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Abstract
We model recruitment in adaptive social networks in the presence of birth and
death processes. Recruitment is characterized by nodes changing their status
to that of the recruiting class as a result of contact with recruiting nodes.
Only a susceptible subset of nodes can be recruited. The recruiting individuals
may adapt their connections in order to improve recruitment capabilities, thus
changing the network structure adaptively. We derive a mean-field theory to
predict the dependence of the growth threshold of the recruiting class on the
adaptation parameter. Furthermore, we investigate the effect of adaptation
on the recruitment level, as well as on network topology. The theoretical
predictions are compared with direct simulations of the full system. We
identify two parameter regimes with qualitatively different bifurcation diagrams
depending on whether nodes become susceptible frequently (multiple times in
their lifetime) or rarely (much less than once per lifetime).

PACS numbers: 87.10.Mn, 05.10.Gg

(Some figures may appear in colour only in the online journal)

1. Introduction

Any society contains individuals who are carriers of an ideology or fad (e.g., a religious or
political party affiliation) that they desire to spread to the rest of the society. Thus, for a given
ideology, a society can be partitioned into a set of people that represent the ideology and want
to spread it, and the complement of this set. For example, the ideology could correspond to the
views of a particular political party, with the party members desiring to recruit new members
to improve their positions in the government. Other areas of recruitment have been proposed
as mechanisms for fads which appear as a rapid rise above some threshold, as in music [1],
management technologies [2], economics [3], and even science [4]. Slower recruitment based
on social networks has been postulated in biology [5] and the spread of alcoholism [6]. Slowing
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the rise of a fad or eliminating the spread of an ideology has been also been proposed through
the control of critical nodes in a social network [7].

In today’s world where collisions between ideologies can lead to radicalization of society,
the problem of existence and formation of terrorist networks or insurgency movements
becomes important. Recently, mathematical modeling of various radical groups, such as
terrorist organizations, has been done to explore their structure and dynamics [8–11]. In
addition to dynamical approaches that measure rates of attacks of radical groups [12],
operations research theories have also been applied to the formation of radical groups [13].
Another class of works [14–16] focuses on the recruitment dynamics of terrorists within
a well-mixed population using compartmental models similar to those used for epidemic
spread. In [16]3, a systematic analysis of recruitment to Hezbollah has been done. Data
from a political science discipline is used to generate a compartmental model of recruitment.
Although the modeling is deterministic, it considers the various parameters which explicitly
affect the success of recruitment to the radical’s cause. Finally, a number of recent publications
discuss terrorist networks as optimal structures that optimize communication efficiency while
balancing the secrecy of the networks [17–19].

Not considered previously is the combination of the spread of radical ideas plus adaptive
changes in social connections to improve recruitment success to the radical cause. Some work
in this direction is presented in the papers studying voter models in which individuals make
connections to influence others’ opinions [20–22], as well as opinion dynamics models in
which individuals are influenced by neighbors’ opinions [23].

We develop a simple model of a society in which some of the members belong to a
class that tries to spread an ideology. The ideology spreads as a result of contact of recruiting
members with nonrecruiting members. The recruiting members may improve their chances to
recruit via network adaptation. The purpose of the adaptation proposed here is to improve the
spread of the ideology, which is in contrast to network adaptation in epidemiological models
[24, 25] where the purpose is avoidance of contact with the spreading members. In addition
to adaptation, the connectivity within the society changes due to birth of new members and
death of existing members. Using this model, we explore how the existence of stable recruiting
classes depends on the adaptation and other parameters. We also consider the network topology
of the recruiting class, as it may be important in assessing the quality of the communication
channels in the resulting structure. Section 2 presents the model and a system of mean-field
equations describing its dynamics. Section 3 presents mean-field analysis of the threshold
for successful recruiting and its dependence on the network adaptation. These results are
compared with simulations of the full system, and the network geometry of the recruiting class
is considered. Section 4 concludes.

2. Modeling the dynamics of recruitment

2.1. Model

We consider a social structure consisting of M individuals represented by nodes in a network.
An existing relation between any two individuals is represented by a link between the two
nodes. New individuals join the society at a constant total rate μ, and the individuals in the
network can leave the network via death at rate δ per individual. When new individuals join
the system, they arrive with σ links, which are connected to σ randomly selected nodes in the
population. When individuals die, their links are removed.

3 Contains many good references for recruitment, both stochastic and deterministic.
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Figure 1. Schematic representation of node fluxes in and out of the network due to birth and death,
described by the rates μ and δ respectively. Fluxes between the three classes are described by the
transition rates λ1, λ2 and γ . Link rewiring (not shown here) takes place at rate w. New nodes are
generated with σ links to existing nodes.

Some members of the society, recruiters (also referred to as R-nodes), are carriers of an
ideology that they try to spread to the individuals they come into contact with. The individuals
that do not belong to the recruiting class are divided into two groups: those who are susceptible
to the recruitment (S-nodes) and those who are non-susceptible (N-nodes). We assume that
individuals can spontaneously change their state from non-susceptible to susceptible and vice
versa (with rates λ1 and λ2 respectively). An individual in the recruiting class remains in that
class until death [14].

A susceptible individual joins the recruiting class at a rate that is proportional (with
proportionality constant γ ) to the number of contacts it has with the recruiting class. In order
to improve their recruiting capabilities, the recruiting individuals can rewire their links with
rate w, abandoning any connection to a non-susceptible individual in favor of a connection to
a susceptible one that is randomly selected from the susceptible population. As the links are
rewired, the network topology changes based on the current states of its nodes. A schematic
representation of the node dynamics is shown on figure 1.

We perform Monte Carlo simulations of the above system following the continuous time
algorithm described in [26]. We start with an Erdos–Renyi random network, which then
evolves according to the rules of birth, death and rewiring. The results presented in the rest of
the paper are for the systems that have reached a steady state.

2.2. Mean field

To describe the dynamics of this system, we construct a mean-field model for nodes and links
(also referred to as a pair approximation) as in [24]. The time evolution of the nodes of each
type is described by the following rate equations:

∂tNN = μ − λ1NN + λ2NS − δNN (1a)

∂tNS = λ1NN − λ2NS − γNRS − δNS (1b)

∂tNR = γNRS − δNR, (1c)

Here the functions NN ≡ NN(t), NS ≡ NS(t), NR ≡ NR(t) represent the number of
nodes of each type. The process of recruitment is captured by the γNRS term, where the
recruitment is shown to take place at a rate proportional to the number of links between the
recruiting class and the susceptible class, NRS.

In order to capture the rewiring process, we follow the evolution of the number of different
types of links present in the network:

∂tNNN = λ2NSN + σμ
NN

NN + NS + NR
− 2(λ1 + δ)NNN (2a)

3
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∂tNSN = σμ
NS

NN + NS + NR
− γNNSR + 2λ2NSS − (λ1 + λ2 + 2δ)NSN + 2λ1NNN (2b)

∂tNSS = −γNSSR + λ1NSN − 2(λ2 + δ)NSS (2c)

∂tNRN = γNNSR + σμ
NR

NN + NS + NR
− (λ1 + 2δ + w)NRN + λ2NRS (2d)

∂tNRS = −γNRSR + γNSSR − (λ2 + 2δ)NRS + (λ1 + w)NRN (2e)

∂tNRR = γNRSR − 2δNRR, (2f)

where the terms Nxy correspond to the number of links connecting nodes from classes x and y,
e.g., NNN corresponds to the number of NN links. The terms proportional to σμ correspond
to the influx of edges due to the birth of new nodes, where the probability for the new node to
attach itself to a node from class X is proportional to the number of nodes in that class. The third
order terms, NNSR, NSSR and NRSR, describe the formation of triples of nodes with an S-node
at the center, and at least one of the edges terminating at an R-node. These terms describe the
rate at which NS-, SS- and RS-links become NR-, SR- and RR- links respectively, due to the
interaction of the central S-node with its neighboring R-node. Note that our definition of RSR
triples includes degenerate triples, i.e., RSR triples where both of the R-nodes correspond to
a single R-node, by analogy with degenerate triangles.

The resulting system of equations is not closed, as it contains higher order terms. Following
earlier works in epidemiology [27], we introduce the closure based on the assumption of
homogeneous distribution of R-nodes in the neighborhood of S-nodes:

NNSR = NRS

NS

NSN

NS
NS, (3a)

NSSR = NRS

NS

2NSS

NS
NS. (3b)

For example, the number of NSR triples is assumed to be the product of the number of S-nodes,
the average number of N neighbors of an S-node, and the average number of R neighbors of an
S-node. With an additional assumption that the total degree distribution of S-nodes, PS(d), is
given by the Poisson distribution, we conclude that the number of R-nodes in the neighborhood
of S-nodes is also Poisson. That is, the homogeneity assumption corresponds to the binomial
distribution of the number of R-nodes in the neighborhood of an S-node with total degree d,
and, therefore, the probability that k R-nodes are in the neighborhood of an S-node is given by∑

d

PS(d)B(d, p) =
∑

d

e−ψψd

d!

(
n

k

)
φk(1 − φ)n−k = e−φψ (φψ)k

k!
, (3c)

where ψ = (NSN + 2NSS + NRS)/NS is the mean degree of S-nodes and φ = NRS/(NSN +
2NSS +NRS) is the probability that a randomly chosen neighbor of S-node is an R-node. Thus,
the closure of NRSR/NS follows from the relation between first moment, NRS/NS, and second
moment, NRSR/NS, of the Poisson distribution:

NRSR =
((NRS

NS

)2

+ NRS

NS

)
NS. (3d)

We thus obtain a system of nine mean-field equations, which we analyze.
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3. Results

3.1. Mean-field recruiting threshold

We first consider the bifurcation point of the recruitment model where the zero recruit (trivial)
steady state becomes unstable, which we call the recruiting threshold. This is a transcritical
bifurcation point, which is analogous to the epidemic onset in epidemic spreading models. It
can be found analytically as a function of parameters for the mean-field model, and certain
asymptotic limits have a simple form.

We nondimensionalize equations (1) and (2) to simplify the analysis. We introduce
the dimensionless time variable t̃ ≡ δt, where time is rescaled by the average node
lifetime δ−1. Further, the node variables are rescaled by the expected population size
at steady state, μ/δ, while the link variables are rescaled by the expected number of
links at steady state, (μ/δ)(σ/2). Let x ≡ [NN,NS,NR,NNN2σ−1,NSN2σ−1,NSS2σ−1,

NRN2σ−1,NRS2σ−1,NRR2σ−1]δμ−1 denote the nine-dimensional vector of rescaled node
and link state variables. Note that in the steady state the rescaled node variables sum to 1, and,
therefore, in steady state they correspond to the probability for a node of a given type to exist
in the system. Similarly, the rescaled link variables sum to 1, and correspond to the probability
for an edge chosen at random to be of a given type, e.g., at steady state x8 corresponds to the
probability for a randomly chosen edge to be an RS link.

We introduce the following rescaled parameters:

	1 ≡ λ1δ
−1 (4a)

	2 ≡ λ2δ
−1 (4b)


 ≡ (γ σ/2)δ−1 (4c)

W ≡ wδ−1. (4d)

We can now write the dimensionless equations of motion as

ẋ = F(x; 	̄) (5)

where 	̄ ≡ [	1,	2,W, 
, σ ] is a vector of all the system parameters. (Recall that
σ is a dimensionless integer.) The full system of dimensionless equations is given in
equations (A.1).

We can now find the trivial steady-state solution, where the number of R-nodes is zero.
This restricts the state to be of the form x0 = [x0,1, x0,2, 0, x0,4, x0,5, x0,6, 0, 0, 0], where the
number of links involving R-nodes is zero as well. This guarantees that Fi(x0, 	̄) = 0 for
i = 3, 7, 8, 9. Since this subset of equations represents an invariant manifold, we concentrate
on solving the equations for the rest of the five components, x0,1, x0,2, x0,4, x0,5 and x0,6.

The first observation is that the x1 and x2 equations are solvable when the number of
recruiting nodes is zero, and they yield steady-state values of

x0,1 = (	2 + 1)D−1, (6a)

x0,2 = 	1D−1, (6b)

where D ≡ 	1 + 	2 + 1. The nonzero link variables may be expressed in terms of x0,1, x0,2,
and they are given by the following:

x0,4 = (	2 + 1)2D−2, (6c)

x0,5 = 2	1(	2 + 1)D−2, (6d)

5
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x0,6 = 	2
1D−2. (6e)

Now that we have the full trivial solution, we can examine its stability. In order to do this,
we linearize the vector field about x0 and examine where it has a one-dimensional null space.
That is, at the bifurcation point, there is only one real eigenvalue passing through zero. This
is equivalent to examining where the determinant of the Jacobian vanishes; i.e., we compute
those parameters where

det(DxF(x0, 	̄)) = 0. (7)

The following relation describes the location of the bifurcation:

W = −	1

[
1 + 2


[
(2 − σ−1) − 1](	1 + 	2 + 1)

]

+	2
1


(2 − σ−1) − 1
+ 2(
σ−1 + 1)


(2 − σ−1) − 1
(8)

We next examine the limits of equation (8) when either the recruitment rate 
 or rewiring
rate W is large. The minimum amount of recruitment required to maintain nonzero values of
recruited population, when W approaches infinity, can be found by setting the least common
denominator of equation (8) to zero, which yields a simple expression for 
:


 = 1

2 − σ−1
. (9)

If the recruitment rate is below this value, additional rewiring is not sufficient to enable
spreading of the recruiting class.

Similarly, we find the smallest amount of rewiring required for existence of a nontrivial
steady-state solution, conditioned on our ability to control 
, with all the other parameters
fixed:

lim

→∞

W = −	1

[
1 + 2

(2 − σ−1)(	1 + 	2 + 1)

]
+ 2

σ−1

2 − σ−1
.

For lower rewiring rates, the recruiting class cannot spread even if the recruiting rate is
large. The value of this asymptote is greatest, meaning rewiring is most necessary, when 	1

approaches zero. In this case few non-susceptible nodes become susceptible to recruiting, and
the necessary rewiring value approaches

W = 2σ−1

2 − σ−1
. (10)

3.2. Comparison of mean field with simulations

We next compare the mean-field predictions for the spread of recruiters with simulations of
the full stochastic network system. Thus, we compare the average size of the recruited portion
of the population in statistical steady state to the solution of the mean-field equations at steady
state, which we solve exactly in the appendix A. We assume that the parameters 	1 and 	2

(rates for gaining and losing susceptibility) depend on the openness of the society to a particular
ideology and σ (determines average degree) depends on the typical number of contacts of an
individual. On the other hand, we assume that the parameters 
 and W can be controlled by
the recruiters, i.e., the recruiters may choose to be more or less aggressive in their recruitment,
as well as in how quickly they rewire their links to susceptible members of society. Therefore,
we investigate the recruiting effectiveness for a given choice of 	1, 	2 and σ , while varying

 and W .

6
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Figure 2. Direct numerical simulation of a stochastic network system with 	1 � 1. In (a) we
compare the result of the simulation (symbols) to the mean-field solution given by equation (A.18)
(solid curves). Square (red online): strong rewiring, W ≈ 40. Circle (green online): weak rewiring,
W ≈ 0.4. (b) shows the density plot representing the dependence of the fraction of recruited nodes
in the population in statistical steady state on rescaled rates of rewiring, W , and recruiting, 
.
Vertical solid line (green online) corresponds to the minimum recruitment rate required to support
a nontrivial solution, as given by equation (9). The solid curve (black online) corresponds to the
recruiting threshold as predicted by mean field in equation (8). The simulations are performed on a
system with λ1 = 10, λ2 = 100, μ = 105, δ = 1, σ = 10. The time-averaged values are computed
once the system reaches steady-state regimes. (In all of the figures in this paper this corresponds
to at least 10 δ−1 units of time, in other words about ten generations of nodes have died before we
observe the system to be at the steady state. The average is taken over 102 dynamical realizations.)

We distinguish two parameter regimes, corresponding to two qualitatively different
behaviors of the system: small values of 	1 (	1 � 1) and large values of 	1 (	1 � 1).
The small 	1 regime corresponds to the case where nodes become susceptible to recruiting
only rarely, on average much less than once in their lifetime (where the average lifetime of a
node is δ−1 in the original time units and 1 in the dimensionless t̃ units). The large 	1 regime
corresponds to the case where, on average, nodes become susceptible to recruitment at least
once in their lifetime.

We start with a random realization of Erdos–Renyi network of size 105 with 5 × 105

links. Each node is randomly assigned one of the three states, N, S or R, with the probability
0.85, 0.05, and 0.1 respectively, although other initial conditions produce similar behavior.
In order to trace out the dependence of the recruitment level on the recruitment rate for the
given rewiring rate w and to improve the rate of convergence to the steady state, we use the
steady-state configuration of the system for the previous value of γ as the initial condition
for the next value of γ . The time-averaged values are computed once the system reaches
steady-state regimes, which is assumed to be reached after at least 10 δ−1 units of time, i.e.,
about ten generations of nodes have died before the system is assumed to be at the steady
state. The measurements of NR are performed by averaging over 100 dynamical states of the
system.

In figures 2 and 3 we show the results of simulating the system in these two regimes.
The density plots in figures 2(b) and 3(b) show the fraction of recruited nodes as a function
of recruiting rate 
 and rewiring rate W in networks with 	1 � 1 and 	1 � 1 respectively.
The black curves in the two figures represent the location of the recruiting threshold as
derived from the mean-field equations and given by equation (8). Here mean field allows us
to accurately predict the onset of the stable nontrivial solution. In figures 2(a) and 3(a) we
compare the simulation results to the mean-field predictions. The recruiting threshold shows
excellent agreement with the simulations. This is likely due to the fact that, as we approach

7
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Figure 3. Direct numerical simulation of a stochastic network system with 	1 � 1. In (a) we
compare the result of the simulation to the mean-field solution given by equation (A.18). Square
(red online): strong rewiring, W ≈ 70. Circle (green online): weak rewiring, W ≈ 0.2. (b) shows
the density plot representing the dependence of the fraction of recruited nodes in the population in
statistical steady state on rescaled rates of rewiring, W , and recruiting, 
. Vertical solid line (green
online) corresponds to the minimum recruitment rate required to support nontrivial solution, as
given by equation (9). Horizontal dashed line (red online) corresponds to the rewiring rate that
guarantees existence of a nontrivial solution in the limit of large recruitment rate (equation 10).
The solid curve corresponds to the recruiting threshold as predicted by mean field in equation (8).
The simulations are performed on a system with λ1 = 0.01, λ2 = 10, μ = 105, δ = 1, σ = 10.

the threshold, the expected number RS-links per S-node approaches zero, and the closures
of equation (3) can be viewed as linear expansions of the triples in terms of NRS/NS. We
also observe excellent agreement in the limit of large 
, while the minor discrepancy near the
bifurcation point is to be addressed in future publications.

We observe in simulations that the steady-state trivial solution undergoes a forward
transcritical bifurcation in the recruiting rate 
 for all values of W for which a nontrivial
solution exists. This is in contrast with epidemiological models where the purpose of the
rewiring is avoidance of the nodes spreading infection [25, 24], which can undergo a backward
transcritical bifurcation and exhibit bistability. Note that, unlike those models, the purpose
of the rewiring in the recruitment model is attraction of the susceptible population by the
recruiters.

We would like to draw the reader’s attention to an important difference in the system
behavior in the two regimes. In the regime where 	1 � 1, the nontrivial solution exists for all
values of W as long as 
 is large enough. On the other hand, in the regime where 	1 � 1, the
nontrivial solution may fail to exist for any value of 
 unless rewiring is aggressive enough.
In figure 3(b) there is a range of rewiring rates W for which only trivial solutions exist. The
horizontal dashed line, given by equation (10), indicates the mean-field level of rewiring that
is sufficient for the nontrivial solution to exist for rapid recruiting (large 
). Also, we can see
that the rewiring level that is necessary for the emergence of the nontrivial solution can be
very close to the predicted sufficient level of equation (10), for small values of 	1.

Another important difference between the two regimes of 	1 values is seen when we
compare two systems with different values of 	1 and 	2 while the ratio 	1/(1 + 	2) is
kept fixed. Note that in the absence of recruitment, such systems have identical fractions
of susceptible nodes. In other words, in the presence of recruitment, the pool of individuals
available for recruitment would appear to be the same. However, as we can see from figure 4,
there is a significant difference in the size of the recruited population as well as the recruiting
threshold. The size difference at large recruiting rates appears to be caused by the difference

8
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Figure 4. Comparing systems with different values of 	1, but same ratio of 	1/(1+	2). Squares
(red online), right axis: 	1 = 10, 	2 = 104. Crosses (green online), left axis: 	1 = 0.01,
	2 = 9.001. Both of the simulations were performed with the following parameters: w = 10,
μ = 105, δ = 1, σ = 10.

in the dynamics in the two regimes. Thus, for large values of 	1 and 	2 any node can become
susceptible to recruitment several times during its life, while as the value of 	1 decreases,
only some nodes will ever become susceptible, with low likelihood of doing so more than
once. We also note that the small 	1,	2 case has a lower threshold. This occurs because when
a node becomes susceptible it remains that way for some time due to a small 	2, allowing
some R-node to rewire to and recruit it. On the other hand, in the case of a very large 	2 the
recruitment must be more aggressive in order to capture the S-node before it returns to the
N-state.

3.3. Recruited subnetwork geometry

We now investigate the structure of the portion of the network (later referred to as the
R-subnetwork) consisting only of R-nodes and links between them. In particular, we are
interested in the mean degree of its nodes when the system reaches a steady state. The mean-
field approach, in addition to predicting the fraction of recruited nodes (which corresponds to
the size of the R-subnetwork), also provides information about topology of the subnetwork
in the form of mean degree of the nodes. The mean degree of a node in the subnetwork
serves as a low order description of how well the nodes in the network are connected, which
may be important for communication within the established subnetwork. The density plot in
figure 5 shows the dependence of the mean degree on W and 
. The nonmonotonic behavior
as a function of 
 for fixed W is predicted by the mean-field model. The solid line corresponds
to the analytical prediction of the maximum’s location as given by equation (B.4) derived
in appendix B. Note that the analytic description of the maximum’s location would allow
the recruiting class to optimize connectivity within the subnetwork, if that happens to be an
important goal for that class. The mean-field approximation fails to capture the nonmonotonic
behavior of the mean degree in the limit where 	1 � 1, and we leave this issue to a future
study.

In addition to the information that can be extracted directly from the mean-field equations,
we complete the picture by presenting the numerical measurement of the degree distribution

9



J. Phys. A: Math. Theor. 46 (2013) 245003 M S Shkarayev et al

0

2

4

6

8

10

12

14

100 101 102 103

Γ

100

101

102

103

104

W

Figure 5. Direct numerical simulation. Density plot representing the dependence of the fraction
of the mean node degree in the R-subnetwork in steady state, 2NRR/NR, on rescaled rates of
rewiring, W , and recruiting, 
. Solid line (green online) indicates the value of 
 where the degree
is at a maximum for a given value of W , found using analytic expression in equation (B.4). The
white diamonds correspond to the location of the maximum in simulations for a given value of W .
The simulations are performed with the following parameters: μ = 105, δ = 1, σ = 10, λ1 = 10,
λ2 = 100.
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Figure 6. Degree distribution of nodes in the subnetwork of R-nodes (i.e., probability P(d) for an
R-node to have d R-node neighbors). Black (black online): 
 = 100.5, gray (blue online): 
 = 101,
light gray (green online): 
 = 102. The simulations are performed with the following parameters:
μ = 105, δ = 1, σ = 10, λ1 = 10, λ2 = 100, w = 100.

in the subnetwork formed of R-nodes. For this distribution the degree is defined as the number
of R-nodes in the neighborhood of a given R-node. In figure 6 we can see that the degree
distribution has an exponentially decaying tail.

4. Conclusions and discussion

We develop a toy model that describes recruitment of new members by an interested class
within a society. The members of the recruiting class can increase the number of recruits via
adaptation. Thus, they may choose to abandon their relations with those members of society
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that are not prone to recruitment. This model assumes that once a node joins the recruiting
class, it itself becomes a recruiter and it remains a member of this class until death. In contrast
to avoidance rewiring used to reduce infection spreading in epidemic models [24, 25], network
adaptation in our model promotes spreading. Additionally, the population is open with birth
and death modeled explicitly, while most previous adaptive network models have been of
closed populations (e.g., [24, 25, 28, 20–23]).

In this paper, we develop and analyze a mean-field description of our model. Thus, we are
able to accurately predict the onset of the stable nontrivial solution of the system at steady state.
Furthermore, we are able to accurately predict the size of the recruited class for a given set
of system parameters, as well as the mean degree of the subnetwork formed by the recruited
members. We compare the predictions made by the mean-field description with the direct
simulations of our model. We generally observe a good agreement between the model and its
mean-field approximation.

Analyzing the mean-field model, we find two parameter regimes with very distinct
qualitative behavior. Thus, we show that in the society where the particular ideology
is unpopular (perhaps corresponding to radical ideology) and individuals rarely become
susceptible to it, adaptation is necessary in order to observe stable nonzero levels of the
recruiting class. On the other hand, if the idea is sufficiently popular (e.g., recruitment into a
moderate political party), the adaptation improves the recruiting capabilities and may affect
the ultimate topology of the recruited, but adaptation is not a necessary condition for the
existence of a nonzero stable solution. Furthermore, we speculate that if the model were
changed to describe a society with two competing recruiting classes (think two-party system),
the adaptation may be a mechanism by which one competing class gets an edge over the other
class.

The ad hoc homogeneity assumption for closure of triples works fairly well because the
mechanisms of the model do not introduce much correlation between a node and its neighbor’s
neighbor. However, as evidenced by the results presented in figures 2(a) and 3(a), the mean-
field approximation has some inaccuracies in the parameter regime between the bifurcation
point and the asymptotic saturation. This can also be seen via direct measurement of the
number of triples of each type in simulations (data not shown). For example, the longer an
S-node has been susceptible, the more R-nodes will have wired to it. Thus, high degree S-
nodes will have disproportionately more R neighbors than will low degree S-nodes, affecting
the number of RSR triples. In another work [29], we develop and analyze a new closure of
the mean-field equations that more accurately describes the full system in various asymptotic
regimes, such as fast rewiring.
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Appendix A. Exact solution

In this appendix, we derive the exact solution to the system of equations in equations (1) and (2)
when the system is at the nontrivial steady state, i.e., when the left-hand side of the equations
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is zero and the size of recruiting class is nonzero. We begin by deriving the dimensionless
equations, as defined in section 3.1:

∂t̃ x1 = 1 − 	1x1 + 	2x2 − x1 (A.1a)

∂t̃ x2 = 	1x1 − 	2x2 − 
x8 − x2 (A.1b)

∂t̃ x3 = 
x8 − x3 (A.1c)

∂t̃ x4 = 	2x5 + 2
x1

x1 + x2 + x3
− 2(	1 + 1)x4 (A.1d)

∂t̃ x5 = 2
x2

x1 + x2 + x3
− 


x5x8

x2
+ 2	2x6 − (	1 + 	2 + 2)x5 + 2	1x4 (A.1e)

∂t̃ x6 = −2

x8x6

x2
+ 	1x5 − 2(	2 + 1)x6 (A.1f)

∂t̃ x7 = 

x5x8

x2
+ 2

x3

x1 + x2 + x3
− (	1 + 2 + W )x7 + 	2x8 (A.1g)

∂t̃ x8 = −


(
x2

8

x2
+ 2σ−1x8

)
+ 2


x6x8

x2
− (	2 + 2)x8 + (	1 + W )x7 (A.1h)

∂t̃ x9 = 


(
x2

8

x2
+ 2σ−1x8

)
− 2x9. (A.1i)

At steady state, the left-hand side of the above equations is zero. We proceed in our
derivation by dividing all equations in the steady state by x2 and introducing a new variable
zi ≡ xi/x2, obtaining the following system of equations:

0 = 1/x2 − 	1z1 + 	2 − z1 (A.2a)

0 = 	1z1 − 	2 − 
z8 − 1 (A.2b)

0 = 
z8 − z3 (A.2c)

0 = 	2z5 + 2z1 − 2(	1 + 1)z4 (A.2d)

0 = 2 − 
z5z8 + 2	2z6 − (	1 + 	2 + 2)z5 + 2	1z4 (A.2e)

0 = −2
z8z6 + 	1z5 − 2(	2 + 1)z6 (A.2f)

0 = 
z5z8 + 2z3 − (	1 + 2 + W )z7 + 	2z8 (A.2g)

0 = −

(
z2

8 + 2σ−1z8
) + 2
z6z8 − (	2 + 2)z8 + (	1 + W )z7 (A.2h)

0 = 

(
z2

8 + 2σ−1z8
) − 2z9. (A.2i)

We have used the fact that in the steady state x1 + x2 + x3 = 1, as can be shown by adding
together equations (1a)–(1c). In the rest of the derivation we will find a closed equation for z8

and express the other zis in terms of z8.
We can immediately express z1, z3, and z9 in terms of z8 by solving equations (A.2b),

(A.2c) and (A.2i) respectively:

z1 = 	−1
1 (1 + 	2 + 
z8) (A.3)

z3 = 
z8 (A.4)

12
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z9 = (
/2)
(
z2

8 + 2σ−1z8
)
. (A.5)

We substitute equation (A.3) into equations (A.2d), and (A.4) into equation (A.2g). The
resulting two equations, together with equations (A.2e), (A.2f) and (A.2h), form a closed
system of five equations with five unknowns z4–z8.

We solve equation (A.2f) for z5 in terms of z6 and z8:

z5 = 2	−1
1 (1 + 	2 + 
z8)z6, (A.6)

and substitute the above result into equations (A.2d) and (A.2g), to solve for z4 and z7 in terms
of z6 and z8 as follows:

z4 = [(	1 + 1)	1]−1[1 + 	2 + 
z8][1 + 	2z6] (A.7)

z7 = [

	−1

1 (2
z8 + 2(	2 + 1))z6 + 2
 + 	2
]
(	1 + 2 + W )−1z8. (A.8)

Substituting the expressions for z4 and z5 from equations (A.6) and (A.7) into equation (A.2e),
and solving for z6 we obtain

z6 = 	1


(	1 + 1)z8 + (	1 + 	2 + 1)
. (A.9)

Finally, substituting results of equations (A.9) and (A.8) into equation (A.2h) we obtain an
equation for z8 in a closed form:

[(a1
)z2
8 + (a2
 + a3)z8 + (a4


−1 + a5)]z8

[
(	1 + 1)z8 + (	1 + 	2 + 1)]
= 0 (A.10)

where

a1 ≡ (	1 + 1)(	1 + W + 2) (A.11)

a2 ≡ 2σ−1(	1 + 1)(	1 + W + 2) − 2(	1 + 2)(W + 	1) (A.12)

a3 ≡ 3(	1 + 1)(	1 + W + 2 + 	2) + 	2(W + 1) (A.13)

a4 ≡ 2(	1 + 	2 + 1)(	1 + W + 2 + 	2) (A.14)

a5 ≡ (	1 + 	2 + 1)[2(σ−1 − 2)(W + 	1) + 4(σ−1 − 	1)]. (A.15)

Note that the physically relevant solutions are positive, and therefore finding a nontrivial
solution of z8 is a simple matter of solving a quadratic equation:

(a1
)z2
8 + (a2
 + a3)z8 + (a4


−1 + a5) = 0. (A.16)

Solving equation (A.2a) for x2, we can now express x2 in terms of the newly found z8:

x2 = 	1[(	1 + 1)
z8 + (	1 + 	2 + 1)]−1. (A.17)

The rest of the original variables can be found using xi = x2zi. Thus, for example, x3 is

x3 = x2z3 = 
	1z8[(1 + 	1)
z8 + (	1 + 	2 + 1)]−1. (A.18)
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Appendix B. Extremum of the mean degree in R-subnetwork

In steady state, the mean degree of the nodes within the R-subnetwork is found by taking a
ratio of twice the number of RR-links to the number of R-nodes in the subnetwork:

〈k〉 = 2NRR

NR
= NRS

NS
+ 1 = σ

2
z8 + 1 (B.1)

where the values of NRR and NR are obtained by solving equations (1c) and (2f) in steady
state. In this appendix we determine the value of 
, 
m, that for a given rewiring rate will
maximize the degree in the resulting R-subnetwork. We do this by maximizing z8.

Differentiating equation (A.16) with respect to 
 and evaluating the resulting equation at

m, the value where extremum is attained, we obtain

a1(z8)
2
m + a2(z8)m − 
−2

m a4 = 0. (B.2)

Note that the derivative of z8 with respect to 
 evaluated at 
m is equal to zero because z8 is
an extremum there, and the ai are independent of 
. Multiplying the above equation by 
 and
subtracting it from equation (A.16) evaluated at 
m allows us to solve for (z8)m:

(z8)m = −2a4 + 
a5


a3
, (B.3)

Substituting the value of (z8)m into equation (B.2) and solving for 
m we obtain


m = [
a2a3a4 − 2a1a4a5 + (

a2
2a2

3a2
4 + a1a2

5a4a2
3 − a2a3

3a5a4
)1/2]/

[a5(a1a5 − a3a2)], (B.4)

the location of the maximum for the given rewiring rate.
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