B-Meson Decay Constants from Improved Lattice Nonrelativistic QCD with Physical u,d,s, and c Quarks

R. J. Dowdall
R. R. Horgan
C. T. H. Davies
C. J. Monahan
William & Mary, cjmonahan@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation
Dowdall, R. J., Davies, C. T. H., Horgan, R. R., Monahan, C. J., Shigemitsu, J., & HPQCD Collaboration. (2013). B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s, and c quarks. Physical review letters, 110(22), 222003.

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
These currents are related to the full QCD current through $O(\alpha_s, \alpha_s A_{QCD}/m_b)$ by

$$\langle A_0 \rangle = (1 + \alpha_s z_0) \left(\langle J_0^{(0)} \rangle + (1 + \alpha_s z_1) \langle J_0^{(1)} \rangle + \alpha_s z_2 \langle J_0^{(2)} \rangle \right)$$

These currents are related to the full QCD current through $O(\alpha_s, \alpha_s A_{QCD}/m_b)$ by

$$\langle A_0 \rangle = (1 + \alpha_s z_0) \left(\langle J_0^{(0)} \rangle + (1 + \alpha_s z_1) \langle J_0^{(1)} \rangle + \alpha_s z_2 \langle J_0^{(2)} \rangle \right)$$

One-loop coefficients were calculated in [15]. Here we re-order the perturbation series to make the process of renormalisation clearer. The z_i depend on m_b and are slightly smaller. The s quark is tuned using the η_s meson ($M_{\eta_s} = 0.6893(12)$ GeV [3]). Values very close to the sea s masses are found, meaning that partial quenching effects will be small.

To improve the statistical precision of the correlators, we take $U(1)$ random noise sources for the valence quarks using the methods developed in [13]. Along with the point source required for the matrix element, we include gaussian smearing functions for the b quark source with two different widths. We include 16 time sources with b quarks propagating both forward and backward in time on each configuration. We checked the statistical independence of results using a blocked autocorrelation function [3]. Even on the finer physical point ensembles, the correlations are very small between adjacent configurations and the integrated autocorrelation time is consistent with one.

The decay constant is defined from $\langle 0|A_0|B_q \rangle_{QCD} = M_{B_q} f_{B_q}$, but the quantity that we extract directly from the renormalisation of Eq. 4 using α_s at one-loop. We evaluate the renormalisation of Eq. 4 using α_s in the V-scheme at scale $q = 2/a$. Values for α_s are obtained by running down from $\alpha_s(M_Z) = 0.1184$ [16] and range from 0.285 to 0.314.

III. RESULTS

We fit heavy-light meson correlators with both $J_0^{(0)}$ and $J_0^{(1)}$ operators at the sink simultaneously using a multi-exponential Bayesian fitting procedure [17]. The B and B_s are fit separately; priors used in the fit are given in Table III for the range of masses needed here. We see that the one-loop renormalisation of the tree-level current, $J_0^{(0)} + J_0^{(1)}$, is tiny [32]. z_0 includes the effect of mixing between $J_0^{(0)}$ and $J_0^{(1)}$ at one-loop. We evaluate the renormalisation of Eq. 4 using α_s in the \overline{MS} scheme at scale $q = 2/a$. Values for α_s are obtained by running down from $\alpha_s(M_Z) = 0.1184$ [16] and range from 0.285 to 0.314.

TABLE II: Parameters used for the valence quarks. am_b is the bare b quark mass in lattice units, u_{IL} is the Landau link value used for tadpole-improvement, and $am_{l_{val}}$ are the HIRISQ light and strange quark masses.

<table>
<thead>
<tr>
<th>Set</th>
<th>am_b</th>
<th>u_{IL}</th>
<th>$am_{l_{val}}$</th>
<th>$am_{s_{val}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.297</td>
<td>0.8195</td>
<td>0.013</td>
<td>0.0641</td>
</tr>
<tr>
<td>2</td>
<td>3.263</td>
<td>0.82015</td>
<td>0.0064</td>
<td>0.0636</td>
</tr>
<tr>
<td>3</td>
<td>3.25</td>
<td>0.819467</td>
<td>0.00235</td>
<td>0.0628</td>
</tr>
<tr>
<td>4</td>
<td>2.66</td>
<td>0.834</td>
<td>0.01044</td>
<td>0.0452</td>
</tr>
<tr>
<td>5</td>
<td>2.62</td>
<td>0.8349</td>
<td>0.00507</td>
<td>0.0505</td>
</tr>
<tr>
<td>6</td>
<td>2.62</td>
<td>0.834083</td>
<td>0.00184</td>
<td>0.0507</td>
</tr>
<tr>
<td>7</td>
<td>1.91</td>
<td>0.8525</td>
<td>0.0074</td>
<td>0.0364</td>
</tr>
<tr>
<td>8</td>
<td>1.89</td>
<td>0.851805</td>
<td>0.0012</td>
<td>0.0360</td>
</tr>
</tbody>
</table>

TABLE III: Coefficients for the perturbative matching of the axial vector current (Eq. 4). $z_0 = \rho_0 - \xi_{10}$, $z_1 = \rho_1 - z_0$, $z_2 = \rho_2 - z_0$ from [15].

<table>
<thead>
<tr>
<th>Set</th>
<th>z_0</th>
<th>z_1</th>
<th>z_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.024(2)</td>
<td>0.024(3)</td>
<td>-1.108(4)</td>
</tr>
<tr>
<td>2</td>
<td>0.022(2)</td>
<td>0.024(3)</td>
<td>-1.083(4)</td>
</tr>
<tr>
<td>3</td>
<td>0.022(1)</td>
<td>0.024(2)</td>
<td>-1.074(4)</td>
</tr>
<tr>
<td>4</td>
<td>0.006(2)</td>
<td>0.007(3)</td>
<td>-0.698(4)</td>
</tr>
<tr>
<td>5</td>
<td>0.001(2)</td>
<td>0.007(3)</td>
<td>-0.690(4)</td>
</tr>
<tr>
<td>6</td>
<td>0.001(2)</td>
<td>0.007(2)</td>
<td>-0.690(4)</td>
</tr>
<tr>
<td>7</td>
<td>-0.007(2)</td>
<td>-0.031(4)</td>
<td>-0.325(4)</td>
</tr>
<tr>
<td>8</td>
<td>-0.007(2)</td>
<td>-0.031(4)</td>
<td>-0.318(4)</td>
</tr>
</tbody>
</table>

TABLE IV: Raw lattice amplitudes for B_s and B from each ensemble, errors are from statistics/fitting only. $a^{3/2} \Phi_0^{(s)}$ and $a^{3/2} \Phi_1^{(s)}$ are the leading amplitude and $1/m_b$ correction.

<table>
<thead>
<tr>
<th>Set</th>
<th>$a^{3/2} \Phi_0^{(s)}$</th>
<th>$a^{3/2} \Phi_1^{(s)}$</th>
<th>$a^{3/2} \Phi_0^{(0)}$</th>
<th>$a^{3/2} \Phi_1^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3720(10)</td>
<td>-0.0300(3)</td>
<td>0.3220(19)</td>
<td>-0.0260(3)</td>
</tr>
<tr>
<td>2</td>
<td>0.3644(6)</td>
<td>-0.0291(3)</td>
<td>0.3093(11)</td>
<td>-0.0257(8)</td>
</tr>
<tr>
<td>3</td>
<td>0.3621(16)</td>
<td>-0.0288(2)</td>
<td>0.2986(17)</td>
<td>-0.0237(4)</td>
</tr>
<tr>
<td>4</td>
<td>0.2733(4)</td>
<td>-0.0234(2)</td>
<td>0.2373(9)</td>
<td>-0.0197(4)</td>
</tr>
<tr>
<td>5</td>
<td>0.2679(3)</td>
<td>-0.0234(1)</td>
<td>0.2272(7)</td>
<td>-0.0197(3)</td>
</tr>
<tr>
<td>6</td>
<td>0.2653(2)</td>
<td>-0.0229(1)</td>
<td>0.2193(8)</td>
<td>-0.0194(3)</td>
</tr>
<tr>
<td>7</td>
<td>0.1747(3)</td>
<td>-0.0170(1)</td>
<td>0.1525(8)</td>
<td>-0.0146(6)</td>
</tr>
<tr>
<td>8</td>
<td>0.1694(3)</td>
<td>-0.0167(0)</td>
<td>0.1386(5)</td>
<td>-0.0136(1)</td>
</tr>
</tbody>
</table>

TABLE V: Raw lattice energies from each ensemble, errors are from statistics/fitting only. aM_Z are the pion masses used in the chiral fits, $aE(B_s)$ and $aE(B)$ are the energies of the B_s and B meson. Results on sets 3, 6 and 8 are new, others are given in [11].

<table>
<thead>
<tr>
<th>Set</th>
<th>aM_π</th>
<th>$aE(B_s)$</th>
<th>$aE(B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.10171(4)</td>
<td>0.6067(7)</td>
<td>0.5439(12)</td>
</tr>
<tr>
<td>6</td>
<td>0.08154(2)</td>
<td>0.5158(1)</td>
<td>0.4649(6)</td>
</tr>
<tr>
<td>8</td>
<td>0.05718(1)</td>
<td>0.4025(2)</td>
<td>0.3638(5)</td>
</tr>
</tbody>
</table>
described in [11]. The amplitudes and energies from the fits are given in Tables IV and V, \(a^{3/2}\Phi_q^{(0)}\) is the matrix element of the leading current \(J_0^{(0)}\) and \(a^{3/2}\Phi_q^{(1)}\) that of \(J_0^{(1)}\) and \(J_0^{(2)}\), whose matrix elements are equal at zero meson momentum. Notice that the statistical errors in \(\Phi\) do not increase on the physical point lattices, because they have such large volumes.

We take two approaches to the analysis. The first is to perform a simultaneous chiral fit to all our results for \(\Phi, \Phi_0, \Phi_s/\Phi\) and \(M_B - M_B\) using \(SU(2)\) chiral perturbation theory. The second is to study only the physical \(u/d\) mass results as a function of lattice spacing.

For the chiral analysis we use the same formula and priors for \(M_B - M_B\) as in [11]. Pion masses used in the fits are listed in Table V and the chiral logarithms, \(l(M^2)\), include the finite volume corrections computed in [18] which have negligible effect on the fit. For the decay constants the chiral formulas, including analytic terms up to \(M^2\) and the leading logarithmic behaviour, are (see e.g. [19]):

\[
\Phi_s = \Phi_{s0}(1.0+b_s M^2/\Lambda^2_s) \tag{5}
\]

\[
\Phi = \Phi_0\left(1.0 + b_1 M^2/\Lambda^2 + \frac{1 + 3 g^2}{2 \Lambda^2_u} \left(-\frac{3}{2} l(M^2) \right) \right) \tag{6}
\]

The coefficients of the analytic terms \(b_s, b_1\) are given priors 0.0(1.0), \(g\) has prior 0.5(5) and \(\Phi_0, \Phi_{s0}\) have 0.5(5). To allow for discretisation errors each fit formula is multiplied by \((1 + d_1(\Lambda a)^2 + d_2(\Lambda a)^4)\), with \(\Lambda = 0.4\) GeV. We expect discretisation effects to be very similar for \(\Phi\) and \(\Phi_s\) and so we take the \(d_i\) to be the same, but differing from the \(d_i\) used in the \(M_B - M_B\) fit. Since all actions used here are accurate through \(a^2\) at tree-level, the prior on \(d_1\) is taken to be 0.0(3) whereas \(d_2 = 0.0(1.0)\). The \(d_i\) are allowed to have mild \(m_0\) dependence as in [11]. The ratio \(\Phi_s/\Phi\) is allowed additional light quark mass dependent discretisation errors that could arise, for example, from staggered taste-splittings. For comparison, we have fit the results using \(SU(2)\) heavy meson staggered chiral perturbation theory [20, 21] which changes the results by less than 1-sigma. We have tested that the fit is stable with respect to changes to the priors for \(g, b_i, b_s, d_i\) and adding/removing discretisation corrections.

The results of the decay constant chiral fits are plotted in Figs. 1 and 2. Extrapolating to the physical point appropriate to \(m_t = (m_u + m_d)/2\) in the absence of electromagnetism, i.e. \(M_\pi = M\pi\), we find \(\Phi_B = 0.519(10)\) GeV\(^3/2\), \(\Phi_B^p = 0.427(9)\) GeV\(^3/2\), \(\Phi_B^p/\Phi_B = 1.215(7)\). For \(M_B - M_B\) we obtain 86(1) MeV, in agreement with the result of [11].

Figs 3 and 4 show the results of fitting \(M_B - M_B\) and decay constants from the physical point ensembles only, and allowing only the mass dependent discretisation terms above. The results are \(\Phi_B = 0.521(8)\) GeV\(^3/2\), \(\Phi_B = 0.428(7)\) GeV\(^3/2\), \(\Phi_B^p/\Phi_B = 1.216(7)\) and \(M_B - M_B = 87(1)\) MeV. Results and errors agree well between the two methods and we take the central values from the chiral fit as this allows us to interpolate to the correct pion mass.

Our error budget is given in Table VI. The errors that are estimated directly from the chiral/continuum fit are those from statistics, the lattice spacing and \(g\) and other chiral fit parameters. The two remaining sources of error in the decay constant are missing higher order corrections in the operator matching and relativistic corrections to

\[
\begin{array}{cccccc}
\text{Error \%} & \Phi_B/\Phi_B & M_B - M_B & \Phi_B/\Phi_B & M_B - M_B \\
\text{EM:} & 0.0 & 1.2 & 0.0 & 0.0 \\
\text{g dependence:} & 0.01 & 0.9 & 0.9 & 0.9 \\
\text{chiral:} & 0.01 & 0.2 & 0.04 & 0.04 \\
\text{g:} & 0.01 & 0.1 & 0.0 & 0.01 \\
\text{stat/scale:} & 0.30 & 0.1 & 0.7 & 0.7 \\
\text{operator:} & 0.0 & 0.0 & 1.3 & 1.3 \\
\text{relativistic:} & 0.5 & 0.5 & 1.0 & 1.0 \\
\text{total:} & 0.6 & 2.0 & 2.0 & 2.0 \\
\end{array}
\]

TABLE VI: Full error budget from the chiral fit as a percentage of the final answer.
the current. We estimate the operator matching error by allowing in our fits for an am_b-dependent α_s^2 correction to the renormalisation in Eq. 4 with prior on the coefficient of 0.2(1) i.e. ten times the size of the one-loop correction, \tilde{x}_0. This error cancels in the ratio f_{B^+}/f_B. We also allow for α_s^2 corrections multiplying $J_0^{(1,2)}$ with coefficient 0.0(1.0). The matrix element of $J_0^{(1)}$ is about 9% of $J_0^{(0)}$ from Table IV. Missing current corrections at the next order in $1/m_b$ will be of size $(\Lambda_{QCD}/m_b)^2 \approx 0.01$ which we take as an error. Finally, we estimated in [11] that to correct for missing electromagnetic effects, $M_{B_s} - M_B$ should be shifted by -1(1) MeV.

Using the PDG masses $M_{B_s} = (M_{B^0} + M_{B^+})/2 = 5.27942(12)$ GeV and $M_{B_s} = 5.36668(24)$ GeV [22] to convert Φ_q to f_{B_s} our final results are:

$$f_B = 0.186(4) \text{ GeV}$$
$$f_{B_s} = 0.224(4) \text{ GeV}$$
$$f_{B_s}/f_B = 1.205(7)$$
$$M_{B_s} - M_B = 85(2) \text{ MeV}.$$

For the B meson decay constant we need to distinguish between f_{B_s} and f_{B_s}. Since sea quark mass effects are much smaller than valence mass effects we simply do this by extrapolating Φ_{B_s} and Φ_B to values of M^2 corresponding to fictitious mesons made purely of u or d quarks using $m_u/m_d = 0.48(10)$ [22]. This gives:

$$f_{B_s}/f_B = 1.217(8) ; \quad f_{B_s}/f_{B^+} = 1.194(7)$$
$$f_{B^+} = 0.184(4) \text{ GeV} ; \quad f_{B^0} = 0.188(4) \text{ GeV}$$

IV. CONCLUSIONS

Our results agree with but improve substantially on two earlier results using nonrelativistic approaches for the b quark and multiple lattice spacing values on $N_f = 2 + 1$ ensembles using asqtad sea quarks. These were: $f_{B_s} = 228(10)$ MeV, $f_{B_s}/f_B = 1.188(18)$ (NRQCD/HISQ) [14] and $f_{B_s} = 242.0(9.5)$ MeV and $f_{B_s}/f_{B^+} = 1.229(26)$ (Fermilab/asqtad) [21]. We also agree well (within the 2% errors) with a previous result for f_{B_s} of 225(4) MeV obtained using a relativistic (HISQ) approach to b quarks on very fine $N_f = 2 + 1$ lattices [23]. Our simultaneous determination of $M_{B_s} - M_B$ to 2% agrees with experiment (87.4(3) MeV [22]).

We can determine new lattice ‘world-average’ error-weighted values by combining our results in Eq. 7 with the independent results of [21] and [23] since effects from c sea quarks, which they do not include, should be negligible [24]. The world averages are then: $f_{B_s} = 225(3)$ MeV and $f_{B_s}/f_{B^+} = 1.218(8)$ giving $f_{B^+} = 185(3)$ MeV.

These allow for significant improvements in predictions for SM rates. For example, updating [25] with the world-average for f_{B_s} above and our result for f_{B^0} (Eq. 8) we obtain:

$$\text{Br}(B_s \to \mu^+\mu^-) = 3.17 \pm 0.15 \pm 0.09 \times 10^{-9}$$
$$\text{Br}(B_d \to \mu^+\mu^-) = 1.05 \pm 0.05 \pm 0.05 \times 10^{-10}$$

where the second error from f_{B_s} has been halved and is no longer larger than other sources of error such as $V_{tb}^* V_{tq}$. Note that this is the flavor-averaged branching fraction at $t = 0$; the time-integrated result would be increased by 10% in the B_s case (to 3.47(19) $\times 10^{-9}$) to allow for the width difference of the two eigenstates [26, 27]. The current experimental results [28] for $B_s \to \mu^+\mu^-$ agree with this prediction.

From the world-average f_{B^+} above we also obtain the Standard Model rate:

$$\frac{1}{|V_{ub}|^2} \text{Br}(B^+ \to \tau\nu) = 6.05(20),$$

where the fraction is the flavor-averaged branching fraction at $t = 0$; the time-integrated result would be increased by 10% in the B_s case (to 3.47(19) $\times 10^{-9}$) to allow for the width difference of the two eigenstates [26, 27]. The current experimental results [28] for $B_s \to \mu^+\mu^-$ agree with this prediction.

From the world-average f_{B^+} above we also obtain the Standard Model rate:
with 3% accuracy. Calculations of matrix elements for B_s/B mixing with physical u/d quarks are now underway.

Acknowledgements We are grateful to the MILC collaboration for the use of their gauge configurations and to B. Chakraborty, J. Koponen and P. Lepage for useful discussions. The results described here were obtained using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service as part of STFC’s DiRAC facility. This work was funded by STFC and the US DOE. CTHD was funded by the Royal Society and the Wolfson Foundation.

[32] This agrees with expectations from [21, 29] in which the heavy-light renormalisation constant is perturbatively very close to the product of the square roots of the renormalisation of the local temporal vector current for heavy-heavy and light-light. Here the corresponding heavy-heavy current is conserved [30] and the light-light current has a very small renormalisation [31]. This will be discussed further elsewhere.