
W&M ScholarWorks W&M ScholarWorks 

Undergraduate Honors Theses Theses, Dissertations, & Master Projects 

5-2021 

Molecular Cluster Fragment Machine Learning Training Molecular Cluster Fragment Machine Learning Training 

Techniques to Predict Energetics of Brown Carbon Aerosol Techniques to Predict Energetics of Brown Carbon Aerosol 

Clusters Clusters 

Emily E. Chappie 
William & Mary 

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses 

 Part of the Data Science Commons, Environmental Chemistry Commons, Other Chemistry Commons, 

and the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Chappie, Emily E., "Molecular Cluster Fragment Machine Learning Training Techniques to Predict 
Energetics of Brown Carbon Aerosol Clusters" (2021). Undergraduate Honors Theses. William & Mary. 
Paper 1622. 
https://scholarworks.wm.edu/honorstheses/1622 

This Honors Thesis -- Open Access is brought to you for free and open access by the Theses, Dissertations, & 
Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/134?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/141?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1622?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


 
 
 

Molecular Cluster Fragment Machine Learning Training Techniques to Predict Energetics of 
Brown Carbon Aerosol Clusters 

  
  

A thesis submitted in partial fulfillment of the requirement  
for the degree of Bachelor of Science in Chemistry from  

William & Mary 
  
  

by 
  

Emily Elisabeth Chappie 
  
  
  
                                                Accepted for __Honors in Chemistry________________ 
                                                                         
  

________________________________________ 
Dr. Nathanael M. Kidwell, Director 

  
________________________________________ 
Dr. Randolph A. Coleman 

 
________________________________________ 
Dr. Dana L. Willner 

  
___________________________________ 
Dr. Daniel P. Tabor (Texas A&M University) 

 
Williamsburg, VA 

May 3, 2021 
 



ABSTRACT 

Density functional theory (DFT) has become a popular method for computational work 

involving larger molecular systems as it provides accuracy that rivals ab initio methods while 

lowering computational cost. Nevertheless, computational cost is still high for systems greater than 

ten atoms in size, preventing their application in modeling realistic atmospheric systems at the 

molecular level. Machine learning techniques, however, show promise as cost-effective tools in 

predicting chemical properties when properly trained. In the interest of furthering chemical 

machine learning in the field of atmospheric science, I have developed a training method for 

predicting cluster energetics of newly characterized nitrogen-based brown carbon aerosols that can 

undergo tautomerization. By creating a training dataset of cluster fragment and functional group 

DFT calculations, I can effectively train machine learning models to predict overall energetics of 

previously unknown brown carbon clusters while improving computational efficiency.  
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CHAPTER 1. INTRODUCTION 

A. Brown Carbon 

 Brown carbon molecules are atmospheric chromophores that span the ultraviolet and 

visible spectra and are found naturally in aerosol clusters (1). While it is known that brown carbon 

comes from fuel and biomass burning, such as forest fires, as well as general atmospheric reactions, 

the composition of these clusters largely remains a mystery. Of the characterized molecules, 

however, most have been found to be polar, somewhat water-soluble, and containing reactive 

oxygen-based functional groups. A large number of brown carbon molecules are partially made of 

nitrogen (1).  

 The chromophoric nature of brown carbon aerosols is what makes them particularly 

important to understand. These small clusters are found throughout the troposphere where they 

have the ability to change light absorption patterns of other aerosols, causing large atmospheric 

implications. Specifically, brown carbon light absorption can cause water evaporation and inhibit 

photolysis based atmospheric reactions which respectively lead to atmospheric warming and a 

decrease in ozone (1). Considering the large scale effects these unknown molecules have on the 

atmosphere, more tools, such as this machine learning training technique, are needed to increase 

knowledge on brown carbon characteristics.  

 

B. Density Functional Theory and Machine Learning 

 Density functional theory (DFT) is a powerful quantum mechanical computational 

technique that has been utilized here for effective model training. The accuracy of calculated 

results using DFT rivals that of traditional ab initio calculations (e.g. post-Hartree-Fock methods 

such as MP2) because of its quantum mechanical roots but it is able to significantly decrease 
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computational time in comparison. DFT also has the ability to calculate spectroscopic values due 

to its quantum mechanical approach, which produces more computationally derived unique 

identifiers and provides insight into chemical properties beyond energetics, both of which are 

valuable in model training (2). While only ground state calculations were performed for this 

research, it is worth noting that DFT is not as reliable a method for excited state calculations as 

the method does not accurately treat bond breaking, so further work modeling brown carbon 

excitation due to sunlight should consider another computational technique (2).  

 Machine learning is fundamentally based on math and has no physics foundation on which 

to base its predictions on. It may seem counterintuitive to utilize techniques not dependent on 

quantum mechanics to improve chemical predictive processes, but the customizable nature of 

machine learning makes it a powerful tool to be able to reduce the computational resources 

required. Also, relatively simple models with clear variable relationships can be used to elucidate 

which molecular features best predict energetics. Keeping in mind that correlation is not causation, 

finding molecular characteristic relationships is valuable for the machine learning community even 

though it is known how to solve for the values computationally.  

 Two main types of machine learning are supervised and unsupervised learning. Supervised 

learning models use background information on the data, such as what should be predicted, to 

analyze data while unsupervised learning decides its own path and gives descriptive results of data. 

Within the supervised learning realm there are two subtypes, regression and classification. 

Regression refers to predicting numeric values while classification aims to use known groupings 

of data to predict characteristics of similar but previously unseen data (3). As the goal of this work 

is to develop models that can predict energy values of unknown brown carbon molecular 
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clusters, supervised learning regression models have been developed. In this case, the types of 

regression models used are random forests and stochastic gradient descent. 

 A significant contributor to good predictive power and a robust machine learning model is 

a dataset made of accurate and appropriately varied data. If the machine learning algorithms are 

fitted to training data that does not correctly represent the sample space trying to be predicted, it 

is traditionally likely to perform poorly due to overfitting (4). Part of this challenge is ensuring 

that instances of certain phenomena are representative of their natural occurrence, which in a 

computational chemistry application means curating a dataset that has a representative sample of 

optimized geometries found with highly probable energetics. I have chosen to accomplish this by 

looking at optimized molecular and cluster structures at their energetic minima as they indicate the 

most stable and therefore most probable atomic arrangements of targeted brown carbon 

chromophores.  

 The challenge of needing to train models on accurate, representative datasets is where the 

combination of machine learning and DFT computational methods become strong. As ground state 

DFT methods rival the accuracy of ab initio calculations, often seen as the gold standard of 

computational chemistry, high quality data is being used to train and will likely lead to more 

accurate predictions. Furthermore, due to the speed of DFT relative to ab initio methods, it is 

possible to make a much larger and more representative dataset in the same amount of time.  

 While it may appear unorthodox to use computational resources with higher resource costs 

to create a ‘low cost’ machine learning tool, creating a high-quality dataset is an investment. 

Empirical computational chemistry modeling methods require representative, experimental 

datasets to estimate chemical values more accurately, and the same is necessary here (although a 

computational dataset will be used instead). In fact, dataset limitations are why different empirical 
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computational methods do not work effectively on the same types of molecules (5). Model 

developers often try to get around these limitations by taking on the cost to create large datasets as 

they typically explain a larger sample space of the problem while avoiding overfitting (6). 

However, a smaller yet representative dataset should accomplish the same goal with fewer 

resources used. My fragment-based training method has utilized this, making it more feasible to 

predict energetics of future characterized brown carbon clusters that will be considered 

extrapolated data relative to a current brown carbon dataset.  

 

C. Fragment Background 

To be able to describe why fragments are a viable method to create low cost, accurate, 

representative training datasets, it first is necessary to describe what is being deemed a fragment 

in this research. As the goal is to predict energetics of newly characterized brown carbon clusters, 

a cluster is considered a full chemical unit and a fragment is any subsection of a cluster. The 

fragment dataset that has been created for this work includes all brown carbon molecules included 

in the clusters, water, subsections of brown carbon molecules, and functional groups. Moving 

forward, I will refer to whole brown carbon molecules in the fragment dataset as ‘parent molecules’ 

and subsections of parent molecules as ‘sub-fragments’. Some functional groups and sub-

fragments are partially modified to keep the calculations more consistent and generalizable. An 

example of a brown carbon parent molecule and its modified sub-fragment can be seen in Figure 

1.  
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D. Cluster Background 

 Clusters are the other type of molecular structure utilized in this research, and as mentioned 

previously, are the structures of interest when predicting energetics. A cluster in the current dataset 

is made of one or two brown carbon parent molecules surrounded by one to three water molecules 

held together by non-covalent interactions. As there are many possible ways to arrange the 

molecules relative to each other to make a cluster, the program ABCluster was used to aid in 

finding various arrangements. ABCluster utilizes the ABC clustering method and a rigid force 

field to position molecules in ways it predicts will be the lowest energy, meaning that it uses a 

swarm technique to find the best arrangements of geometrically pre-optimized molecules without 

changing their structure (7). While one could use ABCluster to find one arrangement of each 

cluster, it is likely that there are multiple viable isomer forms, so the two-hundred predicted lowest 

energy arrangements of the molecules in each cluster have been created for the current brown 

carbon cluster training dataset. For clusters made from such a small number of molecules, it is 
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likely that there will be virtually identical clusters produced, but it is also probable that all or almost 

all viable molecular arrangements have been identified. These brown carbon cluster variations 

have also been supplemented with thirty variations each of a water dimer and trimer so there is 

training data on how water molecules interact independently of brown carbon parent molecules. 

After all clusters have been formed, they are re-optimized using DFT and new energetics and 

cluster characteristics are computed.  

 

 

E. Fragments for Training 

 Now that the fragment and cluster classification systems have been detailed, you may be 

wondering why I would suggest training models solely on fragment calculations in order to predict 

brown carbon cluster energetics, especially after emphasizing the importance of having a 

representative training dataset. However, when looking to predict highly varied unseen data, 

fragments are actually the more representative sample space. It is easy to see this when thinking 

in terms of vehicles. If you go to a golf course and see dozens of different models of golf carts, it 

is relatively easy to imagine what the next golf cart you see will look and function like. However, 

if you have only learned about golf carts and are asked to describe a car, your prediction will be 
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severely flawed. If you had instead learned about the mechanical parts and properties of a golf 

cart, you likely would have had a much better idea of how a car would act considering you would 

have fundamental, generalizable knowledge on motors, wheels, steering, and braking. This 

predictively powerful generalizable training is what I have brought to machine learning through 

the use of a fragment dataset. By training on small pieces of brown carbon clusters and common 

chemical functional groups, models are provided with fundamental chemical information that can 

be applied to highly varied problems, such as future characterized brown carbon clusters. 

 Generalizable training data is far from the only benefit of using fragments, however. 

Compared to training with clusters, fragments provide a computationally inexpensive process 

overall. Considering there is just one molecule being worked with at a time, ABCluster never needs 

to be used and DFT calculations are only performed once. This is especially helpful for reducing 

computational time as it takes a large amount of resources to use DFT to optimize cluster 

geometries and compute cluster characteristics due to the intermolecular interactions. Also, since 

there is only one version of each fragment instead of hundreds, the size of the training dataset is 

significantly reduced, shrinking the time required to fit a model.  
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CHAPTER 2. ABOUT THE DATA 

A. Train-Test Splits 

 The data is split into two sets of training and testing datasets for this work. The first train-

test split effectively serves as the null hypothesis as it uses all non-extrapolated brown carbon 

clusters as training data and extrapolated clusters as testing data. The train-test split used to explore 

the efficacy of fragment training predictive power includes all fragment data for training and all 

extrapolated clusters for testing. It is worth noting that all testing datasets are deemed extrapolated 

data in machine learning as the models have not previously seen that subset of data. In this context, 

however, I describe data as being extrapolated with a more generalized scientific definition, 

referring to the clusters in the testing dataset being dissimilar to the clusters and fragments used 

for training. 

  

B. Molecular Structure Overview 

 Although characterized brown carbon molecules are not all nitrogen based, this cluster 

dataset includes only clusters made with parent molecules containing nitrogen (excluding water 

dimer and trimer clusters). All non-extrapolated clusters are also restricted to being made with 

aromatic brown carbon parent molecules, but this is not a limitation in the fragment or extrapolated 

cluster datasets. Additionally, I have chosen to include solely parent molecules that can undergo 

keto-enol tautomerization in order to ensure there is at least one reactive oxygen based functional 

group in the molecule. 

 Stereochemistry is a focal point of the molecules in this dataset. With the entire parent 

molecule collection having the ability to tautomerize, it is possible to give an E-Z alkene 

stereochemistry assignment to each parent molecule when in its enol state. In an effort to encourage 
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the computer to “link” the keto and enol structures of a single parent molecule, I have carried over 

the atomic arrangement of each enol structure to the keto structure and assigned identical 

stereochemistry designations even though the keto arrangement cannot have an alkene 

stereochemistry value by IUPAC standards. Fragment stereochemistry assignment may also break 

IUPAC rules as fragments directly descending from a parent molecule are given the same 

stereochemistry designation as the parent. It is important to consider stereochemistry when 

optimizing parent structures with DFT methods as the starting molecular structure will determine 

which potential energy surface local or global minima that structure optimization will finish at. 

With this in mind, all parent molecules in the training dataset have been optimized in their keto 

and enol states with both E and Z stereochemistry and clusters have been made with all four 

variations of the parent.  

 

 

C. Data Curation  

 Making two-hundred versions of each brown carbon cluster means that not every cluster 

iteration will be a viable molecular arrangement. Some cluster calculations do not reach an optimal 
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geometry convergence and therefore will not have calculated energetics or vibrational frequency 

values. As molecular energetics is what is being predicted and a set of harmonic vibrational 

frequencies is a unique identifier, I have chosen to remove any instances of data that are missing 

one or both of these. I have also used vibrational frequency data to remove instances of transition 

states as they are not part of a representative sample space in a non-reaction-based problem. 

Finally, all duplicate clusters have been removed from the dataset as they may inadvertently cause 

bias in the dataset. While it would seem logical that a more frequent occurrence of a cluster would 

correspond to a higher probability of that cluster existing in nature, that is not necessarily the case 

as cluster optimization calculations could become trapped in an energy local minimum that 

misrepresents natural occurrence rates. By removing duplicates, the likelihood of a cluster existing 

remains dependent on energetics.  
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CHAPTER 3. METHODS 

A. DFT Methods 

 All calculations included in this work have been optimized using density functional theory 

(DFT). A geometry optimization and frequency calculation with ωB97X-D functional and 6-

311++G(d,p) basis set was run on each fragment and cluster. This combination of functional and 

basis set was chosen as the ωB97X-D functional has been found to be effective in modeling 

atmospheric cluster systems and the 6-311++G(d,p) basis set has been shown to be robust with a 

large number of functionals, likely increasing the accuracy of calculations (8). Fragment 

calculations only needed to be run once. Clusters had parent and water molecules optimized 

individually before creating a cluster and the resulting cluster arrangement was also optimized. 

 

B. Machine Learning Methods 

 Different types of machine learning algorithms are used here to predict the absolute energy 

of a cluster (reported in kJ mol-1). Energetics will be of particular interest when studying newly 

characterized molecules as the Boltzmann distribution explains that overall cluster energy is 

directly related to the probability of finding the cluster in nature and lower energy arrangements 

are more likely due to their increased stability (9). While I do not have a newly characterized 

brown carbon cluster to test models on, the extrapolated dataset of hypothetical brown carbon 

clusters takes its place in testing the efficacy of fragment training to predict overall cluster 

energetics.  

 Besides removing data based on the criteria discussed previously, I have scaled all data to 

a value between 0 and 1 inclusive (10). As this simply changes the range of the data proportionally, 

there is no change in the underlying distribution. Keeping the underlying distribution is preferred 
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in this scenario as cluster energetics should already be following the Boltzmann distribution and 

there is no reason to disrupt a data spread based on scientific principle. This type of scaling is also 

useful for working with molecular energetics applications as it is not robust to outliers (10), 

meaning that it will not alter the data in a way that will make it insensitive to how large geometric 

shifts change cluster energy.  

 The types of machine learning models used are regression-based random forests and 

stochastic gradient descent. The random forests were used with the default parameters while 

stochastic gradient descent models were run with a hybrid L1-L2 penalty in order to introduce a 

bit of feature selection. The random forest algorithm works by running multiple iterations of trees 

that identify the best ways to separate data so that each subsequent split in the tree leads to more 

specific similarities in the subgroup of data. A visualization of a collection of trees can be found 

in Figure 4. A regression-based stochastic gradient descent algorithm works to find the best fit of 

a linear model by randomly choosing data from the training dataset to estimate the slope of the 

cost function at a certain point and move toward the cost function minimum (11, 12).  
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C. Data Collected 

 

 Data for this work comes from three different sources: handwritten spreadsheets, 

computational calculation results, and data generated from analyses. While some data feeds 

directly into model development, other data, such as handwritten SMILES strings are used to 

create data down the pipeline in the ‘generated’ category that will be used for model fitting. 

 Handwritten data includes descriptive variables that are impossible or nearly impossible 

to automatically generate from a calculation. Stereochemistry and SMILES strings of clusters, 

fragments, and parent molecules, number of waters in a cluster, and  cluster ‘group number’ are 

all values supplied in a handwritten spreadsheet. SMILES strings have been generated from 

structures that include all implicit hydrogens. These strings are an optimal cluster or fragment 

descriptor to use with machine learning as SMILES were designed for efficient chemical analysis 

with computers (13). Cluster ‘group number’ data is an arbitrary numerical categorical value where 

clusters with the same type of parent molecule (keto-enol tautomers of each other with varying 

stereochemistry) are assigned a value to encourage the models to associate the clusters with each 

other. As these characteristics are generalizable to all two-hundred clusters generated for each 
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combination of parent molecule and number of water molecules, only one entry needs to be written 

for each type of cluster which keeps data entry time low. One entry must be made for each fragment 

in addition.  

The other raw data source is computational data output from DFT methods. Energetics, 

vibrational frequencies, and atomic information are all of interest. For energy values, electronic 

plus zero-point energy is recorded in Hartrees and converted to kJ mol-1. Vibrational frequencies 

are rounded to the nearest whole wavenumber and recorded at each vibrational mode. These 

rounded vibrational frequency values are used both as raw data for model development and are 

crucial in developing generated data down the data pipeline. As a raw data input, frequencies are 

an important set of values as they act as a molecular fingerprint and can therefore be influential in 

aiding models in differentiating between similar molecules and their characteristics. Finally atomic 

number of atoms, number of atoms in the cluster, and atomic mass can all be collected from 

computational output and are crucial in making energetics predictions as they become directly 

representative of the optimized geometry of the structures. Knowing about the atomic positioning 

and characteristics of optimized structures gives fundamental information on atomic attraction and 

repulsion, leading to a better understanding of how high or low molecular energetics will be.  

 The final data source is data generated from analyses on both handwritten and 

computationally derived data. SMILES string comparisons are the one type of generated data 

originating from handwritten information. These comparisons arise from use of the ‘fuzzywuzzy’ 

Python library and built in string comparisons. The package uses the Levenshtein string distance 

method which calculates the number of letters that would have to be changed or added to get 

matching sequences (14). Fuzzywuzzy functions ‘ratio’ and ‘partial_ratio’ have the capability to 

compare two strings in their entirety as well as compute a similarity score for the entirety of the 
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shorter string and a substring in the larger respectively (15). I have utilized this library by running 

a ‘ratio’ and ‘partial_ratio’ string comparison for each cluster or fragment SMILES string with 

every other SMILES string in the database, including itself. By utilizing the ratio function on 

SMILES strings, I am able to look at overall similarity of clusters. The ‘partial_ratio’ looks at 

molecular or cluster details and allows for the identification and subsequent similarity estimate of 

a substructure or subcluster in the compared entities. Beyond these tools, I have utilized the Python 

‘in’ string comparison method which looks for identical strings or identical substrings in a pair of 

strings. Unlike the fuzzywuzzy ‘partial_ratio’ function, there is no flexibility in identifying a 

subcluster and the entire smaller string must be found in the larger for a substring, and therefore a 

representative subcluster, to be acknowledged. Effectively the ‘partial_ratio’ and ‘in’ comparison 

methods serve the same purpose but the built in string comparison provides a more exact subcluster 

identification.  

 A large portion of generated data comes from computationally derived vibrational 

frequencies. Frequency statistics comprises a large amount of frequency based generated data, and 

this includes saddle point identification and median and standard deviation calculations for each 

vibrational mode. Median and standard deviations at each vibrational mode are calculated across 

the set of two hundred variations of each cluster type before data removal occurs. This is because 

median and standard deviation are used in this case as population based statistics that can 

illuminate a general frequency baseline and range respectively. Saddle point identification 

involves looking for an imaginary frequency value in a molecule or cluster, indicating that the 

structure is a transition state. In other settings a transition state structure could be useful 

information, but as this is not reaction or molecular dynamics based work, a transition state is not 

representative of the dataset and will need to be identified and removed. 
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 The other portion of frequency-based data in this category is duplicate cluster 

identification. To identify duplicate clusters in the dataset, vibrational frequencies from two 

clusters that are rounded to the nearest whole number are compared. If eighty five percent of the 

rounded vibrational frequencies at each mode are identical, the clusters are considered duplicates. 

While the cutoff of eighty five percent is arbitrary, the utilization of rounded values and eighty 

five percent similarity yield results that rival comparisons done by hand. If two or more clusters 

are deemed duplicates of each other, one is included in the dataset and what is left is removed for 

reasons related to energy distributions discussed previously.  

 The last category of analysis generated data is Coulomb matrices. A Coulomb matrix is a 

way to represent atomic interactions based on distance and atomic number in a condensed form. 

The formula for computing elements of a Coulomb matrix can be found below in Figure 6. 

Although there is a lot of atomic information packed into one matrix, clusters or fragments that 

are large in size will have massive matrices, leading to a set of high dimensional data. In order to 

reduce the dimensionality, the eigenvalues of Coulomb matrices have been used as model features 

instead of the matrix elements (16). Resulting eigenvalues do not have any physical meaning and 

are simply used to represent the matrices efficiently.  
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CHAPTER 4. RESULTS AND CONCLUSION 

A. Metrics 

 Both random forest and stochastic gradient descent models are judged on their predictive 

performance using R2, root mean square error, and percent error metrics. The R2 metric measures 

the amount of variance in the data that is explained by the model and therefore the model fit. It has 

a maximum value of one which represents one hundred percent of variance being explained by the 

model. Negative R2 values mean that the model fits the data poorly enough that it performs less 

well than random guessing (17). Root mean square error (RMSE) is a measurement of the distance 

between the model and each predicted data point on a graph, representing the amount of error there 

is for each instance of data based on the fit of the model. Due to the naturally large predicted cluster 

energetics values, and therefore errors in predictions, the RMSE value has been scaled to become 

a relative factor of the average of all actual extrapolated cluster energy values. The percent error 

of each predicted value will also be used to compare model efficacy. All models have been run 

twenty five times and the reported R2 and RMSE values are the average of all twenty five R2 and 

RMSE values calculated for one model. Percent error values are calculated using the average 

predicted energy value for each cluster across all twenty five runs of a model. The exact 

orientations of each cluster used in the extrapolated cluster testing dataset can be found in the 

supporting information section in Table 4. 

 

B. Model Performances 

 The four machine learning algorithm and training method combinations tested here are 

fragment trained random forests, cluster trained random forests, fragment trained stochastic 

gradient descent, and cluster trained stochastic gradient descent, and each has been run twenty five 
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times as mentioned above. The resulting data shows that model performance is highly dependent 

on the algorithm type and cluster being predicted, meaning that there are pockets of good predictive 

performance in all four model-training method combinations tested. 

 When looking at Figure 7, which displays the percent error of each cluster for each model 

and training combination, it is immediately clear that random forest and stochastic gradient descent 

algorithms have their strengths with different subsets of data. Random forest models, whether 

fragment or cluster trained, perform very well with the aldehyde and enol single brown carbon 

parent molecule clusters. However, stochastic gradient descent performs relatively poorly with this 

subset of data and instead better predicts energetics of the larger two brown carbon parent molecule 

clusters, shown on the far right side of the graph. Just as with the best performing subset of data 

with the random forest models, the training method is fairly irrelevant to the predictive power of 

the stochastic gradient descent models when looking at the two parent molecule clusters. That 

being said, the average stochastic gradient descent fragment trained model performs significantly 

better than its cluster trained counterpart for single parent molecule clusters. When discussing the 

stark differences in performance based on cluster type, it is worth noting that the two parent 

molecule clusters, labeled as ‘2Mol h2o’ in Figure 7, have these known brown carbon parent 

molecules included in the training datasets, whether individually in the fragment dataset or as a 

parent molecule in a one, two, or three water molecule cluster. The aldehyde and enol single parent 

molecule clusters, seen in the same figure labeled as ‘Ald h2o’ and ‘Enol h2o’ respectively, are 

farther away from the training data sample space, however, as the parent molecule is a hypothetical 

linear brown carbon molecule and there are no linear parent molecules included in the cluster or 

fragment training datasets and linear fragments only show up in the fragment training dataset as 

functional groups or small pieces of parent molecules. Considering this, the random forest models 
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seem to perform consistently better on data farther from the sample space, regardless of training 

method. 

 
Figure 7. Percent error values for each cluster based on training method and algorithm type are 
shown. ‘Ald’ and ‘Enol’ clusters listed are keto-enol tautomers of each other and consist of a linear 
potential brown carbon parent molecule and a water molecule. ‘2Mol’ clusters are clusters made 
of two known brown carbon parent molecules and one water molecule. Numbers listed along with 
cluster names indicate which version of the cluster is being described. 
 

 As for overall performance of the models, Table 1 shows the large spread of average R2 

and scaled RMSE values for each algorithm and training method combination. When balancing 

the errors and fits across both types of extrapolated clusters, the cluster trained random forest 

performs the best based on both average R2 and scaled RMSE. The fragment trained stochastic 

gradient descent model is not far behind, however. As seen in Figure 7 and discussed above, the 

two models have vastly different strengths, but overall they perform quite well and similarly.  
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Algorithm and Training Types Average R2 Average Scaled RMSE 

Random Forest: Fragments 0.377196458 0.603320239 

Random Forest: Clusters 0.728528922 0.398345220 

Stochastic Gradient Descent: 
Fragments 0.685853648 0.428204842 

Stochastic Gradient Descent: 
Clusters -0.110674184 0.805791349 
Table 1. R2 and RMSE values were averaged across twenty five runs for each model. 
 

C. Feature Importance Ranking 

 Figures 8-11 shown below display the most important features for each algorithm and 

training method combination graphically. While stochastic gradient descent models did have 

negatively weighted features, the random forest models did not, so the ten most positively 

weighted and ten most negatively weighted features are shown for stochastic gradient descent 

models while just the ten most positively weighted features were found for the random forests.  

 As for feature patterns among the models, eigenvalue features comprise the large majority 

of positively weighted features with fragment training methods, regardless of the algorithm type. 

Additionally, frequency and frequency statistic features dominate with cluster training, but are 

positively weighted for random forest models and negatively weighted when used with stochastic 

gradient descent. When looking at trends across algorithms, random forests uniquely include some 

indicator of cluster or fragment size in their most important feature list. There appear to be no 

algorithm specific trends for stochastic gradient descent, however. Instead, fragment trained 

stochastic gradient descent has atomic numbers rounding out most of its most negative features 

and cluster trained models see a uniquely large influence coming from SMILES comparisons.  
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Figure 8. Average feature ranking for random forests fitted using fragment training. All ‘e’ based 
features represent the resulting eigenvalues from Coulomb matrices. Eigenvalues are not organized 
in order of increasing value but are instead left in the order calculated based on Coulomb matrix 
row arrangement being determined by increasing atomic number. This means that ‘e4’, for 
example, is the fourth resulting eigenvalue and the fourth resulting eigenvalue has consistently 
been found to be the most influential feature when predicting cluster energetics with fragment 
trained random forests. Nine of the top ten most influential features are Coulomb matrix eigenvalue 
features.  
 

 
Figure 9. Average feature ranking for random forests fitted using cluster training. All ‘f’ based 
features are vibrational frequencies at that numerical position in the list of frequencies where 
vibrational frequencies are arranged from least to greatest. Features with an ‘mf’ description 
represent the median value of frequencies at that numerical position within one type of cluster. 
‘Sf’ is representative of the standard deviation but otherwise works identically to ‘mf’ features. 
The ‘an’ feature refers to the atomic number at that position in the list of atomic numbers as given 
in the DFT output. Eight of the top ten most influential features are frequency or frequency statistic 
features.  
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Figure 10. Average feature ranking for fragment trained stochastic gradient descent models. 
Eigenvalue, vibrational frequency, and atomic number based features comprise the ten most 
influential positive and ten most influential negative features.  
 

 
Figure 11. Average feature ranking for cluster trained stochastic gradient descent models. ‘Si’, 
‘sr’, and ‘sp’ are features based on the smiles ‘in’ string comparison, smiles fuzzywuzzy 
comparison ratio, and smiles fuzzywuzzy comparison partial ratio respectively. The features 
displayed here show the most wide variety of features being included across the four algorithm-
training method combinations.  
 

D. Conclusion 

 It is clear to see from Figure 7 that when algorithm types are performing at their best, the 

training methods produce nearly identical results. Additionally, Table 1 shows that cluster trained 

random forests perform only slightly better than fragment trained stochastic gradient descent 
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overall. And considering that fragment training takes a minute fraction of the amount of 

computational resources to create a representative training dataset, this comparable performance 

shows that fragment training is a viable training option for predicting brown carbon cluster 

energetics when Coulomb matrix eigenvalues are used as the driving force.  
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CHAPTER 5. FUTURE WORK 

 While I have managed to show that fragments can be used to efficiently and effectively 

train predictive models for atmospheric applications, this work should be expanded upon to get a 

more complete understanding of the process of fragment training. Firstly, the testing dataset should 

be split so each dataset is made of similar iterations of each cluster type. In this case, the testing 

dataset would be split into two where one dataset includes all keto-enol tautomer clusters with the 

linear parent molecule and the other dataset has just clusters with two aromatic brown carbon 

parent molecules. I believe this is an important next step as the models show strong performance 

with one type of cluster but not both, so separating them should give a more clear perspective on 

how the training method influences predictive power. Additionally, feature selection methods 

should be implemented on all models to see if the computational time required to make the training 

dataset can be reduced across all techniques. Finally, fragment structures should be run with more 

than one configuration in order to get a variety of viable structures that may appear in different 

clusters.  
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SUPPORTING INFORMATION 

 
Parent Molecule Name SMILES Stereochemistry Source 

1H-pyrrole-2-carbaldehyde [H]C(C1=C([H])C([H])=C([H])N1)=
O e (1) 

1H-pyrrole-2-carbaldehyde O=C([H])C1=C([H])C([H])=C([H])N
1 z (1) 

(E)-(2H-pyrrol-2-
ylidene)methanol 

O/C([H])=C1C([H])=C([H])C([H])=
N\1 e (1) 

(Z)-(2H-pyrrol-2-
ylidene)methanol 

[H]/C(O)=C1C([H])=C([H])C([H])=
N\1 z (1) 

2-(1H,1'H-[2,2'-
biimidazol]-1-yl)-2-
hydroxyacetaldehyde 

OC(C([H])=O)([H])N1C([H])=C([H])
N=C1C2=NC([H])=C([H])N2 e (1) 

2-(1H,1'H-[2,2'-
biimidazol]-1-yl)-2-
hydroxyacetaldehyde 

OC(C([H])=O)([H])N1C([H])=C([H])
N=C1C2=NC([H])=C([H])N2 z (1) 

(E)-1-(1H,1'H-[2,2'-
biimidazol]-1-yl)ethene-
1,2-diol 

O/C(N1C([H])=C([H])N=C1C2=NC(
[H])=C([H])N2)=C([H])/O e (1) 

(Z)-1-(1H,1'H-[2,2'-
biimidazol]-1-yl)ethene-
1,2-diol 

O/C(N1C([H])=C([H])N=C1C2=NC(
[H])=C([H])N2)=C([H])\O z (1) 

2-(2-(dihydroxymethyl)-
1H-imidazol-1-yl)-2-
hydroxyacetaldehyde 

OC(O)([H])C1=NC([H])=C([H])N1C
(O)([H])C([H])=O e (1) 

2-(2-(dihydroxymethyl)-
1H-imidazol-1-yl)-2-
hydroxyacetaldehyde 

OC(O)([H])C1=NC([H])=C([H])N1C
(O)([H])C([H])=O z (1) 

(E)-1-(2-
(dihydroxymethyl)-1H-
imidazol-1-yl)ethene-1,2-
diol 

OC(O)([H])C1=NC([H])=C([H])N1/
C(O)=C([H])\O e (1) 

(Z)-1-(2-
(dihydroxymethyl)-1H-

OC(O)([H])C1=NC([H])=C([H])N1/
C(O)=C(O)\[H] z (1) 



 26 
 

 
 

imidazol-1-yl)ethene-1,2-
diol 

(E)-4-(2-oxoethylidene)-
1,2,3,4-tetrahydropyridine-
2,6-dicarboxylic acid 

[H]/C(C([H])=O)=C1C([H])=C(C(O)
=O)NC(C(O)=O)([H])C\1([H])[H] e (18) 

(Z)-4-(2-oxoethylidene)-
1,2,3,4-tetrahydropyridine-
2,6-dicarboxylic acid 

O=C(O)C(NC(C(O)=O)=C/1[H])([H]
)C([H])([H])C1=C([H])\C([H])=O z (18) 

4-(2-hydroxyvinylidene)-
1,2,3,4-tetrahydropyridine-
2,6-dicarboxylic acid 

OC([H])=C=C1C([H])=C(C(O)=O)N
C(C(O)=O)([H])C1([H])[H] e (18) 

4-(2-hydroxyvinylidene)-
1,2,3,4-tetrahydropyridine-
2,6-dicarboxylic acid 

O=C(O)C(NC(C(O)=O)=C1[H])([H])
C([H])([H])C1=C=C([H])O z (18) 

(E)-6-
(dihydroxymethylene)-4-
(2-oxoethylidene)-1,4,5,6-
tetrahydropyridine-2-
carboxylic acid 

[H]/C(C([H])=O)=C1C([H])=C(C(O)
=O)N/C(C\1([H])[H])=C(O)\O e (18) 

(Z)-6-
(dihydroxymethylene)-4-
(2-oxoethylidene)-1,4,5,6- 
tetrahydropyridine-2-
carboxylic acid 

O/C(O)=C(NC(C(O)=O)=C/1[H])/C([
H])([H])C1=C([H])\C([H])=O z (18) 

Water [H]O[H]   
Table 2. Training data parent molecule list and structure information. Parent molecules have 
been used individually as listed as well as with the addition of water molecules to create clusters. 
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Fragment Name SMILES Stereochemistry 

formaldehyde [H]C([H])=O  

ethenol [H]/C([H])=C([H])/O  

1H-pyrrole [H]C1=C([H])C([H])=C([H])N1  

(E)-ethene-1,2-diol [H]/C(O)=C(O)/[H] e 

(Z)-ethene-1,2-diol [H]/C(O)=C([H])/O z 

2-hydroxyacetaldehyde [H]C(C(O)([H])[H])=O e 

2-(dimethylamino)-2- 
hydroxyacetaldehyde [H]C(C(O)([H])N(C)C)=O e 

(E)-1-(dimethylamino)prop-1-
ene-1,2-diol C/C(O)=C(O)/N(C)C e 

1-methyl-1H,1'H-2,2'-
biimidazole 

CN1C(C2=NC([H])=C([H])N2)=NC([H
])=C1[H]  

1-(dimethylamino)-1-
hydroxypropan-2-one O=C(C(N(C)C)([H])O)C z 

1-(dimethylamino)propane-1,2-
diol OC(C(N(C)C)([H])O)([H])C z 

3-methylbut-2-enal C/C(C)=C([H])\C([H])=O  

acrylaldehyde [H]/C(C([H])=O)=C([H])\[H]  

4-methylene-1,2,3,4-
tetrahydropyridine 

[H]/C([H])=C1C([H])=C([H])NC([H])([
H])C/1([H])[H]  

4-(propan-2-ylidene)-1,2,3,4-
tetrahydropyridine 

C/C(C)=C1C([H])=C([H])NC([H])([H])
C/1([H])[H]  

1,2,3,4-tetrahydropyridine [H]C1([H])C([H])=C([H])NC([H])([H])
C1([H])[H]  

(E)-4-(2-oxoethylidene)-1,2,3,4-
tetrahydropyridine-2-carboxylic 
acid 

O=C([H])/C([H])=C1C([H])=C([H])NC(
C(O)=O)([H])C/1([H])[H] e 

(E)-2-(2,3-dihydropyridin-
4(1H)-ylidene)acetaldehyde 

[H]/C(C([H])=O)=C1C([H])=C([H])NC(
[H])([H])C\1([H])[H] e 
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(E)-6-formyl-4-(2-
oxoethylidene)-1,4,5,6- 
tetrahydropyridine-2-carboxylic 
acid 

O=C([H])/C([H])=C1C([H])=C(C(O)=O
)NC(C([H])=O)([H])C/1([H])[H] e 

(E)-6-formyl-4-(2-
oxoethylidene)-1,2,3,4- 
tetrahydropyridine-2-carboxylic 
acid 

O=C([H])/C([H])=C1C([H])=C(C([H])=
O)NC(C(O)=O)([H])C/1([H])[H] e 

(E)-4-(2-oxoethylidene)-1,2,3,4-
tetrahydropyridine-2,6-
dicarbaldehyde 

O=C([H])/C([H])=C1C([H])=C(C([H])=
O)NC(C([H])=O)([H])C/1([H])[H] e 

(E)-4-(2-oxoethylidene)-1,4,5,6-
tetrahydropyridine-2-
carbaldehyde 

O=C([H])/C([H])=C1C([H])=C(C([H])=
O)NC([H])([H])C/1([H])[H] e 

(Z)-4-(2-oxoethylidene)-1,2,3,4- 
tetrahydropyridine-2-carboxylic 
acid 

[H]C1([H])C([H])(C(O)=O)NC([H])=C(
[H])/C1=C(C([H])=O)/[H] z 

(Z)-2-(2,3-dihydropyridin-
4(1H)-ylidene)acetaldehyde 

[H]/C(C([H])=O)=C1C([H])=C([H])NC(
[H])([H])C/1([H])[H] z 

(Z)-6-formyl-4-(2-
oxoethylidene)-1,4,5,6- 
tetrahydropyridine-2-carboxylic 
acid 

[H]/C(C([H])=O)=C1C([H])=C(C(O)=O
)NC(C([H])=O)([H])C/1([H])[H] z 

(Z)-6-formyl-4-(2-
oxoethylidene)-1,2,3,4-
tetrahydropyridine-2-carboxylic 
acid 

[H]/C(C([H])=O)=C1C([H])=C(C([H])=
O)NC(C(O)=O)([H])C/1([H])[H] z 

(Z)-4-(2-oxoethylidene)-1,4,5,6- 
tetrahydropyridine-2-
carbaldehyde 

[H]/C(C([H])=O)=C1C([H])=C(C([H])=
O)NC([H])([H])C/1([H])[H] z 

(Z)-4-(2-oxoethylidene)-1,2,3,4-
tetrahydropyridine-2,6-
dicarbaldehyde 

[H]/C(C([H])=O)=C1C([H])=C(C([H])=
O)NC(C([H])=O)([H])C/1([H])[H] z 

1H-imidazole [H]C1=C([H])NC([H])=N1  

(1H-imidazol-2-yl)methanediol [H]C1=C([H])NC(C(O)(O)[H])=N1  

(1-(1-hydroxyethyl)-1H- [H]C1=C([H])N(C(C)([H])O)C(C(O)(O)  
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imidazol-2-yl)methanediol [H])=N1 

2-hydroxy-2-(1H-imidazol-1-
yl)acetaldehyde 

[H]C1=C([H])N(C(C([H])=O)([H])O)C(
[H])=N1 e 

2-hydroxy-2-(1H-imidazol-1-
yl)acetaldehyde 

[H]C1=C([H])N(C(C([H])=O)([H])O)C(
[H])=N1 z 

(E)-1-(1H-imidazol-1-yl)ethene-
1,2-diol 

[H]C1=C([H])N(/C(O)=C([H])\O)C([H]
)=N1 e 

(Z)-1-(1H-imidazol-1-yl)ethene-
1,2-diol 

[H]C1=C([H])N(/C(O)=C(O)\[H])C([H]
)=N1 z 

(E)-1-(dimethylamino)ethene-
1,2-diol [H]/C(O)=C(N(C)C)\O e 

(Z)-1-(dimethylamino)ethene-
1,2-diol O/C([H])=C(N(C)C)\O z 

2-(dimethylamino)-2-
hydroxyacetaldehyde [H]C(C(N(C)C)([H])O)=O e 

2-(dimethylamino)-2-
hydroxyacetaldehyde O=C([H])C(N(C)C)([H])O z 

Table 3. A list of fragment structure characteristics listed as used.  
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Ald h2o 0 

 
Ald h2o 1 

 
Ald h2o 2 

 
Ald h2o 4 

 
Ald h2o 5 

 
Ald h2o 6 

 
Ald h2o 7 

 
Ald h2o 8 

 
Ald h2o 12 

 
Ald h2o 14 

 
Enol h2o 0 

 
Enol h2o 2 

 
Enol h2o 4 

 
Enol h2o 6 

 
Enol h2o 8 

 
Enol h2o 9 

 
Enol h2o 10 

 
Enol h2o 12 

 
Enol h2o 13 

 
Enol h2o 14 

 
2Mol h2o 3 

 
2Mol h2o 8 

 
2Mol h2o 9 

 
2Mol h2o 13 

Table 4. Testing dataset extrapolated cluster configurations are shown above. Numbers included 
indicate the version of the cluster shown. Clusters deemed appropriate to include in the test 
dataset follow the rules previously listed for data removal. All clusters include one water. 
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Cluster Nickname Parent Molecule 
Name(s) 

SMILES Sources 

Ald h2o 3-
(methylamino)propanal 

CNCCC=O  

Enol h2o (Z)-3-
(methylamino)prop-1-
en-1-ol 

CNC/C=C\O  

2Mol h2o 2-(2-
(dihydroxymethyl)-1H-
imidazol-1-yl)-2-
hydroxyacetaldehyde  
 
AND  
 
(E)-6-
(dihydroxymethylene)-
4-(2-oxoethylidene)-
1,4,5,6-
tetrahydropyridine-2-
carboxylic acid 

OC(O)([H])C1=NC([H]
)=C([H])N1C(O)([H])C
([H])=O  
 
AND 
 
[H]/C(C([H])=O)=C1C(
[H])=C(C(O)=O)N/C(C
\1([H])[H])=C(O)\O 

(1, 18) 

Table 5. Components of extrapolated clusters shown in Table 4. 
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