Linear preservers of tensor product of unitary orbits, and product numerical range

Chi-Kwong Li
William & Mary, ckli@wm.edu

Yiu-Tung Poon

Nung-Sing Sze

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Linear preservers of tensor product of unitary orbits, and product numerical range

Chi-Kwong Lia,\ast,1, Yiu-Tung Poonb, Nung-Sing Szec

a Department of Mathematics, College of William & Mary, Williamsburg, VA 23187-8795, USA
b Department of Mathematics, Iowa State University, Ames, IA 50011, USA
c Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

\textbf{ARTICLE INFO}

Article history:
Received 9 May 2011
Accepted 25 July 2011
Available online 27 August 2011

Submitted by W. Barrett

Dedicated to Professors Abraham Berman, Moshe Goldberg, and Raphael Loewy

AMS classification:
15A86
15A69
15A60
15B57
46N50

Keywords:
Unitary orbits
Automorphism
Quantum states
Density matrices
Partial transpose
Product numerical range

\textbf{ABSTRACT}

It is shown that the linear group of automorphism of Hermitian matrices which preserves the tensor product of unitary orbits is generated by natural automorphisms: change of an orthonormal basis in each tensor factor, partial transpose in each tensor factor, and interchanging two tensor factors of the same dimension. The result is then applied to show that automorphisms of the product numerical ranges have the same structure.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Let M_n be the set of $n \times n$ complex matrices, and H_n be the set of Hermitian matrices in M_n. In quantum physics, quantum states of a system with n physical states are represented as density matrices A in H_n, i.e., A is positive semi-definite with trace one; see [7]. Let $C \in H_m$ and $D \in H_n$ be density matrices. They may be changed by quantum operations, or they may be put in different bases for easy measurement. In closed systems, these correspond to unitary similarity transforms. Hence, it is interesting to consider the unitary similarity orbits of these matrices, namely,

$$\mathcal{U}(C) = \{UCU^*: U \in M_m \text{ is unitary}\} \quad \text{and} \quad \mathcal{U}(D) = \{VDV^*: V \in M_n \text{ is unitary}\}.$$

If there is no influence from the external environment, the joint system described by the states $X \in \mathcal{U}(C)$ and $Y \in \mathcal{U}(D)$ is represented by $X \otimes Y$. When C and D are pure states, i.e., both C and D are rank one orthogonal projections, then $\mathcal{U}(C) \otimes \mathcal{U}(D)$ contains all states of the form $X \otimes Y$, where $X \in H_m$ and $Y \in H_n$ are pure states, and the convex hull of $\mathcal{U}(C) \otimes \mathcal{U}(D)$, denoted by $S(C, D) = \text{conv} \{\mathcal{U}(C) \otimes \mathcal{U}(D)\}$, becomes the set of all separable bipartite states; see [3].

In [1], we show that linear automorphisms on H_{mn} leaving invariant the set $\mathcal{U}(C) \otimes \mathcal{U}(D)$ have the same structure as those leaving invariant the set $S(C, D)$ when C and D are pure states. Such an linear automorphism Ψ has the form

$$(1) \ A \otimes B \mapsto \psi_1(A) \otimes \psi_2(B) \quad \text{or} \quad (2) \ A \otimes B \mapsto \psi_2(B) \otimes \psi_1(A),$$

where for $j = 1, 2$, ψ_j has the form

$X \mapsto U_j^*XU_j \quad \text{or} \quad X \mapsto U_j^*X^2U_j$

for some unitary $U_1 \in M_m$ and $U_2 \in M_n$.

The purpose of this paper is to refine the above result, and characterize linear automorphisms Ψ on H_{mn} or M_{mn} such that

$$\Psi(\mathcal{U}(C) \otimes \mathcal{U}(D)) = \mathcal{U}(C) \otimes \mathcal{U}(D) \quad \text{and} \quad \Psi(S(C, D)) = S(C, D),$$

where $C \in H_m$ and $D \in H_n$ are density matrices.

In connection to $\mathcal{U}(C) \otimes \mathcal{U}(D)$, consider the (C, D)-product numerical range of an $(mn) \times (mn)$ matrix defined by

$$W_{C,D}^{\otimes}(T) = \{\text{tr}(TZ) : Z \in \mathcal{U}(C) \otimes \mathcal{U}(D)\},$$

which is a generalization of the classical numerical range (see [2]) and is a useful tool for studying quantum information science introduced in [6]. We will also characterize linear maps Ψ satisfying

$$W_{C,D}^{\otimes}(\Psi(T)) = W_{C,D}^{\otimes}(T) \quad \text{for all matrices} \ T \in M_{mn}.$$

Note that when $D = I_n/n$, we can consider the composite map $\text{tr}_2 \circ \Psi$, where tr_2 is the linear map such that $\text{tr}_2(A \otimes B) = (\text{tr}B)A$ for $A \otimes B \in M_m \otimes M_n$ known as the partial trace operator with respect to the second system. Then the problems reduce to the study of linear preservers of $\mathcal{U}(C)$ and the linear preservers of the C-numerical range $W_C(T)$; see [4] and its references.

To avoid degenerate cases, we always assume that C and D are non-scalar matrices in our discussion. Furthermore, we use the usual inner product $(X, Y) = \text{tr}(XY^*)$ for two complex matrices of the same size. Also, to specify a linear map on H_{mn} or M_{mn}, it suffices to (and we often will) specify only the image of elements of the form $A \otimes B$.

2. Results and proofs

Consider the following sets of linear maps on complex or Hermitian matrices.
\(\mathcal{L}(C) \): the set of operators mapping \(\mathcal{U}(C) \) onto itself.

\(\mathcal{L}(D) \): the set of operators mapping \(\mathcal{U}(D) \) onto itself.

\(\mathcal{L}(C, D) \): the set of operators mapping \(\mathcal{U}(C) \) onto \(\mathcal{U}(D) \).

By the result in [5], operators in \(\mathcal{L}(C) \) have the forms

1. \(A \mapsto UAU^* \) or \(A \mapsto UA^t U^* \) for some unitary \(U \in M_m \).
2. \(A \mapsto (2tr A/m)I_m - UAU^* \) or \(A \mapsto (2tr A/m)I_m - UA^t U^* \) for some unitary \(U \in M_m \) in case \(C \) and \(2l/m - C \) have the same eigenvalues.

Similarly, operators in \(\mathcal{L}(D) \) have the forms

3. \(B \mapsto VBV^* \) or \(B \mapsto VB^t V^* \) for some unitary \(V \in M_n \).
4. \(B \mapsto (2tr B/n)I_n - VBV^* \) or \(B \mapsto (2tr B/n)I_n - VB^t V^* \) for some unitary \(V \in M_n \) in case \(D \) and \(2l/n - D \) have the same eigenvalues.

For \(\mathcal{L}(C, D) \) to be non-empty, we must have \(m = n \). If \(\mathcal{U}(C) = \mathcal{U}(D) \), i.e., \(C \) and \(D \) have the same eigenvalues, then \(\mathcal{L}(C, D) = \mathcal{L}(C) \) and \(\mathcal{L}(C, D) \) consists of operators of the form (1). Otherwise, \(2l_m / m - C \) and \(D \) have the same eigenvalues, equivalently, \(2l_n / n - D \) and \(C \) have the same eigenvalues, and \(\mathcal{L}(C, D) \) consists of operators of the form (2) described above.

We have the following.

Theorem 2.1. Let \(\Psi : \mathcal{V} \rightarrow \mathcal{V} \) be a linear map with \(\mathcal{V} \in \{ M_{mn}, H_{mn} \} \), and \(C \in H_m \) and \(D \in H_n \) be non-scalar density matrices. The following are equivalent.

(a) \(\Psi(\mathcal{U}(C) \otimes \mathcal{U}(D)) = \mathcal{U}(C) \otimes \mathcal{U}(D) \).

(b) \(\Psi(\mathcal{S}(C, D)) = \mathcal{S}(C, D) \).

(c) One of the following holds.

1. There are \(\psi_1 \in \mathcal{L}(C) \) and \(\psi_2 \in \mathcal{L}(D) \) such that
 \[\Psi(A \otimes B) = \psi_1(A) \otimes \psi_2(B) \] for all \(A \otimes B \in H_m \otimes H_n \).

2. \((m, \mathcal{U}(C)) = (n, \mathcal{U}(D)) \), there are \(\psi_1 \in \mathcal{L}(C) \) and \(\psi_2 \in \mathcal{L}(D) \) such that
 \[\Psi(A \otimes B) = \psi_2(B) \otimes \psi_1(A) \] for all \(A \otimes B \in H_m \otimes H_n \).

3. \((m, \mathcal{U}(2l/m - C)) = (n, \mathcal{U}(D)) \), and there are \(\psi_1, \psi_2 \in \mathcal{L}(C, D) \) such that
 \[\Psi(A \otimes B) = \psi_2(B) \otimes \psi_1(A) \] for all \(A \otimes B \in H_m \otimes H_n \).

In the rest of this section, we always assume that \(C \in H_m \) and \(D \in H_n \) such that \(C \neq l_m / m \) and \(D \neq l_n / n \). To prove Theorem 2.1, we first establish some lemmas.

Lemma 2.2. Given any four distinct elements \(X_1 \otimes Y_1, \ldots, X_4 \otimes Y_4 \) in \(\mathcal{U}(C) \otimes \mathcal{U}(D) \). Suppose

\[\sum_{j=1}^{4} \alpha_j (X_j \otimes Y_j) = 0, \]

for some nonzero \(\alpha_1, \ldots, \alpha_4 \in \mathbb{R} \) with \(\alpha_1 + \cdots + \alpha_4 = 0 \). Then either

\[X_1 = X_2 = X_3 = X_4 \quad \text{or} \quad Y_1 = Y_2 = Y_3 = Y_4. \]

Proof. Without loss of generality, suppose \(X_1 \neq X_2 \). Then \(X_1 \) and \(X_2 \) are linearly independent and there is a linear functional \(f : H_m \rightarrow \mathbb{R} \) such that \(f(X_1) = 1 \) and \(f(X_2) = 0 \). Applying the linear map \(A \otimes B \mapsto f(A)B \) to Eq. (1),

\[\alpha_1 Y_1 + \alpha_3 f(X_3)Y_3 + \alpha_4 f(X_4)Y_4 = 0 \quad \implies \quad Y_1 = (-\alpha_3 f(X_3)/\alpha_1) Y_3 + (-\alpha_4 f(X_4)/\alpha_1) Y_4. \]
Lemma 2.4. Suppose \(D \in \text{diag}(d_1, \ldots, d_n)\) is not a scalar matrix. For any \((i, j)\) pair, let \(T_{ij}(D)\) be the set of matrices in \(U(D)\) obtained from \(D\) by replacing \(D(i, j)\) by a matrix in \(H_2\) with eigenvalues \(d_i\) and \(d_j\).

1. If \(d_i \neq d_j\), then for any two distinct matrices \(T_1, T_2 \in T_{ij}(D)\), there are \(T_3, T_4 \in T_{ij}(D)\) such that \(T_1, T_2, T_3\) and \(T_4\) are all distinct and either \(T_1 + T_3 = T_2 + T_4\) or \(T_1 + T_2 = T_3 + T_4\).

2. For any permutation \(\sigma\) on the index set \(\{1, \ldots, n\}\), define \(D_{\sigma} = \text{diag}(d_{\sigma(1)}, \ldots, d_{\sigma(n)})\). Then the real linear span of the set \(\bigcup\{T_{ij}(D_{\sigma}) : \text{permutation } \sigma\text{ and } 1 \leq i < j \leq n\}\) equals \(H_n\).

Proof. For the first statement, we assume that \((i, j) = (1, 2)\), \(T_1 = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \oplus \hat{D}\) and \(T_2 = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \oplus \hat{D}\) with \(\hat{D} = \text{diag}(d_3, \ldots, d_n)\). Consider the following two cases:

Case 1. Suppose \(T_2 \neq \begin{pmatrix} x_{22} & -x_{12} \\ -x_{21} & x_{11} \end{pmatrix} \oplus \hat{D}\). Let \(T_3 = \begin{pmatrix} x_{22} & -x_{12} \\ -x_{21} & x_{11} \end{pmatrix} \oplus \hat{D}\) and \(T_4 = \begin{pmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{pmatrix} \oplus \hat{D}\).

Then \(T_1, T_2, T_3\) and \(T_4\) are all distinct and \(T_1 + T_3 = (d_1 + d_2)I_2 \oplus 2\hat{D} = T_2 + T_4\).

Case 2. Suppose \(T_2 = \begin{pmatrix} x_{22} & -x_{12} \\ -x_{21} & x_{11} \end{pmatrix} \oplus \hat{D}\). One can always choose \(T_3\) and \(T_4 \in T_{12}(D)\) so that \(T_1, T_2, T_3\) and \(T_4\) are all distinct and \(T_1 + T_2 = (d_1 + d_2)I_2 \oplus 2\hat{D} = T_3 + T_4\).

For the second statement, clearly, the set \(\{D_{\sigma} : \text{permutation } \sigma\}\) spans the set of all diagonal matrices in \(H_n\). Next, for each \((r, s)\) pair, one can find a permutation \(\sigma\) so that \(d_{\sigma(r)} \neq d_{\sigma(s)}\) and hence \(T_{rs}(D_{\sigma})\) contains two linearly independent matrices with nonzero \((r, s)\) and \((s, r)\) entries. Therefore, the set \(\bigcup\{T_{ij}(D_{\sigma}) : \text{permutation } \sigma\text{ and } 1 \leq i < j \leq n\}\) clearly spans \(H_n\).

Lemma 2.4. Suppose \(C \in H_m\) and \(D \in H_n\) are non-scalar density matrices. Let \(\Psi : \mathcal{U} \rightarrow \mathcal{V}\) be a linear map with \(\mathcal{V} \in \{M_{mn}, H_{mn}\}\) such that \(\Psi(U(C) \otimes U(D)) = U(C) \otimes U(D)\). Then one of the following holds.

1. For every \(X \in U(C)\) there is \(\tilde{X} \in U(C)\) such that \(\Psi(X \otimes U(D)) = \tilde{X} \otimes U(D)\); for every \(Y \in U(D)\) there is \(\tilde{Y} \in U(D)\) such that \(\Psi(U(C) \otimes Y) = U(C) \otimes \tilde{Y}\).

2. \(m = n\), for every \(X \in U(C)\) there is \(\tilde{X} \in U(D)\) such that \(\Psi(X \otimes U(D)) = U(C) \otimes \tilde{X}\); for every \(Y \in U(D)\) there is \(\tilde{Y} \in U(C)\) such that \(\Psi(U(C) \otimes Y) = \tilde{Y} \otimes U(D)\).
Proof. Without loss of generality, assume that \(m \leq n \) and \(D = \text{diag}\ (d_1, \ldots, d_n) \). For any permutation \(\sigma \) on the index set \(\{1, \ldots, n\} \), define \(D_\sigma = \text{diag}\ (d_{\sigma(1)}, \ldots, d_{\sigma(n)}) \). Fixed a \(C_0 \in \mathcal{U}(C) \). We first claim that each \(D_\sigma \) with \(d_{\sigma(i)} \neq d_{\sigma(j)} \), either

(i) there is a \(\tilde{C}_0 \in \mathcal{U}(C) \) such that \(\Psi (C_0 \otimes T_\eta(D_\sigma)) \subseteq \tilde{C}_0 \otimes \mathcal{U}(D) \); or

(ii) there is a \(\tilde{C}_0 \in \mathcal{U}(D) \) such that \(\Psi (C_0 \otimes T_\eta(D_\sigma)) \subseteq \mathcal{U}(C) \otimes \tilde{C}_0 \).

Suppose \(T_1 \) and \(T_2 \in T_\eta(D_\sigma) \) are distinct. By Lemma 2.3(1), there exist \(T_3 \) and \(T_4 \in T_\eta(D_\sigma) \) such that \(T_1, T_2, T_3 \) and \(T_4 \) are distinct and either \(T_1 + T_2 = T_3 + T_4 \) or \(T_1 + T_2 = T_3 + T_4 \). Let \(\Psi(C_0 \otimes T_i) = X_i \otimes Y_i \) for some \(X_i \in \mathcal{U}(C) \) and \(Y_i \in \mathcal{U}(D) \), \(i = 1, \ldots, 4 \). Then \(X_1 \otimes Y_1 + X_2 \otimes Y_2 = X_3 \otimes Y_3 + X_4 \otimes Y_4 \) or \(X_1 \otimes Y_1 + X_2 \otimes Y_2 = X_3 \otimes Y_3 + X_4 \otimes Y_4 \). By Lemma 2.2, we have either \(X_1 = \cdots = X_4 \) or \(Y_1 = \cdots = Y_4 \). As \(T_1 \) and \(T_2 \) are arbitrary matrices in \(T_\eta(D_\sigma) \), the claim holds.

Suppose first \(\Psi(C_0 \otimes T_{12}(D)) \subseteq \tilde{C}_0 \otimes \mathcal{U}(D) \) for some \(\tilde{C}_0 \in \mathcal{U}(C) \). In this case, we will show that

\[
\{ \Psi(C_0 \otimes D_\sigma) : \text{permutation } \sigma \} \subseteq \tilde{C}_0 \otimes \mathcal{U}(D). \tag{2}
\]

Once this is proven, with Lemma 2.3 and the claims (i)–(iii), one can conclude that \(\Psi(C_0 \otimes \mathcal{U}(D)) \subseteq \tilde{C}_0 \otimes \mathcal{U}(D) \). Applying the argument to \(\Psi^{-1} \) on the set \(\tilde{C}_0 \otimes \mathcal{U}(D) \), we see that \(\Psi^{-1}(\tilde{C}_0 \otimes \mathcal{U}(D)) \subseteq C_0 \otimes \mathcal{U}(D) \). Thus, \(\Psi(C_0 \otimes \mathcal{U}(D)) = \tilde{C}_0 \otimes \mathcal{U}(D) \).

To prove the inclusion (2), let \(D' = \text{diag}\ (d_2, d_1, d_3, \ldots, d_n) \). Notice that \(\{D, D'\} \subseteq T_{12}(D) \). By claim (i),

\[
\Psi(C_0 \otimes D) = \tilde{C}_0 \otimes Y \quad \text{and} \quad \Psi(C_0 \otimes D') = \tilde{C}_0 \otimes Y' \quad \text{for some distinct } Y, Y' \in \mathcal{U}(D). \tag{3}
\]

We consider the following two cases.

Case 1. Suppose \(d_{\sigma(1)} \neq d_{\sigma(2)} \). Let \(D'_{\sigma} = \text{diag}\ (d_{\sigma(2)}, d_{\sigma(1)}, d_{\sigma(3)}, \ldots, d_{\sigma(n)}) \). Then

\[
(d_{\sigma(1)} - d_{\sigma(2)}) \left(\Psi(C_0 \otimes D) - \Psi(C_0 \otimes D') \right) - (d_1 - d_2) \left(\Psi(C_0 \otimes D_\sigma) - \Psi(C_0 \otimes D'_{\sigma}) \right) = 0.
\]

Then Lemma 2.2 and (3) imply \(\Psi(C_0 \otimes D_\sigma) = \tilde{C}_0 \otimes Y_\sigma \) for some \(Y_\sigma \in \mathcal{U}(D) \).

Case 2. Suppose \(d_{\sigma(1)} = d_{\sigma(2)} \). Clearly, there is \(j \geq 2 \) such that \(d_{\sigma(j)} \neq d_{\sigma(1)} \). Without loss of generality, we may assume \(j = 3 \), i.e., \(d_{\sigma(3)} \notin \{d_{\sigma(1)}, d_{\sigma(2)}\} \). Let \(D'' = \text{diag}\ (d_1, d_3, d_2, \ldots, d_n) \) and \(D'_{\sigma} = \text{diag}\ (d_{\sigma(1)}, d_{\sigma(3)}, d_{\sigma(2)}, \ldots, d_{\sigma(n)}) \). By Case 1, \(\Psi(C_0 \otimes D'_{\sigma}) = \tilde{C}_0 \otimes Y'_{\sigma} \) for some \(Y'_{\sigma} \in \mathcal{U}(D) \). Observe that

\[
(d_{\sigma(2)} - d_{\sigma(3)}) \left(\Psi(C_0 \otimes D) - \Psi(C_0 \otimes D'_{\sigma}) \right) - (d_2 - d_3) \left(\Psi(C_0 \otimes D_\sigma) - \Psi(C_0 \otimes D'_{\sigma}) \right) = 0.
\]

With Lemma 2.2 and (3), one can conclude that \(\Psi(C_0 \otimes D_\sigma) = \tilde{C}_0 \otimes Y_\sigma \) for some \(Y_\sigma \in \mathcal{U}(D) \). Therefore, the inclusion (2) holds.

Next suppose \(\Psi(C_0 \otimes T_{12}(D)) \subseteq \mathcal{U}(C) \otimes \tilde{C}_0 \) for some \(\tilde{C}_0 \in \mathcal{U}(D) \). By a similar argument, one can show that \(\Psi(C_0 \otimes \mathcal{U}(D)) \subseteq \mathcal{U}(C) \otimes \tilde{C}_0 \). Then \(\Psi \) induces an injective map from \(\text{span}\ \{C_0 \otimes \mathcal{U}(D)\} = C_0 \otimes M_n \) to \(\text{span}\ \{\mathcal{U}(C) \otimes \tilde{C}_0\} = M_m \otimes \tilde{C}_0 \). Since we assume that \(m \leq n \), we conclude that \(m = n \).

Applying the argument to \(\Psi^{-1} \) on the set \(\mathcal{U}(C) \otimes \tilde{C}_0 \), we see that \(\Psi(C_0 \otimes \mathcal{U}(D)) = \mathcal{U}(C) \otimes \tilde{C}_0 \).

From the above argument, one see that for each \(C_0 \in \mathcal{U}(C) \), either \(\Psi(C_0 \otimes \mathcal{U}(D)) = \mathcal{U}(C) \otimes \tilde{C}_0 \) or \(\Psi(C_0 \otimes \mathcal{U}(D)) = \mathcal{U}(C) \otimes \tilde{X} \). Now, we claim that one of the following holds.

(I) For every \(X \in \mathcal{U}(C) \), there is \(\tilde{X} \in \mathcal{U}(C) \) such that \(\Psi(X \otimes \mathcal{U}(D)) = \tilde{X} \otimes \mathcal{U}(D) \).

(II) For every \(X \in \mathcal{U}(C) \), there is \(\tilde{X} \in \mathcal{U}(C) \) such that \(\Psi(X \otimes \mathcal{U}(D)) = \mathcal{U}(C) \otimes \tilde{X} \).
Remark 2.6. One may further extend the results to multi-partite systems \(\Psi_1 \otimes \cdots \otimes \Psi_k \) using techniques similar to those in [1] and the following extension of Lemma 2.2.

If four distinct elements \(X_1, X_2, X_3, X_4 \in \mathcal{U}(C_1) \otimes \cdots \otimes \mathcal{U}(C_k) \) satisfy \(\alpha_1 X_1 + \cdots + \alpha_4 X_4 = 0 \) for some nonzero \(\alpha_1, \ldots, \alpha_4 \in \mathbb{R} \) summing up to 0, then \(X_1, \ldots, X_4 \) differ in only one of the tensor factors. We omit the discussion.
Acknowledgments

Research of Li was supported by USA NSF, HK RGC and the Shanxi 100 talent program. Research of Poon was supported by USA NSF. Research of Sze was supported by HK GRC.

References