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Nuclear correlation functions in lattice QCD
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We consider the problem of calculating the large number of Wick contractions necessary to compute

states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach

and a determinant-based approach and show that these methods allow the required contractions to be

performed in a computationally manageable amount of time for certain choices of interpolating operators.

Examples of correlation functions computed using these techniques are shown for the quantum numbers

of the light nuclei, 4He, 8Be, 12C, 16O, and 28Si.

DOI: 10.1103/PhysRevD.87.114512 PACS numbers: 21.60.De, 02.60.Cb, 02.70.Tt, 11.15.Ha

I. INTRODUCTION

The ab initio approach to nuclear physics from the
underlying theory of the strong interactions, QCD, is ham-
pered by the many-body nature of the nuclear problem. In
principle, QCD and the electroweak interactions give rise
to all the rich and complex phenomena of nuclear physics,
yet it is only recently that the first QCD studies of multi-
baryon systems have appeared [1–8]. The reason for this is
twofold. First, the Monte-Carlo evaluation of correlation
functions of multibaryon systems converges slowly, requir-
ing a large number of measurements before the necessary
precision is reached (this issue will not be addressed here).
Second, systems with the quantum numbers of many nu-
cleons and hyperons are complex many-body systems with
complicated spectra, and there is a multitude of physically
relevant states that can be studied in QCD. Even for a given
set of quantum numbers, additional complexity appears at
the quark level; the number of Wick contractions required
to construct systems for large atomic number grows facto-
rially, scaling as nu!nd!ns! where nu;d;s are the numbers of

up, down, and strange quarks required to construct the
quantum numbers of the state in question. In many situ-
ations, this is a naive counting as there are many cancella-
tions and contributions that are identical. However, the
a priori identification of these simplifications is a non-
trivial task. In addition to the problem of Wick contrac-
tions, the number of terms in the interpolating fields of
multinucleon systems also typically grows exponentially
with the size of the system. This potentially more serious
problem is similar in nature to the problem of the expo-
nential growth of nuclear wave functions faced in nuclear
structure calculations where phenomenological potential
models describing the low-energy nucleon-nucleon inter-
actions are used.

In this paper, we present a systematic method for the
construction of nuclear interpolating fields for multibaryon
systems in lattice QCD. We demonstrate that the
Grassmannian nature of the quark fields can be used to

our advantage, in some cases resulting in particularly
simple nuclear interpolating fields. In addition, we present
two approaches that ameliorate the cost of contractions, the
most efficient of which scales only polynomially in the
number of quarks involved in the contraction. Using these
methods we compute lattice QCD correlation functions
with the quantum numbers of the light nuclei, 4He, 8Be,
12C, 16O, and 28Si, demonstrating that correlation functions
relevant to the study of nuclei in QCD can be constructed.
A similar, but less general and less efficient, approach has
been developed in Ref. [9].

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we
first need to construct quark-level nuclear interpolating
fields. This is, in principle, straightforward and, in practice,
it resembles the construction of quark model wave func-
tions for baryons [10]. A general quark-level nuclear in-
terpolating field with atomic number A containing
nq ¼ 3A quarks (higher Fock space components can be

treated but are not considered here) has the form

�N h ¼ X
a

w
a1;a2...anq
h �qða1Þ �qða2Þ . . . �qðanqÞ; (1)

where the �qai are the quark fields, the ai are generic indices

which combine the color, spinor, flavor, and space-time
indices of the quark, and a is a compound index represent-
ing the nq-plet a1; a2 . . . anq . Given that calculations are

performed on a discrete lattice, the spatial degrees of free-
dom are finite and countable, and as a result we can use an
integer index to describe them. Here the quark fields are all
at the same time t. The index h on the nuclear interpolating
field is a set of quantum numbers that identify the nuclear
state, including its momentum, angular momentum, iso-
spin, and strangeness. The Grassmannian nature of the

quark field dictates that the tensor w
a1;a2...anq
h is totally

antisymmetric under the exchange of any two indices. If
the indices ai can have a total of N possible values, then,
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ignoring the detailed flavor structure, the total number of
nonvanishing terms in the above sum is

N!

ðN � nqÞ! : (2)

However, many of these terms correspond to permutations
of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N!

nq!ðN � nqÞ! : (3)

For a generic spatial structure of the interpolating field, N
corresponds to the total number of quark degrees of free-
dom on a time slice (N ¼ 12L3, where L is the spatial
dimension of the lattice), and one may be discouraged by
the feasibility of the task of building quark-level nuclear
interpolating fields. However, a number of simplifying
factors are omitted in the above discussion. As we consider
interpolating fields with definite transformation properties
under the symmetries of QCD, large numbers of terms in
the nuclear interpolating field vanish. The first major re-
duction comes from the fact that only color singlets need to
be considered. In addition, considering only interpolating
fields of definite parity, angular momentum,1 isospin, and

strangeness forces several elements of the tensor w
a1;a2...anq
h

to vanish. Finally, the most drastic reduction of the nonzero
tensor elements can be achieved using simple spatial wave
functions. At this time, having recognized that only a small
fraction of the terms in the sum of Eq. (1) are nonzero, as

well as the fact that the tensor w
a1;a2...anq
h is totally antisym-

metric, we can introduce the reduced weights ~w
ða1;a2...anq Þ;k
h

which are the minimal set of nonzero numbers required to
completely describe the interpolating field. The nq-plet

ða1; a2 . . . anqÞ is an ordered list of indices that represents

a class of terms in Eq. (1) that are all permutations of each
other. The index k on the reduced weights enumerates the

number of classes that the tensor w
a1;a2...anq
h decomposes

into.With these reduced weights, Eq. (1) can be rewritten as

�N h ¼ XNw

k¼1

~w
ða1;a2...anq Þ;k
h

X
i

�i1;i2;...;inq �qðai1Þ �qðai2Þ . . . �qðainq Þ;

(4)

where Nw is the total number of reduced weights, i repre-

sents the nq-plet ði1; i2 . . . inqÞ, and �i1;i2;...;inq is a totally

antisymmetric tensor of rank nq with

�1;2;3;4;...;nq ¼ 1:

The above expression is the simplest form of the quark-
level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single-point

spatial wave function, the numbers of terms contained in
the simplest interpolating fields for the proton, deuteron,
3He, and 4He are Nw ¼ 9, 21, 9, and 1, respectively.

A. Hadronic interpolating fields

Having now written down a general nuclear interpolat-
ing field with quantum numbers h, we need to calculate the

reduced weights ~w
ða1;a2...anq Þ;k
h in an efficient manner. In

principle, this can be achieved directly from quark fields
by imposing the desired transformation properties.
However, in certain cases, it is advantageous to proceed
by first constructing hadronic interpolating fields from
which the quark interpolating fields are derived.
The hadronic interpolating fields assume a form analo-

gous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions; hence the
general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a
nucleus of atomic number A is

�N h ¼ XMw

k¼1

~Wðb1;b2...bAÞ
h

X
i

�i1;i2;...;iA �Bðbi1Þ �Bðbi2Þ . . . �BðbiAÞ;

(5)

where Mw is the number of hadronic reduced weights
~Wðb1;b2...bAÞ
h , BðbiÞ are baryon interpolating fields, and the

bi are generic indices that include parity, angular momen-
tum, isospin, strangeness, and spatial indices. Unlike the
quark fields which are fundamental degrees of freedom, the
baryon interpolating fields are composite objects; hence
there is a large number of such interpolating fields for a
given set of quantum numbers. For simplicity, as well as
efficiency of the resulting nuclear interpolating fields, we
will use a single interpolating field per baryon, selected so
that it has good overlap with the single-baryon ground
state, as well as being comprised of a small number of
quark-level terms. The utility of the above form of the
nuclear interpolating fields is twofold. First, it allows us
to derive the reduced weights we need for Eq. (4). Second,
interpolating fields that are derived starting from Eq. (5)
may have better overlap with the nuclear ground states as it
is well-known that hadronic degrees of freedom provide a
successful description of much of nuclear physics.

The calculation of the reduced weights, ~Wðb1;b2...bAÞ
h , in the

hadronic interpolating field is straightforward. It amounts to
combining individual hadrons of given quantum numbers to
build a multihadron state of definite parity, angular momen-
tum, isospin, and strangeness. This construction can be
readily automated and can be performed recursively using
the known Clebsch-Gordan coefficients of SU(2) for both
the spin and isospin [or SU(3) flavor if so desired].2

1For simplicity, we refer to the irreducible representation of
the lattice symmetry group as angular momentum.

2The reader is referred to Ref. [10] for a similar construction of
baryon-level wave functions from quarks.

WILLIAM DETMOLD AND KOSTAS ORGINOS PHYSICAL REVIEW D 87, 114512 (2013)

114512-2



In principle, one can use all the octet and decuplet baryons
in Eq. (5); however, for most practical purposes, restricting
to the positive parity octet baryons is sufficient. For
example, for A ¼ 2, I ¼ J ¼ 0, S ¼ �2, if we restrict
the spatial wave function to a single point, there are three
simple hadronic interpolating fields,

�"�#; (6)

1ffiffiffi
3

p ½�þ"��# ��0"�0# þ��"�þ#�; (7)

and

1

2
½�0"n# ���"p# ��0#n" þ��#p"�; (8)

where B" and B# represent the spin up and down polar-
izations of the baryon, B, respectively. In this example,
the reduced weights can be directly read off from these
equations. If we consider the case of two spatial loca-
tions, x1 and x2, or two momenta, p1 and p2, these
simply generalize to the appropriately totally antisym-
metric hadronic wave functions. For example, Eq. (6)

becomes �"
1�

#
2 þ�"

2�
#
1 where we make the spatial

location or momentum explicit through the subscript.
For further discussions of multiple-source correlation
functions in the case of many-meson systems, the reader
is referred to Refs. [11–13].

We have written a C++ symbolic manipulation pro-
gram that generates the hadronic reduced weights using
the above approach. In Ref. [8], we have used this to
produce a complete basis of orthonormal interpolating
fields with spatial wave functions restricted to a single
point for all nuclei up to A ¼ 4 and have also con-
structed a selection of states for A > 4. Generically for
larger A, more complicated spatial wave functions are
required because of the Pauli exclusion principle, result-
ing in an exponential growth of the number of possible
interpolating fields as A increases (this reflects the prob-
lem faced in nuclear structure calculations as A becomes
large). In certain cases, the Grassmannian nature of the
quark fields is also advantageous, drastically reducing
the number of nonzero reduced weights. Making use of
this feature, we have been able to find particularly
simple wave functions for systems as large as A ¼ 28.
In contrast to Ref. [9], the recursive construction of
interpolating fields does not require supercomputing
resources and is done on a laptop.

B. Quark interpolating fields

The reduced weights of the quark interpolating fields of
Eq. (4) can be calculated by equating the two forms of the
nuclear interpolating fields,

�N h ¼ XMw

k¼1

~Wðb1;b2...bAÞ
h

X
i

�i1;i2;...;iA �Bðbi1Þ �Bðbi2Þ . . . �BðbiAÞ

¼ XNw

k¼1

~w
ða1;a2...anq Þ;k
h

X
i

�i1;i2;...;inq �qðai1Þ �qðai2Þ . . . �qðainq Þ;

(9)

and replacing the baryon objects by their quark interpolat-
ing fields. A single-baryon interpolating field is written in
terms of quark fields as

�BðbÞ ¼ XNBðbÞ

k¼1

~w
ða1;a2;a3Þ;k
b

X
i

�i1;i2;i3 �qðai1Þ �qðai2Þ �qðai3Þ; (10)

where NBðbÞ is the number of terms in the single-baryon

BðbÞ interpolating field. For single-baryon interpolating

fields, the weights, ~w
ða1;a2;a3Þ;k
b , have been presented in

Ref. [14] (the color factors necessary for our formulation
are not included in Ref. [14] but can be trivially added).

The process of deriving the reduced weights ~w
ða1;a2...anq Þ;k
h

from Eq. (9) can be automated, and we perform it within
our symbolic manipulation program which was written
in C++. An interesting feature that arises from the

calculation of the reduced weights ~w
ða1;a2...anq Þ;k
h is that

if we restrict ourselves to simple spatial wave functions
making use of only few spatial points, then the expected
exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of
the spatial wave functions used can control this problem,
in principle, for arbitrarily large nuclei. However, re-
striction to a small number of quark degrees of freedom
also makes it impossible to construct certain states (an
example is presented in Ref. [8] where the two-baryon
symmetric flavor octet was found to be inaccessible).
After construction of our interpolating fields used
here and in Ref. [8], an independent testing program
was used to confirm that indeed the interpolating fields
produced by our symbolic manipulation program have
the desired transformation properties under flavor and
rotation groups and are color singlets. All calculations of
the reduced weights as well as the subsequent tests
performed on the resulting interpolating fields were per-
formed on a laptop computer and required an insignifi-
cant amount of computational resources.

III. TECHNIQUES FOR MULTIBARYON
CONTRACTIONS

In this section, we consider how the interpolating
fields constructed in the previous section can be used
to generate the correlation functions of multibaryon
systems. A general multihadron two-point function is
given by

NUCLEAR CORRELATION FUNCTIONS IN LATTICE QCD PHYSICAL REVIEW D 87, 114512 (2013)
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hN h
1ðtÞ �N h

2ð0Þi
¼ 1

Z

Z
DUDqD �qN h

1ðtÞ �N h
2ð0Þe�SQCD ; (11)

where SQCD and Z are the QCD action and partition

function, respectively, and DU and DqD �q are the
gluon and quark field integration measures, respectively.
We have also introduced explicit dependence of the
interpolating fields on the Euclidean time separation, t,
and consider a two-point function with different creation
and annihilation interpolating fields with commensurate
quantum numbers. For a given choice of the interpolat-
ing fields, it is straightforward to perform the Grassmann
integral over the quark fields and rewrite the correlation
function in terms of the quark propagators. However, for
an efficient calculation of the two-point function, we
need to be mindful of the structure of the interpolating
fields.

One successful class of interpolating fields for two or
more hadron systems is one in which a plane wave basis at
the level of the hadronic interpolating fields is used. This
amounts to projecting the individual hadrons comprising
the multibody system to definite momentum states, while
preserving the spatial transformation properties of the
overall multihadron system [1,15–21]. In this case, the
complexity of the spatial wave function is such that

the number of terms contributing to Eq. (4) is rather
large, and hadronic interpolating fields have to be used in
order to build the desired two-point function efficiently.
Constructing these types of interpolating fields both at the
source and the sink becomes computationally expensive
because a large number of quark propagators that are
required. Nevertheless, this method has been employed
for meson-meson and multimeson spectroscopy
[11,12,21,22]. For the case of multimeson systems, special
contraction methods were required [11–13]. For multi-
baryon systems, the problem is more complex and will be
the subject of further investigations. A further approach is to
consider correlation functions in which the quark creation
interpolating fields (source) have simple spatial wave func-
tions with few degrees of freedom (for example, restricted to
a few spatial locations), while using a plane wave basis for
the hadronic interpolating fields at the sink. Finally, as we
shall discuss below, sufficiently simple nuclear interpolating
fields exist, where the number of terms contributing in
Eq. (4) is small and factorization into hadrons is not
computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 ¼
ðx0; 0Þ, can be used to construct baryon building blocks3

with quantum numbers b and momentum p as

B a1;a2;a3
b ðp; t; x0Þ ¼

X
x

eip�x
XNBðbÞ

k¼1

~w
ðc1;c2;c3Þ;k
b

X
i

�i1;i2;i3Sðci1 ; x;a1; x0ÞSðci2 ; x;a2; x0ÞSðci3 ; x; a3; x0Þ; (12)

where Sðc;x; t; a; x0; 0Þ is the quark propagator from x0 to x ¼ ðx; tÞ and ci, ai are the remaining combined spin-color-
flavor indices. In this notation, the sink indices are kept to the left of the source indices, and the spatial indices are displayed
explicitly as they play an essential role in the construction of the block. This baryon block corresponds to the propagation
of an arbitrary three-quark state from the source to the sink where it is annihilated by the prescribed baryon interpolating
field. As discussed above, we have chosen to momentum project these blocks at the sink to a given momentum p to allow
control of the total momentum of multihadron systems, although this is not necessary, and other forms of blocks can be
envisaged.

We can generalize these blocks to allow the quark propagators to originate from different source locations, xð1Þ0 ; xð2Þ0 ; . . . ,
as necessary, using

B a1;a2;a3
b ðp; t; s1; s2; s3Þ ¼

X
x

eip�x
XNBðbÞ

k¼1

~w
ðc1;c2;c3Þ;k
b

X
i

�i1;i2;i3Sðci1 ;x; a1; xðs1Þ0 ÞSðci2 ;x;a2; xðs2Þ0 ÞSðci3 ;x; a3; xðs3Þ0 Þ; (13)

where the xðkÞ0 label the source locations. These blocks can
be further generalized to allow for a nontrivial single-
hadron spatial wave function at the sink, but we will not
consider this case further. It may also be advantageous to

consider more complicated multihadron blocks similar to
those implemented in Ref. [2], although the storage re-
quirements grow rapidly with number of baryons in the
block.

B. Quark-hadron contractions

Using the building blocks described above, we
can consider correlation functions in which quark-
level interpolating fields are used at the source and
their hadronic counterparts are used at the sink.

3Hadronic building blocks for two-point function calcula-
tions have been used in many spectroscopy calculations in
the past such as in Ref. [23], and implementations of such
ideas can be found in the public domain software package
chroma [24].
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The contractions are performed by iterating over all
combinations of source and sink interpolating field
terms and connecting the source and sink with the
appropriate sets of quark propagators. For a given pair
of source and sink interpolating field terms, this
amounts to selecting the components dictated by the
source quark interpolating field from the product of
blocks dictated by the hadronic sink interpolating
field. The Wick contractions are implemented by per-
forming this selection in all possible ways. This pro-
ceeds by taking the first hadron in the hadronic wave
function at the sink, replacing it by the appropriate
hadron block, and selecting the three free indices in
all possible ways from the pool of indices dictated by
the source quark interpolating field, keeping track of
the appropriate permutation sign. Following this, the
second baryon component in the hadronic (sink) in-
terpolating field term is replaced with the appropriate
block, and the free indices are contracted with the
remaining free indices in the source quark interpolat-
ing field term in all possible ways. These first steps
are illustrated in Fig. 1, and the procedure continues
until all hadrons in the sink interpolating field term
have been contracted, necessarily using all available
quark indices at the source. The result is then multi-
plied by the weights of the source and sink terms
under consideration and added to the correlation func-
tion (we note that the idea of using a reduced list of
weights was developed independently in Ref. [9],
where they are referred to as unified contraction lists).
The contraction is complete after all combinations of
source and sink interpolating field terms have been
considered. The process described here is independent
of the source and sink interpolating fields and can be
applied to any correlation function. Further reductions
of the total cost of the algorithm may be possible by
studying the symmetry properties of a particular pair
of source-sink interpolating fields. However, such re-
ductions are not generic; hence, we do not consider
them further. The procedure described has been used
to perform the contractions needed for the large class
of interpolating fields considered in the study of the
spectrum of hypernuclei up to A ¼ 5 in Refs. [8,25].

For large numbers of baryons (A > 8 for protons and
neutrons alone), it is necessary to use multiple source
locations because of the Pauli exclusion principle. In this
case, the generalized blocks in Eq. (13) can be used with
the algorithm presented above.

C. Scaling

From the above description, it is clear that this algorithm
will in general scale as

Mw � Nw � ð3AÞ!ð3!ÞA ; (14)

where A is the atomic number and Mw and Nw are the
numbers of terms in the sink and source interpolating
fields, respectively. In addition, the fact that the hadron
blocks are completely antisymmetric under all quark
exchanges has been taken into account. If we also take
into account that the strong interactions are flavor blind
and consider only octet baryon building blocks, this
reduces to

Mw � Nw

nu!nd!ns!

2A�n
�0

�n�
; (15)

where n�0 and n� are the numbers of �0 and �
baryons in the hadronic interpolating field and the
factor in the denominator arises because all octet bary-
ons have two quarks of the same flavor except from the
�0 and �. This algorithm can be efficiently imple-
mented and is computationally feasible for small sys-
tems, A & 10. As an example of this method, a 4He
two-point correlation function can be computed in
�0:8 sec per time slice on a single core of an
Opteron 285 processor.

IV. MULTIBARYON CONTRACTIONS WITH
DETERMINANTS

For larger atomic number, A * 10, alternative methods
are required to perform the contractions in a computation-
ally expedient manner. It is straightforward to see how this
can be done by examining the two-point functions above
and making use of Wick’s theorem [26]. The numerator of
Eq. (11) before the integration over the gauge fields is
performed is given by

(b)(a)

FIG. 1 (color online). Illustration of steps one and two of the
quark–hadron contraction method. The small circles in the left-
hand sides of the figures correspond to the quarks in the source
interpolating field while the large squares and lines extending
from them correspond to the hadronic blocks. The separate sets
of small dots correspond to different quark flavors.
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½N h
1ðtÞ �N h

2ð0Þ�U ¼
Z

DqD �qe�SQCD½U� XN0
w

k0¼1

XNw

k¼1

~w
0ða01;a02...a0nq Þ;k0
h ~w

ða1;a2...anq Þ;k
h

X
j

X
i

�j1;j2;...;jnq �i1;i2;...;inq qða0jnq Þ . . . qða0j2Þqða0j1Þ

� �qðai1Þ �qðai2Þ . . . �qðainq Þ; (16)

where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively, and are
composite color, spinor, flavor, and spatial indices and ½. . .�U indicates the value of the enclosed expression on a fixed
gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of the q �q pairs
by elements of the quark propagator,

½N h
1ðtÞ �N h

2ð0Þ�U¼e�Seff ½U� XN0
w

k0¼1

XNw

k¼1

~w
0ða0

1
;a0

2
...a0nq Þ;k0

h ~w
ða1;a2...anq Þ;k
h �X

j

X
i

�j1;j2;...;jnq �i1;i2;...;inq Sða0j1 ;ai1ÞSða0j2 ;ai2Þ . . .Sða0jnq ;ainq Þ;

(17)

where Seff½U� denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the Dirac
matrix. The above expression ofWick’s theorem, illustrated in Fig. 2, can be written in terms of the determinant of a matrix
G, whose matrix elements are given by

Gða0;aÞj;i ¼
8<
:
Sða0j; aiÞ for a0j 2 a0 and ai 2 a

�a0j;ai otherwise
; (18)

where, as before, a0 ¼ ða01; a02 . . . a0nqÞ and a ¼ ða1; a2 . . . anqÞ. Note also that the nontrivial block of the matrix Gða0; aÞ is
of size nq � nq; hence, for computing its determinant, we only need to consider this block. For this reason, in the following
discussion, the matrix Gða0;aÞ denotes only this small nontrivial block.

Making use of this definition, the full nuclear correlation function can be written as

hN h
1ðtÞ �N h

2ð0Þi ¼
1

Z

Z
DUe�Seff

XN0
w

k0¼1

XNw

k¼1

~w
0ða01;a02...a0nq Þ;k0
h ~w

ða1;a2...anq Þ;k
h � detGða0; aÞ: (19)

The determinant of a matrix of size nq can be evaluated
in n3q operations (for example via LU decomposition)
instead of the naive nq! operations,4 so making use of
this representation of the nuclear correlation function is
numerically advantageous. Furthermore, because of the
flavor blindness of the strong interaction, the matrix
Gða0; aÞ is block diagonal; as a result, the determinant
calculation breaks into a product of smaller determi-
nants, one for each flavor.

Given the reduced weights determined above and the
appropriate quark propagators, the implementation of
Eq. (19) is very fast, scaling polynomially with the number
of terms in the source and sink quark-level interpolating
fields as well as the number of quarks per flavor. The total
cost of this form of contractions scales as

n3un
3
dn

3
s � N0

wNw; (20)

where N0
w Nw are the number of terms in the sink and

source quark interpolating fields, respectively. As a result,
if we can construct interpolating fields with a sufficiently
small number of terms, correlation functions with a very

FIG. 2 (color online). Illustration of the quark determinant
level contraction with each of the three sub-blocks listing the
up, down, and strange quarks of the wave function term, re-
spectively. Within each flavor of quark, all possible contractions
are performed by forming a determinant of the matrix of quark
propagators as described in the text.

4The expectation of polynomial scaling of contractions was
noted by D. B. Kaplan in Ref. [27]. However, the scaling of Nw
and N0

w with the atomic number A is generically exponential.
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large atomic number A can be constructed. It should be

noted that for generic interpolating operators, N0
w and Nw

can grow exponentially with the size of the system, but

specific examples can be found where this is not the case.

V. NUCLEAR CORRELATION FUNCTIONS

We have performed preliminary studies to investigate
the numerical efficiency of these methods. Results for
the quark-hadron approach have been presented in
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FIG. 3 (color online). Correlation functions for nuclear systems, 4He, 8Be, 12C, 16O, and 28Si. In each row, correlators based on both
smeared-point and smeared-smeared quark propagators are shown.
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Ref. [8], and here we focus on the determinant-based
approach. Calculations are performed on an ensemble of
gauge configurations generated with a tadpole-improved
Lüscher-Weisz gauge action and a clover fermion action
with tadpole-improved tree-level clover coefficient. The
gauge links entering the fermion action are stout
smeared, with � ¼ 0:125. Three flavors of quarks with
masses corresponding to the physical strange quark mass
were used. The lattice spacing, a� 0:145 fm, and the
dimensions of the lattice are L3 � T ¼ 323 � 48, corre-
sponding to a physical volume of ð4:6 fmÞ3 � 7:0 fm
(further details will be presented elsewhere [28]).
We have performed a large number of measurements
from spatially distinct sources on an ensemble of about
250 gauge configurations well separated in hybrid
Monte Carlo evolution time. All calculations are per-
formed in double precision, and care is taken to preserve
the dynamic range of correlation functions by rescaling
quark propagators before contractions are performed.

The determinant-based method has the potential to
calculate nuclear correlation functions of very large
nuclei. The most general interpolating fields for a multi-
nucleon system has a large number of terms. This number
grows exponentially with the number of quarks. However,
restricting the spatial part of the interpolating field to few
points can reduce the number of nonzero weights suffi-
ciently so that the resulting correlation functions can be
computed efficiently. Here, instead of a single-point
source that we used in Ref. [8], we use seven points.
These points are �r, ~r� dx̂, ~r� dŷ, and ~r� dẑ where �r is
an arbitrary point on our lattice and x̂, ŷ, and ẑ are the unit
vectors in the principal lattice directions and d is a
displacement length which is chosen to be d ¼ 4 in this
work. Given that there exists a single-point 4He interpo-
lating field that contains only one term, we place such
4He interpolating fields on some (or all) of the seven
points used in our construction. Given that we are inter-
ested in the lowest angular momentum state, the spatial
part of the interpolating field is projected onto the A1

irreducible representation of the cubic group. Using our
symbolic manipulation program, we perform all the nec-
essary reductions so that the interpolating field contains
the minimal number of terms. Furthermore, with our
simplest A ¼ 2 and A ¼ 3 interpolating fields, we can
build in the same manner any nucleus up to A ¼ 28.
Larger nuclei will require more than seven points; how-
ever, by extending this approach, in principle, contrac-
tions for any A are possible if an appropriately large
number of points is used. For the tests presented here,
we chose the simplest possible interpolating fields that we
can construct. The symbolic manipulations required to
produce the interpolating fields are performed on a laptop
and take an insignificant amount of computer time.

In Fig. 3, the logarithms of correlation functions are
shown for correlators with the quantum numbers of the

light nuclei, 4He, 8Be, 12C, 16O, and 28Si. Error bars that
reach the lower axis of the plots indicate that the corre-
lator has fluctuations that are negative at one standard
deviation. The extracted energies for each of the atomic
number A < 20 systems are consistent with a system of
A nucleons but with large uncertainties at present (for
28Si, no flattening of the effective mass is seen before the
signal is lost). Given the large number of near-threshold
energy levels expected in these complex nuclear systems
(see Ref. [8] for an example for A ¼ 4), a clean extrac-
tion of the ground state binding energies of these sys-
tems is beyond the current work. In addition, the baryon
number density of the larger systems (0:3 fm�3 for 28Si)
is substantial, and volume effects are expected to be
significant. It will be necessary to use larger volumes,
increase greatly the statistical precision, and improve the
interpolating operators that we have used in order to
obtain the binding energies and excitation spectra of
these systems. Nevertheless, this study demonstrates
the computational feasibility of lattice QCD calculations
of light nuclei.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have discussed a systematic way of
constructing interpolating fields for multibaryon systems.
In addition, we have investigated the issue of performing
the Wick contractions with these interpolating fields in
lattice QCD (see Ref. [9] for related work). We have
shown that there are approaches that enable calculations
of systems with a very large number of nuclei that are
computationally feasible and demonstrated their effec-
tiveness by calculating correlators with a baryon number
up to A ¼ 28. Given the expected spectra of such
complex systems, significant advances are required in
order to extract ground state energies from these corre-
lators. Finally, the methods described here may prove
useful in calculations of QCD at nonzero baryon
density, where projection onto a given baryon number
is required.
We note that Ref. [9] presents a related investigation of

contractions for multihadron systems which has some
overlap with the discussions in Sec. III. However, our
algorithms differ in a number of important regards. First,
the generation of weight factors in Eq. (9) is performed
recursively in our approach, requiring insignificant
amounts of computer time in comparison to the super-
computing resources required in the brute-force approach
of Ref. [9]. For certain choices of interpolating fields,5 our
algorithms also scale polynomially for all values of the
baryon number A and bypass the limitations to A ¼ 8 for
nonstrange systems discussed in Ref. [9].

5Interpolating fields with number of terms Nw that does not
grow with the baryon number A exist for all values of A.
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Chroma software suites [24], which are the software bases
of all computations presented here. We acknowledge
computational support from the National Energy

Research Scientific Computing Center (NERSC, Office

of Science of the US DOE, Grant No. DE-AC02-

05CH11231), and the NSF through XSEDE resources

provided by NICS. This work was supported in part by

DOE Grants No. DE-AC05-06OR23177 (J. S. A.) and

No. DE-FG02-04ER41302. W.D. was also supported by

DOE OJI Grant No. DE-SC0001784 and Jeffress

Memorial Trust, Grant No. J-968.

[1] S. R. Beane, W. Detmold, T. Luu, K. Orginos, A. Parreño,
M. Savage, A. Torok, and A. Walker-Loud (NPLQCD
Collaboration), Phys. Rev. D 80, 074501 (2009).

[2] T. Yamazaki, Y. Kuramashi, and A. Ukawa (PACS-CS
Collaboration), Phys. Rev. D 81, 111504 (2010).

[3] S. Beane et al. (NPLQCD Collaboration), Phys. Rev. Lett.
106, 162001 (2011).

[4] S. Beane et al. (NPLQCD Collaboration), Mod. Phys.
Lett. A 26, 2587 (2011).

[5] T. Inoue (HAL QCD Collaboration), Proc. Sci.,
LATTICE2011 (2011) 124.

[6] S. Beane, E. Chang, W. Detmold, H.W. Lin, T. C. Luu, K.
Orginos, A. Parreño, M. J. Savage, A. Torok, and A.
Walker-Loud (NPLQCD Collaboration), Phys. Rev. D
85, 054511 (2012).

[7] T. Yamazaki, Y. Kuramashi, and A. Ukawa, Phys. Rev. D
84, 054506 (2011).

[8] S. Beane, E. Chang, S. D. Cohen, W. Detmold, H.W. Lin,
T. C. Luu, K. Orginos, A. Parreño, M. J. Savage, and A.
Walker-Loud (NPLQCD Collaboration), Phys. Rev. D 87,
034506 (2013).

[9] T. Doi and M.G. Endres, Comput. Phys. Commun. 184,
117 (2013).

[10] R. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3,
2706 (1971).

[11] Z.Shi andW.Detmold, Proc. Sci., LATTICE2011 (2011) 328.
[12] W. Detmold, K. Orginos, and Z. Shi, Phys. Rev. D 86,

054507 (2012).
[13] W. Detmold and M. J. Savage, Phys. Rev. D 82, 014511

(2010).
[14] S. Basak, R. Edwards, G. Fleming, U.Heller, C.Morningstar,

D. Richards, I. Sato, and S. Wallace (Lattice Hadron Physics
Collaboration), Phys. Rev. D 72, 074501 (2005).

[15] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage
(NPLQCDCollaboration), Phys. Rev. D 73, 054503 (2006).

[16] S. Beane, P. Bedaque, K. Orginos, and M. Savage, Phys.
Rev. Lett. 97, 012001 (2006).

[17] S. R. Beane, W. Detmold, T. Luu, K. Orginos, M. Savage,
and A. Torok (NPLQCD Collaboration), Phys. Rev. Lett.
100, 082004 (2008).

[18] W. Detmold, M. Savage, A. Torok, S. Beane, T. Luu, K.
Orginos, and A. Parreño (NPLQCD Collaboration), Phys.
Rev. D 78, 014507 (2008).

[19] S. R. Beane, W. Detmold, T. Luu, K. Orginos, A. Parreño,
M. Savage, A. Torok, and A. Walker-Loud (NPLQCD
Collaboration), Phys. Rev. D 79, 114502 (2009).

[20] S.R. Beane, W. Detmold, H.-W. Lin, T.C. Luu, K. Orginos,
M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD
Collaboration), Phys. Rev. D 81, 054505 (2010).

[21] S. Beane, E. Chang, W. Detmold, H.W. Lin, T. C. Luu, K.
Orginos, A. Parreño, M. J. Savage, A. Torok, and A.
Walker-Loud (NPLQCD Collaboration), Phys. Rev. D
85, 034505 (2012).

[22] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev.
D 86, 034031 (2012).

[23] S. Basak, R. Edwards, G. Fleming, U. Heller, C.
Morningstar, D. Richards, I. Sato, and S. Wallace, Phys.
Rev. D 72, 094506 (2005).

[24] R. G. Edwards and B. Joo (SciDAC Collaboration, LHPC
Collaboration, UKQCD Collaboration), Nucl. Phys. B,
Proc. Suppl. 140, 832 (2005).

[25] K. Orginos, in Extreme Computing and its Implications for
the Nuclear Physics/Applied Mathematics/Computer
Science Q6 Interface, INT (University of Washington,
Seattle, WA, 2011).

[26] G. Wick, Phys. Rev. 80, 268 (1950).
[27] D. B. Kaplan (2007), in Domain Wall Fermions at Ten

Years (BNL, Upton, NY, 2007).
[28] W. Detmold, R. Edwards, B. Joo, T. Luu, S. Meinel, K.

Orginos, D. Richards, and A. Walker-Loud (unpublished).

NUCLEAR CORRELATION FUNCTIONS IN LATTICE QCD PHYSICAL REVIEW D 87, 114512 (2013)

114512-9

http://dx.doi.org/10.1103/PhysRevD.80.074501
http://dx.doi.org/10.1103/PhysRevD.81.111504
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1142/S0217732311036978
http://dx.doi.org/10.1142/S0217732311036978
http://dx.doi.org/10.1103/PhysRevD.85.054511
http://dx.doi.org/10.1103/PhysRevD.85.054511
http://dx.doi.org/10.1103/PhysRevD.84.054506
http://dx.doi.org/10.1103/PhysRevD.84.054506
http://dx.doi.org/10.1103/PhysRevD.87.034506
http://dx.doi.org/10.1103/PhysRevD.87.034506
http://dx.doi.org/10.1016/j.cpc.2012.09.004
http://dx.doi.org/10.1016/j.cpc.2012.09.004
http://dx.doi.org/10.1103/PhysRevD.3.2706
http://dx.doi.org/10.1103/PhysRevD.3.2706
http://dx.doi.org/10.1103/PhysRevD.86.054507
http://dx.doi.org/10.1103/PhysRevD.86.054507
http://dx.doi.org/10.1103/PhysRevD.82.014511
http://dx.doi.org/10.1103/PhysRevD.82.014511
http://dx.doi.org/10.1103/PhysRevD.72.074501
http://dx.doi.org/10.1103/PhysRevD.73.054503
http://dx.doi.org/10.1103/PhysRevLett.97.012001
http://dx.doi.org/10.1103/PhysRevLett.97.012001
http://dx.doi.org/10.1103/PhysRevLett.100.082004
http://dx.doi.org/10.1103/PhysRevLett.100.082004
http://dx.doi.org/10.1103/PhysRevD.78.014507
http://dx.doi.org/10.1103/PhysRevD.78.014507
http://dx.doi.org/10.1103/PhysRevD.79.114502
http://dx.doi.org/10.1103/PhysRevD.81.054505
http://dx.doi.org/10.1103/PhysRevD.85.034505
http://dx.doi.org/10.1103/PhysRevD.85.034505
http://dx.doi.org/10.1103/PhysRevD.86.034031
http://dx.doi.org/10.1103/PhysRevD.86.034031
http://dx.doi.org/10.1103/PhysRevD.72.094506
http://dx.doi.org/10.1103/PhysRevD.72.094506
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1103/PhysRev.80.268

	Nuclear correlation functions in lattice QCD
	Recommended Citation

	untitled

