
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

5-2021

Topology of the O(3) non-linear sigma model under the gradient Topology of the O(3) non-linear sigma model under the gradient

flow flow

Stuart Thomas
William & Mary

Christopher Monahan
William & Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

 Part of the Condensed Matter Physics Commons, and the Nuclear Commons

Recommended Citation Recommended Citation
Thomas, Stuart and Monahan, Christopher, "Topology of the O(3) non-linear sigma model under the
gradient flow" (2021). Undergraduate Honors Theses. William & Mary. Paper 1621.
https://scholarworks.wm.edu/honorstheses/1621

This Honors Thesis -- Open Access is brought to you for free and open access by the Theses, Dissertations, &
Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/197?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/203?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1621?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1621&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Topology of the O(3) non-linear sigma

model under the gradient flow

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science with Honors in

Physics from the College of William and Mary in Virginia,

by

Stuart Thomas

Accepted for Honors

Advisor: Prof. Christopher J. Monahan

Prof. Todd Averett

Prof. Andreas Stathopoulos

Williamsburg, Virginia
May 2021

Contents

Acknowledgments iv

List of Figures vi

List of Tables vii

Abstract v

1 Introduction 1

1.1 Method Overview . 3

1.2 Summer Research . 4

1.3 Conventions . 4

2 Theory 5

2.1 Quantum Field Theory . 5

2.1.1 Path Integral Formulation . 6

2.1.2 �
4 Model . 8

2.1.3 Non-linear Sigma Model . 9

2.2 Markov Chain Monte Carlo . 9

2.2.1 The Markov Chain . 10

2.3 Observables . 11

2.3.1 Primary Observables . 12

i

2.3.2 Secondary Observables . 13

2.3.3 Bimodality . 15

2.3.4 Jackknife Method . 16

2.4 Topological Observables . 16

2.4.1 NLSM ✓ term . 17

2.5 Ultraviolet Divergences . 18

2.5.1 Regularization . 18

2.5.2 Renormalization . 19

2.5.3 The Gradient Flow . 20

3 Methods 22

3.1 Fields on the Lattice . 22

3.1.1 Discretized Observables . 24

3.2 Defining the Topological Charge . 25

3.3 Monte Carlo Simulations . 28

3.3.1 Metropolis Algorithm . 29

3.3.2 Wol↵ Cluster Algorithm . 29

3.3.3 Checkerboard Algorithm . 32

3.3.4 Thermalization . 32

3.3.5 Autocorrelation . 33

3.4 Runge-Kutta Algorithm . 34

3.5 Topological Charge with a ✓-term . 36

4 Results 37

4.1 �
4 Results . 37

4.2 Non-linear Sigma Model Results . 37

4.2.1 Comparison with Existing Literature 38

ii

4.2.2 Topological Charge when ✓ 6= 0 42

4.3 Implications . 43

5 Conclusion & Outlook 44

A C++ NLSM Monte Carlo Program 47

A.1 sweep.h . 47

A.2 sweep.cpp . 49

A.3 lattice.h . 59

A.4 lattice.cpp . 60

A.5 phi.h . 61

A.6 phi.cpp . 62

A.7 observables.h . 64

A.8 constants.h . 65

References 66

iii

Acknowledgments

I would like to thank my advisor, Professor Christopher Monahan. His con-

stant helpfulness has made this research possible and enjoyable. I would also like to

thank the entire faculty of the William & Mary Physics Department. The amount of

knowledge and wisdom they have given me has been beyond my imagination.

I would like to acknowledge the help of the High Performance Computing group at

William & Mary, whose cluster performed many of these simulations. I also want to

acknowledge the financial help of the 1693 Scholars Program which funded preliminary

research over the summer.

Finally, I would like to thank my friends and family who helped me reach this

point in my academic and personal journey.

iv

List of Figures

2.1 Visualization of broken phase, symmetric phase and transition. Simu-

lation run on 64 ⇥ 64 lattice, plotted after 1000 sweep thermalization

(see Sec 3.3.4), � = 0.5. 12

2.2 E↵ect of flow time evolution on a random lattice in the symmetric

phase. White represents positive values of � while black represents

negative. 21

3.1 Visualization of plaquette x
⇤. The dotted line separates the plaquette

into two signed areas which are used to define the topological charge

density q(x⇤). Arrows represent order of signed area. 26

3.2 Visualization of signed area A on the sphere S
2 traced out by field at

points x1, x2 and x3. 27

3.3 Histogram of topological charge values Q for trivial NLSM. L = 404,

10,000 measurements, measurements very 50 sweeps, 1,000 sweep ther-

malization, ⌧ = 0 . 28

3.4 An example of the Wol↵ cluster algorithm in the �
4 model. White

represents positive values of � while black represents negative. � = 0.5,

m
2
0 = �0.9. 31

3.5 Plots of the action as a function of Monte Carlo time, starting with a

random NLSM lattice. 32

v

3.6 Histogram of lattice-averaged actions S/L
2 with hot and cold starts.

1,000 sweep thermalization in L = 404 lattice, 1,000 measurements

taken every 50 sweeps. 33

3.7 Plots of automatic windowing procedure used to calculate ⌧int for the

NLSM model. W is summation window size. 34

4.1 The lattice average |h�̄i|, the magnetic susceptibility �m, the Binder

cumulant U and the bimodality B plotted as functions of m2
0. L = 64,

� = 0.5. The lattice was thermalized from a hot start for 1000 sweeps.

Afterwards, 1000 measurements were taken with 50 sweeps between

each. The red horizontal line indicates U = 2/3, the broken phase

limit of the Binder cumulant. 38

4.2 Comparison with [1]. First panel: internal energy compared with ana-

lytic energy (Eq. 4.1). Second panel: magnetic susceptibility compared

with literature values. 39

4.3 �tL
2 as a function of flow time ⌧ . Simulation run with 10,000 mea-

surements every 50 sweeps, 1,000 sweep thermalization. 40

4.4 �t⇠
2
2 as a function of L. We fit the data with both a logarithmic

and power fit. Simulation run with 10,000 measurements, once every

50 sweeps, 1,000 sweep thermalization. In the ⌧ = 0 case, we have

compared our result with the curve fit found in [2]. 41

4.5 Imaginary part of hQi as a function of ✓. Simulation run with 10,000

measurements, measurements very 50 sweeps, 1,000 sweep thermaliza-

tion. Note the di↵erent scaling of the y-axis. 42

vi

List of Tables

2.1 Average magnetization with average action per site corresponding to

the particular configurations in Fig. 2.1. 13

vii

Abstract

Quantum field theory is an extraordinarily successful framework that describes

phenomena in particle physics and condensed matter. The O(3) non-linear sigma

model (NLSM) is a specific theory used in both of these fields, describing ferromagnets

and acting as a prototype for the strong nuclear force. It features topologically stable

configurations known as instantons which cannot continuously evolve to the ground

state. The topological susceptibility is a parameter that describes this stability and is

predicted to vanish in physical theories, however numerical simulations find that the

topological susceptibility diverges in the continuum limit [1]. This issue has motivated

the application of the “gradient flow”, a smoothing of high-frequency modes. We

study the e↵ect of the gradient flow on this divergence, finding that it persists as a

logarithmic divergence. This result supports a previous study [2] and indicates that

either the definition of topological charge is problematic or the NLSM has no well-

defined continuum limit. We also study the nontrivial field theory by introducing a

✓-term into the action and analyze the topological charge as a function of ✓ under the

gradient flow.

Chapter 1

Introduction

Quantum field theory (QFT) is a framework used to describe a range of physical phe-

nomena to a remarkable degree of accuracy. Paired with the Standard Model, QFT

provides the prevailing basis for all small-scale physics (that is, where general relativ-

ity does not apply) and is the fundamental tool for studying particle physics. QFT

also plays a critical role in condensed matter physics through e↵ective field theories

which model emergent phenomena such as phonons and quasiparticles. Compared to

experiment, QFT is remarkably accurate, famously predicting the electron g-factor to

eleven significant figures [3], arguably the most accurate prediction in all of science.

However this power comes at a cost: the study of quantum fields is rife with

infinities. A näıve treatment of quantum field theory produces divergent values for

physical quantities, a clearly impossible result. Since the 1950s, this issue has been

resolved for a large number of models— most notably quantum electrodynamics—

through perturbation theory and the renormalization group. This counter-intuitive

technique exploits the freedom of parameters such as mass and electric charge. Since

these constants cannot be directly measured, renormalization allows them to become

infinite, thereby cancelling the infinities in physical results. Unfortunately, not all

theories are perturbatively renormalizable.

One such example is the non-linear sigma model (NLSM), a prototypical theory

1

in both condensed matter and particle physics. In solid-state systems, this model

describes Heisenberg ferromagnets [4] and in nuclear physics, it acts as a prototype

for quantum chromodynamics (QCD), the gauge theory that describes the strong

nuclear force. In general, the NLSM shares key features with non-Abelian gauge

theories such as QCD, including a mass gap and asymptotic freedom [5]. Therefore,

the NLSM is a useful model for exploring the e↵ect of these properties in a simpler

system.

In this study, we specifically consider the O(3) NLSM in 1+1 dimensions (one

dimension of space, one dimension of time). This theory exhibits topological prop-

erties such as instantons, or classical field solutions at local minima of the action

in Euclidean space. Solutions such as these are “topologically protected”, mean-

ing they cannot evolve into the vacuum state via small fluctuations. Due to this

property, topology is critically important to quantum field theories in cosmology and

high energy physics [6]. Additionally, topological stability may become a key tool for

fault-tolerant quantum computers [7]. In these devices, topology protects the delicate

quantum states necessary for information processing.

Since the NLSM in not perturbatively renormalizable, we require nonperturbative

techniques to study topological e↵ects. A solution is to place the field on a discretized

Euclidean lattice, a technique originally used for quantum chromodynamics [8]. After

this transformation, fields become numerically calculable using modern computers.

This process introduces the lattice spacing as a length scale a where the continuum

limit is defined as taking a to zero. We expect physical observables to converge in

the continuum limit, however this is not always the case. As an example, states of

definite angular momentum mix when discretized on a rectangular lattice due to a

breaking of continuous rotational symmetry. This causes some operators that depend

on angular momentum to su↵er divergences.

2

In this study, we focus on one observable that diverges in the continuum: the topo-

logical susceptibility. The topological susceptibility in the 1+1 O(3) NLSM has been

the subject of debate for the past four decades [2] since it is unclear if a convergent

solution exists. While the some analytical arguments argue the topological suscepti-

bility should approach zero in the continuum limit, numerical results predict infinities

[1]. In QCD, mathematical techniques proved that the susceptibility vanishes in the

continuum limit [9], a fact supported by numerical calculation [10].

To remedy this issue, we consider the gradient flow, a technique designed to remove

divergences in operators. By dampening high-frequency fluctuations, the gradient

flow reduces terms that scale with the inverse lattice spacing, making some observables

finite on the lattice [11]. In QCD, the gradient flow successfully makes the topological

susceptibility finite in numerical calculations [10], corroborating the analytical result

in [9]. This success has motivated the usage of the gradient flow to calculate the

topological susceptibility in the 1+1 O(3) NLSM, though recent studies demonstrate

that the observable still diverges in the continuum limit [2].

A second perspective on the topological susceptibility arises from the introduction

of a ✓-term into the field Lagrangian. This term drives the vacuum state into a

topological phase [12]. Di↵erentiating the field’s partition function with respect to ✓

yields a value proportional to the topological susceptibility. The e↵ect of nonzero ✓

on the theory therefore should reflect the divergence in the continuum limit.

In this work we verify the divergence of the topological susceptibility and develop

a clearer picture of how the ✓-term a↵ects the topology of the 1+1 O(3) NLSM.

1.1 Method Overview

To numerically study the topological qualities of the NLSM, we first implement a

Markov chain Monte Carlo simulation. We initially construct a proof-of-concept

3

Python program that models the simpler �4 model (see Sec. 2.1.2). After comparing

with existing literature, we transition to a C++ simulation for e�ciency, implement-

ing the NLSM on larger lattices. Since the gradient flow has no exact solution in

the NLSM we implement a numerical solution using a fourth-order Runge-Kutta

approximation with automatic step sizing. By applying the gradient flow to every

configuration in the sample, we can measure its e↵ect on the topological charge and

susceptibility.

1.2 Summer Research

A portion of this work began during the summer of 2020 using funding from the

1693 Scholars Program. This preliminary research consisted of literature review and

numerical tests with an Ising model simulation as well as an initial implementation

of the �
4 model. The �

4 calculation performed in this study and the entirety of

the NLSM portion occurred during the academic year as part of the PHYS 495/496

Honors course.

1.3 Conventions

• Throughout this paper, we use natural units, i.e. ~ = 1 and c = 1.

• We use Einstein summation notation, an implicit sum over repeated spacetime

indices. For example, if xµ is a four-vector in Minkowski spacetime and xµ is

its covariant form, the term

x
µ
xµ =

4X

µ=0

x
µ
xµ

= x
2
0 � x

2
1 � x

2
2 � x

2
3.

4

Chapter 2

Theory

This thesis incorporates two main bodies of knowledge: quantum field theory and

statistical simulation. Through the path integral formulation of quantum field theory,

we are able to describe the physics of the former with the established mathematics of

the latter.

2.1 Quantum Field Theory

In this section we outline a rough description of quantum field theory. A full in-

troduction is beyond the scope of this paper, however we do assume knowledge of

nonrelativistic quantum mechanics and classical field theory.

The fundamental hypothesis of quantum field theory (QFT) describes particles as

discrete packets of energy on a quantum field. But what is a quantum field? Like in

classical mechanics, a field is a function of spacetime with some mathematical object

assigned to each point in space and time. In the case of the electric field, this object

is a three-dimensional vector, while the electric potential is a scalar field. Classical

and quantum fields have Lagrangians which define how they evolve in space and time.

What di↵erentiates a quantum field from a classical field is superposition: where clas-

sical fields have a definite configuration, quantum fields exist in a superposition of all

possible configurations. It is possible—though nontrivial and outside the scope of this

5

description— to motivate the appearance of discrete particles from this superposition

(see [13]). This formulation of QFT is known as the “path integral formulation”,

which di↵ers from the “second quantization” used by many textbooks.

This general description allows QFT to easily incorporate special relativity. By

ensuring that the Lagrangian of a theory is invariant under Lorentz transformations,

we can ensure that the theory itself is Lorentz invariant. This is a necessary condition

of physical theories.

2.1.1 Path Integral Formulation

We can model a quantum field as a superposition of all possible classical fields. Like

single-particle quantum mechanics, each configuration has a complex probability am-

plitude. To measure expectation values of observables, we simply take an average

over all configurations weighted by this complex amplitude. We can formalize this

notion using the fundamental formula1

hÔi = 1

Z

Z
D� Ô[�] eiS[�] (2.1)

where hÔi is the expectation value of an arbitrary operator Ô; Z is a normalization

constant; S is the action functional, defined from the theory’s Lagrangian; and
R
D�

represents the eponymous path integral. Though it is possible to define this integral

rigorously, for our purposes we can equate it to a sum over all possible configurations.

This form is the quantum analog of the classical principle of least action and reduces

to such for large values of the action. For a more pedagogical explanation, see Richard

Feynman’s lectures on physics [14].

At first glance, Eq. 2.1 is remarkably similar to the statistics of the canonical

ensemble. Through this similarity, we will be able to use mathematical tools from

statistical mechanics to study quantum field theories. However, the factor of i in

1Since this study concerns vacua, we do not include a source term.

6

the exponent currently prohibits us from making this jump. To remedy this issue,

we perform a “Wick rotation” which shifts spacetime into Euclidean coordinates. In

physical spacetime, defined by the Minkowski metric, the Lorentz-invariant distance

is given as

s
2 = x

2
0 � x

2
1 � x

2
3 � x

2
3 (2.2)

where x0 = ct and ~x = (x1, x2, x3)T . By redefining the time coordinate of a spacetime

point x to be x4 = ix0, we find that the quantity

s
2
E = x

2
1 + x

2
3 + x

2
3 + x

2
4, (2.3)

is invariant under SO(4) transformations and is therefore representative of a four-

dimensional Euclidean space. Furthermore, we find that

d
4
xE = d

3
~xdx4

= id
3
~xdx0

= id
4
x. (2.4)

We can use this transformation to redefine the Lagrangian L in Euclidean space as

LE, replacing all x0 with �ix4 and flipping the overall sign. Since a Lorentz-invariant

Lagrangian must only include even powers and derivatives of x, the Euclidean La-

grangian remains real. Subsequently, we can define a Euclidean action based on the

di↵erential in Eq. 2.4:

SE =

Z
d
4
xELE

= i

Z
d
4
x (�L)

= �iS (2.5)

allowing us to redefine the path integral as

hÔi = 1

Z

Z
D� Ô[�] e�SE [�]

. (2.6)

7

By replacing the Minkowski action S with a Euclidean action SE, we have trans-

formed the amplitude e
iS to a statistical Boltzmann factor e�SE . This new form will

allow us to use statistical techniques to simulate quantum fields.

2.1.2 �
4
Model

One of the simplest interacting field theories is known as the �
4 model. This theory

describes a spin-0 boson and consists of a real scalar field given by the four-dimensional

Minkowski action

S[�] =

Z
d
4
x

1

2
@
µ
�@µ�� 1

2
m

2
0�

2 � �

4
�
4

�
. (2.7)

The first two terms describe a free relativistic particle of mass m0 while the last term

describes an interaction with strength �. Per Einstein summation notation, there

is an implicit sum over spacetime dimensions µ 2 {0, 1, 2, 3} indexing the derivative

vectors2

@
µ =

✓
@

@t
,
@

@x
,
@

@y
,
@

@z

◆
(2.8)

@µ =

✓
@

@t
,� @

@x
,� @

@y
,� @

@z

◆
. (2.9)

In this study, we specifically consider fields in 1+1 spacetime dimensions. Follow-

ing Sec. 2.1.1, we convert Eq. 2.7 from 3+1 Minkowski spacetime to 1 + 1 Euclidean

spacetime, yielding

SE[�] =

Z
d
2
xE

1

2
(@t�)

2 +
1

2
(@x�)

2 +
1

2
m

2
0�

2 +
�

4
�
4

�
. (2.10)

where @t and @x are the two partial derivatives in 1 + 1 Euclidean spacetime.

This field features spontaneous symmetry breaking at a critical value of m2
0 [15].

This property causes the field to spontaneously align, similarly to spins aligning in a

2This canonical representation of the kinetic term 1
2@

µ�@µ� is equivalent to 1
2 �̇

2 � 1
2 (r�)2.

8

ferromagnet. The name “symmetry breaking” refers to the transformation � ! ��,

which changes the values of observables in the aligned regime but not the disordered

regime. These two phases are known as the “broken” and “symmetric” phases and

their transition is well understood.

2.1.3 Non-linear Sigma Model

The non-linear sigma model (NLSM) is a prototypical theory for a variety of physical

phenomena including applications in string theory [4] and ferromagnetism [5]. As a

simple nonperturbative model, it also provides an ideal starting point for lattice QCD

studies. Specifically, the NLSM exhibits many properties shared by Yang-Mills gauge

theories, such as a mass gap, asymptotic freedom and O(2) renormalizability [5].

Unlike the �
4 model, which consists of a real value at each point in spacetime,

the O(3) NLSM consists of a 3D unit vector at each point. For this reason, every

transformation of the field must be norm preserving. Per its name, the O(3) NLSM

features a global symmetry under the 3D orthogonal group O(3); in other words, the

theory remains the same if all vectors are rotated equivalently. To di↵erentiate it

from the �
4 model, we denote the NLSM field as ~e(x).

The theory is defined by the 1 + 1 dimensional Euclidean action

SE =
�

2

Z
d
2
x
⇥
(@t~e)

2 + (@x~e)
2⇤ (2.11)

subject to the constraint that ~e · ~e = 1. Here, � is the inverse coupling.

2.2 Markov Chain Monte Carlo

To accomplish a statistical analysis of quantum fields, we use a Monte Carlo simula-

tion which produces a large number of configurations and calculates statistics on the

sample. A brute-force calculation over all possible configurations, as Eq. 2.6 suggests,

9

is clearly infinite and computationally infeasible. However, the exponential nature of

the Boltzmann factor dictates that only configurations near the action minima con-

tribute to observable statistics. Therefore, by selecting a sample of configurations near

this minimum, we are able to extract meaningful results with a finite computation.

2.2.1 The Markov Chain

In order to determine this subset of configurations, we use a Markov chain. This

method identities field configurations that minimize the action using a random walk

through phase space. Essentially, we begin with a predetermined configuration and

then make small adjustments, gradually lowering the action. By measuring states

after a certain amount of time has passed, called the “thermalization”, we can form a

set of configurations near the action minima and approximate the observables of the

system.

Each step consists of two parts: proposing a change and accepting the new configu-

ration. The proposal creates a new configuration �b based on the current configuration

�a, a change that we accept with probability

P (�a ! �b). (2.12)

This probability determines if �b should be added to the Markov chain and depends

on the change in action, stochastically ensuring that the chain will seek the action

minima.

There are four requirements that this function must obey to produce a Boltzmann

distribution of samples:

1. P (�a ! �b) must depend only on the configurations �a and �b.

2. The probability must be properly normalized, i.e.
P

� P (�a ! �) = 1.

10

3. Every configuration must be reachable in a finite number of steps. In other

words, the chain must be ergodic.

4. In order to reach equilibrium, the chain must be reversible. In other words,

the probability of a �a ! �b transition must be equal to the probability of a

�b ! �a transition. Mathematically, this condition takes the form of a “detailed

balance equation”:

P (�a)P (�a ! �b) = P (�b)P (�b ! �a), (2.13)

where P (�) is the probability of a system existing in state �.

This final condition will allow us to explicitly define the transition probability

using the action. From the Boltzmann distribution, we know

P (�) =
1

Z
e
�SE [�]

. (2.14)

Therefore, by rearranging Eq. 2.13, we find

P (�a ! �b)

P (�b ! �a)
= e

SE [�a]�SE [�b]. (2.15)

This formula will provide the explicit transition probabilities for the Metropolis

and Wol↵ algorithms.

2.3 Observables

To extract physics from Monte Carlo simulations, we define a set of “observables”.

These quantities manifest as expectation values of operators, calculated using the

Euclidean path integral formula (Eq. 2.6). We can classify these observables into two

categories: primary and secondary observables. Primary observables are calculated as

expectation values of global operators while secondary observables are derived from

these quantities.

11

2.3.1 Primary Observables

Each primary observable is defined on each configuration independently, meaning

they do not encode ensemble statistics of the Markov chain. In the �4 model, we can

develop an intuition around these quantities by visualizing the symmetric and broken

phases. Fig 2.1 and Tab. 2.1 show examples of these quantities in three di↵erent

configurations: one in the broken phase, one in the symmetric phase, and one at the

transition.

There are two potential points of confusion here. The first lies in the definition of

“broken” phase. Though the symmetric phase more closely resembles a pane of broken

glass, it leaves � ! �� symmetry un-broken, thereby giving the title “broken” to the

more visually uniform configuration. An additional potential pitfall is the distinction

between the lattice average and the ensemble average. The first is a mean over all

lattice sites while the second is a mean over all configurations in the Markov Chain.

(a) broken
(m2

0 = �1.0)
(b) transition
(m2

0 = �0.7)
(c) symmetric
(m2

0 = �0.4)

Figure 2.1: Visualization of broken phase, symmetric phase and transition. Simula-
tion run on 64 ⇥ 64 lattice, plotted after 1000 sweep thermalization (see Sec 3.3.4),
� = 0.5.

Average Magnetization

The average magnetization quantifies the total alignment of the field. In both the �4

model and the NLSM, a value of zero indicates the symmetric phase while a nonzero

value indicates broken symmetry. In the NLSM, a magnitude of one represents total

12

broken transition symmetric

|�̄| 0.56 0.07 0.02

SE/L
2 0.29 0.40 0.44

Table 2.1: Average magnetization with average action per site corresponding to the
particular configurations in Fig. 2.1.

alignment.

Due to the � ! �� symmetry of the �4 model, the ensemble mean of the average

magnetization h�̄i is 0. Likewise, the O(3) symmetry in the NLSM enforces h~̄e i = 0.

To measure the alignment, we therefore use the magnitude of this quantity, defined

in the 1+1 �
4 model as

|�̄| ⌘ 1

V

����
Z

d
2
x �(x)

���� . (2.16)

and in the NLSM as

|~̄e | ⌘ 1

V

����
Z

d
2
x ~e(x)

���� . (2.17)

In the broken phase, both h|~̄e |i and h|�̄|i are nonzero but vanish in the symmetric

phase.

Internal Energy

The internal energy is defined as [1]

E =
2

�V
hSi (2.18)

in the NLSM. We use this metric to compare our simulation with existing literature.3

2.3.2 Secondary Observables

Unlike primary observables, secondary observables are defined for each ensemble, not

each configuration. We define three secondary observables: the magnetic suscep-

tibility, the Binder cumulant and the bimodality. Since the Binder cumulant and

3The internal energy is not part of the �4 portion of this work.

13

the bimodality primarily provide di↵erent perspectives on phase transitions, we will

restrict our usage of these observables to the �
4 model.

Magnetic Susceptibility

Though the magnitude of the average magnetization is the main phase transition

indicator, the values become smooth around the critical point as the lattice spacing

increases. This behaviour on the lattice makes the critical point di�cult to identify.

An alternative metric is the magnetic susceptibility. The magnetic susceptibility is

proportional to the variance of the magnetization and features a peak at the critical

point. This peak is more identifiable than the smooth transition of the magnetization.

Mathematically, this value is defined as

�m ⌘ V
�
h~̄e 2i � h~̄e i2

�
(2.19)

in the NLSM and

�m ⌘ V
�
h�̄2i � h�̄i2

�
(2.20)

in the �
4 model. Following the symmetry argument in Sec. 2.3.1, the second terms

vanish and the susceptibility becomes

�m = V h~̄e 2i (2.21)

in the NLSM and

�m = V h�̄2i (2.22)

in the �
4 model.

Binder Cumulant

We define the Binder cumulant U as [16]

U ⌘ 1� h�̄4i
3h�̄2i2

. (2.23)

14

Similar to the magnitude of the average magnetization, this formula yields 0 in the

symmetric phase and a nonzero value in the broken phase. The Binder cumulant of

the broken phase exhibits a universal value of U = 2/3. The advantage of this metric

is a fixed point of the scaling transformation which corresponds with the critical

point of the phase transition [17]. In other words, the Binder cumulants for di↵erent

length scales should all intersect at the critical point. In our study, we use the Binder

cumulant as further evidence of a phase transition in the �
4 model.

2.3.3 Bimodality

The final phase transition indicator that we use is the bimodality. In the symmetric

phase, the average magnetization �̄ centers around 0 while in the broken phase, these

values cluster around two peaks. This metric quantitatively measures the separation

of these peaks.

To calculate the bimodality, we begin by measuring �̄ for each configuration. We

separate each value into an odd number number of bins, ensuring that there is a bin

centered at �̄ = 0. We then calculate the number of configurations n0 in the center

bin and the number of configurations nmax in the fullest bin. The bimodality is then

calculated as

B = 1� n0

nmax
. (2.24)

When the configurations are centered around �̄ = 0, i.e. in the symmetric phase, this

value is B = 0. When the configurations are aligned such that �̄ 6= 0, i.e. in the

broken phase, this value becomes B = 1. In this study, we separate � into bins of

width �� = 0.1.

15

2.3.4 Jackknife Method

Though the uncertainties of primary observables are simple to calculate, this pro-

cess is more complicated for secondary observables. While we could propagate the

uncertainty of the Binder cumulant, such a process is not clear for the bimodality.

Therefore, we utilize a method known as Jackknife resampling to calculate statistical

errors of secondary observables.

We begin by calculating the expectation value O of some observable Ô on an

ensemble of N configurations. Then, for each configuration i, we calculate the expec-

tation value of Ô while excluding said configuration, calling this quantity Oi. This

leaves us with a set ofN expectation values Oi. Assuming independent measurements,

we can calculate the variance of Ô as

Var(Ô) =
X

i

(Oi �O)2 . (2.25)

We use this formula to calculate all statistical errors in this study.

2.4 Topological Observables

The 1+1 O(3) NLSM features topological features originating from two properties:

1. At x ! 1, the field must become uniform since the Lagrangian must vanish.

This allows us to model x ! 1 as a single point on the field, forming a Riemann

sphere with a two-dimensional surface.

2. The elements of the O(3) NLSM are three-dimensional unit vectors, and thus

also exist on a sphere.

With these two properties, we can view the field as a continuous mapping between

two three-dimensional spheres, each denoted as S2, and associate an integer number

of wrappings to each mapping from S
2 to S

2. We can envision a tangible metaphor

16

for this wrapping with a balloon and a baseball: by simply inserting the baseball into

the balloon, we have established a mapping from every point on the balloon to every

point on the baseball. We can create an equally valid map by twisting the balloon’s

mouth and wrapping the baseball again. In a purely mathematical world, we perform

this process an infinite number of times, thereby associating every possible mapping

with an integer. The group of integers is known as the homotopy group of the 1 + 1

O(3) NLSM. We associate every field configuration with an element of this group,

known as the topological charge, which we denote as Q. Configurations with |Q| = 1

are known as instantons.

Following this quantity, we can define a topological susceptibility �t

�t ⌘
1

L2

⇣
hQ2i � hQi2

⌘
. (2.26)

This quantity relates to the stability of topological phases and we expect it to ap-

proach zero in the continuum limit [1].

2.4.1 NLSM ✓ term

The NLSM is invariant under the transformation ~e ! �~e, a change that flips the

sign of the topological charge. This implies that hQi disappears and therefore, that

the NLSM vacuum is topologically trivial. We can construct a nontrivial vacuum by

introducing a ✓ term into the action:

S[~e] ! S[~e]� i✓Q[~e]. (2.27)

With this topological action, hQi = 0 if and only if ✓ = 0.

We can also redefine the topological susceptibility for the ✓ = 0 case as

�t =
hQ2i
L2

. (2.28)

17

2.5 Ultraviolet Divergences

In Section 2.1.1, we defined a fundamental equation of quantum fields using a path

integral which encompasses an uncountably infinite configuration space. However, we

said nothing of the integral’s convergence. In fact, many fundamental processes in

QFT have divergent amplitudes, yielding nonsensical results. The most common type

of divergence stems from high-momentum states, giving them the name “ultraviolet

divergences”. The remedy to this catastrophe is unintuitive. Essentially, we adopt

infinite values for the parameters of the Lagrangian (m2
0 and � in �

4 theory and � in

the NLSM). Since neither of these two quantities is ever measured directly, we do not

have to assume that their values are finite. In practice, this technique consists of two

steps: regularization and renormalization.

2.5.1 Regularization

Regularization is a process which introduces a new parameter into calculations. One

example is a momentum cuto↵. This technique transforms infinite momentum inte-

grals as follows: Z 1

0

dk !
Z ⇤

0

dk,

introducing ⇤ as a regularization parameter. This process makes results ⇤-dependent,

but finite. Another example is dimensional regularization, which calculates results in

terms of the spacetime dimension D and analytically continues this parameter from

the integers into the real numbers.

In this study, we employ a third technique: lattice regularization. This process

discretizes the field, modeling �(x) as a lattice �(xi) where i indexes lattice sites. The

inherent parameter in this case is the lattice spacing a which measures the width of

each lattice chunk. This discretization e↵ectively imposes a hard momentum cuto↵

of k = ⇡/a. According to Bloch’s theorem, any mode above this cuto↵ is equivalent

18

to a lower-momentum mode since the high frequency information disappears on a

discrete lattice. We can view this cuto↵ in momentum space by considering a square

with side length 2⇡/a centered at the origin. On the lattice, any mode outside this

zone contains no more information than a corresponding mode inside. This area

is known as a “Brillouin zone” and contains all possible momentum modes on the

lattice, e↵ectively imposing a hard cuto↵.

One of the main strengths of lattice regularization is preservation of gauge invari-

ance, a property that makes lattice methods useful for QCD.

2.5.2 Renormalization

After regularization, we redefine the Lagrangian parameters in terms of the new

parameter using a handful of boundary conditions. Following [2], we require that L/⇠

remains constant, where L is the side length of the system and ⇠ is the coherence

length. In perturbation theory, the renormalization process is arduous and includes

the introduction of counter-terms into the Lagrangian. In the case of the NLSM it is

impossible using counter-terms but can be performed numerically. In this study, we

use the second moment of the correlation length, notated ⇠2, which more precisely

estimates the ⇠ on the lattice [2]. The specific values of � and ⇠2 used in this work

are taken from [2].

To achieve a physical theory, we take the limit as the regularization parameters

approach their physical values. With a momentum cuto↵, we take ⇤ ! 1 and with

dimensional regularization we usually take D ! 4. With lattice regularization, we

approach the continuum, taking the lattice spacing a ! 0.

At this point, we have surely eliminated all divergences, right? Unfortunately,

this is not always the case. External operators may also diverge due to regularization

procedures. As we decrease the width of each lattice site, high frequency modes

19

become more significant, leading to ultraviolet divergences. A prototypical example

is the angular momentum operator on the lattice. Since a square lattice breaks

continuous rotational symmetry, orthogonal angular momentum operators mix on

the lattice and can cause divergences [11].

The topological susceptibility �t is one such value that diverges in the contin-

uum limit, though the reasons for this divergence are not fully understood [1]. This

question is central to this work.

2.5.3 The Gradient Flow

To remove this ultraviolet divergence, we adopt a technique known as “smearing”, a

local averaging of the field [18]. Specifically, we use a technique known as the “gradient

flow” [19] which introduces a new half-dimension4 called “flow time”. The flow time

⌧ parameterizes the smearing such that an evolution in flow time corresponds to

suppressing ultraviolet divergences.

Specifically, the gradient flow pushes field configurations toward classical minima

of the action. Additionally, renormalized correlation functions remain renormalized

at nonzero flow time for gauge theories such as QCD [20]. In 2D �
4 scalar field theory,

the gradient flow is defined by the di↵erential equation

@⇢(⌧, x)

@⌧
= @

2
⇢(⌧, x) (2.29)

where @2 is the Laplacian in 2D Euclidean spacetime5 and ⌧ is the flow time. Here, ⇢ is

the field flowed into a nonzero flow time, bounded by the condition ⇢(⌧ = 0, x) = �(x).

In the �
4 theory, we can solve this equation exactly to find [11]

⇢(⌧, x) =
1

4⇡⌧

Z
d
2
y e

�(x�y)2/4⌧
�(y). (2.30)

4The term “half-dimension” indicates that the flow time is exclusively positive.
5Explicitly, @2 = @2

@t2 +r2

20

This function forms a Gaussian, smoothly dampening high-momentum modes and

removing ultraviolet divergences from evolved correlation functions [21]. We can

visualize this by plotting the � field, shown in Fig. 2.2. These plots demonstrate the

reduction of high momentum modes.

(a) ⌧ = 0 (b) ⌧ = 0.001 (c) ⌧ = 0.01 (d) ⌧ = 0.1

Figure 2.2: E↵ect of flow time evolution on a random lattice in the symmetric phase.
White represents positive values of � while black represents negative.

Generally, we can choose any flow time equation that drives the field towards a

classical minimum. Following [2], we can define the gradient flow for the NLSM via

the di↵erential equation

@⌧~e(⌧, x) =
�
1� ~e(⌧, x)~e(⌧, x)T

�
@
2
~e(⌧, x). (2.31)

We solve this equation numerically using the boundary condition ~e(⌧ = 0, x) = ~e(x),

a process described in Sec. 3.4.

21

Chapter 3

Methods

Our study of the gradient flow in the NLSM is based on a computational system

that simulates quantum fields numerically. We begin by implementing a numerical

Monte Carlo method to simulate the lattice in two dimensions and verify our program

with the well-studied �
4 scalar field theory. We then generalize our model to a vec-

tor field to simulate the NLSM and implement a numerical solution to the gradient

flow. We use the data produced by this program to study the topological charge and

susceptibility under the gradient flow.

We first implement the �
4 model in Python. Afterwards, we transition to the

NLSM, using C++ for increased e�ciency . To compile the C++ simulation, we use

the gcc compiler with the highest level of optimization.

3.1 Fields on the Lattice

To implement the lattice regularization technique, we must redefine the field action in

terms of discrete positions, a process known as “discretization”. We transition from

x as a continuous vector in R2 to xi,j where

xi,j = iat̂+ jax̂. (3.1)

22

Here, a is the lattice constant and t̂ and x̂ are unit vectors. This change e↵ectively

shifts the domain of the field from R2, which is uncountably infinite, to Z2, which is

countably infinite. To achieve a finite domain, we impose periodic boundary condi-

tions, such that

� (xi+L,j) = � (xi,j+L) = � (xi,j) (3.2)

where L is the side length (in units of the lattice spacing a) of the system. In this

study we focus solely on square geometries and thus the side length L is unambiguous.

In the �4 model, we can specify a discrete action using the Euclidean action from

Eq. 2.10. We begin by redefining the derivative operator as a finite di↵erence:

@µ� =
� (x+ aµ̂)� �(x)

a
. (3.3)

We can then define the kinetic term

1

2
(@t�)

2 +
1

2
(@x�)

2 ! 1

2a2

h�
�(x+ at̂)� �(x)

�2
+ (�(x+ ax̂)� �(x))2

i

! 1

2a2
⇥
�
2(x+ at̂) + �

2(x+ ax̂) + 2�2(x)

�2�(x+ at̂)�(x)� 2�(x+ ax̂)�(x)
⇤ (3.4)

Since we will eventually sum over all sites x, the periodic boundary conditions imply

that an overall shift in x does not e↵ect the final action. Therefore, we can combine

the first two terms with the third term to produce

1

2
(@t�)

2 +
1

2
(@x�)

2 ! 1

a2

⇥
2�2(x)� �(x+ at̂)�(x)� �(x+ ax̂)�(x)

⇤
(3.5)

Unlike the kinetic term, the mass and interaction terms remain unchanged under the

discretization procedure. The only remaining change is a shift from an integral to a

discrete sum. This transformation takes the form

Z
dtdx ! a

2
X

i

(3.6)

23

such that the final discretized action becomes

Slat[�] =
X

i

��(xi + at̂)�(xi)� �(xi + ax̂)�(xi) +

✓
2 +

1

2
m

2
0

◆
�
2(xi) +

1

4
��

4(xi)

�

(3.7)

Likewise, we can discretize the NLSM. In this case, the derivative term becomes

1

2
(@t~e)

2 +
1

2
(@x~e)

2 ! 1

a2

⇥
2� ~e(x+ at̂) · ~e(x)� ~e(x+ ax̂) · ~e(x)

⇤
. (3.8)

Note that we have used the identity ~e · ~e = 1. Inserting this into Eq. 2.11 yields the

discretized action

Slat[~e] =
X

i

⇥
2� ~e(x+ at̂) · ~e(x)� ~e(x+ ax̂) · ~e(x)

⇤
. (3.9)

Finally, we redefine the gradient flow in on the lattice. Since the gradient flow is

solved exactly in the �4 model, we rely on a discrete Fourier transform. This method

isolates the momentum modes of the field and dampens them by a factor of e�⌧p2

where ⌧ is the flow time and p is the momentum. In the NLSM, the definition of the

gradient flow (Eq. 2.31) becomes

@⌧~e(⌧, x) =
�
1� ~e(⌧, x)~e(⌧, x)T

�
@
2
~e(⌧, x), (3.10)

where the Laplacian operator @2 is now defined as

@
2
~e(⌧, x) = ~e(⌧, x+ at̂) + ~e(⌧, x� at̂) + ~e(⌧, x+ ax̂) + ~e(⌧, x� ax̂)� 4~e(t, x).

Unlike the �4 gradient flow, this di↵erential equation has no analytic solution. There-

fore, we numerically solve for the gradient flow using a fourth-order Runge-Kutta

approximation (see Sec. 3.4).

3.1.1 Discretized Observables

Following the definitions in Sec. 2.3.1, we redefine the primary and secondary ob-

servables on the discretized lattice. Using the discretization definition in Eq. 3.6, we

24

express the average magnetization as

|�̄| ⌘ 1

L2

�����

L2X

i

�(xi)

����� . (3.11)

in the �
4 model and

|~̄e | ⌘ 1

L2

�����

L2X

i

~e(xi)

����� . (3.12)

in the NLSM, where L
2 = V/a

2.

We can also rewrite the expressions for the magnetic susceptibility, originally

defined in Eqs. 2.21 and 2.22. In the NLSM, the susceptibility becomes

�m = L
2

*
X

x

~e(x)

!2+
(3.13)

= L
2

*
X

x,y

~e(x) · ~e(y)
+
. (3.14)

Due to translational invariance from the periodic boundary conditions, we simplify

this expression to be

�m =

*
X

x

~e(0) · ~e(x)
+
. (3.15)

Following the same logic, we derive

�m =

*
X

x

�(0)�(x)

+
(3.16)

for the �
4 model.

The definitions for the internal energy, Binder cumulant and bimodality remain

unchanged on the lattice.

3.2 Defining the Topological Charge

On the lattice, the topological charge is nontrivial to calculate. Primarily, there

are multiple possible mappings between field configurations and the integers. In this

work, we use the definition found in [1]. To begin, we define a local topological charge

25

x1

x2 x3

x4

x
⇤

Figure 3.1: Visualization of plaquette x
⇤. The dotted line separates the plaquette

into two signed areas which are used to define the topological charge density q(x⇤).
Arrows represent order of signed area.

density q, defined for each square of adjacent lattice points. This square, known as a

plaquette, is denoted x
⇤. The global charge Q is the sum of all local charges:

Q ⌘
X

x⇤

q(x⇤). (3.17)

As a function of x⇤, the charge density is a function of the field on the plaquette

vertices, an idea visualized in Fig. 3.1. In the NLSM, the field at each of these

vertices is a point on the sphere S2. Therefore, there is a signed area A on the sphere

associated with each triplet of points, as shown in Fig. 3.2 (the sign changes with odd

permutations of the ordering). We follow the derivation in [1] and split the plaquette

into two triangles, as shown in Fig. 3.1, with the ordering determining the sign. The

topological charge density is defined using this signed area as

q(x⇤) =
1

4⇡

A

⇣
~e(x1),~e(x2),~e(x3)

⌘
+ A

⇣
~e(x1),~e(x3),~e(x4)

⌘�
. (3.18)

This value is defined if A 6= 0, 2⇡, or in other words, as long as the three points on the

sphere are distinct and do not form a hemisphere. In numerical calculations, these

26

points can be ignored. Therefore, we impose that the signed area is defined on the

smallest spherical triangle, or mathematically

� 2⇡ < A < 2⇡. (3.19)

Following [1], this yields an expression for the signed area

A(~e1,~e2,~e3) = 2 arg
⇣
1 + ~e1 · ~e2 + ~e2 · ~e3 + ~e3 · ~e1 + i~e1 · (~e2 ⇥ ~e3)

⌘
. (3.20)

Under periodic boundary conditions, these triangles on the sphere necessarily wrap

S
2 an integer number of times, ensuring Q is an integer. In the continuum limit, field

must be uniform at x ! 1 and therefore e↵ectively forms a sphere (see Sec. 2.4). In

~e(x1)~e(x2)

~e(x3)

A

Figure 3.2: Visualization of signed area A on the sphere S
2 traced out by field at

points x1, x2 and x3.

the NLSM described by Eq. 3.9, the values of Q are roughly Gaussian around Q = 0,

as shown in Fig. 3.3.

Following this quantity, we can define a topological susceptibility �t

�t ⌘
1

L2

⇣
hQ2i � hQi2

⌘
. (3.21)

In the trivial case, hQi is equal to 0 and

�t =
1

L2

X

x⇤,y⇤

hq(x⇤)q(y⇤)i. (3.22)

27

Figure 3.3: Histogram of topological charge values Q for trivial NLSM. L = 404,
10,000 measurements, measurements very 50 sweeps, 1,000 sweep thermalization,
⌧ = 0

Assuming periodic boundary conditions and therefore translational symmetry, this

expression simplifies to

�t =
1

L2

X

x⇤

hq(x⇤)q(0)i. (3.23)

On the lattice, this quantity is known to diverge in the continuum limit owing

solely to the x
⇤ = 0 term [2]. This divergence exists in QCD as well [10].

3.3 Monte Carlo Simulations

We implement a Markov Chain Monte Carlo method following Schaich’s thesis [22].

This implementation utilizes a “random walk,” i.e. a set of random steps through

phase space, to determine statistical values such as correlation functions across the

lattice. By the definition of the Markov chain, the probability of adoption of each

state, and therefore its inclusion in the Monte Carlo calculation, depends only on

the current state and the proposed state. This probability is denoted as P (�a ! �b)

where �a and �b are the existing and proposed lattice configurations respectively.

We begin this random walk with a so-called “hot start” where each field value at

28

each lattice site is randomly selected. As an alternative to the hot start, we could use

a “cold start” where the field begins completely aligned. With an appropriate ther-

malization, these initial configurations have no e↵ect on the Monte Carlo statistics,

a fact we verify in Sec. 3.3.4.

3.3.1 Metropolis Algorithm

We primarily use the Metropolis algorithm for the calculation of new Markov chain

configurations. The method begins with proposing a new value for a single lattice

point, which is accepted with a probability

P (�a ! �b) =

(
e
S[�a]�S[�b] S[�b] > S[�a]

1 otherwise
(3.24)

where �a is the initial configuration and �b is the proposed configuration. This process

is performed for each point on the lattice, making up a “sweep”. Repeating this sweep

multiple times pushes the lattice toward the action minimum.

3.3.2 Wol↵ Cluster Algorithm

Though the Metropolis algorithm will slowly find the absolute minimum of the theory,

the presence of local minima can greatly prolong the convergence. Both the �4 model

and the NLSM feature gradients of the field and therefore large regions of aligned

sites can cause metastable states. One method of removing these clusters involves

identifying all clusters on the lattice and probabilistically flipping each, a technique

known as the Swendsen-Wang algorithm [23].

A more e�cient approach is the Wol↵ algorithm [24], which grows one cluster

probabilistically and flips it unconditionally. In the case of �4 theory, this flipping

takes the form of a simple sign change. In the NLSM we choose a random unit vector

~r and consider the projection of the field on this vector. When the cluster flips,

each site is flipped along this direction. To identify the cluster, a recursive algorithm

29

adds new sites with a given probability, growing the cluster from a single randomly

selected “seed”. Starting with the seed, the probability of adding each neighboring

site is given by the source site x and the proposed site x0. Wol↵ defines this probability

for arbitrary sigma models as

Padd(~e(x),~e(x
0)) =

(
1� e

�2�[~r·~e(x)][~r·~e(x0)] sgn[~r · ~e(x)] = sgn[~r · ~e(x0)]

0 otherwise
(3.25)

This expression is designed to preserve the detailed balance equations. We can demon-

strate this quality, and motivate an equivalent expression for the �
4 model, by con-

sidering the probability P (� ! fC(�)) of flipping some cluster C. Generally,

P
�
� ! fC (�)

�
/

Y

hx,x0i2@C

h
1� Padd

�
~e(x),~e(x0)

�i
(3.26)

where @C is the set of pairs of sites on the boundary of C. Since Padd = 0 for unaligned

sites, these pairs contribute nothing to the value. We can also find the probability

P (fC(�) ! �) with the same expression:

P
�
fC(�) ! �

�
/

Y

hx,x0i2@C

h
1� Padd

�
R~e(x),~e(x0)

�i
, (3.27)

where the matrix R is the reflection matrix along the vector ~r.

From the discretized action of the NLSM model (Eq. 3.9) and the detailed balance

equation (Eq. 2.15), we derive

Y

hx,x0i2@C

1� Padd

�
~e(x),~e(x0)

�

1� Padd

�
R~e(x),~e(x0)

� = exp

8
<

:��

X

hx,x0i2@C

[~e(x)�R~e(x)] · ~e(x0)

9
=

; . (3.28)

Note that all the pairs within and outside the cluster cancel in the fraction on the

left and the di↵erence on the right. Using the definition of the reflection matrix

R~e = ~e� 2(~e · ~r)~e, (3.29)

we can simplify the equation to be

Y

hx,x0i2@C

1� Padd

�
~e(x),~e(x0)

�

1� Padd

�
R~e(x),~e(x0)

� =
Y

hx,x0i2@C

exp
�
� 2�[r · ~e(x)][r · ~e(x0)]

. (3.30)

30

By substituting Eq. 3.25 for Padd, it is clear to see this equation is satisfied.

Using this same reasoning, we can deduce an expression for Padd in the �4 model.

Since this model is one dimensional, the reflection matrix R is equivalent to �1.

Adapting the NLSM detailed balance equation for the � field, we find

Y

hx,x0i2@C

1� Padd

�
�(x),�(x0)

�

1� Padd

�
�(x),��(x0)

� =
Y

hx,x0i2@C

exp{�2�(x)�(x0)}. (3.31)

This equation is satisfied by the ansatz

Padd(�(x),�(x
0)) =

(
1� e

�2�(x)�(x0) sgn[�(x)] = sgn[�(x0)]

0 otherwise
. (3.32)

We use this expression in the computational implementation of this algorithm.

Fig. 3.4 shows a real demonstration of this process. We can see a large cluster

of negative field values becoming positive. Note that periodic boundary conditions

apply, so the small peninsula of black at the bottom is actually part of the larger

cluster. Furthermore, this visualization demonstrates the probabilistic nature of the

Wol↵ algorithm. Since states are added probabilistically, there are some small holes

in the cluster. These will be removed by following Metropolis sweeps.

(a) before cluster flip (b) after cluster flip

Figure 3.4: An example of the Wol↵ cluster algorithm in the �
4 model. White

represents positive values of � while black represents negative. � = 0.5, m2
0 = �0.9.

31

3.3.3 Checkerboard Algorithm

In order to parallelize the Metropolis algorithm, we use a checkerboard algorithm. We

begin by splitting the lattice into “white” sites and “black” sites, like the tiles on a

checkerboard. Since the Lagrangian density at each site does not depend on diagonal

neighbors, each white site is independent of every other white site and likewise for

black sites. Therefore, we can split the sites of each color into separate parallel

processing nodes and independently run the Metropolis algorithm, ensuring that no

site a↵ects the Lagrangian density at any other site. We use this method to parallelize

our program through the Message Passing Interface (MPI).

3.3.4 Thermalization

In order to determine the necessary thermalization, we plot the action as a function

of Metropolis sweeps in Fig. 3.5. Based on this plot, we determine that 1000 sweeps

(a) L = 24 (b) L = 404

Figure 3.5: Plots of the action as a function of Monte Carlo time, starting with a
random NLSM lattice.

will give su�cient time for the system to reach the classical action minimum. We use

this value for the remainder of this study.

We also compare the hot and cold starts by plotting a histogram of the actions in

32

Fig. 3.6. This plot qualitatively demonstrates the irrelevance of the initial configura-

tion.

Figure 3.6: Histogram of lattice-averaged actions S/L
2 with hot and cold starts.

1,000 sweep thermalization in L = 404 lattice, 1,000 measurements taken every 50
sweeps.

3.3.5 Autocorrelation

Due to the nature of the Markov chain, each member of the ensemble is correlated

to every other. Since each configuration is based on previous configurations, each

pair of members in the Markov chain has a correlation which decreases exponentially

based on the number of steps between. This value is known as the “autocorrelation”

and scales as e�t/⌧int where t is the number of steps between configurations and ⌧int

is the autocorrelation time.1 When performing simulations of the lattice, the number

of sweeps between measurements should be much larger than ⌧int since Monte Carlo

methods generally assume independent observations.

1Though it is called a time, ⌧int is in units of Markov Chain steps.

33

We use Wol↵’s automatic windowing procedure [25] and the magnetic suscepti-

bility �m to estimate the autocorrelation. Using Wol↵’s public MatLab code2, we

estimate the autocorrelation time for L = 24 and L = 404 lattices. This algorithm

identifies the optimal window size with which to calculate the autocorrelation time.

We perform this process on L = 24 and L = 404 lattices using a thermalization of

1000 sweeps and 500 total measurements. Note that this calculation includes a Wol↵

cluster algorithm every 5 sweeps. The result of this calculation is shown in Fig. 3.7.

(a) L = 24, ⌧int = 4.43 (b) L = 404, ⌧int = 12.81

Figure 3.7: Plots of automatic windowing procedure used to calculate ⌧int for the
NLSM model. W is summation window size.

Based on these two values for ⌧int, we decide to measure every 50 sweeps for each

simulation. This value will ensure that each measurement is e↵ectively independent.

3.4 Runge-Kutta Algorithm

In order to calculate the gradient flow in the NLSM, we numerically solve the ordinary

di↵erential equation in Eq. 3.10 using a fourth-order Runga-Kutta approximation.

This algorithm refines the Euler method

~e(⌧ + h, x) ⇡ ~e(⌧, x) + hf(~e(⌧, x))

2
https://www.physik.hu-berlin.de/de/com/ALPHAsoft

34

https://www.physik.hu-berlin.de/de/com/ALPHAsoft

where f(~e) is defined for convenience as

f(~e) = @⌧~e(⌧, x) =
�
1� ~e(⌧, x)~e(⌧, x)T

�
@
2
~e(⌧, x), (3.33)

following from Eq. 3.10. To the fourth order, this approximation becomes

k1 = hf (~e (⌧, x)) (3.34)

k2 = hf

✓
~e (⌧, x) +

k1

2

◆
(3.35)

k3 = hf

✓
~e (⌧, x) +

k2

2

◆
(3.36)

k4 = hf (~e (⌧, x) + k3) (3.37)

~e(⌧ + h, x) = ~e(⌧, x) +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5). (3.38)

This method is usually superior to Euler’s method and the midpoint method in ac-

curacy [26].

To increase the e�ciency of this algorithm, we implement the step-doubling algo-

rithm to adaptively adjust h. If the error of a Runge-Kutta step is greater than the

tolerance, the same step is repeated with half the step size. Alternatively, if the error

is less than half of the tolerance, the step size is doubled for the next calculation.

Finally, if the step size is greater than the distance to the next measurement, that

distance is used as the step size, using the normal value afterwards. Otherwise, the

algorithm proceeds with the consistent step size.

To calculate the error, we compare one lattice ~e1 produced using a step of size 2h

with another lattice ~e2 produced via two steps of size h. The error � can be estimated

to up the fifth order of h as [26]

� =
1

15

sX

x

|~e2(x)� ~e1(x)| (3.39)

The tolerance used in this work is �max = 0.01.

35

3.5 Topological Charge with a ✓-term

In Sec. 2.4, we discussed the introduction of a ✓ term into the action. This change

makes the theory “topological”, pushing hQi away from zero. In order to calculate

hQi as a function of Q, we consider the path integral

hQi✓ =
Z

D~e Q[~e]e�S[~e]+i✓Q[~e] (3.40)

=

Z
D~e

�
Q[~e]ei✓Q[~e]

�
e
�S[~e] (3.41)

= hQe
i✓Qi✓=0. (3.42)

Therefore, we can calculate hQi✓ for arbitrary ✓ using the same simulation framework

as the ✓ = 0 case.

We can also relate this function to the topological susceptibility. By expanding

the exponent as a Taylor series around ✓ = 0, we find that

hQi✓ = hQi✓=0 + i✓hQ2i✓=0 +O(✓2), (3.43)

such that

Im

@

@✓

���
✓=0

hQi✓
�
= hQ2i✓=0 (3.44)

= �tL
2
. (3.45)

Since �t diverges at ✓ = 0, we expect the plot of ImhQi✓ to approach a vertical line

in the in continuum limit. The numerical demonstration of this hypothesis is a goal

of this work.

36

Chapter 4

Results

Using the Monte Carlo procedure outlined in Sec. 3, we run statistical simulations on

the �
4 model and NLSM.

4.1 �
4
Results

We initially implement the �
4 model to verify the results of our system. According

to previous studies [11, 15, 22], the �
4 model exhibits a symmetric and broken phase

depending on its parametersm2
0 and �, transitioning atm2

0 = �0.72 when � = 0.5. We

verify this result by plotting four observables: the lattice average |h�̄i|, the magnetic

susceptibility �m, the Binder cumulant U and the bimodality B in Fig. 4.1. This

figure confirms a phase transition near m2
0 = �0.7 and supports the accuracy of our

model.

4.2 Non-linear Sigma Model Results

After confirming the phase transition in the �4 model, we turn to the NLSM. In order

to confirm the accuracy of the model, we compare results with existing literature. We

first consider the results of Berg & Lüscher [1], specifically the internal energy and

magnetic susceptibility.

37

Figure 4.1: The lattice average |h�̄i|, the magnetic susceptibility �m, the Binder
cumulant U and the bimodality B plotted as functions of m2

0. L = 64, � = 0.5.
The lattice was thermalized from a hot start for 1000 sweeps. Afterwards, 1000
measurements were taken with 50 sweeps between each. The red horizontal line
indicates U = 2/3, the broken phase limit of the Binder cumulant.

4.2.1 Comparison with Existing Literature

Following [1], we approximate the internal energy in the strong (� < 1) and weak

(� > 2) regimes as

E ⇡
(
4� 4y � 8y3 � 48

5 y
5

� < 1
2
� + 4

�2 + 0.156 1
�3 � > 2

(4.1)

where

y = coth� � 1

�
. (4.2)

We compare this analytical result and simulated values of �m with the Monte Carlo

simulation in Fig. 4.2. These two charts show a high degree of agreement with the

current literature however there is a slight discrepancy, prehaps arising from di↵erent

38

Figure 4.2: Comparison with [1]. First panel: internal energy compared with analytic
energy (Eq. 4.1). Second panel: magnetic susceptibility compared with literature
values.

Monte Carlo methods.

We also seek to confirm the results from Bietenholz et al. [2]. Specifically, we

show the topological susceptibility �t diverges in the continuum limit even at finite

flow time. Since �t is in units of inverse distance squared, we multiply by ⇠
2
2 , the

square of the second moment correlation length, to achieve a scale-invariant value

�t⇠
2
2 . Additionally, we use a parameter t0 to scale the flow time such that t0 ⇠ L

2.

39

In our Monte Carlo simulation, we utilize the same values as [2] for ⇠2, � and t0.

To begin the comparison, we plot �t⇠
2
2 as a function of flow time ⌧ , shown in

Fig. 4.3. We find that the flow time e↵ectively decreases the topological suscepti-

Figure 4.3: �tL
2 as a function of flow time ⌧ . Simulation run with 10,000 measure-

ments every 50 sweeps, 1,000 sweep thermalization.

bility by dampening high-momentum modes. To analyze the divergence of �t in the

continuum limit, we plot �t⇠
2
2 as a function of lattice size L. We perform this simu-

lation at flow times ⌧ = 0 and ⌧ = 5t0 (Fig. 4.4). We fit the data with two options:

a log fit

�t⇠
2
2 = alog(bL+ c) (4.3)

and a power law fit

�t⇠
2
2 = aL

b + c. (4.4)

We calculate the parameters to these functions using the curve fit tool in the scipy

Python package [27]. When ⌧ = 5t0, the data fits these functions with �
2
/DOF of 7.4

and 8.8 respectively, indicating errors were underestimated. Both of these functions

diverge as L ! 1, indicating that the topological susceptibility also diverges in the

continuum limit. Though there is a clear di↵erence between the quantitative fit from

40

(a) ⌧ = 0

(b) ⌧ = 5t0

Figure 4.4: �t⇠
2
2 as a function of L. We fit the data with both a logarithmic and

power fit. Simulation run with 10,000 measurements, once every 50 sweeps, 1,000
sweep thermalization. In the ⌧ = 0 case, we have compared our result with the curve
fit found in [2].

[2] and the fit calculated in this work, both demonstrate divergent behavior. This

result supports the inherent divergence of �t in the continuum limit.

41

4.2.2 Topological Charge when ✓ 6= 0

Following the method explained in Sec. 3.5, we calculate the imaginary part of hQi for

arbitrary ✓. We perform this calculation for three values of the flow time ⌧ , shown in

Fig 4.5. These plots demonstrate the divergence of the continuum limit in the ⌧ = 0

Figure 4.5: Imaginary part of hQi as a function of ✓. Simulation run with 10,000
measurements, measurements very 50 sweeps, 1,000 sweep thermalization. Note the
di↵erent scaling of the y-axis.

and the flowed regimes. In the ⌧ = 0 case, the slope increases sharply, reflecting the

rapid divergence of �t. However in the flowed regime, this divergence is much slower,

42

reflecting the decreased values of �t shown in Fig. 4.3.

4.3 Implications

Berg & Lüscher [1] originally illuminated this discrepancy between the renormal-

ization group hypothesis (that �t ! 0) and the numerical results, providing three

possible causes:

1. The definition of the topological charge does not scale to the continuum.

2. There are ultraviolet divergences.

3. There is no reasonable continuum limit.

Since the gradient flow suppresses ultraviolet fluctuations, the persistence of a diver-

gent topological susceptibility under the gradient flow undermines the second option,

thereby supporting the other two.

43

Chapter 5

Conclusion & Outlook

Using a Monte Carlo simulation, we have analyzed two main quantum field theories

in 1+1 spacetime dimensions: the �
4 model and the O(3) non-linear sigma model.

We used the path integral formulation of QFT to simulate these quantum fields as

statistical systems on a Euclidean lattice and extract information about the phase

transitions and topology. To perform these calculations, we run a series of Metropolis

sweeps interspersed with Wol↵ cluster steps, creating a Markov chain of samples. We

ensure that each measurement is e↵ectively independent by measuring the autocor-

relation and thermalize the lattice to keep all measurements near the action minima.

In the �4 model, we verified a phase transition at m2
0 = �0.7 using the magnitude

of the average magnetization, the magnetic susceptibility, the Binder cumulant and

the bimodality. This process verified the e↵ectiveness of the Monte Carlo computa-

tional system. We then generalized our system to the O(3) non-linear sigma model

and transitioned to a C++ code base. We confirmed our calculations with known

results by measuring the internal energy and magnetic susceptibility. We calculated

the topological susceptibility �t to analyze its divergence in the continuum limit,

confirming that this is indeed the case even at finite flow time. Specifically, the topo-

logical susceptibility under the gradient flow follows either a power law relationship

or a logarithmic relationship as a function of lattice size, both of which diverge as

44

L ! 1. At flow time ⌧ = 5t0, the �
2
/DOF goodness of fit values are of 8.8 and 7.4

respectively.

Finally, we demonstrated the relationship between the topological charge and the

✓ in the topological action. This plot demonstrates quantitatively the di↵erent rates

of divergence in the topological susceptibility. In the ⌧ = 0 case, we see the slope

rapidly approach positive infinity at ✓ = 0. While this transition occurs more slowly

with the application of the gradient flow, the slope continues to increase.

Though the logarithmic and power-law functions visually fit the susceptibility data

well, the �
2 values are high. This imprecision can be attributed to underestimated

errors. Since the ⌧ = 0 case features a more acceptable fit (�2
/DOF = 1.8 for

the power-law), the gradient flow seemingly contributes to this error. While the

Jackknife method accurately estimates statistical errors of the sample, we did not

incorporate any systematic errors arising from the gradient flow calculation. Future

work could reduce the tolerance of the adaptive step size algorithm to make this

calculation more accurate, though this change increases computational requirements

substantially. Furthermore, a larger number of lattice sizes may provide a more

complete picture of the continuum limit.

Procedurally, we found that the MPI parallelization and checkerboard algorithm

were unnecessary in this calculation. The computation time of the Runge-Kutta

algorithm for computing the gradient flow far outweighed that of the Monte Carlo

simulation. A possible improvement could be a parallelization of the Runge-Kutta

algorithm or a more accurate approximation to the gradient flow. Additionally, the

performance of the Python simulation was slower by up to two orders of magnitude.

Future studies should therefore rely solely on an e�cient programming language for

Monte Carlo techniques.

In the context of the long-standing question of topological suscpetibility in the

45

NLSM, this study has diminished the plausibility that ultraviolet fluctuations cause

the divergence. Instead, we are left to consider the other two options outlined in [1]:

that the definition of the topological charge density is problematic or that the NLSM

does not have a decent continuum limit. Future work could include similar numerical

calculations using a di↵erent definition of the topological charge.

Generally, this study has implications in both condensed matter and nuclear

physics. Though the calculation of the �t divergence confirms existing literature,

the relationship between the topological charge and ✓ in the flow time was previously

unexplored. Beyond the convergence of �t, this relationship has applications in con-

densed matter where di↵erent values of ✓ can describe spin-chains of either fermions

or bosons [28]. Furthermore, the mass gap has a strong relationship with the ✓-term

in the topological NLSM, featuring massive and massless regimes [12].

46

Appendix A

C++ NLSM Monte Carlo Program

A.1 sweep.h

#ifndef SWEEP_H
#define SWEEP_H
#include <vector >
#include <tuple >
#include <stack >
#include <unordered_set >
#include <limits >
#include <array >
#include <stdexcept >
#include <math.h>
#include <iomanip >
#include <ostream >
#include <memory >
#include <string >

#include "constants.h"
#include "mpi.h"
#include "phi.h"
#include "lattice.h"

using namespace std;

enum ClusterAlgorithm { NONE , WOLFF };
typedef int site;

class BaseObservable {
public:

virtual double operator ()(const Lattice2D& lat) const = 0;
virtual const string name() const = 0;
virtual ~BaseObservable () = default;

};

class Recorder {
vector <double > measurements;
vector <BaseObservable*> observables;
public:

Recorder(const vector <BaseObservable*> some_observables);
void reserve(size_t size);
int size();
void record(const Lattice2D& lat , double x);
void write(const string filename);

47

~Recorder ();
};

struct sweep_args {

int sweeps;
int thermalization;
int record_rate;
ClusterAlgorithm cluster_algorithm;
vector <double > ts;
int cluster_rate;
bool progress;

};

class Sweeper {
const int process_Rank;
const int size_Of_Cluster;
const int sites_per_node;

enum COLOR {
black ,
white

};

vector <vector <site >*> mpi_assignments;

private:
static int get_rank(MPI_Comm c) {

int rank;
MPI_Comm_rank(c, &rank);
return rank;

}
static int get_size(MPI_Comm c) {

int size;
MPI_Comm_size(c, &size);
return size;

}

auto static constexpr gif_filename = "lattice.gif";
const int gif_delay = 10;
vector <site > full_neighbors(site aSite);
Plaquette plaquette(site aSite);
vector <Phi > dphis;
Lattice2D flowed_lat;
Lattice2D prev_flowed_lat;
Lattice2D flowed_lat_2;
Lattice2D k1 , k2 , k3 , k4;

public:
const int DIM;
Lattice2D lat;

Sweeper ();
~Sweeper ();
Sweeper(int DIM , MPI_Comm c);

double full_action ();
void assert_action(double tol =0.001);
int wrap(site c);
double rand_dist(double r);
Phi new_value(Phi old_phi);
Phi proj_vec ();
Phi random_phi ();

48

void full_sweep(Recorder* recorder , const sweep_args& args);
double sweep(COLOR color);
void wolff();

void broadcast_lattice ();
void collect_changes(double dS, COLOR color);

double Padd(Phi dphi , Phi phi_b);
unordered_set <int > generate_cluster(int seed , Phi r, bool accept_all);

void runge_kutta(double t_, double h, Lattice2D& l, bool recycle_k1=false);
void flow(vector <double > ts , Recorder* recorder=nullptr);

};

double randf ();
int randint(int n);
Phi sign(Phi x);
double sign(double x);

#endif

A.2 sweep.cpp

#include <iostream >
#include <stdexcept >
#include "sweep.h"
#include <algorithm >
#include "gif.h"
#include "progress.cpp"
#include <assert.h>
#include <stdlib.h>
#include <math.h>
#include <fstream >

//#define VERIFY_ACTION
//#define GIF
//#define ACTIONFLOW
#define ADAPTIVESTEP

using namespace std;

Recorder :: Recorder(const vector <BaseObservable*> some_observables) {
observables = some_observables;

}

void Recorder :: record(const Lattice2D& lat , double x=0) {
measurements.push_back(x);
for (const BaseObservable* f : observables) {

measurements.push_back((*f)(lat));
};

}

void Recorder :: reserve(size_t size) {
return measurements.reserve ((observables.size()+1) * size);

}

int Recorder ::size() {
return measurements.size() / (observables.size() + 1);

}

void Recorder ::write(const string filename) {
ofstream outputfile;

49

outputfile.open(filename);
outputfile << "tau";
for (const auto* obs : observables) {

outputfile << "," << obs ->name();
}
outputfile << endl;

for (int i=0; i<measurements.size(); i++) {
if ((i+1)%(observables.size()+1) != 0) {

outputfile << measurements[i] << ",";
} else {

outputfile << measurements[i] << endl;
};

}
outputfile.close ();

}

Recorder ::~ Recorder () {
for (const BaseObservable* f : observables) {

delete f;
};

}

Sweeper :: Sweeper (int DIM , MPI_Comm c) :
process_Rank(get_rank(c)),
size_Of_Cluster(get_size(c)),
sites_per_node ((DIM*DIM)/2 / get_size(c)),
DIM{DIM}

{
// generate lattice
array <double , N> zero_array = {};
Phi zero_phi(zero_array);

dphis.resize(sites_per_node);

mpi_assignments.push_back(new vector <site >);
mpi_assignments.push_back(new vector <site >);

site s;
for (int i = 0; i<DIM; i++){

for (int j = 0; j<DIM; j++) {
s = i*DIM + j;
lat[s] = new_value(zero_phi);

lat.neighbor_map.push_back(full_neighbors(s));
lat.plaquette_map.push_back(plaquette(s));

// generate MPI assignments
if (s / (2* sites_per_node) == process_Rank) { // Factor of 2 for

,! checkerboard
if ((i+j)%2) {

mpi_assignments[COLOR :: black]->push_back(s);
} else {

mpi_assignments[COLOR :: white]->push_back(s);
}

}
}

}

lat.action = full_action ();
int offset = process_Rank * sites_per_node;

}

50

Sweeper ::~ Sweeper () {
delete mpi_assignments[COLOR :: black];
delete mpi_assignments[COLOR :: white];

}

void print(std:: vector <Phi > const &a) {
for(int i=0; i < a.size(); i++)
std::cout << a.at(i) << ’ ’;
cout << endl;

}

double Sweeper :: full_action () {
site s;
int i;
Phi forward_nphi_sum;
vector <site > neighbors;
double S = 0;
// initial action
for (int s=0; s<DIM*DIM; s++) {

neighbors = lat.neighbor_map[s];
forward_nphi_sum = lat[neighbors [2]] + lat[neighbors [3]];

S += lat.lagrangian(lat[s], forward_nphi_sum);
}
return S;

}

int Sweeper ::wrap(int c) {
int mod = c % DIM;
if (mod < 0) {

mod += DIM;
}
return mod;

}

vector <site > Sweeper :: full_neighbors(site aSite) {
int x = aSite % DIM;
int y = aSite / DIM;
vector <site > neighbors;
neighbors.push_back(wrap(x-1) + DIM * y);
neighbors.push_back(x + DIM * wrap(y-1));
neighbors.push_back(wrap(x+1) + DIM * y);
neighbors.push_back(x + DIM * wrap(y+1));
return neighbors;

}

Plaquette Sweeper :: plaquette(site aSite) {
int x = aSite % DIM;
int y = aSite / DIM;
return make_tuple(x + DIM * y,

wrap(x+1) + DIM * y,
wrap(x+1) + DIM * wrap(y+1),
x + DIM * wrap(y+1)

);
}

double Sweeper :: rand_dist(double r) {
return 3 * r - 1.5;

}

51

Phi Sweeper :: new_value(Phi old_phi) {
return random_phi ();

}

Phi Sweeper :: proj_vec () {
return Phi();

}

Phi Sweeper :: random_phi () {
Phi new_phi;
for (int i=0; i<N; i++) {

new_phi[i] = 2 * randf () - 1;
if (abs(new_phi[i]) > 1e+10) {

cout << "overflow" << endl;
exit (1);

}
}
return new_phi * (1/ sqrt(new_phi.norm_sq ()));

}

void write_gif_frame(Lattice2D& lat , GifWriter* gif_writer , int delay , double rate =3)
,! {
Phi aPhi;
auto DIM = lat.L;
vector <uint8_t > vec(4*DIM*DIM);

for (int i=0; i<DIM*DIM; i++) {
aPhi = lat[i];
for (int j=0; j<N; j++) {

vec [4*i + j] = static_cast <uint8_t >((aPhi[j]+1) *128);
}
vec [4*i + 3] = 255;

}
GifWriteFrame(gif_writer , vec.data(), DIM , DIM , delay);

}

void Sweeper :: assert_action(double tol) {
double fa = full_action ();
if (abs(fa -lat.action)>tol) {

cout << "ASSERT ACTION FAILED (" << lat.action << " != " << fa << ")\n";
exit (1);

} else {
cout << "assert action passed (" << lat.action << " == " << fa << ")\n";

}
}

void Sweeper :: full_sweep(Recorder* recorder , const sweep_args& args = sweep_args ()) {

shared_ptr <progress_bar > progress;
progress = args.progress ? make_shared <progress_bar >(cout , 70u, "Working") :

,! nullptr;

double dS;
Phi phibar;
double chi_m;

int s;

vector <uint8_t > white_vec(DIM*DIM *4 ,255);

52

double norm_factor = 1 / (double) (DIM*DIM);
#ifdef GIF

GifWriter gif_writer;
GifBegin (&gif_writer , gif_filename , DIM , DIM , gif_delay);
write_gif_frame(lat , &gif_writer , gif_delay);

#endif
COLOR colors [2] = {COLOR::white , COLOR :: black };
for (int i=0; i<args.sweeps; i++) {

for (const auto &color : colors) {
if (progress != nullptr) {

progress ->write ((double)i/args.sweeps);

}
broadcast_lattice ();

dS = sweep(color);
collect_changes(dS , color);

}

if (i%args.record_rate ==0 && i>=args.thermalization) {
flow(args.ts , recorder);
#ifdef GIF

write_gif_frame(lat , &gif_writer , gif_delay);
#endif

}

if (i%args.cluster_rate ==0 && args.cluster_algorithm == WOLFF) {
#ifdef GIF

write_gif_frame(lat , &gif_writer , gif_delay);
#endif
wolff();
#ifdef GIF

write_gif_frame(lat , &gif_writer , gif_delay);
#endif

}

}
#ifdef GIF

GifEnd (& gif_writer);
#endif

}

double Sweeper :: sweep(COLOR color){

double tot_dS = 0;
double dS , new_L , old_L , A, r;
Phi newphi , dphi , phi , backward_nphi_sum , forward_nphi_sum;
int i;
site s;
vector <site > neighbors;

array <double , N> zero_array = {};
Phi zero_phi(zero_array);

for (int i = 0; i<sites_per_node; i++){
s = mpi_assignments[color]->at(i);

phi = lat[s];

neighbors = lat.neighbor_map[s];

53

backward_nphi_sum = lat[neighbors [0]] + lat[neighbors [1]];
forward_nphi_sum = lat[neighbors [2]] + lat[neighbors [3]];

newphi = new_value(phi);

old_L = lat.lagrangian(phi , forward_nphi_sum);
new_L = lat.lagrangian(newphi , forward_nphi_sum);

dphi = newphi - phi;
dS = (new_L - old_L) - lat.beta * backward_nphi_sum * dphi;

A = exp(-dS);
r = randf();

if (dS < 0 || r <= A) {
dphis[i] = dphi;
tot_dS += dS;

} else {
dphis[i] = zero_phi;

}
}
return tot_dS;

}

double randf () {
return (double)rand() / RAND_MAX;

}

int randint(int n) {
return rand() % n;

}

double Sweeper ::Padd(Phi dphi , Phi phi_b){

double dS = -lat.beta * (dphi * phi_b);
return 1 - exp(-dS);

}

unordered_set <int > Sweeper :: generate_cluster(int seed , Phi r, bool accept_all) {
int s, c, i;
Phi phi_a , phi_b , dphi;

double cumsum_dS = 0;

double Padd_val;
stack <tuple <int , double >> to_test; // (site , previous r_proj)
unordered_set <int > cluster;

phi_a = lat[seed];

double r_proj_a = phi_a * r;
double r_proj_b;
double proj_sign = sign(r_proj_a);

to_test.push(make_tuple(seed , 0.)); // site and r_projection. r_projection is
,! overridden for seed

bool first = true;
while (to_test.size() >0) {

tie(s, r_proj_a) = to_test.top();
dphi = -2 * r_proj_a * r;
to_test.pop();

54

if (cluster.find(s)!= cluster.end()) {
continue;

}

phi_b = lat[s];
r_proj_b = phi_b * r;
if (sign(r_proj_b) == proj_sign) {

if (accept_all || first || randf() < Padd(dphi , phi_b)) {
cluster.insert(s);
for (const int n : lat.neighbor_map[s]){

to_test.push(make_tuple(n, r_proj_b));
}

}

}
if (first) first = !first;

}
return cluster;

}

void Sweeper :: wolff () {

int seed = randint(pow(DIM ,2));
unordered_set <int > cluster;
int neighbors [4];
int n, i, c;

Phi r = random_phi ();
cluster = generate_cluster(seed , r, false);

double dS = 0;
Phi phi , dphi;

for (const int c : cluster) {
phi = lat[c];
dphi = -2 * (phi * r) * r;
lat[c] = phi + dphi;
for (const int n : lat.neighbor_map[c]) {

dS -= lat.beta * (lat[n] * dphi);
}

}

lat.action +=dS;
#ifdef VERIFY_ACTION

assert_action ();
#endif

}

void Sweeper :: broadcast_lattice () {
if (size_Of_Cluster >1) {

const int raw_data_len = DIM*DIM*N;
double raw_data[raw_data_len];

if (process_Rank == MASTER) {
for (int i = 0; i < raw_data_len; i++) {

raw_data[i] = lat[i/N][i%N];
};

}

MPI_Bcast (&raw_data , raw_data_len , MPI_DOUBLE , MASTER , MPI_COMM_WORLD);
MPI_Bcast (&lat.action , 1, MPI_INT , MASTER , MPI_COMM_WORLD);

55

if (process_Rank != MASTER) {
for (int i = 0; i < raw_data_len; i++) {

lat[i/N] [i%N] = raw_data[i];
};

}
}

}

void Sweeper :: collect_changes(double dS, COLOR color){
const int recv_data_size = N*DIM*DIM /2;
double send_data[N*sites_per_node];

for (int i=0; i<sites_per_node; i++) {
for (int j = 0; j<N; j++) {

send_data[i*N+j] = dphis[i][j] ;
};

};

int recv_sites[DIM*DIM /2];
double recv_data[recv_data_size];
double recv_actions[size_Of_Cluster];

MPI_Gather(mpi_assignments[color]->data(), sites_per_node , MPI_INT , &recv_sites ,
,! sites_per_node , MPI_INT , MASTER , MPI_COMM_WORLD);

MPI_Gather (&send_data , N*sites_per_node , MPI_DOUBLE , &recv_data , N*sites_per_node
,! , MPI_DOUBLE , MASTER , MPI_COMM_WORLD);

MPI_Gather (&dS , 1, MPI_DOUBLE , &recv_actions , 1, MPI_DOUBLE , MASTER ,
,! MPI_COMM_WORLD);

if (process_Rank == MASTER) {
for (int i = 0; i<DIM*DIM /2; i++){

for (int j = 0; j<N; j++) {
lat[recv_sites[i]][j] += recv_data[i*N + j];

}
}

for (int i = 0; i<size_Of_Cluster; i++) {
lat.action += recv_actions[i];

}
}

}

Phi sign(Phi x){
Phi phi_sign;
phi_sign [0] = (x[0] > 0) - (x[0] < 0);
return phi_sign;

}

double sign(double x){
return (x>0) - (x<0);

}

inline void deriv(Lattice2D& f, double t, const Lattice2D& yn, double h, const
,! Lattice2D* k = nullptr) {

Phi neighbor_sum;
Phi dte;
Phi e;
double Pij;
double laplacianj;
int L = yn.L;

for (site s=0; s<L*L; s++) {

56

neighbor_sum.init_as_zero ();

if (k) {
e = yn[s] + k->at(s);
for (site n : f.neighbor_map[s])

neighbor_sum += yn[n] + k->at(n);
} else {

e = yn[s];
for (site n : f.neighbor_map[s])

neighbor_sum += yn[n];
}

for (int i=0; i<N; i++) {
dte[i] = 0;
for (int j=0; j<N; j++) {

Pij = (i==j) - e[i] * e[j];
laplacianj = neighbor_sum[j] - 2*D*e[j];
dte[i] += Pij * laplacianj;

}
}

f[s] = h*dte;
}

}

void Sweeper :: runge_kutta(double t_, double h, Lattice2D& l, bool recycle_k1) {

// Runge Kutta (see http ://www.foo.be/docs -free/Numerical_Recipe_In_C/c16 -1.
,! pdf)

// Slight changes for efficency:
// - deriv(t, y, h, k) := h * f(t, y + k);
// - k1 => k1/2; k2 => k2/2

if (t_ >0) {
if (recycle_k1) {

k1 /= 2;
} else {

deriv(k1, t_, l, h/2);
}
deriv(k2, t_+h/2, l, h/2, &k1);
deriv(k3, t_+h/2, l, h, &k2);
deriv(k4, t_+h, l, h, &k3);

k1 /= 3;
k4 /= 6;

l += k1;
l += k2;
l += k3;
l += k4;

// Normalize phi
for (Phi& phi : l) {

phi /= sqrt(phi.norm_sq ());
}

}
}

void Sweeper ::flow(vector <double > ts , Recorder* recorder) {
// ts must be in ascending order
double h = 0.01; // aka dt
double t_ = 0;
double chi_m;
double S;

57

double error;

auto measurement_iter = ts.begin ();
double measurement_t = *measurement_iter;

flowed_lat = lat;

const auto gif_filename = "flow.gif";
const int gif_delay = 10;

#ifdef GIF
GifWriter gif_writer;
GifBegin (&gif_writer , gif_filename , DIM , DIM , gif_delay);

#endif

#ifdef GIF
int counter = 0;

#endif

bool rerun=false;

while (true) {

if (t_ + h > measurement_t) {
runge_kutta(t_ , measurement_t -t_, flowed_lat);
recorder ->record(flowed_lat , measurement_t);
t_ = measurement_t;

measurement_iter ++;
if (measurement_iter == ts.end()) break;
measurement_t = *(measurement_iter);

} else {
#ifdef ADAPTIVESTEP

if (!rerun){
prev_flowed_lat = flowed_lat;
flowed_lat_2 = flowed_lat;
runge_kutta(t_ , h, flowed_lat);

} else {
flowed_lat = flowed_lat_2;

}

runge_kutta(t_ , h/2, flowed_lat_2 , true);
runge_kutta(t_+h/2, h/2, flowed_lat_2);

error = 0;
for (site i=0; i<flowed_lat.size(); i++) {

error += (flowed_lat[i] - flowed_lat_2[i]).norm_sq ();
}

error = sqrt(error)/15;
if (error >MAXERROR) {

rerun=true;
h /= 2;

} else if (error <MAXERROR /2) {
rerun=false;
h *=2;
t_ += h;

} else {
rerun=false;
t_ += h;

}

#else
runge_kutta(t_ , h, flowed_lat);
t_ += h;

58

#endif
}

#ifdef ACTIONFLOW
flowed_lat.action = flowed_lat.full_action ();

#endif

#ifdef GIF
if (counter % 10 == 0) write_gif_frame(flowed_lat , &gif_writer , gif_delay

,!);
counter ++;

#endif
}

#ifdef GIF
GifEnd (& gif_writer);
system("gifsicle --colors 256 --resize 512 x512 flow.gif -o flow.gif");

#endif
}

A.3 lattice.h

#ifndef LATTICE_H
#define LATTICE_H

#include "phi.h"
#include <vector >
#include <tuple >

typedef tuple <int ,int ,int ,int > Plaquette;

using namespace std;

class Lattice2D {
typedef vector <Phi > datatype;
datatype data;
public:

static int L;
static double beta;
static vector <vector <int >> neighbor_map;
static vector <Plaquette > plaquette_map;
double action;

vector <Phi > vec() const;
size_t size() const;

Lattice2D ();
Lattice2D(const Lattice2D& other);

Phi operator [] (int i) const;
Phi& operator [] (int i);
Phi at(int i) const;

Lattice2D& operator +=(const Lattice2D& other);
Lattice2D& operator *=(const double & factor);
Lattice2D& operator /=(const double & factor);
Lattice2D operator+ (const Lattice2D & other) const;

// Iterators
typedef datatype :: iterator iterator;
typedef datatype :: const_iterator const_iterator;

59

iterator begin ();
const_iterator cbegin () const;
iterator end();
const_iterator cend() const;

static double lagrangian(const Phi phi , const Phi nphi_sum);
double full_action ();

};
#endif

A.4 lattice.cpp

#include <iostream >
#include "lattice.h"
#include <algorithm >

using namespace std;

int Lattice2D ::L;
double Lattice2D ::beta;

vector <vector <int >> Lattice2D :: neighbor_map;
vector <Plaquette > Lattice2D :: plaquette_map;

Lattice2D :: Lattice2D () {
data.resize(L*L);

}

Lattice2D :: Lattice2D(const Lattice2D& other) {
data = other.vec();
action = other.action;

}

vector <Phi > Lattice2D ::vec() const { return data; }
size_t Lattice2D ::size() const { return data.size(); }

Phi Lattice2D :: operator [] (int i) const { return data[i]; };
Phi& Lattice2D :: operator [] (int i) { return data[i]; };
Phi Lattice2D ::at(int i) const { return data.at(i); };

Lattice2D& Lattice2D :: operator +=(const Lattice2D& other) {
auto iter = other.cbegin ();
for_each(data.begin(), data.end(), [&iter](Phi &phi){phi += *(iter ++); });
return *this;

};

Lattice2D& Lattice2D :: operator *=(const double & factor) {
for_each(data.begin(), data.end(), [factor](Phi &phi){phi *= factor; });
return *this;

};

Lattice2D& Lattice2D :: operator /=(const double & factor) {
for_each(data.begin(), data.end(), [factor](Phi &phi){phi /= factor; });
return *this;

};

Lattice2D Lattice2D :: operator+ (const Lattice2D & other) const {
Lattice2D new_lat (*this);
new_lat += other;
return new_lat;

};

60

Lattice2D :: iterator Lattice2D ::begin() { return data.begin (); }
Lattice2D :: const_iterator Lattice2D :: cbegin () const { return data.cbegin (); }
Lattice2D :: iterator Lattice2D ::end() { return data.end(); }
Lattice2D :: const_iterator Lattice2D ::cend() const { return data.cend(); }

double Lattice2D :: full_action () {
int site , i;
Phi forward_nphi_sum;
vector <int > neighbors;
double S = 0;
// initial action
for (int s=0; s<L*L; s++) {

neighbors = neighbor_map[s];
forward_nphi_sum = data[neighbors [2]] + data[neighbors [3]];
S += lagrangian(data[s], forward_nphi_sum);

}

return S;

}

double Lattice2D :: lagrangian(const Phi phi , const Phi nphi_sum) {
return beta * (D - phi * nphi_sum); // note that the sum over dimension has

,! already been made
}

A.5 phi.h

#ifndef PHI_H // include guard
#define PHI_H

#include "constants.h"
#include <array >
#include <ostream >

using namespace std;

class Phi {
array <double , N> phi;

public:
Phi();
Phi(array <double , N> phi);
void init_as_zero ();
double norm_sq () const;
Phi& operator +=(const Phi& other);
Phi& operator *=(const double & a);
Phi& operator &=(const double & a);
Phi& operator /=(const double & a);

Phi operator+ (const Phi & phi) const;
Phi operator - (const Phi & phi) const;
Phi operator - () const;
double operator* (const Phi & phi) const; // Dot product
Phi operator& (const Phi & phi) const; // Cross product
Phi operator* (const double & a) const;
friend ostream& operator << (ostream& os , const Phi & aPhi);
double operator [] (int i) const;

61

double& operator [] (int i);
bool operator == (const Phi & phi) const;

};

Phi operator *(double a, const Phi& b);

#endif

A.6 phi.cpp

#include "phi.h"

using namespace std;

Phi::Phi() {};

Phi::Phi(array <double , N> phi){
this ->phi = phi;

};

void Phi:: init_as_zero (){
phi = {0,0,0};

}

double Phi:: norm_sq () const {
double cumsum = 0;
for (int i=0; i<N; i++) {

cumsum += phi[i] * phi[i];
}
return cumsum;

}

Phi& Phi:: operator +=(const Phi& other) {
for (int i=0; i<N; i++) {

phi[i] += other[i];
}
return *this;

}

Phi& Phi:: operator *=(const double & a) {
for (int i=0; i<N; i++) {

phi[i] *= a;
}
return *this;

}

Phi& Phi:: operator /=(const double & a) {
for (int i=0; i<N; i++) {

phi[i] /= a;
}
return *this;

}

Phi Phi:: operator+ (const Phi & aPhi) const {
Phi new_phi(phi);
new_phi += aPhi;
return new_phi;

}

Phi Phi::operator - (const Phi & aPhi) const {
return *this + (-aPhi);

62

}
Phi Phi::operator - () const {

Phi new_phi;
for (int i=0; i<N; i++) {

new_phi[i] = -phi[i];
}
return new_phi;

}

Phi Phi:: operator& (const Phi & other) const {
Phi new_phi;
new_phi [0] = phi [1] * other [2] - phi [2] * other [1];
new_phi [1] = phi [2] * other [0] - phi [0] * other [2];
new_phi [2] = phi [0] * other [1] - phi [1] * other [0];
return new_phi;

}

double Phi:: operator* (const Phi & aPhi) const{
//dot product
double dot = 0;
for (int i=0; i<N; i++) {

dot += phi[i] * aPhi[i];
}
return dot;

}

Phi Phi:: operator* (const double & a) const{
Phi new_phi(phi);
new_phi *= a;
return new_phi;

}

ostream& operator <<(ostream& os, const Phi & aPhi)
{

os << "(";
for (int i=0; i<N; i++) {

os << aPhi[i];
if (i<N-1) { os<<", "; }

}
os << ")";
return os;

}

double Phi:: operator [] (int i) const {
return phi[i];

}
double & Phi:: operator [] (int i) {

return phi[i];
}

bool Phi:: operator == (const Phi & aPhi) const {
for (int i=0; i<N; i++) {

if (phi[i] != aPhi[i]) {
return false;

}
}
return true;

}

Phi operator *(double a, const Phi& b)
{

return b*a;
}

63

A.7 observables.h

#include <math.h>
#include <string >

namespace observables {

class action : public BaseObservable {
public:

double operator ()(const Lattice2D& lat) const {
return lat.action;

};
const string name() const { return "S"; };

};

class beta : public BaseObservable {
public:

double operator ()(const Lattice2D& lat) const {
return lat.beta;

};
const string name() const { return "beta"; };

};

class L : public BaseObservable {
public:

double operator ()(const Lattice2D& lat) const {
return lat.L;

};
const string name() const { return "L"; };

};

class chi_m : public BaseObservable {
public:

double operator ()(const Lattice2D& lat) const {
double val = 0;

for (auto itx = lat.cbegin (); itx!=lat.cend(); ++itx) {
for (auto ity = lat.cbegin (); ity!=lat.cend(); ++ity) {

val += (*itx)*(* ity);
}

}
return val;

};
const string name() const { return "chi_m"; };

};

class F : public BaseObservable {
public:

double operator ()(const Lattice2D& lat) const {
double val = 0;

int x=0;
int y=0;
const double two_pi_L = 2*M_PI*lat.L;

//for (const Phi& phi : as_const(lat)) {
for (auto itx = lat.cbegin (); itx!=lat.cend(); ++itx) {

for (auto ity = lat.cbegin (); ity!=lat.cend(); ++ity) {
val += (*itx)*(* ity) * cos(two_pi_L * (x - y));
x++;
if (x==lat.L) x=0; // This ensures that x is the Euclidean

,! space dimension

64

}
if (y==lat.L) y=0;

}
return val;

};
const string name() const { return "F"; };

};

class Q : public BaseObservable {
private:

double angle(double re, double im) const {
double arctan = atan(im / re);
if (re > 0) {

return arctan;
} else if (im > 0) {

return M_PI + arctan;
} else {

return (-M_PI + arctan);
}

}
double sigma_A(Phi s1 , Phi s2 , Phi s3) const {

// Returns values (-2pi ,2pi)
double real_part = 1 + s1 * s2 + s2 * s3 + s3 * s1;
double imag_part = s1 * (s2 & s3);
return 2* angle(real_part , imag_part);

}

double q(int x, const Lattice2D& lat , bool reversed=false) const {
int x1 , x2 , x3, x4;
tie(x1 , x2, x3 , x4) = lat.plaquette_map[x];
Phi s1 = lat[x1], s2 = lat[x2], s3 = lat[x3], s4 = lat[x4];
if (reversed) {

return sigma_A(s1 ,s2 ,s4) + sigma_A(s2 ,s3 ,s4);
} else {

return sigma_A(s1 ,s2 ,s3) + sigma_A(s1 ,s3 ,s4);
}

}
public:

double operator ()(const Lattice2D& lat) const{
double Q = 0;
for (int i=0; i<lat.L*lat.L; i++) {

Q += q(i, lat);
}
Q /= (4 * M_PI);
return Q;

};
const string name() const { return "Q"; };

};

};

A.8 constants.h

#define N 3
#define MASTER 0
#define PROG_CHAR "#"
#define D 2
#define MAXERROR 0.01

65

References

[1] B. Berg and M. Lüscher, “Definition and statistical distributions of a topological
number in the lattice O(3) �-model”, Nuclear Physics B 190, 412–424 (1981).

[2] W. Bietenholz et al., “Topological Susceptibility of the 2d O(3) Model under
Gradient Flow”, Phys. Rev. D 98, 114501 (2018).

[3] B. Odom et al., “New measurement of the electron magnetic moment using a
one-electron quantum cyclotron”, Phys. Rev. Lett. 97, 030801 (2006).

[4] C. Callan et al., “Strings in background fields”, Nuclear Physics B 262, 593–609
(1985).

[5] A. Polyakov, “Interaction of goldstone particles in two dimensions. Applications
to ferromagnets and massive Yang-Mills fields”, Physics Letters B 59, 79–81
(1975).

[6] P. Goddard and P. Mansfield, “Topological structures in field theories”, Rep.
Prog. Phys. 49, 725–781 (1986).

[7] A. Y. Kitaev, “Quantum computations: algorithms and error correction”, Russ.
Math. Surv. 52, 1191–1249 (1997).

[8] K. G. Wilson, “Confinement of quarks”, Phys. Rev. D 10, 2445–2459 (1974).

[9] L. Giusti, G. Rossi, and M. Testa, “Topological susceptibility in full QCD with
Ginsparg–Wilson fermions”, Physics Letters B 587, 157–166 (2004).

[10] M. Bruno et al., “Topological susceptibility and the sampling of field space in
Nf = 2 lattice QCD simulations”, Journal of High Energy Physics 2014, 150
(2014).

[11] C. Monahan, “The gradient flow in simple field theories”, in Proceedings of The
33rd International Symposium on Lattice Field Theory — PoS(LATTICE 2015)
(July 15, 2016), p. 052.

[12] B. Alles Salom and A. Papa, “Numerical Study of the mass spectrum in the 2D
O(3) sigma model with a theta term”, in Proceedings of The XXV International
Symposium on Lattice Field Theory — PoS(LATTICE 2007) (Mar. 21, 2008),
p. 287.

[13] A. Zee, Quantum field theory in a nutshell, Vol. 7 (Princeton University Press,
2010).

66

https://doi.org/10.1103/PhysRevD.98.114501
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1088/0034-4885/49/7/001
https://doi.org/10.1088/0034-4885/49/7/001
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/j.physletb.2004.03.010
https://doi.org/10.1007/JHEP08(2014)150
https://doi.org/10.1007/JHEP08(2014)150
https://doi.org/10.22323/1.251.0052
https://doi.org/10.22323/1.251.0052
https://doi.org/10.22323/1.042.0287
https://doi.org/10.22323/1.042.0287

[14] R. P. Feynman, R. B. Leighton, and M. L. Sands, “The Principle of Least
Action”, in The Feynman Lectures on Physics , Vol. II, World Student Series
(Addison-Wesley Pub. Co., Reading, Mass., 1963).

[15] S.-J. Chang, “Existence of a second-order phase transition in a two-dimensional
'
4 field theory”, Phys. Rev. D 13, 2778–2788 (1976).

[16] K. Binder, “Finite size scaling analysis of ising model block distribution func-
tions”, Zeitschrift für Physik B Condensed Matter 43, 119–140 (1981).

[17] D. P. Landau and K. Binder, A guide to monte carlo simulations in statistical
physics (Cambridge University Press, Cambridge, 2000).

[18] S. Solbrig et al., “Quantitative comparison of filtering methods in lattice QCD”,
PoS LATTICE 2007, 334 (2008).

[19] C. Monahan and K. Orginos, “Locally smeared operator product expansions in
scalar field theory”, Phys. Rev. D 91, 074513 (2015).

[20] M. Lüscher, “Chiral symmetry and the Yang–Mills gradient flow”, J. High En-
erg. Phys. 2013, 123 (2013).

[21] H. Makino and H. Suzuki, “Renormalizability of the gradient flow in the 2D
O(N) non-linear sigma model”, Progress of Theoretical and Experimental Physics
2015, 33B08– (2015).

[22] D. A. Schaich andW. Loinaz, “Lattice Simulations of Nonperturbative Quantum
Field Theories”, Senior Thesis (unpublished) (Amherst College, May 12, 2006).

[23] R. H. Swendsen and J.-S. Wang, “Nonuniversal critical dynamics in Monte Carlo
simulations”, Phys. Rev. Lett. 58, 86–88 (1987).

[24] U. Wol↵, “Collective monte carlo updating for spin systems”, Phys. Rev. Lett.
62, 361–364 (1989).

[25] U. Wol↵, “Monte Carlo errors with less errors”, Computer Physics Communi-
cations 176, 383 (2007).

[26] W. T. Vetterling et al., Numerical recipes: Example book C (Cambridge Univer-
sity Press, 1992).

[27] P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific computing
in python”, Nature Methods 17, 261–272 (2020).

[28] M. Bögli et al., “Non-trivial ✓-vacuum e↵ects in the 2-d O(3) model”, J. High
Energ. Phys. 2012, 117 (2012).

67

http://www.feynmanlectures.caltech.edu/
https://doi.org/10.1103/PhysRevD.13.2778
https://doi.org/10.1007/BF01293604
https://doi.org/10.22323/1.042.0334
https://doi.org/10.1103/PhysRevD.91.074513
https://doi.org/10.1007/JHEP04(2013)123
https://doi.org/10.1007/JHEP04(2013)123
https://doi.org/10.1093/ptep/ptv028
https://doi.org/10.1093/ptep/ptv028
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1016/j.cpc.2006.12.001
https://doi.org/10.1016/j.cpc.2006.12.001
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/JHEP04(2012)117
https://doi.org/10.1007/JHEP04(2012)117

	Topology of the O(3) non-linear sigma model under the gradient flow
	Recommended Citation

	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	Introduction
	Method Overview
	Summer Research
	Conventions

	Theory
	Quantum Field Theory
	Path Integral Formulation
	4 Model
	Non-linear Sigma Model

	Markov Chain Monte Carlo
	The Markov Chain

	Observables
	Primary Observables
	Secondary Observables
	Bimodality
	Jackknife Method

	Topological Observables
	NLSM term

	Ultraviolet Divergences
	Regularization
	Renormalization
	The Gradient Flow

	Methods
	Fields on the Lattice
	Discretized Observables

	Defining the Topological Charge
	Monte Carlo Simulations
	Metropolis Algorithm
	Wolff Cluster Algorithm
	Checkerboard Algorithm
	Thermalization
	Autocorrelation

	Runge-Kutta Algorithm
	Topological Charge with a -term

	Results
	4 Results
	Non-linear Sigma Model Results
	Comparison with Existing Literature
	Topological Charge when =0

	Implications

	Conclusion & Outlook
	C++ NLSM Monte Carlo Program
	sweep.h
	sweep.cpp
	lattice.h
	lattice.cpp
	phi.h
	phi.cpp
	observables.h
	constants.h

	References

