PN measurements made on the overflow 

agreed quite well with the nitrogen concentration in the inflow.
i

Carbon content of the cells was estimated by multiplying the average 

Pmax (per cell basis) value of the population (as determined from 

carbon vs. light experiments) by the to tal hours of light exposure 

and dividing by the dilution rate. Eppley and Renger (.19 74) found 

this method of calculation to agree well with PC measurements of the 

cells. The theory on which chemostat and cyclostat growth is based 

can be found in Appendix II .



12

Batch Culture Pmax Determinations

A batch culture of algae was preadapted to a 121/12D photo­

period by subjecting the culture to the photoperiod for one growth 

cycle. After serially  diluting the cells with s te rile  media the 

beginning concentration of cells was adjusted to 8x10  ̂ cells/ml.

Day one was equivalent to the day the original population had increased 

tow fold. On days two and four a light vs. uptake curve was gen­

erated from samples taken at 0600 (lights on) 0900, 1200, 1500, and 

1800 hours (lights o ff ) . The theory on which Pmax is determined from 

light vs. carbon uptake curves from batch and cyclostat cultures is 

given in Appendix I I I . Carbon uptake was measured after diluting 

(using fresh media, 18.5 yM nitrate) a sample from the culture to 

2x10  ̂ cells/ml after cell number, chlorophyll a. and alkalinity samples 

had been taken. Ten mis of diluted culture was placed in 30 ml capacity 

screw top culture tubes. One dark and two light bottles were prepared 

for each of the following light in tensities; 10, 5, 3, .3 and 0 Klux.

The ligh t incubators contained two 40 watt "cool-white" fluorescent 

bulbs which were attenuated by neutral density f i l te rs . The temperature

of the incubators was controlled by circulating water through i t  from
!

a constant temperature bath (Precision Scientific Co.) set at 15°C.

Cyclostat Culture Pmax and C/cell Determination

An algal population that had reached steady state at one 

of the following photoperiods: 8L/16D, 10L/14D, 12L/12D, 14L/10D or

16H/8D, was sampled every two hours for 24 hours. Approximately 15 

mis (0.6% of cyclostat volume) of culture was withdrawn from the 

chemostat at each sampling time. After chlorophyll a., cell number



and alkalinity samples were taken i t  was diluted to a cell concentration

of 1x10  ̂ cells/ml using fresh media without n itra te . Duplicate ten

ml sam-les were placed in 30 ml capacity screw top cultures tubes

for incubation at the following light in tensities: 100, 50, 25, 15,

— 2  —1and 0 y Ein*m s . Light and temperature control of the light 

incubators was the same as in the batch culture experiments.

Alpha was determined from the slope of the line defined 

by carbon up take/biomass/hr vs. light at 15 and 25 y Ein*m“^s”^.

■̂ C uptake vs. light was found to be linear at these light in tensities. 

Pmax was equal to the -^C uptake value at 100 y Ein,m- ^s” -̂. In a l l  

cases the -^C uptake value was only slightly greater at 100 vs. 50 

y Ein*m“^s”^. When the algae were exposed to 250 y Ein*m“^s-  ̂ the 

■̂ C uptake value was equal to the value determined at 100 y Ein*m“^s“^. 

The derivation of 1̂ . can be found in Appendix III as well as the 

theory on which alpha and Pmax are based.

Carbon/cell values for the cyclostat populations were 

determined by taking the summation of the Pmax values (C/cell/hr) 

measured every two hours beginning with the value determined at 

lights on of a particular photoperiod and continuing on through
i

lights off but not including this la s t value. The sum was then 

multiplied by two equalling C uptake/cell/day. This product taken 

times the turnover time of the culture in days (1/.288 days or 3.47 

days) yields C/cell.

•^C Uptake Methodology

One yCi of Na2^C0g was added to the ten mis of sample and

incubated at the appropriate light level for one hour. The incubation

/ " library
/  o f tf.'S 
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was terminated by filte ring  the algae onto prewetted metrical membrane 

f ilte rs  (Gelman GA-8 . 2ym 25 mm). The algae were rinsed one time with 

fresh media and the f i l te r  placed in a sc in tilla tion  v ial to which 

.3 ml of NCS was added and allowed to digest overnight. Ten ml of 

cocktail (50 mg POPOP, 4g PPO per l i t e r  of toluene) was added to each 

vial which were to s i t  for several hours before counting on a Beckman 

model LS150 liquid sc in tilla tion  counter. Counting efficiency was 

determined to be 90% using the internal standards method. Alkalinity 

analyses and carbon uptake rate calculations were performed according 

to the methods of Strickland and Parsons (1972).



RESULTS

Batch Cultures

Preliminary batch culture experiments were carried out to

ensure that suitable growth conditions were met for ChLorella sp.

Fogg (1965) l is ts  five phases of growth characteristics of batch

cultures of unicellular algae. The f i r s t  three phases are shown in

the growth curve for a population of Chlorella sp. grown on a 12L/12D

cycle at 15°C (Figure 2) i .e . lag, logarithmic and linear.

Nitrogen/cell throughout the growth cycle is presented in

Figure 2 for a batch culture of Chlorella sp. There is  an in it ia l

increase in nitrogen from .02 to .12 pico gram-at-N/cell prior to

any increase in cell number. Maximum N/cell occurred just before

logarithmic growth, followed by an asymptotic decrease throughout

the remaining growth phases.

Cell number and pH are essentially a mirror image of the

n itra te  concentration curve. The.increase in pH is attributed to the

uptake of n itra te  ions with a concomitant release of ~0H ions to

maintain a charge balance within the cell (Fogg, 1965). If  CO2  is

present in sufficient quantity, its  uptake by an algal population

would be expected to buffer any change in pH. This is  attributed

—2 —2to "the equilibrium CO2  maintains with HCÔ  , CÔ and H2 CO3  in water. 

The culture, whose growth curve is shown in Figure 2, was not bubbled 

with air (a source of CĈ ) and the change in pH was almost two units. 

Subsequent cultures had air bubbled through them which decreased the

15



F ig u r e  2

Growth curve of Chlorella including 

pH, cell/nitrogen and cell number

f\Cell number (O , cells/ml.xlO ), n itra te  concentration in the 

culture ( □ , yg at-NO -̂ / ! ) , cell nitrogen (® , pg at-N/cell) 

and pH (A) with time for a Chlorella population with a 12L/12D 

photoperiod.



pH
P to OJ CO O
P <x> cri co co 0 6

( Ce l ls /m l )  x 10 
P  P P  «  o  in
r o  c \ j  c v j  — :

-4-e---------bo----------------1-----------------1---------— I----------------h«----------s-®

o <] • 0

O  <3 ® m- to

< ] •  G  0  | - «

o • <3 0  o  \- +
OJ
\
_J
oj • 0  <3 o

□  •  < 3  ©

0  < 3 ® o

 ----------------- 1—a----- j-----------1-------l-O-----h—— «f—©— Lo
o o o o o o
< 0  m  r o  c\ j —

J/ioN-wo;v-6W
 1 1-1  1---------------------------1-------------1-----------1------

cm o co to ^ oj

- ,_0I  x ( l i a o /N - I V - B a  )

D
A

Y
S



17

pH change to less than one.

Growth curves for batch cultures subjected to 8L/16D and 

16L/8D photoperiods are shown in Figures 3 and 4 respectively. The 

12L/12D (Figure 2) exhibited the greatest growth rate while the 8L/16D
v ,r

the lowest. Growth rate values were 0.685, 0.533 and 0.463 divisions 

per day for 12L/12D, 16L/8D and 8L/16D populations, respectively.

In both the 8L/16D and 16L/8D batch cultures, cell size and 

chi a./cell increased before and/or during maximum growth phase, 

returning to lag phase levels once stationary phase was approached 

(Figures 3 and 4). The length of the cells varied from 2.8 to 3.5 

ym. Chlorophyll aj  cell varied from 0.013 to 0.052 pico-grams/cell.

Representative light vs. carbon uptake/chl a/hr curves are 

presented in Figure 5 for day two and day four of exponential growth 

(12L/12D) . 1̂ . was 4.5 and 5 Klux for day two and day four, respectively.

Values of both Pmax and alpha were much greater on day two than on 

day four (Figure 5). Pmax values measured on day two were 0.61-0.86 

while on day four they were 0.11-0.23 pico-grams C/cell/hr CFigure 6).

The transient physiological characteristics of batch cultures 

were compared to cyclostat grown algae using changes in cell number,
i

chlorophyll a/ce ll and cell size. A batch culture was inoculated 

in the cyclostat chamber. Once the cells began dividing the pumping 

of media at 30 ml/hr into the chamber was in itia ted . Figure 7 shows 

the change from batch culture to steady state once the pump was turned 

on. Chlorophyll a./cell peaked at 0.036 pico-grams chi a /ce ll, five 

days before a cell number maximum of 2.4x10  ̂ cells/ml. Once steady 

state was achieved cell number and chlorophyll a/cell remained constant 

at 9.1x10^ cells/ml and .0086 pico-grams chi a /ce ll, respectively.



F ig u r e  3

Growth curve of Chlorella, 8L/16D photoperiod

Cell number (O > cells /ml. xlO^) , chi ^./cell (□ , pg chi aj  cell) 

and cell length (A, ym) with time for a population of Chlorella 

with a photoperiod of 8L/16D.
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F ig u r e  4

Growth curve of Chlorella, 16L/8D photoperiod

Cell number (O , cells/ml. xlO^) , chi aj  cell (□ , pg chi a./cell) 

and cell length (A, pm) with time for a population of Chlorella 

with a photoperiod of 16L/8D.
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F ig u r e  5

Photosynthesis vs. light curves from batch cultures

Carbon uptake (pgC/pg chi ji/hr) vs. light (Klux) for a batch 

-culture of Chlorella in day 2 (O) and day 4 CE ) of logarithmic 

growth, 12L/12D photoperiod.
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F ig u r e  6

Changing Pmax values of Chlorella batch cultures 

in differen phases of growth

Light saturated carbon uptake CO , pgC/cell hr) and c h i _a/cell 

(□ , pg c h i  ji/cell) for a batch culture of Chlorella in day 2

(----------) and day 4 (-------) of logarithmic growth vs. time in a

12L/12D photoperiod beginning at 0600.
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F ig u r e  7

Change in cell characteristics upon 

approach to steady state

Cell number (O , cell/ml. xlO^) , chi ja/cell (A, pg chi aj  cell) 

and cell length (□ , ym) vs. time (days) as a batch culture of 

Chlorella approaches and achieves steady sta te , followed by 

washout.
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Cell number/ml decreased linearly with time during washout attributed 

to depletion of the n itra te  within the supply bottle by bacteria.

The range in cell length on days on-five (batch culture phase, 3.1-3.3 

ym) was s ta tis tic a lly  different (P<.001) from the length of the cells 

in steady state or washout phase (1.9-3.0 ym).

Cyclostat Cultures

Nitrate limitation of the Chlorella sp. cyclostat culture 

was verified by observing a linear relationship, passing through the 

origin, betweeen n itrate  added to the medium and steady state cell 

number produced (r 0.998). A cyclostat culture on an 8L/16D cycle 

yielded cell concentrations of 8x10̂  and 1/10^^ c e lls / l i te r  at 160 

ym and 185 ym added n itra te , respectively.

The pattern of diel variation of Pmax in cyclostat cultures 

was investigated as a function of the following photoperiods: 8L/16D,

10L/14D, 12L/12D, 14L/10D and 16L/8D. Figures 8 and 9 show the 

variation in Pmax expressed as pico-gram C/cell/hr and pico-gram C/ 

pico-gram chi a/hr respectively within a given photoperiod. The 100% 

value of Pmax for each photoperiod is given in figure headings 8 and
i

9. By inspection i t  can be seen that Pmax typically increases during 

the light portion of the photoperiod and decreases during the dark.

A runs te s t, to test for randomness, was made on the data. The 

variation in Pmax expressed as C/cell/hr was found to be non-random 

at the 0.05,level for a ll  the photoperiods except 14L/10D. When Pmax 

is'expressed as C/chl a/hr a ll  the photoperiods except 10L/14D and 

14L/10D were found to be non-random at the 0.05 level.

The to tal amount of carbon fixed/cell in the cyclostat



F ig u r e  8

Variation in Pmax of cyclostat Chlorella 

cultures (C/cell)

Variation in Pmax (rate of light saturated photosynthesis calculated 

ad carbon/cell/hr) for a specific photoperiod (beginning and 

end of photoperiod marked by vertical dotted lines) measured 

every two hours within a given photoperiod as a percent of the 

maximum Pmax measured for the entire photoperiod. 100% Pmax 

values are .18, .12, *11, .13, and .05 pgC/cell/hr for 8L/16D, 

10L/14D, 12L/12D, 14L/10D and 16L/8D photoperiods, respectively.
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F ig u r e  9

Variation in Pmax of cyclostat Chlorella 

cultures (C/chl a)

Variation in Pmax (rate of light saturated photosynthesis cal­

culated as mgC/mg chi s j hr) for a specific photoperiod (beginning 

and end of photoperiod marked by vertical dotted lines) measured 

every two hours within a given photoperiod as a percent of the 

maximum Pmax measured for the entire photoperiod. 100% Pmax 

values are 7.2, 7.1, 5.3, 8.4, and 2. 7 pgC/pg chi _a/hr for 

8L/16D, 10L/14D, 12L/12D, 14L/10D, and 16L/8D photoperiods, 

respectively.
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populations during a given photoperiod was estimated from the carbon 

uptake measurements made during the light portion of the photoperiods. 

This value decreased linearly with an increase in the length of the 

light portion of the photoperiod (Figure 10). A linear regression 

of the data revealed that the slope was significantly different from 

zero at the 0.005 level. Values ranged from 1.16 to 0.77 pico-grams 

C/cell/day for an 8L/16D and 24L/0D photoperiod, respectively.

Chlorophyll a/ cell also decreased in a linear fashion (P<.005) with 

an increase in the length of the light period (Figure 11). Values 

ranged from 0.0085-0.0189 pico-grams chi a./cell.

The amount of time required for a cyclostat population to 

adapt to an altered photoperiod was determined by monitoring chi a./ 

cell and carbon uptake/cell/hr as the photoperiod was changed.

Chlorophyll a./cell exhibited a similar variation with respect to time 

and direction of change (increase or decrease in value) with carbon 

uptake (Figure 12). Approximately two-three days were required for 

complete adaptation.

The mean of the linear portion of a ll the light curves, 

from a cyclostat population, within a given photoperiod is  graphed
i

on a C/cell/hr and C/chl a/hr basis (Figures 13 and 14, respectively). 

Although there are only two values of x ( i .e . two light levels) 

used to determine the slopes, in a majority of cases there are 22-24 y 

values (two reps, 12 sampling periods) for each x. An inspection of 

the means and standard deviation for each y value suggest that on a 

C/cell/hr basis the slopes between photoperiod treatments were different. 

The slopes graphed on a C/chl a/hr basis appear to be equal. However,



F ig u r e  10

Variation in to tal carbon production/light period 

of cyclostat Chlorella cultures

This graph shows the relationship between pgC uptake/cell/light 

period as a function of the length of the light period. The 

values were obtained by taking the summation of the Pmax values 

measured every two hours beginning with the value determined at 

lights on of a particular photoperiod and continuing on through 

to lights off but not including this value. The sum was then
i

multiplied by two.
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F ig u r e  11

Variation in chi ji/ce ll of 

cyclostat Chlorella cultures

This figure shows the variation in chi _a/cell Cpg Chi _a/cell)

 O
xlO with the length of the light period/twenty-four hr. 

Variation in measured chi ji/ce ll values was less than 10% for 

a given photoperiod.
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F ig u r e  12

Time course of change in rates of C/cell/hr and chi ja/cell 

with a change in photoperiods of cyclostat cultures

This figure shows the change in pgC/cel1/hr ( ) and pg chi ^i/cell

( ) vs. time when the photoperiod was adjusted to 16L/8D (f irs t

arrow), 8L/16D (second arrow) and 24L/0D (third arrow).
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F ig u r e  13

The linear portion of the photosynthesis vs. 

light curve (C/cell/hr)

In this figure each line is labelled with respect to the photo­

period and the number of determinations used in plotting the two 

points making the line (number in parenthesis). For the 8L/16D, 

10L/14D and 12L/12D photoperiods the values were obtained every 

two hours throughout the light and dark phases of the photoperiod 

and the mean ( , pgC/cell/hr) and standard deviation (vertical

lines) are shown. For the 16L/8D and 24L/0D, replicate values 

done on the populations during the midpoint of the light phase 

(not applicable to 24L/0D) on three and two consecutive days 

respectively are plotted.
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F ig u r e  14

The linear portion of the photosynthesis vs. 

light curve (C/chl a./hr)

In this figure each line is labelled with respect to the photo- 

period and the number of determinations used in plotting the two 

points making the line (number in parenthesis). For the 8L/16D, 

10L/14D, 12L/12D and 14L/10D photoperiods the values were obtained 

every two hours throughout the light and dark phases of the photo­

period and the mean ( , pgC/cell/hr) and standard deviation

(vertical lin-s) are shown. For the 16L/8D and 24L/0D photoperiod, 

replicate values done on the populations during the midpoint of 

the light phase (not applicable to 24L/0D) on three and two 

consecutive days respectively are plotted.
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an analysis of covariance of k regression lines revealed that in

neither case were the slopes equal at the 0.001 level. Within any

given photoperiod the slope C l̂pha) was found to vary randomly

(P .05) based on a runs test made on the alpha values measured every

two hours over a 24 hour period.

I was found to vary in a diel fashion (JFigures 15 and 16)

for a ll the cyclostat populations entrained in a light dark photoperiod.

During the light period higher I^ ’s were observed than in the dark.

A runs test on the data showed non-randomness in a ll cases (P 0.05)

except for the 14L/10D photoperiod when 1  ̂ was determined using

C/cell/hr and 10L/14D and 14L/10D when calculated as C/chi j./hr.

Table III  lis ts  the mean and standard deviation of I, for eachk

photoperiod.



F ig u r e  15

Variation in 1̂ . of cyclostat Chlorella 

cultures (C/cell)

This figure shows the variation in 1  ̂ obtained from pgC/cell/hr 

vs. light curves for a specific photoperiod (labelled on graph) 

generated every two hours over 24 hours for a given photoperiod. 

Values are a percent of the maximum 1  ̂ observed during each 

photoperiod.
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F ig u r e  16

Variation in 1  ̂ of cyclostat Chlorella 

cultures (C/chi a)

This figure shows the variation in 1^ obtained from pgC/pg chi _a/hr 

vs. light curves for a specific photoperiod (labelled on graph) 

generated every two hours over 24 hours for a given photoperiod. 

Values are a percent of the maximum 1  ̂ observed during each 

photoperiod.



LIGHT PERIOD

90

8 0 -

7 0 -

8 L /  I6D60 -

50

o | I 0 0  —

9 0 -o

80

7 0 -

10 L /  I4D60 -

50

100 -i

90 -

80 ~

7 0 -

60 - I 2 L /  I 2D
50

100 —I

90
80 —

70 '

60 “ I 4 L  /  I0D
50

0 a 8 10 12 14 16 18 20 22 244 6

HOURS OF PHOTOPERIOD



TABLE I I I

1̂ . Values from Cyclostat 

I lc(UE/m2/sec)

Photoperiod C/cell intersect C/chl a. intersect

8/16 43.3 + 5.9 43.2 + 4.5

10/14 39.0 + 5.6 38.8 + 4.2

12/12 44.6 + 9.9 44.5 + 7.1

14/10 ' 50.7 + 5.6 50.4 + 7.0

16/8 55.9 + 5.9 59.4 + .8

24 36.0 + .2 36.4 + 1.5

35



DISCUSSION

The original question of this study concerned the effect 

of varying photoperiods on an algal population's pattern of Pmax 

throughout a 24 hour day. In this study the illumination provided 

for the laboratory experiments was held constant while the photoperiod 

was varied resulting in an increase in to tal light energy with, the 

lengthening of the light period.

Three out of five of the cyclostat culture response to 

light/dark periods was a be ll shaped pattern of Pmax during the light 

period. This was observed in cultures exposed to 8L/16D, 12L/12D and 

16L/8D (Figures 8 and 9) with peak values occurring during the middle 

of the light period. Minimum values of Pmax occurred most often during 

the middle of the dark period. Similar patterns of Pmax were reported 

for n itra te  limited cyclostat cultures (12L/12D) of Thalassiosira 

psedonana Hasle (Eppley and Renger, 19 74), Thalassiosira allen ii
I

(Laws and Wong, 1978) and batch cultures (12L/12D) of Glenodinium sp., 

Ceratium furca Ehrenberg, Gonyaulax polyedra Stein (Prezelin, Meeson 

and Sweeney, 1977) and Skeletonema costatum CJorgensen, 1966). The 

pattern of Pmax in the cyclostat cultures exposed to 10L/14D and 

14L/10D was erra tic . This is similar to Haas's (1975) data from 

natural populations exposed to ca. 14 hr plus photoperiods with respect 

to in situ  photosynthesis. The present data set is lacking in 

qualitative aspects to adequately explain the non bell shaped pattern

36
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of Pmax in the cyclostat cultures exposed to 10L/14D and 14L/10D 

photoperiods .

Haas (19 75) reported three basic patterns of diel in s itu  

photosynthesis by York river phytoplankton populations. During short 

days the algal poplations exhibited a peak value of in situ  photo­

synthesis at noon. On days of intermediate length, the major peak 

shifted to the afternoon with a secondary peak occurring in the morning 

as well as a noon decrease. During the longest days equal mid-morning 

and mid-afternoon peaks were separated by relatively low values at 

noon. The fact that maximum observed in situ  photosynthesis did not 

always occur at the midpoint of the photoperiods might be attributed 

to zooplankton grazing, tidal influence, and product inhibition, 

inhibitory light levels or the existing nutrient regime. Present data 

are not in agreement with the hypothesis that varying photoperiods 

alone w ill cause a change in the diel pattern of Pmax.

A model of diurnal variation can be put forth to explain 

the pattern of light saturated photosynthesis observed in this data set. 

In the model light provides an outside source of energy which results 

in energized compounds of ATP, NADH and fixation of CĈ j thus
I

providing sufficient substrate for the operation of the Calvin cycle. 

Decreased activity of the Calvin cycle during the dark period is 

attributed to the termination of an outside energy source and a switch 

to to tal reliance upon energy and substrate reserves from within the 

cell. Incorporation of Sweeney's (1969) hypothesis that changes in 

membrane permeabilities cause changes in the dark reactions of photo­

synthesis might explain the exact timing of maximum Pmax during the



middle of the light period. Sweeney (1969) postulates that light 

induced changes in membrane permeabilities could affect membrane 

bound enzyme activ ities either directly or indirectly by modulation 

of the flow of some c ritica l substrate. Njus, Sulzman and Hastings 

(19 74) suggest that changes in membrane permeabilities could provide 

the proper time course to control rhythms of at least 24 hours.

The present model is based on Prezelin and Sweeney's (19 77) 

model; both require a change in membrane permeability. However, 

Prezelin and Sweeney's (1977) model requires inactivation of the 

photosynthetic units (Psu, i .e .  photosysystems I and II) associated 

with the thylakoid membrane. The result is that although the chi a. 

concentration within a cell does not change, some of i ts  light (energy) 

capturing ability  is deactivated. This causes a lowering of the 

alpha value and a concomitant lowering of Pmax without requiring any 

change in the dark reaction enzyme activ ities or substrate concen­

trations ( if  I does not change, see Appendix III) . The present 

data set does not indicate that photosynthetic units are inactivated 

which concurs with Mishkind and Beal's (1979) work on Ulva lactuca.

There are three hypotheses in the lite ra tu re  that address

1 14the issue of variation in the linear portion of the light vs. CÔ

uptake/cell hr curve (alpha) by phytoplankton. Banister (1974) and 

Duns tan (19 73) assume alpha should be a relative stable parameter 

based on the fact that the quantum yield at low irradiances depend 

on the general photochemical reactions of chloroplast pigments and 

should therefore be independent of both species and temperature. 

Prezelin and Sweeney (1977) provide evidence that alpha varies through­

out the day in an algal culture entrained on a light/dark cycle due
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to activation and inactivation of the photosynthetic units (photo­

systems I and II) associated with the thylakoids. Taguchi (1976b) 

hypothesized that alpha would vary as a result of self-shading of 

the chloroplast which would effectively reduce the number of photo­

synthetic units that would be activated by the light.

A runs test on alphas from the cyclostat populations indicated 

a random variation within a given photoperiod. This is contrasted 

with a non-random variation observed in 1^. Dunstan (1973), Banister 

(1974), Walter and Edmunds (1973), Yentsch and Lee (1966), Gargas et 

al. (1979) and MacCaull and P latt (19 77) point out that 1^ is a 

derived parameter from the ratio of Pmax and alpha. If  both Pmax and 

alpha show a similar diurnal variation then 1̂ . would be expected to 

vary randomly. However, Gargas et al. (19 79) note that if  alpha is 

constant then 1  ̂ should reflect a similar non-random change as Pmax, 

which is the case in this study (Figures 15 and 16).

P latt and Jassby (19 76) observed a five fold seasonal variation 

in alpha. The highest values of alpha were associated with higher 

values of ambient light. Taguchi (1976a) and P latt and Jassby (1976) 

hypothesize that alpha is  a function of cell size, pigment composition,
i

cellular architecture and light quality. They suggest that higher 

light intensities decreased the chlorophyll content of the cell thus 

decreasing self-shading and increasing alpha. If  the self-shading 

hypothesis applied to the present data set a linear relationship would 

be expected between paired values of alpha (C/chl a/hr/ligh t unit) and 

chi 3lJ cell from the six photoperiod treatments which encompass a 

three fold variation in to tal light intensity/day. The regression
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coefficient, r , of the cyclostat data was only 0.495. The lack of 

the self-shading effect might be attributed to the fact that though 

chi a/ce ll does vary among the cyclostat populations, the maximum 

value was one-third the maximum value of the batch cultures. Taguchi 

(19 76a) limited the self-shading hypothesis to cells packed with 

chlorophyll.

Batch cultures at various stages of the growth cycle (Figure 

5, log and stationary) exhibited different alpha values. Senger and 

Bishop (1967) using batch cultures of Scenedesmus report different 

values of quantum yield of photosynthesis as a function of the 

physiological age of the algae. However, the present data set from 

cyclostat cultures does not support the hypothesis that variation in 

alpha can account for variation in Pmax over a light/dark cycle. Had 

this been the case then alpha would have varied non—randomly over the 

day and I randomly.

Senft (19 78) found that Anabaena c f. wisconsinense and 

Chlorella pyrenoidosa exhibited increasing rates of light saturated 

photosynthesis with an increasing nutrient cell quota. Batch cultures 

in this study indicated that nitrogen/cell changed from one day to
i

the next throughout the growth curve (Figure 2) with a maximum value 

occurring just before log phase growth. These results are similar to 

Daley and Brown's (1973) for Anacystis nldulans and Phormldium molle 

in batch cultures. The high batch culture Pmax values observed early 

in log phase of growth vs. la te r (0.80 vs. 0.20 pico-gram C/cell/hr, 

Figure 6) agrees with Senft's hypothesis that the nutrient quota of 

a cell controls the light saturated photosynthetic rate. The cyclostat
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population exhibited a somewhat lower cell quota than the batch culture 

in lag phase (0.0185 vs. 0*02 pico-gram atom-N/cell, respectively) 

and a concomitant lower Pmax (0.032-0.18, cyclostat populations vs.

0.20 pico-gram C/cell/hr, batch cultures). These results indicate 

that carbon production/cell/hr and the nutrient quota of the algal 

cell are in tricately  related.

Highest chlorophyll content per cell of the batch culture 

populations was measured during the log phase of its  growth cycle and 

exceeded chi a]c e l l  values calculated for the cyclostat cultures by a 

factor of three; light environments were identical. However, the 

chi a j cell in the stationary phase of the batch cultures and the 

cyclostat populations was similar. These results can most likely be 

explained by the fact that the batch cultures in log phase were not 

limited by nutrients while the cyclostat and stationary phase popu­

lations were. Eppley and Sloan (1966) and Eppley and Renger (1 9 7 4 ) 

observed decreasing chi a]c e ll  with increasing nutrient deficiency 

and the present data clearly supports this.

In cyclostat populations an inverse relationship exists 

between chi a /ce ll and the length! of the photoperiod (Figure 11) .
i

Hobson et al. (1979) reported similar results using batch cultures of 

Isochrysis galbana Parke exposed to six, twelve and eighteen hours of 

light. Valanne (1977) using moss found an analogous relationship 

between chlorophyll content and photoperiod. The present dats is in 

agreement with Hobson et al. (19 79) and Valanne (1977) that plants 

(algae) adapt to shorter photoperiods by an increase in the chlorophyll 

content of the c e ll(s ) .
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Carbon/chi a. ranged from 222 in cyclostat populations with 

an 8L/16D photoperiod to 342 in 24L/0D (Table IV) compared to Ch/chl sl 

value of 91 for other algal populations under steady state conditions 

and similar dilution rates (Eppley and Renger, 1974). Laws and Wong 

report C/chi a. values of 311 for Thalassiosira alleni grown at growth 

rates similar to those utilized in this study. Eppley (1972) reports 

a typical C/chl _a value of 30-40 for a Peru upwelling region while 

90-100 is more typical of the low-nutrient surface waters off southern 

California. Thus, present results are compatible with the suggestion 

that the cells have been stressed by a low nutrient environment.

I t  has been suggested that the photosynthetic assimilation 

number of natural phytoplankton communities is a function of the degree 

of nutrient deficiency (Curl and Small, 19 65). They found assimilation 

ratios in nutrient depleted waters of 0-3, borderline cases of 3—5 

and nutrient rich areas with ratios of 5-10. In this study the batch 

cultures in log phase (nutrient sufficient) exhibited assimilation 

ratios of 12-18. Algae in near stationary phase or cyclostat populations 

(previously shown to be nutrient limited) were found to have ratios of 

4-9 and 4-8, respectively. Although the ratios do not agree exactly
i

with Curl and Small (1965) they do show a decrease with increased 

nutrient deficiency.

Carbon/nitrogen ratios were calculated for the cyclostat 

algal populations. Meyers (1951) reported a constant C/N value of 5.7 

for Chlorella pyrenoidosa grown under conditions limited only by light. 

Nitrogen depleted cells typically show a much higher ratio (Eppley 

and Thomas, 1969; Eppley, Rogers and McCarthy, 1969; and Prochazkova,
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Blazka and Kralova, 19 70). Ratios from the cyclostat populations, which 

varied between 16 and 10, are similar to the value of 14.14 reported 

for Thallassiosira pseudonanna under similar growth conditions (Eppley 

and Renger, 19 74). Caperon and Ziemann (1976) have shown that increasing 

nutrient deficiency was paralleled by increasing C/N values. The 

decrease in C/N with the length of the photoperiod (Table IV) could 

then be interpreted to mean that the population in continuous light 

was the least nutrient deficient. However, nitrogen content of the 

cells did not change (cell number and n itrate  concentration within 

the reservoir remained constant) regardless of the light period. 

Therefore, the carbon content must have decreased with increasing 

length of the photoperiod. More w ill be said with respect to the C/N 

value in what follows.

Total carbon fixed/cell/day decreased linearly with increasing 

photoperiods (Figure 10). Hobson et al. (1979) using batch cultures 

reported higher daily net photosynthetic rates for populations entrained 

in 12L/12D compared to 6L/18D and 18L/6D photoperiods. The exact 

relationship was a function of temperature. Eppley and Coatsworth 

(1968) and Ferguson et a l. (19 76) ireport longer daylengths increased
i

growth. Other studies suggest that short day lengths C8L/16D) or 

intermediate day lengths are more conducive to growth than long 

daylengths or continuous light (Castenholz, 1964; Hodson, 19 74; and 

Foy, Gibson and Smith, 1976). The primary difference between the 

studies cited and the present work is  that the la tte r  used steady 

state populations of nutrient deficient algae. There is an alternate 

interpretations of the decreasing to tal carbon fixed/cell/day with 

increasing photoperiods.



TABLE IV

Cyclostat Cell Population Values

Photoperiod pgC/cell/day pgC/pgV C/ chi Assimile

8 1.160 15.6 222 8

10 1.118 14.9 229 6.6

12 1.062 14.2 236 5.7

14 1.013 13.5 246 5.1

16 .964 12.8 257 4.6

24 .768 10.4 342 4.1

44



I t  is hypothesized that i f  the present data set is corrected 

for respiration in the dark period that to tal net photosynthesis/cell/ 

day would remain constant regardless of the to tal light energy/day as 

long as the light energy was neither limiting or inhibiting for a 

given dilution rate. The 8L/16D cyclostat population, relative to 

the other photoperiods, would have to respire in the dark period the 

largest percentage of its  carbon fixed during the light period, i .e . 

up to 33%. This is not an unrealistic value as Laws and Wong (1978) 

report dark respiration (at comparable dilution rates) varied from 

19-30% of the carbon fixed during the light periods of their cyclostat 

cultures. If  the respiration corrections are made on the present data 

set the C/N value for a ll  the photoperiods would be equal to 10.4. 

Goldman, McCarthy and Peavey (19 79) point out that there is  a direct 

relationship between the nutrient influenced growth rate and the 

elemental composition of oceanic phytoplankton. Their work would not 

have predicted a change in C/N as a function of photoperiod i f  the 

growth rate remained constant. Giddings (19 77) reported that nitrogen 

limited chemostat cultures of Scenedesmus abundans did not change with 

respect to C/N values when the light intensity was increased (24L/0D).
I

The nutrient limited cyclostat cultures in this study are 

believed to have adapted to increasing levels of light energy/day 

by decreasing daily carbon uptake/cell, cell respiration, and chi a/cell. 

The result is that a constant C/N value is maintained within the 

cells for a particular dilution rate.
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APPENDIX I

Media Preparation for Cyclostat Cultures

A rtific ial seawater media was prepared in 24 l i te r  batches 

at a salin ity  of 15 o/oo. After the f/2 enrichment (except for 

n itrate) n itra te  was added via a 700 mM n itra te  spike to give a 

final concentration of 185 ]iM. Eight l i te r  aliquots were then placed 

into 21 l i te r  supply bottles which were corked with cotton plugs 

and autoclaved. Media prepared in this manner could be stored for 

months without any observable bacterial contamination or change in 

nutrient concentration. A number 12 cork containing two glass tubes 

was placed in the top of the supply bottles. One tube containing 

cotton wool served as an a ir supply for the bottle. The other tube 

extended to the bottom of the bottle with the other end connected 

to silicon tubing (Silicone medical tubing, A. H. Thomas) which 

attached to a p e ris ta ltic  pump. The cork and associated tubing were 

autoclaved and fitted  into the supply bottle under an aseptic laboratory 

hood equipped with a UV light. The tubing was connected to a glass 

tube that then joined to the pump tubing. At the outflow of the pump 

tubing another bent glass tube ran to a 25 ml volumetric pipette 

that ran into the cyclostat where i t  was held in place by a number 

12 stopper. The pipette served as a break line to prevent any bacteria 

or algae from contaminating the nutrient media.
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APPENDIX I I

Theory of the Chemostat

A continuous culture (chemostat) of algae u tilizes a 

culture chamber supplied with a nutrient medium at a constant rate 

(via a p eris ta ltic  pump) which displaces a fixed portion of the 

culture by way of an overflow. A c ritica l nutrient in the culture 

medium such as nitrogen is supplied at a rate which is limiting 

relative to other nutrients. Steady state is defined by a zero change 

in cell concentration (X) over time. The rate of change of X w ill 

equal the net rate of change due to population growth (UX) minus 

the less of cells due to overflow (DX):

dX/dt = (U-D)X (1)

i

I t  follows then that i f  dX/dt equals zero at steady state U must be 

equal to D.

Another requirement of steady state is that the standing 

stock of the chemostat is controlled by the limiting nutrient con­

centration of the inflow. In steady state the change in limiting 

nutrient in the growth chamber during an infinitesimal time interval 

is equal to the input minus output minus consumption or:

ds/dt = Ds± - Dsq - UX/Y (2)
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where ds, change in limiting nutrient concentration; D, dilution rate; 

s^, limiting nutrient concentration of input; sq, limiting nutrient 

concentration of output; X, steady state cell concentration; Y, yield 

coefficient or cell concentration divided by the limiting nutrient 

u tilized. At steady state D=U, ds/dt = 0 and Y is a constant for a 

particular growth rate. Therefore equation 2 becomes:

0 = U(s±-s ) -  UX/Y (3)

X/Y = s ±- s Q (4)

I t  should be noted that the cell quota Cq, limiting nutrient per 

cell where q=l/Y) can be determined from equation 4 by rearrangement:

q = Csi -so)/X C5)

Therefore a t a fixed steady state growth rate a linear relationship 

exists between X (x axis) and S£-sq (y axis) with the y intercept 

equal to zero and the slope of the line equal to q.

In the present study the continuous culture technique was 

utilized but the cell population was exposed to alternating light 

and dark periods. Chisholm and Nebb (1975) call such an apparatus 

a cyclostat. Chisholm and Nebb (1975) note that if  a population of 

cells is synchronized cell division takes place at one point in time 

and equation 1 (this study) becomes;

— = -DX. if  t<t-, (6)dt t - 1
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i f  cell division is completed and after integration:

Xt = Xt e_Dt (7)
o

At t^ a ll  the cells ready to divide do so and the proportion dividing:

Ue = ]X(tl+At) - Xt l ]/Xt i  where At-H>

where Ue is the relative growth rate. 

From equation 7

combined with equation 8 yields

v  _  v  e ” D t : i
X( t1+At ) Xtc

e“Dtl

In rhythmic steady state:

and i t  follows that

Ue = eDti - 1

(S)

xt = X e Dtl (9 )
1 o

Ue = ----------------------------------  where At-K) (10)

X,

X, = X where At->0 (11)
(il+At) tQ
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If t-̂  equals one day the proportion of cells dividing in a perfectly 

phased population over a 24 hour period is expressed as

Ue = eD - 1

A dilution rate of .288 day- '*' was used in the present study 

which is equal to a Ue of .33 day""-*-. The low dilution rate utilized 

requires that a distinction be made between 28.8% of the population 

dividing per day (cell division randomly distributed) and 33.3% 

(perfect phasing) with a 33.3% increase in cell concentration at time 

t followed by a decay every 24 hours. I t  would be d ifficu lt to con­

clude whether or not complete phasing was exhibited by the cells in 

the present study at such a low dilution rate utilized since the 

difference between maximum and minimum cell concentration over a 

24 hour period would be so low. Chisholm and Nebbs (1975) note that 

if  partia l phasing is induced in the population U is less than Ue 

and the difference between maximum and minimum cell concentrations 

would be even smaller.



APPENDIX III 

Light vs. Uptake Curves

Carbon uptake increases in a linear fashion with increased 

light intensity, up to some asymptotic value, Pmax, where light 

becomes saturating. The linear portion of the light curve is a 

reflection of the photochemical reaction of the chlorophyll molecules 

(Parsons and Takahashi, 1973). The in i t ia l  slope of the curve is called 

alpha expressed as mgC/mg Chi ji/hr/light unit (Platt and Jassby,

L976). When Pmax is reached this is indicative that the dark reactions 

of photosynthesis can no longer accept a ll  of the CO2  available even 

though the photochemical reactions may be providing sufficient energy 

compounds such as ATP and NADH. A change in the level of light 

saturated photosynthesis indicates a change in the concentration of 

the enzymes associated with the dark reactions of photosynthesis 

(Morris and Glover, 1974). The light intensity at which alpha in ter­

sects a line parallel to the x axis at a y value equal to Pmax is the 

1̂ . value f i r s t  described by Tailing (1958) and is indicative of the 

type of light environment to which the algal population is adapted.
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