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ABSTRACT

A re a l  time, one-dimensional mathematical model has been 
developed fo r  use in  small t i d a l  streams to in v es t ig a te  both the 
short-term  ( in t r a - t i d a l  and diurnal) f luc tua tions  and the long-term 
(seasonal) v a r ia tio n s  in  water q ua li ty .  The model i s  composed of two 
submodels -  a hydrodynamic submodels and a water qua li ty  submodel.

In  the hydrodynamic submodel the equations of continuity  and 
momentum are solved simultaneously through the use of a sem i-im plic it 
f i n i t e  d ifference  scheme. The so lu tion  of these equations provides 
information on ve loc ity  and surface e levation  as functions of 
long itud ina l d istance and time. The ve locity  and surface e levation  
functions are used to solve the mass-balance equations of the water 
q u a li ty  submodel. The so lu tion  of the mass-balance equations, v ia  an 
im p lic i t  f i n i t e  d ifference scheme, describes the long itud ina l and 
temporal d is tr ib u t io n  of e igh t dissolved or suspended substances 
comprising an 'ecosystem*.

The model has been ca l ib ra ted  and v a lida ted  using data from the 
L i t t l e  Hunting Creek, a small t i d a l  stream jo in ing  the Potomac River. 
The model successfu lly  p red ic ts  both the short- te rm  and long-term water 
q u a li ty  v a r ia tio n s  measured in  the creek. The model has also been 
applied as a d iagnostic  too l to assess the impact of such fac to rs  as 
sediment oxygen demand, sewage treatment p lan t discharge and nonpoint 
source wasteloadings on water q ua li ty  conditions in  the creek.

x



A MATHEMATICAL MODEL FOR SMALL TIDAL STREAMS 

CAPABLE OF SIMULATING BOTH SHORT-TERM 

AND LONG-TERM WATER QUALITY VARIATIONS



I . INTRODUCTION

The generation of voluminous amounts of wastes by mankind has 

had i t s  e f f e c t  on a l l  the e a r th ’s water systems. Where large 

populations are centered or where industry  has grown the e f f e c t  has a t  

times been dramatic. Estuarine systems in  general have been greatly  

a ffec ted . H is to r ic a l ly  these systems are a t t r a c t iv e  as routes for 

trade and t r a v e l ,  sources of food and convenient receptacles for 

wastes. In the n ineteenth  century new in d u s tr ie s  s i tu a te d  along the 

e s tu a r ie s  to take advantage of these ’water roads’ fo r  the shipment of 

raw m ateria ls  and fin ished  products. The growing cen tra lized  

population provided the labor force. And, of course, the estuary  

provided a convenient dumping s i t e  fo r  wastes. At p re sen t,  v i r tu a l ly  

every major estuary  has been s ig n i f ic a n t ly  po llu ted  or faces po llu tion  

problems in  the foreseeable fu tu re .

Mathematical modeling of water qua li ty  i s  over a h a l f  century 

o ld , the r e s u l t  o f a growing concern with the preserva tion  of our water 

resources. Over the years models have grown with our advancing 

knowledge of the complex processes which operate in  a waterbody. In

many instances water q ua li ty  models were instrum ental in  the 

advancement of our understanding of the hydrographic, chemical and 

b io lo g ic a l  in te rac t io n s  in  an es tuary .

The bulk of the water q ua li ty  modeling e f f o r t  has centered on 

the major e s tu a r ie s .  The use of these water bodies a f fec ts  large

2



3

populations, o ften  spanning more than one county or s t a te .  Controversy 

resu lted  from the co n fl ic t in g  uses of the es tuary  by industry , f in f ish  

and s h e l l f i s h  harvesto rs  and rec rea tio n a l  concerns. Because of the 

economic b en e f i ts  to be reaped or l o s t  to a region or s ta te  the 

controversy has often  taken on a p o l i t i c a l  edge. I t  was in  th is  

atmosphere th a t  water q ua li ty  modeling was conceived and has grown, 

paid fo r  by federa l or s ta te  taxes or by the commercial concerns 

a ffec ted .

While modeling of the la rg e r  e s tu a r ie s  was ongoing, the fa tes  of 

many sm aller t i d a l  streams were ignored and th e i r  conditions 

d e te r io ra ted .  Often these sm aller systems were s a c r if ic e d  to industry  

or to the need to dispose of municipal wastes cheaply. In le ss  urban 

areas , streams were the victims of the unforeseen e f fec ts  of land 

runoff bearing excess f e r t i l i z e r ,  p es t ic id es  or h e rb ic id e s .

I t  has grown more apparent, in  p a r t  due to advances in  water 

q u a li ty  modeling, th a t  the h ea lth  of large  es tuarine  systems depends on 

the h ea lth  of a l l  i t s  p a r ts .  From th is  fa c t  together with the advances 

in  computer c a p a b i l i t ie s  and e f f i c i e n t  numerical techniques, i t  i s  

apparent th a t  models applicable to water q u a li ty  problems in  small 

t i d a l  streams are now both economically fea s ib le  and desireab le . In 

view of th i s ,  mathematical models have been developed as a p ra c t ic a l  

way to analyze fac to rs  a ffec t in g  water q u a li ty  in small t id a l  streams.

A mathematical model uses mathematical expressions and equations 

to represen t actions and processes which occur in  a rea l  world system. 

Most of the early  e f fo r ts  a t  modeling water qua li ty  in  e s tu a r ie s  were 

exerc ises in  the rigorous manipulation of the governing equations with 

the goal of obtaining  forms of the equations which would y ie ld
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an a ly t ic a l  so lu tio n s .  Since e s tu a r ie s  in  general have i r r e g u la r  

geometries and complex cause-and-effeet re la t io n sh ip s ,  few useful 

an a ly tic  so lu tions  were obtained. Each sim plifying  assumption made in  

order to obtain  such a so lu tion  diminished the model1 s resemblance to 

the pro totype. As a r e s u l t ,  models with a n a ly t ic a l  so lu tions usually 

produced only a rough approximation to the fa te  of p o llu tan ts  and th a t  

only where the sim plifying  assumptions were approximately co rrec t.

With the advent of modem d ig i t a l  computers and the refinement 

of numerical techniques, the length o f time needed to produce so lu tions 

to complex d i f f e r e n t ia l  equations has been g rea tly  reduced. Although 

these techniques do not produce exact so lu t io n s ,  by v ir tu e  of the fewer 

sim plifying  assumptions involved such models more closely reproduce 

rea l  world s i tu a t io n s  and are more generally applicable than estuarine  

models with an a ly tic a l  Solu tions.

An array of water q u a li ty  models are ava ilab le  a t  p resen t. Each 

type of model has i t s  advantages and disadvantages and, thus, i t s  own 

range of a p p l ic a b i l i ty .  Numerous explanations and comparisons of these 

various modeling approaches can be found in  the l i t e r a t u r e  ( e .g . ,  

Tracor, I n c . ,  1971; Nielson, 1977).

Water q u a li ty  models can be categorized ( a f t e r  Kuo e t  a l .  , 19 79) 

by ( 1 ) the water q u a li ty  components modeled, (2 ) the number of s p a t ia l  

dimensions represen ted , (3) the time sca le  and (4) the method of 

represen ting  t id a l  influence .

Of the s ing le  component water qua li ty  models the most fam ilia r  

are the s a l in i ty  in tru s io n  models (Harleman and Abraham, 1966;

Thatcher and Harleman, 1972; Kuo and Fang, 19 72). Any unusual 

movement in  the p os it ion  of the head of the s a l i n i t y  in tru s io n  can have
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s ig n i f ic a n t  e f fe c ts  on the d is tr ib u t io n  of eco log ica lly  important 

organisms and may jeopardize supplies of drinking w ater. S a l in i ty  

in t ru s io n  models are o ften  used to study the e f fe c ts  o f proposed 

changes in  the system. S a l in i ty  can be used as a n a tu ra l  t r a c e r  and 

s a l in i ty  models employed as a means of evaluating  the d ispersion  

c h a ra c te r is t ic s  of a system in  p reparation  for modeling o ther p o llu tan t  

concentrations (Cox and Macola, 1967). Other water q u a li ty  parameters 

modeled in  s in g le  component models are excess hea t (Koh and Fan, 19 70) 

and hazardous substances (Onishi and Wise, 1978).

On the next le v e l  of complexity, and more generally  associa ted  

with water p o llu t io n  than are s a l in i ty  models, are the DO -  BOD models. 

One w ell known early  modeling e f f o r t  was th a t  of S tre e te r  and Phelps 

(1925), a f i r s t  attempt to describe the re la tion sh ip  between dissolved 

oxygen, atmospheric reae ra tio n  and b io lo g ica l or chemical oxidation  of 

the organic loading in  a r iv e r in e  system. This work was l a t e r  expanded 

upon by Thomann (1963), Dobbins (1964) and O’Conner (1966) with the 

inc lu s ion  of ad d it ion a l sources and sinks.

In order o f increasing  complexity, models have been developed in  

which ( 1 ) the oxygen demanding m ateria l i s  seperated  in to  nitrogenous 

(NBOD) and carbonaceous (CBOD) components (Kuo e t  a l .  , 19 75) and (2) an 

’ecosystem’ i s  modeled. Included in  the l a s t  category are models of 

phytoplankton populations (Thomann e t  a l . , 1970) and ’ food chain’ 

models which include zooplankton and o ther consumers (Kremer and Nixon, 

1978). In the ecosystem models i t  i s  necessary to include the closed 

loops of the n u tr ie n ts  , n itrogen  and phosphorus.

Algal blooms are a frequent r e s u l t  of excess n u tr ie n ts  en tering  

a t id a l  stream. The presence of large  a lga l populations often  are a
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major fac to r  in  the v io la t io n  of minimum water qua lity  standards fo r  

dissolved oxygen. Decaying a lga l mats produce undesireable odors. In 

these s i tu a t io n s  an ecosystem water quality  model would more 

e f fe c t iv e ly  reproduce system behavior and provide more information as 

to cause and e f f e c t .

The concentration of p o llu tan ts  in  re a l  e s tu a r ie s  vary in  the 

three  s p a t ia l  dimensions as w ell as in  time. Until recen tly  modeling 

water q u a li ty  in  three dimensions was economically unfeasib le and 

averaging over one or more s p a t ia l  dimensions was necessary.

Early e f f o r t s  in  e s tu arine  p o llu t io n  analysis employed the t id a l  

prism concept (Tully, 1949). The c la s s ic a l  t id a l  prism approach 

en ta i le d  the assumptions th a t  a p o l lu ta n t  could be tre a ted  as being 

simultaneously d iffused  throughout the e n t i r e  estuary  and th a t  none of 

the po llu ted  water leaving  the estuary  on the ebb tide  returned on the 

flood. Results are average concentrations over the e n t i r e  water body 

fo r each t id a l  cycle. L ater versions modified the flushing  by 

allowance of some portion  of the po llu ted  water ex i t in g  on the ebb to 

re tu rn  on the flood.

Because of the assumption of complete mixing throughout the 

system, the c la s s ic a l  t i d a l  prism models are lim ited  in  th e i r  

a p p l ic a b i l i ty  to small embayments and boat b as ins .  Complete mixing a t 

high t id e  i s  not possib le  in  e s tu a r in e  r iv e rs  and streams. Ketchum 

(1951) extended the zero-dimensional t i d a l  prism concept to a 

one-dimensional approach by dividing the estuary  in to  a nunber of 

segments with each segment undergoing complete mixing over a t id a l  

cycle. Other modified t id a l  prism models are in  use today ( e .g . ,  Kuo, 

19 76) .
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Another one-dimensional approach to water q u a li ty  modeling 

employs the mass-balance equation derived by a s p a t ia l  in teg ra t io n  of 

the three-dimensional equation over the flow cross-sec tion  (Okubo,

1964; Holley and Harleman, 1965). This approach owes much to the 

works of Taylor (195 3) and Aris (1956) on d ispersion  ( tran sp o rt  due to 

s p a t ia l  deviations of the ve loc ity  f i e ld ) .

The b a s ic  assumption inheren t in  one-dimensional models is  th a t  

v e r t ic a l  and l a t e r a l  gradients are n e g l ig ib le .  These conditions are 

c h a ra c te r i s t ic  of t i d a l  streams with in tense  t id a l  mixing. Where 

s ig n i f ic a n t  v a r ia tio n s  in  the v e r t ic a l  and/or l a t e r a l  d irec tions  e x i s t ,  

the modeler must employ e i th e r  a two-dimensional or even a fu l l  

three-dimensional rep resen ta tion .

Another aspect in  which water q u a li ty  models have grown 

inc reasing ly  so p h is t ica ted  through the years i s  in  the handling of the 

time sca le .  In ea r ly  models a steady s ta te  (no change with time) was 

assumed (Thomann, 1963). Given the large  v a r ia b i l i ty  in  the inputs and 

forces a f fec t in g  an es tu a ry ,  a steady s ta te  i s  seldom approached and 

never acheived in  a rea l  system.

Others (P r i tch a rd , 1952 and 1954; 0 fConner and DiToro, 1964) 

formulated time varying models known as t id a l  average models and slack  

tide  models, re sp ec tive ly . In these models the mass-balance equation 

i s  averaged over a time period  equal to one t id a l  cycle. Thus, t id a l  

advection i s  averaged out of the ca lcu la tions  and i t s  e f fe c ts  appear in  

a time-averaged d ispersion  term. These models using i n t e r t i d a l  time 

sca les  are usefu l in  economically represen ting  longterm f luc tua tions  

and la rge  sca le  s p a t ia l  gradients in  water q u a l i ty .

Models u t i l i z in g  time steps of much le s s  than a t id a l  cycle,
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known as ' r e a l  time' o r  ' t i d a l  time* models, have grown in  use as 

computers have grown more so p h is t ica ted . Because of the sh o r te r  time 

s tep  involved, these models are able to reproduce in t r a t i d a l  va r ia tio ns  

th a t  cannot be reproduced by t i d a l  prism, t i d a l  average or slack  tide  

models. I t  has become increasing ly  useful to be able to p red ic t  the 

range of concentrations of water qua li ty  parameters experienced during 

a t i d a l  cycle as well as the average concentration. While rea l  time 

models are able to p re d ic t  va ria tio ns  w ithin  a t id a l  cycle and are good 

in d ica to rs  of v io la tion s  of minimum standards in  water q u a l i ty ,  th e ir  

use has been generally  to reproduce and p re d ic t  short-term  behavior on 

the order of days or weeks. Where the study of long-term seasonal 

v a r ia tio n s  i s  desired the use of rea l  time models may be too co s tly ,  

e sp ec ia l ly  i f  the model estuary  has to be divided in to  numerous 

segments. In those instances where an estuary  can be modeled with 

r e la t iv e ly  few segments and the time scale  of ca lcu la tions i s  not 

overly small i t  would be to the modeler's advantage to use a rea l  time 

model. While a t id a l  average model cannot reproduce v a r ia tio n s  w ithin  

a t id a l  cycle bu t only v a r ia tio n s  between cycles, a rea l  time model can 

serve both purposes.

Tidal current i s  not calcu lated  in the t id a l  prism, t id a l  

average o r  s lack  t id e  models. However, in  a rea l  time model t id a l  

current i s  modeled as advective ve loc ity  which is  a function of space 

and time. In one-dimensional models during low freshwater flow 

conditions under which the t id a l  current i s  ra th e r  in se n s i t iv e  to-the 

change in  freshwater flow, a kinematic approach to ca lcu la ting  t id a l  

currents may be used (Fang e t  a l .  , 1973). In th is  approch the 

c ro ss-sec tio na l average t id a l  current may be ca lcu la ted  through f ie ld
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measurements coupled with the continu ity  equation, and modeled as a 

p erio d ic  function of time.

The t id a l  ve loc ity  f ie ld  may also be ca lcu la ted  with a seperate  

hydrodynamic submodel which simultaneously solves the equations of 

momentum and con tinu ity . The re su l ts  of th is  dynamic t id a l  ca lcu la tion  

are then fed in to  the water qua li ty  model (Thatcher and Harleman,

1972). S ub stan tia l  e f f o r t  i s  needed in  the ca l ib ra t io n  and v a lid a tion  

of th is  hydrodynamic submodel. However, th is  approach i s  necessary in  

two and three-dimensional models and in  one-dimensional models under 

conditions of high freshwater inflow. The dynamic approach to t id a l  

ca lcu la tions  requires a minimum of f i e ld  measurements. And, as has 

been pointed out by Harleman (1971), the increased  accuracy in  the 

descrip tion  of advective motion reduces the importance of the 

a r t i f i c i a l  lon g itu d ina l d ispersion  term.

In  general, small t i d a l  streams are high energy systems, 

undergoing d ra s t ic  changes in  volume, c ro ss-sec tio na l area and surface 

area w ith in  each t id a l  cycle. For th is  reason, these systems are 

l ik e ly  to be well mixed and, th e re fo re , can be s tudied  using a 

one-dimensional rep resen ta tio n . In these small streams storm runoff 

w i l l  have an i r r e g u la r  but s ig n i f ic a n t  e f f e c t  on stream flow and 

c ro ss -sec tio n a l  area. Adequately accounting for the e f fe c ts  of high 

runoff c a l l s  for a dynamic approach to the modeling of the transpo rt  

p rocesses .

The de le te r iou s  e f fe c ts  of point source and nonpoint source 

loadings on water q u a li ty  in  small t i d a l  streams i s  o ften  exacerbated 

by the presence of excess a lgae. Large phytoplankton populations can 

lead  to undesireable pH leve ls  and large  f luc tu a tion s  in  dissolved
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oxygen w ith in  a twenty-four hour period. Where th is  s i tu a t io n  e x i s t s ,  

i t  i s  desireab le  to take in to  account the e f f e c t  o f  phytoplankton on 

water q u a li ty  measures. To do th i s ,  the model must include not only 

phytoplankton bu t also the cycling, sources and sinks of n u tr ie n ts  

necessary fo r phytoplankton growth. Therefore, an fecosytemT approach 

to studying water qua li ty  i s  needed.

To address such problems as v io la tio n s  of minimum or maximum 

daily  water q u a li ty  s tandards, a rea l- tim e approach to modeling should 

be employed. In  th is  way the e f fe c ts  of such phenomena as the reversa l 

o f flow w ith in  a t id a l  cycle and changes in  so la r  rad ia tion  w ith in  a 

d iurnal cycle can be taken in to  account. A t id a l  average or t id a l  

prism model affords no in s ig h t  in to  the in te rp la y  of these and o ther 

sho rt- te rm  in fluences . Employing a rea l-tim e model for the study of 

long-term seasonal changes in  water q u a li ty  i s  made economically v iable 

through the use of an e f f i c i e n t  numerical scheme of computation and by 

the r e la t iv e ly  small number of model segments needed to adequately 

describe these systems. Therefore, a s ing le  model can be used to 

in v es t ig a te  both short- te rm  and long-term water qua li ty  behavior.

There i s  no need to develop and va lid a te  two seperate  models.

The following chapters d e ta i l  the development and applica tion  of 

a rea l- tim e model su i ta b le  for simulating both short-term  in t r a - t i d a l  

and d iurnal v a r ia tio n s  in  water quality  and long-term seasonal 

behavior. The model i s  divided in to  two submodels -  a hydrodynamic 

submodel and an * ecosystem' water quality  submodel. The hydrodynamic 

submodel i s  based on the one-dimensional equations of momentum and 

continu ity  as derived by Harleman (1971). This submodel simulates the 

e f fe c ts  of d ispers ion , advection and o ther physical processes on
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dissolved co n s ti tu en ts .  A f in i te -d if fe re n c e  approach i s  used in  

solving the momentum and continuity  equations simultaneously fo r  the 

v e lo c ity ,  surface e leva tion  and dispersion  co e ff ic ien t  as functions of 

d istance and time. These parameters are supplied to the 

one-dimensional mass-balance equations in  the water qua li ty  submodel.

The water q u a li ty  submodel combines the e f f e c t  of physical transpo rt  

with th a t  of biogeochemical cycling of dissolved constituen ts  including 

the processes of b io lo g ica l  uptake, decay and biochemical 

trans formation.

An im p lic i t  scheme i s  employed for the so lu tio n  of the 

f in i te -d if f e re n c e  forms of the governing equations. An im p lic i t  scheme 

i s  more s tab le  and allows for the use of a longer time step of 

in teg ra t io n  than i s  possib le  with a comparable e x p l ic i t  scheme and,

thus, requires le s s  o v e ra l l  computer time.

The model i s  c a l ib ra ted  and v e r if ie d  using data from a small

t id a l  creek located  along the upper Potomac River in  V irgin ia.



I I .  The M a th e m a t ic a l  F o r m u la t io n  o f  t h e  M odel

Water q u a li ty  in  a t i d a l  system is  a r e s u l t  of a complex se r ie s  

of biochemical substance transform ations and physical t ran sp o rt  pro­

cesses. N utrien t exchanges between the surroundings and the water 

column, and wasteload inputs exert ad d itiona l influences on the system. 

Under these circumstances, i t  i s  d i f f i c u l t  to p red ic t  the u ltim ate  

e f fe c t  of changes in the use, wasteload or hydraulic  c h a ra c te r i s t ic s  

of the water body. A mathematical model i s  usefu l in th i s  instance both 

to aid  in understanding of the system and to provide c o n s is te n t , 

r a t io n a l  fo recas ts  of the response of the system to changes in spec if ied  

f a c to r s .

A complete model would couple the three-dimensional momentum and 

con tinu ity  equations describing  physical transpo rt  processes in the 

system with the mass-balance equations describing in d e ta i l  the b io ­

chemical k in e t ic s  and sources and sinks of a l l  d issolved co n s ti tu en ts .  

Such a rep resen ta tio n  i s  n e i th e r  economically fe a s ib le  nor d es irab le .

In p ra c t ic e ,  the modeller must i s o la te  the dominant hydrodynamic terms, 

the dissolved consti tuen ts  of i n t e r e s t ,  and the k in e t ic  terms which 

influence these consti tuen ts  and next must ab s trac t  these in to  a model 

consis ten t with t r a c t a b i l i t y , economy and desired  r e s u l t s .

In the approach presented here the modeling e f fo r t  i s  divided 

between the development of two submodels -  a hydrodynamic submodel and 

a water q u a li ty  submodel. The hydrodynamic submodel co nsis ts  of the

12
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one-dimensional equations of co n tin u ity ,  momentum and mass-balance fo r  

a conservative substance. A fter c a l ib ra t io n  using ava ilab le  f i e ld  

measurements, the data generated by th is  submodel w i l l  be stored  for 

use in the water qua li ty  submodel. The water qua li ty  submodel consis ts  

of the mass-balance equations fo r  e igh t nonconservative parameters 

comprising an ’ecosystem* and w i l l  be ca l ib ra ted  and va lida ted  with the 

use of f i e ld  data.

A. Hydrodynamic Submodel

Transport of dissolved co nsti tuen ts  through a small t i d a l  stream 

is  highly v a r iab le  in severa l d i f fe re n t  time sca le s .  During each 12.4 

hour t i d a l  cycle flow in the system is  completely reversed. Channel 

c ro ss-sec tio ns  change ra d ic a l ly  in the same period as the t id e  range is  

large  in comparison to the mean depth of the system.

Storm runoff also influences the hydrodynamic transpo rt  on an 

i r r e g u la r  b a s is .  Runoff i s  expected to occur as large  pulses of short 

duration which increase the stream flow and conveyance area to a great 

ex tent during the runoff period.

Due to the t ra n s ie n t  na ture  of the transpo rt  processes in such 

a system, i t  i s  appropriate  to apply an i n t r a - t i d a l ,  rea l- t im e  hydro- 

dynamic submodel. A one-dimensional long itud ina l approach i s  employed 

as v e r t i c a l  and l a t e r a l  parameter v a r ia t io n s  in the stream are assumed 

to be small. The model i s  based on the one-dimensional momentum and 

con tinu ity  equations. Solution of these equations provides v e lo c ity  

and c ro ss-sec tio n  area parameters to the massrbalance equation which 

i s  the b asis  of the water q u a li ty  submodel. The deriva tions  of the 

one-dimensional equations applicab le  to unsteady, non-uniform flow in
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t i d a l  channels are well documented (Harleman and Lee, 1969; Harleman, 

1971; Lin, 1975) and w i l l  not be d e ta i led  here.

Assuming incompressible flow, the three-dimensional equations 

necessary to completely describe water movement in the s a l in i ty  

in tru s io n  region of an estuary  are:

( i)  the continu ity  equation (conservation of water mass)

( i i )  the momentum equations

3u , 3u 3u du 1 3P „2 3 f t 2.+  u-r— + v ^ — + w-^— = - — t t -  + W  u +  ^— ( —u ) 3 t  3x 3y 3z p 3x 3x

+ .-5— ( - u 'v ' )  + ( -u Twf) ( 2 )dy 3z

3v 3v 3v 3v 1 3P Jl 3 , ~r~T\
3 T + U 3 ^ + v 3 ^ + w 3 i = - p 3 7 + VV v +  37 ( - U v  }

+ -5-  (-v'**) 4- (-v'w*) (3)
3y 3 z

3w . 3w , 3w , 3w 1 3P „2 3 , —*——.ir r  +  u ^ — +  V —  +  w —  =------- ^------g +  vV w +  ^— ( - U TWT)3 t  • 3x 3y 3z p 3z 3x

+  i  ( - v ’w ' > + l i  ( - w ' 2 )  ( 4 )

( i i i )  the s a l t  balance equation (neglecting  molecular 

d iffusion)

3s 3s 3s 3s 3 , —;—r\ , 3  f —?—r\
3 7  + u  3 7  + v  3^  + w  3 7  = 7 7  ( _ u  3 } +  3^  ( _ v  3 }

+ | -  ( -w 's ')dz (5 )
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where t  i s  time; u, v and w are the ensemble average v e lo c ity  components 

in  the x, y and z d ire c t io n s ,  re sp ec tiv e ly ;  u T , v T and w* are the tu r ­

bulent v e lo c ity  f lu c tu a t io n s ;  P i s  the pressure ; g i s  g ra v i ta t io n a l

acce le ra tio n ; p is  the water density ; V is  the kinematic v is c o s i ty ;

2
V is  the Laplacian opera to r; s i s  the ensemble average s a l i n i t y  and s '  

i s  the tu rbu len t s a l in i ty  f lu c tu a t io n .  In p ra c t ic a l  app lica tion  ensemble 

averages are replaced by time averages over an in te rv a l  longer than the 

tu rbu len t time sca le  but much sh o rte r  than a t i d a l  cycle.

Inherent in  the above equations i s  the assumption th a t  the 

e f fe c t  of p ressure on density  i s  n e g l ig ib le ,  th a t  i s ,  the flow f ie ld  is  

incompressible. I t  is  a lso  assumed th a t  the range of temperature 

encountered in  an estuary  a t  a given in s ta n t  i s  generally  narrow, thus 

the e f fe c t  of temperature on density  can be neglected . Therefore, 

density  i s  defined in th i s  development by the equation

p = p ( 1  + ks) ( 6 )
o

where p  ̂ i s  the density  of freshwater and k i s  an experimental constant 

equal to 0.00075.

The one-dimensional equations applicab le  to unsteady, non-uniform 

flow in  t i d a l  channels can be derived by in teg ra t in g  the three-dimensional 

equations over the transverse  c ro ss -sec tio n a l  area (Lin, 1971) or by 

the m ate ria l  method (Harleman and Lee, 1969).

A c ro ss-sec tio n  of an i r re g u la r  channel i s  depicted in Figure 1.

The x-coordinate i s  measured h o r izo n ta l ly  along the long itud ina l axis 

of the channel from the landward end of the estuary  and h i s  the d istance 

to  the instantaneous pos it ion  of the water surface from a h o rizon ta l
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reference datum. I f ,  as shown in Figure 1, the c ro ss-sec tion  has both 

deep and very shallow p o rtion s ,  the channel may be divided in to  con­

veyance and storage regions. In th is  case the t i d a l  flow is  assumed to 

be confined to the conveyance channel a rea , defined by width B. The 

shallow portion , defined by width , con tribu tes to storage only. The 

c ro ss -sec tio n a l  area A is  defined as the area of the conveyancy channel. 

Hence, the average ve loc ity  U = Q/A, where Q is  the long itud ina l discharge 

Any embayment along the channel i s  included in the storage region.

A fter in teg ra t io n  over the c ro ss -sec tio n a l  a rea , the one­

dimensional form of the con tinu ity  equation may be w rit ten  as:

3A , .
^ + 9 ^ - q = 0  ( 7 )

where q i s  the l a t e r a l  inflow per u n it  length  of the channel. The

change in the surface width of the conveyancy portion  with respect to

time can usually  be neglected and the conveyancy portion  of the channel

tre a te d  as a rec tangu lar  channel of constant width. Thus

A(x,t) = B(x) • h (x , t )

Thus, the instantaneous p osition  of the water su rface , h, may be 

defined as

h(x, t)  = zb (x) + d(x) + r |(x ,t)  ( 8 )

where z. i s  the d is tance from a horizon ta l  reference lev e l to the 
b

channel bottom to some reference water lev e l  (e .g . , mean sea level)  , 

and r| i s  the instantaneous surface e leva tion  in reference to the 

chosen datum water lev e l .  Thus the one-dimensional continu ity  equation
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can be w rit ten  as

b I ? +  H  - q = 0 ( 9 )

In a one-dimensional rep re sen ta tio n , water transpo rt  in the 

v e r t i c a l  and l a t e r a l  d irec tio ns  is  assumed to be n e g l ig ib le .  There­

fo re ,  the momentum equation in the y -d irec tio n  can be elim inated and 

the equation in  the z -d ire c t io n  reduces to the equation fo r  

hyd ro s ta tic  pressure d is tr ib u t io n :

1  3p n
~ p 3 1  -  q = 0 (1 0 )

In teg ra tin g  equation (10) with respect to z and d if f e r e n t ia t in g  the 

re s u l t  with respect to  x y ie ld s  an equation fo r  the long itud ina l 

p ressure g rad ien t:

OP 3h /, n 9p OP
= P„ + g (h-z) K  ae —  a —  — -  ( 1 1 )

Ox Ox Ox Ox

Equation (11) s ta te s  tha t  the long itud ina l pressure gradient i s  a 

r e s u l t  of th ree  fa c to rs :  the water surface s lope , the density  gradient

and the atmospheric pressure g rad ien t.

According to the Boussinesq hypothesis, the Reynolds s tre s se s  

in the momentum equations can be re la te d  to mean v e lo c ity .  For the 

x -d ire c t io n a l  momentum equation th is  would be:

x
- u ’V1 = £ (ir+ !*)--?■ <12>m ^3y Ox' p 

x
Ou . Ow'i xzf t  v-* (& U dŴ i o \—u w  = e h— + -5 —J = —— (13)

m ^3z Ox' ^

where £ i s  tu rbu len t eddy v is c o s i ty  and T and T are components 
m xy xz

of the s t r e s s  tensor.



The long itud ina l eddy d iffu sion  of momentum is  n eg lig ib le  with

r e s p e c t  to  a d v e c t io n ,  so  th e  l o n g i t u d in a l  eddy d i f f u s i o n  term  (-7̂ - u 1 J

in  equation (2) can be neglected . Also, molecular v is c o s i ty  i s  usually

much le s s  than the eddy v isc o s i ty  so the molecular d iffu sion  term 

2
(vV u) can be neglected.

S ubsti tu ting  equations (11), (12) and (13) in to  equation (2), 

neglecting  molecular d iffu s ion  and long itud ina l eddy d if fu s io n ,  and 

in teg ra t in g  over the c ro ss -sec tio n a l  area y ie ld s :

3U 3U2  3h gk 3S 1 3p P-
 _____ _ __ 0  , _____________a _ __B _w
3t 3x ®3x 1+ kS c 3x p 3x p A

t B M

+  / a  +  a  (1 4 )

where d i s  the d istance between the water surface and the cen tro id  of 
c

the c ro ss-sec tio n , Tg i s  the average s t r e s s  by the boundary, P^ is  the 

wetted perim eter of the c ro ss-sec tio n , Tg i s  the average s t r e s s  on the 

water surface and M i s  the momentum flux  of the l a t e r a l  inflow.

The two terms on the l e f t  side of equation (14) are  the loca l 

and convective acce le ra tion  terms. The terms on the r ig h t  hand side of 

the equation represen t the surface slope, the density  g rad ien t,  the 

atmospheric pressure g rad ien t,  the boundary roughness e f f e c t ,  the loca l 

wind e f fe c t  and the e f fe c t  of l a t e r a l  flow, re sp ec tive ly .

In the open channel, the average f r i c t io n a l  shear s t r e s s  on the 

boundary can be expressed as
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where R = A/P^ i s  the hydraulic  radius and i s  the slope of the 

energy g rad ien t. S£ is  evaluated from the Manning equation in which

c — ri" Q 1QI (If t}
E a2 td4 / 3A R

where n i s  the Manning roughness c o e f f ic ie n t  in m-sec u n i ts .  Thus, the 

boundary roughness e f fe c t  in  equation (14) can be w rit ten

2  QlQl
p A § n  a 2 r ^ / 3  ( 1 7 )

The p o s s ib i l i ty  of a change in the long itud ina l momentum flux  

due to flow en tering  or leaving the main channel from the storage area 

and due to l a t e r a l  inflow (g) has been discussed by various in v e s t i ­

gators  ( e .g . ,  Dronkers, 1964). I t  i s  generally  agreed th a t  the e f fe c t  

on the momentum equation i s  sm all, hence, in  th is  development i t  w i l l  

be assumed th a t  the l a t e r a l  flows en ter  or leave the main channel a t  

r ig h t  angles to the long itu d ina l axis and th a t  there  i s  no contribu tion  

to the lon g itu d ina l momentum flux  (M = 0).

Also, in  th i s  development i t  w i l l  be assumed th a t  any atmospheric 

pressure grad ien t th a t  may e x is t  over the small streams considered 

here w i l l  be n e g l ig ib le .  Thus, equation (14) reduces to

i £  + M^. = _ g i h _  gk 3S _  2 q |.q| , + ls.L a s)
3t 3x 3x 1 + ks c 3x 8  *2^4/3 p A  ̂ 'A R

Using equation ( 8 ) and the id e n t i ty  Q = UA, equation (18) can 

be rearranged to  give

la +1_ (ail = --  la _ Ad is. _ ?„2 aM_
3t 3x A 3x 1+ks c 3x ® r»4 / 3J A R

T
+  B ( 1 9 )
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This equation can be s im plified  fu r th e r  under the condition tha t  no 

long itud ina l density  gradient e x is t s ,  i . e . , in  the freshwater region of 

a t i d a l  system. In modeling such a region the second term on the 

right-hand side of equation (19) i s  always equal to zero.

From the Boussinesq hypothesis, the tu rbu len t transpo rt  is  

p roportional to  the gradien t of the mean concentra tion . The re la t io n  

can be w rit ten  as:

9s —;—r  3s , —;—r  3s
- u ' s f = e -r— , - v 1 s '  = e -r— and -w*s? = e -r— ( 2 0 )

x 9x y 3y z 9z

where e , e and e are d iffu s ion  co e f f ic ie n ts  in the x, y and z 
x* y z 9 J

d ire c tio n s ,  re sp ec tive ly . The three-dimensional mass-balance equation 

fo r  tu rbu len t flow, neglecting  molecular d if fu s io n ,  then becomes

9s 9s 9s , 9s 3 r 9s'| , 3 r Ss'i
3t 9x 9y 9z 9x Ke 9x' 3y êy 3y^

+ I f  K  I f )  <21>
The time average concentrations and v e lo c ity  components can be 

defined as

s = S 4- s"

u = U + u”

v = V + v”

w = W + w" (22)

where the c a p i ta l  l e t t e r s  designate the c ro ss -sec tio n a l  mean and the 

double prime designates the deviation  from the c ro ss -sec tio n a l  mean.

Note th a t

J /  u"dA = 0 
A
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and th a t  vM and wM are not zero even though the c ro ss-sec tio n a l  mean 

v e lo c i t ie s  V and W are zero in the one-dimensional flow. Equations 

( 2 2 ) are introduced in to  the three-dimensional s a l t  balance equation 

( 2 1 ) ,  the product of sums are expanded and each term i s  in teg ra ted  

over the c ro ss -sec tio n a l  area A (see Holley and Harleman, 1965). After 

s im p lif ic a t io n ,  the one-dimensional equation may be w rit ten  as

where the term qS^ is  f lux  of s a l t  through the l a t e r a l  boundaries and 

is  the concentration  of l a t e r a l  flow.

shown th a t  the advective mass transpo rt  associa ted  with the cross 

product of the s p a t ia l  deviations u" and s” can be approximated with 

an analogous one-dimensional d if fu s iv e  t ra n sp o r t .  To d is tin gu ish  th is  

process from turbu len t d if fu s io n ,  which is  associa ted  with the temporal 

deviations u ’ and s ’ , the transpo rt  due to s p a t ia l  deviations is  ca lled  

long itud ina l d ispers ion . On th is  basis  a d ispersion  c o e f f ic ie n t ,  E , 

i s  defined

The negative sign ind ica tes  mass transpo rt  in  the d irec tio n  of decreasing 

concentration . Taylor (1954) has shown th a t  the tu rbu len t d iffu sion

Therefore, the two co e f f ic ie n ts  are usually  added together (Harleman, 

1971) and the sum re fe rred  to as the  long itud ina l d ispersion  c o e f f ic ie n t ,  

E, where

k  (AS) +  k  (AUS) (23)

For steady, uniform flow, Taylor (1954) and Aris (1956) have

c o e f f ic ie n t ,  e , i s  usually  much sm aller than the d ispersion  c o e f f ic ie n t .

E = E + ex  x
(24)
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Thus, the one-dimensional mass t r a n s fe r  equation fo r  s a l t

becomes

h  (AS) +  k  ( ^ s )  -  k  (EA B  + q s t  ( 2 5 )

In freshwater t i d a l  systems some o ther e s s e n t ia l ly  conservative 

substance ( e .g . ,  dye) may be described by the same equation and modeled 

as an aid  in  c a l ib ra t in g  the hydrodynamics of the system.

B. Water Quality Submodel

The water q u a li ty  submodel used fo r  th i s  study i s  a one­

dimensional, i n t r a - t i d a l  model which simulates the long itud ina l 

d is t r ib u t io n  of c ro ss -sec tio n a l  average concentrations of water q ua li ty  

measures, including the temporal v a r ia t io n  of these concentration  f ie ld s  

in  response to t i d a l  o s c i l la t io n .  Much of the following water q u a li ty  

submodel i s  based on previous work by Hyer e t  a l . (1977) and Cerco and 

Kuo (1981). The water q u a li ty  measures simulated in  the model include 

dissolved oxygen, carbonaceous oxygen demand, organic n itro gen , ammonia 

n itrogen , n i t r i t e - n i t r a t e  n itrogen , organic phosphorus, inorganic 

(ortho) phosphorus and phytoplankton (.quantified as chlorophyll *aT) . 

Temperature, tu rb id i ty ,  and l ig h t  in te n s i ty  are important parameters 

fo r  the biochemical in te ra c t io n s  taking p lace, but are not modeled 

d ir e c t ly .  Instead  the values fo r  these parameters are sp ec if ied  as 

inputs to  the model. Their influence on the biochemical reac tion  i s  

taken in to  account mathematically, as ind icated  below.

The submodel i s  based on the one-dimensional equation describing 

the mass^-balance of a dissolved or suspended substance in  a water body.
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k  (AC) + k  (QC) = k  (EAB  + A • se + A-Si (26)
where

C = the concentration of dissolved or suspended substance,

S = the time ra te  of ex te rna l addition  (or withdrawal) of 0
mass across the boundaries, i . e .  f ree  su rface , bottom, 
and l a t e r a l  boundary,

S . = the time ra te  of increase or decrease of mass of a 
1  p a r t ic u la r  substance by biochemical reac tion  process.

The advection transpo rt  term, the second term on the l e f t  hand 

side of the equation, represen ts  advection of mass by water movement; 

the d ispers ive  transpo rt  term, the f i r s t  term on the r ig h t  hand s id e ,  

represen ts d ispersion  of mass by turbulence and shearing flow. These 

two terms represen t the physical t ranspo rt  processes in  the flow f ie ld  

and are id e n t ic a l  fo r  a l l  dissolved and suspended substances in  the 

water. They w i l l  be t re a te d  in  the same manner as those in the mass- 

balance equation of a conservative substance, equation (25) . The l a s t  

two terms of the equation represen t the ex te rna l additions and in te rn a l  

biochemical reac tions  and d i f f e r  fo r  d if fe re n t  substances.

The model t r e a t s  n itro gen , phosphorus, oxygen demanding m ate ria l 

and dissolved oxygen through an in te ra c t in g  system of e ight components 

as shown in  the schematic diagram, Figure 2. Each rec tangu lar box 

represen ts  one component being simulated by the model. The arrows 

between components represen t the biochemical transform ation of one 

substance to the  o ther. An arrow with one end unattached represen ts  

an ex te rna l source (or sink) or an in te rn a l  source (or sink) due to 

some biochemical reac tio n . The mathematical expressions fo r  the 

terms and fo r  each of the e ight components are presented in the 

following:
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1. Phytoplankton Population, CH -  The phytoplankton population, 

q uan tif ied  as the concentration of chlorophyll *a f , occupies a cen tra l  

ro le  in  the schematic ecosystem of Figure 2 and in fluences , to a g rea te r  

or le s s e r  ex ten t,  a l l  of the remaining non-conservative dissolved 

co n s ti tu en ts .  The mathematical rep resen ta tion  describing  in te rn a l  

biochemical in te ra c t io n  and ex te rna l sources (or sinks) are

S . = CH • (G-R-P) (27)
i

and

S = -CH • K , /h  (28)
e sch t

where

CH = chlorophyll Ta* concentration (ug/1)

G = growth ra te  of phytoplankton (1/day)

R = re sp ira t io n  ra te  of phytoplankton (1/day)

P = predation  ra te  of phytoplankton by zooplankton (1/day)

Ksch = s e t t l in g  ra te  of phytoplankton (m/day)

h = average loca l  depth (m) below mean water le v e l ,
including storage

Phytoplankton growth i s  dependent upon n u tr ie n t  a v a i l a b i l i ty ,  

ambient l ig h t  and temperature. The functional re la t io n sh ip s  used in 

the model generally  follow the forms of DiToro e t  a l .  (1971) and are 

as follows:

k • T • I (I  ,1 ,k ,CH,h) • N (N2,N3,P2) (29)
§1T EL S 6

Temp. Light N utrient
e f fe c t  e f fe c t  e f fe c t

where

k = optimum growth ra te  (l/day/°C) 
8 r

T = temperature (°C)
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where

I = a ttenuation  of growth due to suboptimal l ig h t in g

N = e f fe c t  on growth of n u tr ie n t  a v a i l a b i l i ty

2.718 f -a ,  -a^N 
I = -k h ■ (e 1 -  e 0) (30)

e

k = k ' + 0.0088 • CH + 0.054 • CH0 * 6 6  (31)
e e

*t -k  h
= —  e e (32)

s

i t
a„ = V2- (33)

0 I
s

24 TT
Zt  = a • 2  s in

d u

r t - t ,  i
+-
u dt  , - t  

d u
U i f  t  < t< t,  (34)

k 1 = l ig h t  ex tin c tio n  c o e ff ic ien t  a t  zero chlorophyll 
concentration ( 1 /meter)

k = l ig h t  ex tin c tio n  co e ff ic ien t  corrected  fo r  s e l f -  
shading of plankton ( 1 /meter)

h = lo ca l  channel depth (m)

I = optimum so la r  rad ia tio n  ra te  (langleys/day)

I = so la r  ra d ia tio n  a t  time t

I = t o t a l  da ily  so la r  ra d ia tio n  (langleys/day)
SL

t  = time of su n r ise ,  in hours 
u

t .  = time of sunse t,  in  hours 
d

t  = time of day in  hours

The n u tr ie n t  e f f e c t ,  N, i s  based on the minimum lim iting  

n u tr ie n t  concept.

N2 + N3

N = minimum

K +N2 + N3 (35)
mn

P2
K + P2

mp
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w h ere

N2 = ammonia n itrogen  concentration  (mg/1)

N3 = n i t r i t e - n i t r a t e  n itrogen  concentration (mg/1)

P2 = inorganic (ortho) phosphorus concentration (mg/1)

K = h a l f - s a tu ra t io n  concentration fo r  inorganic 
13111 n itrogen  (mg/1 )

K = h a l f - s a tu ra t io n  concentration fo r  inorganic 
phosphorus (mg/1 )

The re sp ira t io n  r a te ,  R, i s  a l in e a r  function of temperature.

Predation r a te ,  P, should be dependent on the time variab le

herbivore population which i s  in  tu rn  dependent upon the phytoplankton 

population. To avoid adding an ad d it ion a l troph ic  lev e l  to the model, 

however, a uniform ra te  of predation is  assumed.

R = aT (36)

where

a = temperature dependence of re sp ira t io n  ra te  
(1 /day/°C)

2. Organic Nitrogen, N1

S .
i

(37)

S = —N1 • K . .  /h  + PN1 + NPN1 + BENNl/h 
e n i l  tn i l  t

(38)

where

K_,„ = hydrolysis ra te  of organic n itrogen  to ammonia
(mg/l/day/^C)

h a lf - s a tu ra t io n  concentration  for hydrolysis (mg/1 )

a = r a t io  of organic n itrogen  to chlorophyll in 
phytoplankton (mg N/ug Chi)
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where

a -  proportion of consumed phytoplankton recycled by 
zooplankton (0.4 assumed)

K = s e t t l in g  ra te  of organic n itrogen  (m/day)

PN1 = point source wasteloading of organic nitrogen

NPN1 = nonpoint source wasteloading of organic nitrogen

2
BENNl = benthic f lux  of organic n itrogen  (g/m /day)

3. Ammonia Nitrogen, N2

K -T-N2 K . •T*N1

s - = " v  a.' m o "  + xr ■■"hT “ a -G-PR-CH (39)l  K 0 0  + N2 K, + N1 n 
n23 hl2

S = PN2 + NPN2 + BENN2/h (40)
e

K = n i t r i f i c a t i o n  ra te  of ammonia to n i t r a t e  
n n itrogen  (mg/l/day/°C)

K - = h a l f - s a tu ra t io n  concentration  fo r  n i t r i f i c a t i o n  *(mg/l) nZ J

PN2 = point source wasteloading of ammonia n itrogen

NPN2 = nonpoint source wasteloading of ammonia n itrogen

2
BENN2 = benthic f lux  of ammonia n itrogen  (g/m /day)

PR = ammonia preference by phytoplankton given by

MO MO N2>KpR = N2-N3____________ + mn
(K +N2)(K +N3) (N2+N3)(K +N3)

inn ran mn

K is  the Michaelis constant, 
mn

4. N i t r i te - N i t r a te  Nitrogen, N3 

K «T*N2
s - " v . „•> a -G«(1-PR)«CH (41)x K, + N2 n

h23

S = -N3-K 00/h + PN3 + NPN3 + BENN3/h (42)
e nJJ t
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w h ere

K

where

= escaping ra te  of n i t r i t e - n i t r a t e  n itrogen  (mg/1 )

PN3 = point source wasteloading of n i t r i t e - n i t r a t e  
n itrogen

NPN3 = nonpoint source wasteloading of n i t r i t e - n i t r a t e  
n itrogen

2
BENN3 = benthic f lux  of n i t r i t e - n i t r a t e  n itrogen  (g/m /day)

5. Organic Phosphorus, PI

S. = -K . -T*P1 + a • (R + a P ) •CH 
l  p l 2  p r

S = -Pl-K _ _/h + PP1 + NPP1 + BENPl/h 
e p l l  t

K = f i r s t  order hydrolysis r a te  of organic to inorganic 
phosphorus (1/day/ C)

a = r a t io  of organic phosphorus, to chlorophyll in  
P phytoplankton (mg P/ug Chi)

= s e t t l in g  ra te  of organic phosphorus (m/day)

PP1 = point source wasteloading of organic phosphorus

NPPl = nonpoint source wasteloading of organic phosphorus

2
BENP1 = benthic  f lux  of organic phosphorus (g/m /day)

6 . Inorganic (Ortho) Phosphorus, P2

S. = K •T’Pl -  a *G#CH 
l  p l 2  p

Se = - p2 -Kp2 2 ^ht  + P P 2  + N P P 2  + BENP2/ h

where

Kp2 2  = s e t t l in g  ra te  of inorganic phosphorus (m/day)

PP2 = point source wasteloading of inorganic phosphorus

(43)

(44)

(45)

(46)
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where

where

NPP2 = nonpoint source wasteloading of inorganic phosphorus

2
BENP2 = benthic f lux  of inorganic phosphorus (g/m /day)

7. Carbonaceous Biochemical Oxygen Demand, CBOD

S. = -K •CBOD + a *a • (a P)-CH (47)
i  c c co r

S = -CBOD-K /h + PCBOD + NPCBOD (48)
e sc t

= f i r s t  order decay ra te  of CBOD (1/day)

a = ra t io  of carbon to chlorophyll in phytoplankton 
C (mg C/ug Chi)

a = ra t io  of oxygen demand to organic carbon recycled = 2.67

Kgc = s e t t l in g  ra te  of CBOD (m/day)

PCBOD = point source wasteloading of CBOD

NPCBOD = nonpoint source wasteloading of CBOD

The e f fe c t  of temperature on i s  given as

i n/. 7 (t “ 2D)K = K , . •1.047
c c ( 2 0 )

Kc (2 o) = decay ra te  of CBOD at 2Q°C.

8 . Dissolved Oxygen, DO

K -T*N2
S. = -K • CBOD - a • v   + a -a -PQ-G-CH

l  c no K, + N2 co c
h23

-  a -a /RQ-R-CH (50)
CO c

S = K ‘ (DO -DO) -  BENDO/h + PDO + NPDO (51)
e r  s
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w h er e

a = ra t io  of oxygen consumed per u n it  of ammonia 
no n i t r i f i e d  = 4.57

PQ = photosynthesis quotien t (moles O^/mole C)

RQ = re sp ira t io n  quotient (moles CC^/mole C^)

K = reaera tion  ra te  (1/day) 
r

DO = sa tu ra t io n  concentration  of DO (mg/1)

2
BENDO = sediment oxygen demand (g/m /day)

PDO = point source wasteloading of DO 

NPOD = nonpoint source wasteloading of DO

The reaera tion  r a te ,  K^, i s  fu r th e r  defined (O’Connor and

Dobbins, 1958)

K . 20, -  K u ^ V 3 ' 2  
r ( 2 0 ) ro

where

K = reaera tio n  ra te  a t 20°C
r  (2 0 )

K = 3.93
ro

u = mean c ro ss -sec tio n a l  v e lo c ity  (m/sec)

The e f fe c t  of temperature on the reaera tio n  ra te  i s  evaluated 

(Elmer and West, 1961)

v v i no/ (T-2°)K = K /orkv • 1.024
r  r ( 2 0 )

S a tu ra tion  dissolved oxygen concentra tion , DO, i s  ca lcu la ted  

as a function  of water temperature from a polynomial f i t t e d  to the 

tab le s  of C a r r i t t  and Green (1967).

-(52)

( 5 3 )
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DO = 14.6244 -  0.367134 • T + 0.004497 • T2  (54)
s

The e f fe c t  of temperature on sediment oxygen demand is  

evaluated by the equation (Thomann, 1972)

BENDO = BEND0^20  ̂ • 1.065^T" 20  ̂ (55)



I I I .  M a th e m a t ic s  o f  S o l u t i o n

A. Method of Schematization

To f a c i l i t a t e  the so lu tion  of d i f f e r e n t i a l  equations by f i n i t e  

d iffe rence  method, the length  of the t i d a l  creek i s  divided in to  a 

number of reaches (or elements) bounded by t ran sec ts  a t  two ends. The 

top view of the lon g itu d ina l schematization is  shown below in Figure 3,

Ax.

i + 1i - 1

V. ,Sa.

. th
l

th. th
1 ( i+ D

t ran sec t  reach tran sec t
A. n .

i  i
*

s . s .
1  1

Figure 3. Schematization of a t i d a l  creek, 

in which the parameters given are

Ax. = the d is tance between the centers of two reaches 
adjoining the i th  t ra n se c t ,
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= the flow ra te  through the i t h  t ra n s e c t ,

A. = the c ro ss -sec tio n a l  area of the i th  t ra n s e c t ,

ri. = the water surface e lev a tion , r e la t iv e  to mean
1  sea le v e l ,  of the i t h  reach,

V\ = the volume of the i t h  reach,

Sa. = the surface area of the i th  reach,
1

S t. = the surface area of the storage embayment in the 
1  i t h  reach,

q. = the ra te  of t o t a l  l a t e r a l  inflow in  the i t h  reach,
ni

S . = concentration of d issolved substance in  the i t h  reach,
i
*

S . = concentration of d issolved substance of the water
flowing through the i t h  t r a n s e c t .

B. F in i te  Difference Equations

To w rite  equation (9) in to  f i n i t e  d ifference  form i t  i s  f i r s t  

in teg ra ted  with respect to x from the i th  to the ( i+ l ) th  tran sec t  and 

time d i f f e r e n t ia t io n  su b s t i tu te d  with f i n i t e  time d if fe ren ce ,

(n'. -  n . ) ( S a .  +  S t . ) / A t  = 3 CQ! -  Q'  J  +  3 (Q . -  Q . , - . )  +  q .  ( 5 6 )
1  1  1  1  1  1 + 1  c 1  1 + 1  i

where At is  the time increment. The primed v a r iab les  designate the 

q u a n t i t ie s  evaluated a t  time t  + At and the unprimed v a r iab les  designate 

those a t  time t .  3 and $c are weighting fac to rs  which s a t i s f y

3 + 3 = 1c

The momentum equation, equation (19), may be w ri t ten  in  f i n i t e  

d iffe rence  form a t  the i t h  tra n se c t  as
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1 Q. + Q i  i + 1
1

f

1

S i + l )
Ax.

l
2 2 A i +1

+ Q. 1 f Q  i —1 +  Qil
2 2 [ V i A.

SA*
ttt~  fa (n ! -  n ! + a (n . -  n . ~1Ax^ [_ i  i - l  c i  i - l

gkd . A.
Cl 1

1+k ( S . _ + S .) /2  
i - l  l

S . -  S . -
l  i - l
Ax.

l

-  gn. —  |q . |R. 4 / 3  + —  B.
°  i  A.  1 i 1 i  p . i

i  i

where a and are weighting fac to rs  which s a t i s fy

a + a = 1  
c

Sim ilar to the con tinu ity  equation, the mass-balance equation 

fo r  a conservative substance, equation (25), i s  f i r s t  in teg ra ted  with 

respect to  x and, then, w ri t ten  as

(57)

f r -  ( V . S . )  = Q . S *  -  Q S ~  +  [ e a  -jp- )3 1 l i  l i  x i + l  l + l   ̂ 3 x  J
i + 1

EA 3 S 
3x

+ So (58)

or, in  terms of f i n i t e  d iffe rence  in  time,

V '.S f. . -  V .S  . , ,
1  T_ X I  * T ^  t

- W i + i  +
EA 3S 

3x1

EA I f  + So. (59)
I 9 x J ± 1

* *
where S^ and are concentrations in  the water flowing through the

i th  and ( i+ l ) th  t ra n s e c ts ,  re sp ec tiv e ly ,  and So_j, represen ts  the e f fe c t



of change in  storage volume. may be expressed as a function of

concentrations in  the two adjacent reaches, i . e . ,

where

and

S. = y .S . _ + 6 .S. 
1  1  i - l  i  i

y „ + <5 . = 1
i  l

0.5 < y . < 1.0
—  l  —

Y. < 0.5
i

i f  Q. > 0 
i  —

i f  Q; < 0 
1

C. Method of Solution

(a) Continuity and Momentum Equations

Equations (56) and (57) are a coupled system of a lgebra ic  

equations, which needs to be solved simultaneously fo r  and Ql̂  for 

a l l  i .  The system is  solved by su b s t i tu t io n  and elim ination  processes. 

Equation (57) may be w rit ten  as

Q! = agA. 7 ^  ,
i  i  Ax. i - l

(n: , -  n!) + (cq) .
- 1 i  i

(60)

where

(CQ) . -  Q. + 7  f ( Q . - + Q . )
i  i  4 Ax. i - l  l

l

V i  + V
A. , A.

i - l  l

-  (Qi +cw [  I 1  + 1 7 7
1 1+1

9 Q-
-  gn. "t*—• | Q . | R 

& i  A. 1 i  l
-4/3

At

gkd .A. 
43 c i  i

l+k(S . - + S .) /2  
i - l  i

S. - S .  , 
l  i - l
Ax.

At
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S ub sti tu ting  equation (60) in to  equation (56) , i t  i s  obtained

th a t

(h! -  ti .) (Sa. + S t .) /At = 
1 1 1 1

agA
At

(riT. - - T i l )  + (CQ).
i  Ax. i - l  i

l

At
-  agA. n  ---------- (n . -  n* )

& i+ l Ax. t 1 i  l+ l 
1+1

+ + q±

or

n! = a.ri! - + b.n! , + c.
i  i  i+ l  i  i - l  i

( 61)

where

a . At 
a. = aBgA± + 1  ^ D1V

i + 1

b . = aBgA. 
l  l  Ax.

D1V

C. =
l

( S a . + S t . ) /  At*f| . + 
l i /  i

CCQ).-CCQ) i + 1

+ 8  (Q . ~Q. i t )  + q . c i  i+l  1

D1V = (Sa. + S t .)
i  i

At + aBg

D1V

. . A. , ..At 
A. + 1 + 1

i  Ax.
l Axi+ i

(61a)

To ca lcu la te  the c o e f f ic ie n ts  a . ,  b. and c. a t  the most upstream
i i i

reach, say i=ml, some upstream boundary condition is  required . The most 

common boundary condition fo r  a t i d a l  creek i s  the upstream non tida l 

d ischarge, sp ec if ied  as Q^ fo r  a l l  time. With Q̂  given, su b s t i tu t io n  

of equation (60) with i=ml+l in to  equation (56) with i=ml y ie ld s

(Saml + Stml> / At = ~ agA
At

‘ml+1 Ax
ml+ 1

+ (CQ)
ml+ 1 + 6 c (Qml " Qml+1 ) + qml
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or

where

nml amlnml+l + Cml

ami  ■ aBsAmi +i  / Dlv

°ml

+ (Sa - + St -) /  At#ri
ml ml /  ml

D1V

D1V = (S a ^  + S t ^ )  / ^  +
3 t

ml+ 1  3 x _ _ 
ml+ 1

Equation (61) may be solved by an elim ination  process i f  the 

downstream boundary condition i s  given a t the most downstream reach, 

say i=mu. Let

n! = P .n ' + 0 .i  i  i+ l  l

where P. and 0. are recursion  c o e f f ic ie n ts  yet to be determined, 
l i

S ub sti tu ting

n ! i  = P . , h ! + o . 
i - l  i - l  i  i - l

in to  equation (61) i t  becomes

n*. = a .n ’ i  + b . ( p .  n! + o. . )  + c.
i  i  i+ l i  i - l  i  i - l  i

or
a. b .0. .. + C

T 1  f , 1

i  1-b .P. - 'i+1 1-b.P. i
1  i - l  l  l - l

Comparing equation (64) with equation (63) , the recursion

equations obtained are

i  1-b.P. _ 
l  i - l

(62)

(63)

(64)

( 6 5 )
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b.O. - + C.
0  = x— ±i  1 - b . P .  -a

l  l - l

Equation (62) gives

Pml aml
( 66)

°ml Cml

In summary, the numerical ca lcu la t io n  w i l l  proceed as follows:

(1) Calculate (CQ)^ fo r  ml+l<_i<mu, equation (60a).

(2) Calculate a . , b . , c .  f or  ml<i<mu-l, eqn. (61a) or (62a).
i l l -----------------------

(3) Calculate  P. and 0. fo r  ml<i<mu-l, eqn. (65) or ( 6 6 ) .
l  i  -------

(4) Calculate n r fo r  ml£i<mu-l, equation (63).

(5) Calculate fo r  ml+l<_i<mu, equation (60).

(b) Mass-Balance Equation

Equation (59) represen ts  a system of a lgeb ra ic  equations, which

* 1 * T
may be solved by elim ination  process. S ub sti tu ting  and and

rearranging the terms, equation (59) becomes

S ’. = Q’. ( y . s : , + a . s : )  - ^ t Q'  ( y .j , s : +  6 . . 1s '  )i  V. l  l  l - l  l i  V. i+ l  l+ l  l  i+ l  l+ l
l  l

V
+ S . + At

V. f l  V .f
l  1

EA
9S j At
9xJ . . .  “ V .rJ i+ l  l

EA — So
9xj . V. ' iJ l  l

(67)

The d ispers ive  transpo rt  terms may be w rit ten  as

S. -  S.
EA

9 S 
9x = E . A . L-l

i  i  Ax.
' i  l

EA
9 S 
9x

S -_L1 -  S *
= E A -1- - ----------—

. . .  i+ l  i+ l  Ax - 
i+ l i+ l
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S! = a . S'. , - + b . S ! 1 + C . 
1  l  i+ l  l  l - l  l

( 6 8 )

where

a.
l

b. =

C. =

-  I t  W I + i  / D lv
i

I t  / D1V

I i _  s + At_ Si + 1  " Si
V .T i  V .' i+ lAi+ l Ax - 

i  l  i+ l
( 6 8 a)

At ^ A Si  Si-1  , At
TT | E ,A, , + __ T So .
V. l i  Ax. V. l

D1V

DlV = 1 +  I t  h 1+i Q i + i  -  « ±q i )
i

Given the upstream boundary conditions S^ +  ̂ may be

expressed in terms of t r o u g h  equation ( 6 8 ) with i  = ml+l, i . e

^ml+ 1  aml+l ml+ 2  ml+ 1  ml ml+ 1
(69)

where the only unknown on the r ig h t  hand side  of the equation is

Equation (69) may in turn  be su b s t i tu te d  back in to  equation ( 6 8 ) with i

= ml+2, and thus one a r r iv e s  a t  an expression fo r  S' in  terms of
ml+^

S'., 0. In general, there  e x is ts  the following r e la t io n  
ml+j

S'. = P . S ' . + 0 . 
1  1  1 + 1  1

(7 0 )

where the recursion  c o e f f ic ie n ts  P. and 0. may be ca lcu la ted  from the
1 1

upstream boundary condition S ' - .
ml
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Equation (70) i s  s im ila r  to equation (63) and, th e re fo re ,  the 

recursion  equations are the same as equation (65) , i . e .

a .
p  _  1--------
r i  1 - b . P .  ,

1  1 - 1  (71)
b.O. , +C.

0 . = 1  1 - 1  1
i  1 - b . P .  -

i  x- 1

Since S' i s  a known q uan tity , the comparison between equations 
ml

(69) and (70) with i = ml+1 gives

^ml+ 1  aml+l

°ml+l = bml+lSml + Cml+ 1  

or, comparing with equation (71) fo r  i = ml+1 

P = 0
ml (71)

°ml = Sml

Then, the order of numerical computations is

(1) Calculate a ^ , b^, c_̂  fo r  ml+l<_i<mu-l, equation ( 6 8 a ) .

(2) Calculate the recursion  c o e f f ic ie n ts  by applying equation

(71) or (71a) repeatedly  with i  = ml, ml+1, . . . ,  mu-1.

(3) With given as the downstream boundary condition , the

concentration of the in t e r io r  segments are ca lcu la ted  by 

applying equation (70) repeatedly  with i  = mu-1, mu-2,

. . . ,  ml+1 .

The term So in equation (59) represen ts  the e f fe c t  of the change 

in  s torage volume with the change in t i d a l  e leva tion . The storage in
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each reach w i l l  act as a source to the main channel when the t id e  is  

f a l l in g  and ac t as a sink on the r i s in g  t id e .  The source term can be 

w r i t ten  as

So. = -  (Vs! -  Vs.) • Ss. i f  Vs! < Vs.
1  x 1  1  x x

where

Vs^ i s  storage volume of the i t h  reach a t time t ,

Vs!̂  i s  storage volume of the i t h  reach a t  time t + A t ,

Ss. i s  concentration of d issolved substance in the storage 
1  portion  of the i t h  reach,

or

So. = -  (Vs! -  Vs.) • S. i f  Vs! > Vs.
X X X X  X X

Equation (26) in  the water q u a li ty  submodel i s  approximated 

with a f i n i t e  d iffe rence  scheme and solved fo r  the time varying concen­

t r a t io n  f i e ld  in the same way as the mass-balance equation fo r  a 

conservative substance, equation (25) in the hydrodynamic submodel. In 

instances where the equation of one co nsti tuen t involves o ther co n s t i tu e n ts ,  

the concentrations of the o ther co n s t i tu en ts  are expressed in terms of 

known values, i . e . ,  the values of time t .  Therefore, the biochemical 

in te ra c t io n  terms in the coupled ecosystem do not introduce ad d it io n a l  

unknowns fo r  the f i n i t e  d iffe rence  equation of each ind iv idual con­

s t i tu e n t  over th a t  of a conservative substance.

D. Boundary Conditions

The upstream boundary conditions are the freshwater discharge 

and the concentrations of d issolved substances in  the discharge. The 

most upstream reach i s  usually  se t  a t  the l im it  of t i d a l  influence , 

allowing upstream s a l in i ty  boundary conditions to be se t  to zero.
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Appropriate upstream boundary conditions fo r  o ther dissolved substances 

must be determined from f ie ld  data.

In th i s  development, a 'no f lu x T condition i s  defined fo r  the 

most upstream tra n se c t .  That i s ,  the discharge through the most up­

stream tra n se c t  i s  se t  to zero. The upstream freshwater discharge is  

t re a te d  as l a t e r a l  inflow.

The downstream boundary conditions are the t i d a l  lev e l  f lu c tu a tio n  

and the v a r ia t io n  in the concentrations of d issolved  substances en tering  

the most downstream reach during the flood t id e .  When av a ilab le ,  t id e  

gauge data may be entered d ire c t ly  in to  the ca lcu la t io n s .  Another 

a l te rn a t iv e  i s  to analyze t id e  gauge or t id e  tab le  data as a continuous 

function of time by harmonic analysis  (Dronkers, 1964; Harleman and Lee,

1969).

Appropriate values fo r  downstream boundary conditions fo r  the 

dissolved co ns ti tuen ts  must be determined from f i e ld  data. In th is  

development, concentrations in the most downstream reach are stepped up 

or down to the downstream boundary condition during flood t id e .  During 

flood, the in te rv a l  during which the concentrations in the most downstream 

approach downstream boundary concentrations is  determined during model 

c a l ib ra t io n .  On the ebbing t id e ,  concentrations in the most downstream 

reach are influenced only by advection from the adjacent upstream reach.

E. Computational Tests

Several computational t e s t s  were conducted to assure th a t  the 

proper governing equations had been formulated co rrec t ly  in the numerical 

program. The physical problem fo r the t e s t s  i s  the r e f le c t io n  of a t i d a l  

wave propagating in to  a closed-end channel of uniform rectangu lar  c ross-  

sec tion . The following parameters were used in the t e s t s :
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length  of channel = 96.3 km; 

depth of channel = 1 0  m;

amplitude of incoming t i d a l  wave = 1 0  cm; 

period of t i d a l  wave = 12.42 hours; 

wave length  = 442.6 km;

Ax = 5.5 km;

At = 0.01 t i d a l  cycles.

All computations were s ta r te d  with i n i t i a l  conditions of v e lo c ity  equal 

zero and t i d a l  height equal zero throughout the channel. The s a l in i ty  

i s  se t  to zero so th a t  s a l i n i t y  e f fe c ts  are not included in the t i d a l  

dynamics. The computation proceeds with the water surface e leva tion  a t  

the channel entrance varying in simple harmonic motion while the v e lo c ity  

a t  the closed end of the channel i s  kept constan tly  a t  zero.

The model was f i r s t  run with a Manning f r i c t io n  c o e f f ic ie n t  of 

0.015. A time step of 0.01 t i d a l  cycles (approximately 7.5 minutes) 

was found to be optimal fo r  the t e s t  run and i t  was used fo r  a l l  the 

computational t e s t s .  The model was run fo r  a time equivalent to 12 

t id a l  cycles to assure the establishm ent of a t i d a l  regime. The re su l t in g  

time-varying t i d a l  height and current are  shown in Figures 4, 5, and 6  

for loca tions  a t  the channel en trance, a t  the mid-point of the channel, 

and near the closed end. These figu res  show th a t  a l l  of the i n i t i a l  

t ra n s ie n ts  have been damped by the eighth  t i d a l  cycle. Figures 7 and 8  

show the long itu d ina l v a r ia t io n  of t i d a l  amplitude and t i d a l  cu rren t. 

T heoretica l curves based on the l in e a r  f r i c t io n le s s  model (Ippen, 1966) 

are presented in  the f igu res  fo r  comparison.
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surface e leva tion  
current v e loc ity

■0 . 00

0 .10

2 .3  4 .0  6 .0  3 .0  10.0
TIDRL CYaES

igure 4. Time v a r ia tio n s  of t id a l  he igh t and v e loc ity  a t  the 
ch anne 1  en t  r  an ce .

surface e leva tion  
current ve loc ity

0.25

_ -0 .25

2.0
TIDAL CYaES

Figure 5. Time v a r ia tio n s  of t id a l  heigh t and ve loc ity  a t  the 
midpoint of the channel.
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_  3 .1 3

surface e lev a tion  -------
current v e loc ity  -  -

- 3 .3 5

n=. 015

4 .3 6 .3 8 .3
TIDAL C Y aE S

Figure 6 . Time v a r ia tio n s  of t i d a l  he igh t and ve loc ity  near the 
closed-end of the channel.
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DISTRNCE FROM HERD (KM)

Figure 7. Longitudinal d is t r ib u t io n  of t i d a l  amplitude along 
a closed-end channel.
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D I S T R N C E  FROM HERD (KM)

Figure 8 . Longitudinal d is t r ib u t io n  of the amplitude of t i d a l  
current along a closed-end channel.
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The model was a lso  run with a Manning f r i c t io n  co e f f ic ie n t  of

0 . 0 1 0 , and the r e s u l t s  fo r  t i d a l  amplitude and current are  shown in 

Figures 7 and 8 . The model agrees with the theory: the predicted

t i d a l  amplitudes and t i d a l  current are sm aller than the f r i c t io n le s s  

theory, and the model r e s u l t s  approach the th e o re t ic a l  re s u l t s  when the 

f r i c t io n  co e f f ic ie n t  i s  decreased. Since no a n a ly t ic a l  so lu tion  e x is ts  

fo r  the non -lin ear  f r i c t io n  model, the numerical r e s u l t s  cannot be 

te s te d  q u a n t i ta t iv e ly .

The model was a lso  run with a Manning f r i c t i o n  c o e f f ic ie n t  of 0.010, 

and the r e s u l t s  fo r  t i d a l  amplitude and current are shown in  Figures 7 

and 8 . The model agrees with the theory: the pred ic ted  t i d a l  amplitudes 

and t i d a l  current are sm aller than the f r i c t io n le s s  theory , and the model 

r e s u l t s  approach the th e o re t ic a l  r e s u l ts  when the f r i c t io n  c o e ff ic ien t  

i s  decreased. Since no a n a ly t ic a l  so lu tion  e x is ts  fo r  the n on -linear  

f r i c t io n  model, the numerical r e s u l t s  cannot be te s ted  q u a n t i ta t iv e ly .

Model s e n s i t iv i ty  t e s t  runs were made to determine the r e la t iv e  

importance of the non linear term in the momentum equation, the second 

term on the r ig h t  hand side of equation (60a). For th i s  t e s t ,  the 

hydrodynamic submodel was run using the geometry of a small t i d a l  stream 

(see Chapter IV). Model r e s u l ts  fo r  two runs, one with and one without 

the nonlinear term, were compared. Omitting the nonlinear term led to 

an increase  of approximately 1 % in maximum current within a t i d a l  cycle 

and a comparable decrease in  maximum surface e leva tion  w ithin  a cycle .

Although the nonlinear term had l i t t l e  e f fe c t  on model re s u l t s  

in th i s  case, the computation time saved by om itting the term is  very 

small. Since there  may e x is t  o ther systems where the model can be 

applied in which the nonlinear term is  of more importance, i t  was 

decided to re ta in  the term in the model.



IV. MODEL APPLICATION -  A CASE STUDY

The case study presented in  th is  chapter i s  made to i l l u s t r a t e  

the ap p lica tion  of the model to a p a r t ic u la r  t i d a l  creek, and to show 

the a b i l i t i e s  of the model in  reproducing and p red ic ting  prototype 

behavior under varying inp u ts .  The model i s  applied to the L i t t l e  

Hunting Creek, a small stream located  in  the Mount Vernon area of 

F a irfax  County, V irg in ia  (Figure 9 ) .  The creek drains a 33 square 

k ilom eter urban-sub urban bas in  and consis ts  of two upland branches 

which drain  in to  a t i d a l  sec tio n  approximately 3.5 k ilom eters in  

leng th . The t i d a l  portion  jo ins  a small embayment on the upper Potomac 

River. This e s s e n t ia l ly  freshwater region of the t i d a l  Potomac is  

impacted by major municipal wastewater discharges (Champ e t  a l .  , 1981) . 

The L i t t l e  Hunting Creek receives discharges w ith in  the t i d a l  portion  

from a 6 . 6  mgd sewage treatm ent p la n t .

Excess algae i s  a recu rring  problem in  the L i t t l e  Hunting Creek 

as i t  i s  in  o ther embayments along the Potomac. These large  a lga l 

populations lead  to undesireable pH lev e ls  and dissolved oxygen 

f lu c tu a t io n s .  A p red ic t iv e  model developed here for the L i t t l e  Hunting 

Creek could serve as a to o l  in  the management of water q u a li ty  in  

nearby embayments as w ell.

A pplication of the mathematical model requires the sp e c if ic a t io n  

of three  groups of parameters -  physical parameters, input parameters, 

and c a l ib ra t io n  parameters. Physical parameters are measures such as

50
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Mount Vernon

Sample Station  

Tide Gauge 

Current Meter

Figure 9. L i t t l e  Hunting Creek sample s ta t io n s .  
(USGS Mt. Vernon quadrangle).
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channel c ro ss -sec tio n a l  area and depth which define the physical 

c h a ra c te r is t ic s  of the water body. Input parameters are the variab les  

upon which model p red ic tion s  are based e .g .  t i d a l  forc ing , temperature 

and w aste load ings. C alib ra tion  parameters are the co e ff ic ien ts  o r ra te  

constants which cannot be measured d ire c t ly  bu t must be derived through 

repeated adjustments u n t i l  the model can s a t i s f a c to r i l y  simulate the 

prototype behavior.

The f i e ld  program in  th is  study was developed to provide a 

comprehensive data base useful in  assessing  water q u a li ty  conditions in  

the L i t t l e  Hunting Creek and in  c a l ib ra t in g  and v a lid a tin g  a p red ic tiv e  

mathematical w ater q u a li ty  model. To provide th is  data base a s e r ie s  

of p hs ica l  surveys and slackwater and in ten s ive  w ater q u a li ty  surveys 

were conducted from May to September of 19 80 by the Department of 

Physical Oceanography, V irg in ia  I n s t i t u t e  of Marine Science.

Physical surveys included a bathymetry survey, an a e r ia l  survey 

of high t id e  and low t id e  surface area , and the monitoring of t id a l  

he igh t and cu rren ts .  Surveys of water q u a li ty  were conducted 

approximately bi-weekly from May 21 to September 30, 19 80. The surveys 

were conducted uhder varying conditions o f freshwater flew, stream 

temperature and wasteloading. The loca tions  of survey sampling 

s t a t io n s ,  t id e  gauges, current meters and th a t  of the STP o u t f a l l  are 

shown in  Figure 9. I n - s i t u  measures of d issolved oxygen, temperature, 

pH and secchi depth were taken a t  each s ta t io n .  Samples were withdrawn 

from mid-depth and analyzed for the o ther water q u a li ty  parameters of 

i n t e r e s t .  In ad d it ion , sediment oxygen demand was measured during the 

f i r s t  slackwater survey. The in tens ive  and d iurnal surveys d if fe red  

from the slackwater surveys in  th a t  sampling was conducted continuously
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fo r  two t id a l  cycles, providing data on the i n t r a - t i d a l  and the d iurnal 

parameter f lu c tu a tio n s  in  the creek. The d ispersion  and flushing  

c h a ra c te r is t ic s  of the creek were inves tiga ted  through a dye study 

conducted concurrently with the in tensive  water q u a li ty  survey.

A. Hydrodynamic Submodel C alibra tion

1. Physical Parameters

To construct a mathematical model, the creek i s  divided 

lo n g itu d in a lly  in to  a number o f  reaches bounded by t r a n s e c ts .  The 

t ran sec ts  were chosen to coincide when possib le  with the 

c ro ss -sec tio n a l  p ro f i le s  measured in  the f i e ld .  Additional t ran sec ts  

were placed a t  or near mid-distance between f i e ld  t ra n s e c ts .  The 

c h a ra c te r i s t ic s  of t ra n se c ts  so chosen were in te rp o la te d  from the 

adjacen t measured tran sec ts  with add itiona l reference to a e r ia l  survey 

information and availab le  topographic maps. The t ran sec ts  are placed 

away from the regions of sharp bends or narrow co n s tr ic t io n s  and are 

spaced on an average of approximately 200 meters ap a r t .  Model 

segmentation i s  presented in  Figure 10.

Values fo r  c ro ss -sec tio n a l  areas , depths, surface areas and 

volumes were determined from information gathered during the physica l 

surveys of the creek. The values of the physica l parameters used as 

input to the model are given in  Table I .

2. Input Parameters

a* Upstream boundary condition -  The discharge through the most 

upstream tra n se c t  was s e t  to zero and freshwater input in to  the most 

upstream model reach was tre a te d  as l a t e r a l  inflow.

b . L a te ra l  inflow -  Daily values of runoff from the L i t t l e
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Hunting Creek drainage basin  were supplied by the Northern V irg in ia  

Planning D is t r ic t  Commission. Based on the d is t r ib u t io n  of drainage 

area  along the creek, runoff was divided in to  two l a t e r a l  in f low s: 

th ree -fo u rth s  of the t o t a l  going in to  the most upstream reach and 

one-fourth going in to  the reach associated  with the t r ib u ta ry .  Values 

fo r  these l a t e r a l  inflows are read in to  the model once for each day of 

s im ulation . Discharge from the STP o u t f a l l  averaged 0.22 cubic meters 

per second and was included as a constant l a t e r a l  inflow to  the model.

c. Downstream boundary condition -  At each i t e r a t i o n  of time 

s tep  a value fo r  downstream surface e leva tion  i s  read in to  the 

hydrodynamic submodel. Surface e lev a tion  values so used were prepared 

from the t id e  gauge record measured near the mouth of the creek.

d. I n i t i a l  conditions -  As the hydrodynamic submodel was to be 

s ta r t e d  a t  a po in t of time corresponding to th a t  of the f i r s t  sample 

taken during the August in ten s iv e  survey, i t  was necessary to determine 

appropriate  i n i t i a l  conditions fo r  surface e lev a t io n ,  discharge and dye 

concentration fo r  input to the submodel. I n i t i a l  conditions fo r  

surface e lev a tion  and discharge were a rr ived  a t  by running the submodel 

from two t i d a l  cycles before the time corresponding to th a t  o f the 

f i r s t  sample. Output fo r  the appropriate time from th is  run was used 

as i n i t i a l  conditions in  c a l ib ra t io n  runs made l a t e r .

Dye concentrations in  the creek could not be adequately 

determined from f ie ld  measurements made a t  the beginning of the 

in ten s ive  survey. Not u n t i l  hour 4 (1900) was the concentration curve 

fo r dye s u f f ic ie n t ly  defined by f ie ld  data. For th is  reason i t  was 

decided to s e t  the i n i t i a l  dye concentrations for the model to the 

equivalen t of background readings (0 . 2  ppb) and then, a t  a po in t in  the
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sim ulation  corresponding to hour 4 of the in tens ive  survey, to redefine 

the dye concentrations fo r  a l l  model reaches to approximate the 

concentration  curve measured in  the f i e ld  a t th a t  time.

3. C a lib ra tion  Parameters

a. F r ic t io n  c o e f f ic ie n t  -  Model runs were made with the value 

o f Manning’s f r i c t io n  c o e f f ic ie n t  (n) varied  from zero to a maximum of

0.04. A value of 0.02 was chosen and assigned uniformly throughout the 

creek.

b . Weighting fac to rs  -  Im p lic i t  weighting fac to rs  fo r  surface 

and v e loc ity  gradients a f fe c t  the numerical s t a b i l i t y  and d ispersion  of 

the f i n i t e  d ifference  scheme. A compromise between the two needs to be 

reached. Test runs ind ica ted  th a t  a value of 0.75 would r e s u l t  in  a 

s ta b le  numerical scheme w ithout in troducing  excessive numerical 

d ispers ion .

c. Dispersion co e f f ic ie n t  -  The d ispersion  c o e ff ic ien t  (E) in  

the mass-balance equation (Equation 25) i s  determined by the 

re la t io n sh ip

5/6. i 
E = 63.2 n R  U + E

o

where

n = Manning’s f r i c t io n  c o e f f ic ie n t ,

R = the hydrau lic  rad iu s ,  in  meters, assumed 
equal to  mean depth plus surface e leva tion  
above mean tide  le v e l ,

U = the current v e lo c i ty ,  in  m/sec, and is  equal 
to discharge divided by channel cross- 
sec tio n a l  area ,

E = a constant to be determined, 
o
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The ca lib ra t io n  constant, E , was adjusted u n t i l  dye dispersion 

in  the model s a t i s f a c to r i ly  reproduced tha t  measured in  the f ie ld .  In

th is  manner, a value for Eq of 1 . 0  square meters per second was 

determined.

4. Simulation Results

The hydrodynamic submodel was run for eleven t id a l  cycles, 

sim ulating a period corresponding to the beginning of the August 20-21 

in tensive  f ie ld  survey and ending with the l a s t  slackwater dye survey 

taken on August 26, 19 80. Tidal heigh t and current velocity  fo r  the ,

f i r s t  two t i d a l  cycles of simulation were compared to t id e  s t a f f  

readings and current meter records for the period of the in tensive  

s urvey.

The model re su l ts  for t id a l  heights a t  the most upstream t id a l  

s ta t io n  ( s ta t io n  5) a f te r  ca l ib ra t io n  are presented in  Figure 11 which 

shows th a t  the model simulation a t  th is  poin t i s  quite  good.

The sim ulation of current v e lo c i t ie s  a t  two locations are 

compared to current meter records in  Figure 12. Model re su l ts  compare 

s a t i s f a c to r i ly  to f i e ld  measurements in  most in s tances . The notable 

exception occurs a t  the loca tion  near the mouth of the creek ( s ta t io n  

2). As can be seen from Figure 9, on the flooding tide  flow a t th is  

loca tion  would be en tering  an area of rapid expansion. The current 

meter record ind ica tes  a g reat amount of turbulence due to th is  rapid 

expansion. This condition cannot be rep lica ted  by the* one-dimensional 

equations employed in  the hydrodynamic submodel. However, when the 

reverse flow on the ebb en te rs  the narrow co n s tr ic t io n  a t  the bridge 

the current record shows l i t t l e  turbulence. During the ebb flow model
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Figure 12. Current v e loc ity  sim ulation .
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r e s u l ts  compare w ell with f i e ld  records fo r  s ta t io n  2 .

Model sim ulation of dye d ispersion  in  the creek are compared 

graph ically  to some hourly f i e ld  measurements in  Figures 13 through 18. 

In Figures 19 through 22, model re su l ts  are compared to dye 

concentrations measured a t  3 .5 , 4, 6 , and 8  t i d a l  cycles a f t e r  the 

beginning of the in tens ive  survey. As mentioned previously , 

concentrations measured in  the creek a t  1900 hours on August 20 were 

used to define the i n i t i a l  dye concentrations and are read in to  the 

model a t  the po in t in  the sim ulation corresponding to hour 4. For a 

period  equiva len t to about four hours a f t e r  concentrations in  the model 

are redefined  in  the above manner, the model f a i l s  to rec rea te  the 

concentrations measured in  the f i e ld  for the downstream s ta t io n s  

(s ta t io n s  2 and 3). By hour 8 , however, the model re su l t s  compare w ell 

with the f i e ld  measurements fo r  a l l  four s ta t io n s  in  the creek. The 

assumption of t o t a l  c ro ss -sec tio n a l  homogeneity i s  an approximation 

which cannot describe adequately the concentration f ie ld  during the 

i n i t i a l  mixing period a f t e r  dye in je c t io n .  Therefore, one-dimensional 

d ispers ion  theory always f a i l s  to apply during the i n i t i a l  mixing 

period and i t  i s  not su rp r is in g  th a t  the model re su l ts  and f i e ld  

measurements do not agree between hour 4 and hour 8 .

B. Water Quality Submodel C alibra tion

1. Input Parameters

a. Parameters ca lcu la ted  by hydrodynamic submodel -  To provide 

input parameters to the water q u a li ty  submodel, new i n i t i a l  conditions 

of surface e leva tion  were determined from t id e  gauge records and the 

hydrodynamic submodel was used to simulate a 14 t id a l  cycle period
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corresponding to the 7 days from the August 14 high slackwater survey 

through the August 20-21 in tens ive  survey. At each time s te p ,  for a l l  

reaches, instantaneous values of channel c ro ss -sec tio n a l  area , current 

v e lo c i ty ,  surface e lev a tio n ,  d ispersion  c o e f f ic ie n t ,  channel volume and 

s torage volume were s to red  for use in  the water q ua li ty  submodel.

b. Poin t source loading -  For each w ater q u a li ty  parameter 

(except chlorophyll * a 1) an average of the concentrations from four 1 2  

hour composite samples taken a t  the STP o u t f a l l  during the in tens ive  

survey was used to determine po in t source input to the model. The 

average concentrations in  milligrams per l i t e r  were converted to 

kilograms per day by using the average flow (4.45 mgd) measured a t  the 

STP o u t f a l l  during the in ten s ive  survey. The formulas for determining 

organic n itrogen  and organic phosphorus gave zero or negative values 

fo r  two samples. For the purpose of averaging, negative values were 

s e t  to zer;o. The value fo r po in t source flow ra te  used in  the model i s  

the average of the value measured during the August 14 slackwater 

survey and the values from the in tens ive  survey.

Values fo r  the parameters measured a t  the STP o u t f a l l  are given 

in  Table I I  together with the values used and held  constant throughout 

the model sim ulation .

c. Nonpoint source loading -  A daily  time s e r ie s  of nonpoint 

source input to the creek for the period May 1 -  October 31, 19 80 was 

provided by the Northern V irg in ia  Planning D is t r i c t  Commission (NVPDC). 

Runoff volume, mass fluxes of organic n itro g en , ammonia n itrogen , 

n i t r i t e  + n i t r a t e  n itro gen , organic phosphorus, ortho-phosphorus, and 

CBOD and dissolved  oxygen concentrations were provided. Table I I I  

gives the po rtion  of th is  time se r ie s  from 8/14/80 to 8/21/80.
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The nonpoint loadings were obtained by the NVPDC througjh 

employment o f the Commission’s nonpoint source p red ic tion  models. 

P red ic tions  were based on lo c a l  r a i n f a l l  da ta , land use data and o ther 

c h a r a c te r i s t ic s ,  and on c a l ib ra t io n  parameters determined in  a study of 

the Occoquan Basin (Hydrocomp, I n c . ,  19 77; NVPDC, 1979).

Based on the d is t r ib u t io n  of drainage area along the creek, 

nonpoint source loadings were divided in to  two p a r ts :  th ree -fou rth s  of

the t o t a l  going to the most upstream reach, one-fourth going to the 

reach containing the t r ib u ta ry .  Daily to ta l s  fo r  nonpoint loadings are 

read in to  the model a t  the beginning of each day of sim ulation.

Table IV gives the NVPDC p re d ic t io n s ,  in  mg/1, and the f ie ld  

measurements from s ta t io n  7, the s ta t io n  on the L i t t l e  Hunting Creek 

above the head of t id e .

d. Solar ra d ia tio n  -  A monthly average daily  so la r  rad ia tio n  of 

450 langleys fo r  the month of August (U.S. Dept. of Commerce Weather 

Bureau) was employed. Daily values for so la r  rad ia tio n  were not ye t 

av a ilab le .

e .  Sediment oxygen demand -  Values fo r  sediment oxygen demand

were obtained from flux  s tu d ies  of the L i t t l e  Hunting Creek undertaken

2
in  May, 19 80. SOD was measured as 2.5 gram/m / day a t  s ta t io n  2 and 2.9 

2
gram/m /day a t  s ta t io n s  3, 4 and 5. This same d is t r ib u t io n  was

employed in  the model. In the model reaches corresponding to the creek

2
upstream of s ta t io n  5 the SOD was tapered down to 2.5 gram/m /day.

f .  Boundary conditions -  The downstream boundary condition for 

each parameter i s  the concentration measured a t  the s t a t io n  near the 

mouth of the creek ( s ta t io n  2 ) , the loca tio n  of which i s  approximately 

th a t  of the most downstream tra n se c t  of the model. The values employed
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in  the model are given in  Table V.

Table V. Downstream Boundary Conditions

Org N NH4-N N02-HJ03-N Org P Ortho-P CBOD D.O. Chi.'a*
(------------------------------------------mg/ 1 ------------------------------------------------------) ( ug/1 )

0. 7 0 .3  .92 . 12 .02 7.4 11. 1 27.0

Since the upstream runoff i s  accounted for by the nonpoint source, a 

'no f lu x T upstream boundary condition i s  sp ec if ied .

g. Temperature -  Temperature was read in  every o ther day of 

s im ulation . Temperature varied  from 28 degrees centigrade on the f i r s t  

day of sim ulation  to 25.3 degrees centigrade on the l a s t  day.

h . E xtinc tion  c o e f f ic ie n t  -  The average values of the 

e x t in c t io n  co e f f ic ie n t  as measured during the in ten s ive  survey for 

s ta t io n s  2 through 5 were 3.5, 3.8 , 3.5 and 2.9 per meter, 

re sp ec tiv e ly .  The value of 3.5 per meter was used in  the model fo r  the 

e n t i r e  creek. This value compares c losely  to f i e ld  measurements.

2. C alib ra tion  Parameters

C alib ra tio n  of the water q u a li ty  submodel was conducted in  the 

following manner: A s e t  of i n i t i a l  conditions for each w ater q u a li ty

parameter based on data co llec ted  on the August 14 survey were provided 

to the model. Simulations of the period from th a t  slackwater to the 

in ten s iv e  survey were then conducted using the inputs sp ec if ied  in  the 

preceding sec tio n s .  The re su l ts  o f th a t  p a r t  of the sim ulations 

corresponding to the in tens ive  survey, in  the form of maximum, average 

and minimum values for the l a s t  two t id a l  cycles fo r  each parameter, 

were compared to corresponding values obtained from the in ten s ive  f ie ld  

survey. Successive model runs were conducted in  which the ra te
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constants and c a l ib ra t io n  parameters were varied  u n t i l  a reasonable f i t  

between f i e ld  data and model r e su l ts  was acheived. The values of the 

c a l ib ra t io n  parameters so determined are presen ted  in  Table VT.

I n i t i a l  c a l ib ra t io n  runs provided p red ic tio n s  of n i t r i t e - n i t r a t e

n itrogen  fa r  in  excess of the observed concentrations. In  order for
\

model p red ic tion s  to match f ie ld  measurements from the in tens ive  survey

i t  was necessary to introduce d e n i t r i f ic a t io n  in  the form of benth ic

flux  of n i t r i t e - n i t r a t e  n itrogen . A maximum value of -1 .6  gram/m /day

was assigned to the reaches corresponding to the creek from s ta t io n  4

to s ta t io n  5. This value was tapered to zero in  the reaches below

s ta t io n  4 and tapered to -0 .3  in  the reaches above s ta t io n  5. Although

these values of the f lux  of n i t r a t e  are high they are not w ithout

precedent. Edwards and Rolley (1965) found d e n i t r i f ic a t io n  ra tes

o
varying from -0 .1  to -1 .5  gram/m /day in  the sediment o f an English

9
r iv e r .  D e n i tr i f ic a t io n  ra te s  varying from -.065 to -1 .1  gram/m /day

2
with an average n i t r a t e  removal ra te  of -0 .9  gram/m /day were estim ated 

by Van Kessel (19 77) fo r  an 800 meter s t r e tc h  of a canal receiving 

sewage e f f lu e n t .

As can be seen in  Table IV, NVPDC p red ic tion s  of nonpoint 

loadings of n i t r i t e - n i t r a t e  are high for the ca l ib ra t io n  period when 

compared to f i e ld  measurements of concentration . Also, unusually high 

values fo r  po in t source loadings were recorded during the in ten s ive  

survey. In l i g h t  of th is  evidence, model runs were made to determine 

to what ex ten t reducing the p o in t source and e lim inating  the nonpoint
4

source inputs would reduce the necessary ben th ic  f lux  of 

n i t r i t e - n i t r a t e  n itrogen . For these runs nonpoint inputs of 

n i t r i t e - n i t r a t e  were reduced to zero while p o in t source loadings of
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n i t r i t e - n i t r a t e  were computed based on the lowest concentration 

recorded a t  the STP o u t f a l l  during the in te n s iv e .  Poin t source 

loadings were thus reduced from 36.4 to 30.8 kg/day. Under these 

conditions the ra te  o f f lux  of n i t r i t e - n i t r a t e  to the sediments could 

be reduced to - 0 . 8  gram/m /day a t  the po in t of g rea te s t  loss  and the 

model r e s u l ts  s t i l l  compare w ell with f i e ld  data. From these s tud ies  

i t  can be in fe r re d  th a t  some'process was removing n i t r i t e - n i t r a t e  

n itrogen  from the w ater column a t  a r e la t iv e ly  higjh r a te .  One 

p la u s ib le  candidate fo r  th is  removal mechanism i s  d e n i t r i f ic a t io n  in  

the extensive shallow areas of the  ̂ creek.

3. Simulation Results

The r e s u l ts  of the water q u a li ty  submodel c a l ib ra t io n  are 

compared with data from the in ten s iv e  survey in  Figures 23 through 30 

fo r  organic n itrogen , ammonia n itrogen , n i t r i t e - n i t r a t e  n itro gen , 

organic phosphorus, inorganic (ortho) phosphorus, CBOD , chlorophyll 

fa* and dissolved  oxygen, re sp ec tive ly . On the graphs are ind ica ted  

the maximum, average and minimum over the two t id a l  cycles of the 

in ten s ive  survey. For comparison, the graphs also give the maximum, 

average and minimum concentrations fo r  the appropriate  t id a l  cycles of 

the model sim ulation  corresponding to the survey. The re s u l ts  o f the 

c a l ib ra ted  model generally  agree w ell with the f i e ld  data with the 

exception of inorganic phosphorus for which the concentrations are too 

high in  the upper reaches of the model.

Some examples of the temporal v a r ia tio n  in  the model output 

during the l a s t  two t i d a l  cycles of the f in a l  c a l ib ra t io n  run are 

presented in  Figures 31 through 33. In these figures model output for 

ammonia, chlorophyll 1 a T and dissolved oxygen are compared to f i e ld
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Figure 31. Ammonia - field data (August, 1980 intensive 

survey) versus model output.
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Figure 32. Chlorophyll 'a1 - field data (August, 1980 

intensive survey) versus model output.
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data from the in ten s ive  survey.

While sem i-diurnal t i d a l  f luc tu a tion s  in  concentrations can be 

seen in  the f ig u re s ,  no d iu rnal f luc tu a tion s  are apparent. As shown by 

these figures and by Figures 23 -  30, ranges of concentrations produced 

by the model are generally  le ss  than those measured in  the f i e ld .  Some 

of th is  d iffe rence  can be ascribed  to the n ecess ity  of comparing f i e ld  

samples taken a t  a po in t along the channel of the creek to model output 

which rep resen t the average values over the t o t a l  volume of a model 

segment.

C. Model V alidation

The reason behind the v a lid a tion  process i s  to demonstrate the 

model’s a b i l i ty  to sim ulate fu ture  conditions. For the purpose of 

v a l id a t io n ,  the model was run for 195 t id a l  cycles sim ulating the 

period from the slackwater survey of 5/21/80 to the end of the t id e  

gauge record on 8/29/80. The data from the t id e  gauge record was 

compiled and used as the downstream boundary condition fo r  the 

hydrodynamic submodel. Validation of the hydrodynamic submodel i s  

provided by comparing the t id e  s t a f f  readings made a t  s t a t io n  5 during; 

July 22-2 3, 19 80 to model output for the same period . The re s u l ts  are 

presented  in  Figure 34 and, as can be seen, upstream surface e leva tions  

as p red ic ted  by the model compare well to those measured in the f ie ld .

For th is  sim ulation  po in t source loadings were assumed to be 

constant and were determined by averaging measurements made a t  the STP 

o u t f a l l  during the slackwater and in tens ive  surveys. The average 

values fo r  po in t source loadings determined in  th is  manner are 

presented in  Table VII.
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TABLE VII. Poin t Source Loadings fo r  Model 
Validation Run

Flow Org.N NH4-N N02+N03-N Org.P Ortho-P CBOD D.O.
(m3 /s )  (----------------------------------------------k g /d a y --------------------------------------)  (mg/1 )

.22 33. 7 343.7 34. 1 1. 14 1.48 301. 8.0

As in  the c a l ib ra t io n  runs, nonpoint source loadings were read 

in  fo r  every day of sim ulation . I n i t i a l  concentrations in  the creek 

were determined from measurements made during the f i r s t  s lackw ater 

survey (5/21/80). Downstream boundary conditions were changed during 

the sim ulation  a t  times corresponding to the dates o f the f i e ld  surveys 

( t id a l  cycles 25.0, 65.5, 92.5 , 120.0, 164.0, 176.0). Boundary 

conditions were thus read in to  the model a t  roughly two week in te rv a ls  

o f sim ulation . With two exceptions, boundary conditions were 

determined from high slackwater data co llec ted  a t  s ta t io n  2. The two 

exceptions were the June 24 and the July 8  surveys which were conducted 

a t  o r near low t id e .  For these two surveys data co llec ted  a t  s t a t io n  1 

in  the Potomac River was used to define boundary conditions for the 

period o f  sim ulation following each survey. Water temperature was also 

varied  according to f i e ld  survey measurements. Temperature was read 

in to  the model on an average of about every ten t id a l  cycles , with 

values between f i e ld  surveys arr ived  a t  by l in e a r  in te rp o la t io n .

Results of th is  long-term  simulation are presented  graphically  

in  the Appendix. Model r e su l ts  are compared to concentrations measured 

in  the f i e ld  during the slackw ater surveys and to the average 

concentrations determined from the in ten s ive  and d iurnal surveys. A 

maximum of e ig h t  values per s ta t io n  were obtained from the f ie ld  

surveys fo r  comparison to model ou tpu t. However, only fo r the most
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downstream s ta t io n  in  the creek, s ta t io n  2 , were a l l  e ig h t samplings 

made.

The model re s u l ts  for s ta t io n s  2 and 3 ex h ib it  a strong  

in fluence by the downstream boundary conditions. Although a change in  

the boundary condition can be detected a t  s t a t io n  4, the e f f e c t  is  much 

le s s  pronounced than a t  s ta t io n  3. .Any boundary condition e f f e c t  a t  

s ta t io n  5 i s  usually  l o s t  in  the v a r ia tio n s  in  concentration and range 

due to  changes in  nonpoint inputs or to d iu rna l v a r ia t io n s .

Rain events appear on the graphs a t  s ta t io n s  4 and 5 as rapid  

increases or decreases in  concentra tions, depending on the parameter. 

The e f f e c t  of ra in  events on concentrations a t  s ta t io n s  2 and 3 i s  

considerably damped.

The model sim ulation  re su l ts  fo r  ammonia n itrogen  compare w ell 

with f i e ld  data fo r  s ta t io n s  2, 3 and 4 (Figures A1-A3) . P redicted  

concentrations a t  s ta t io n  5 run high in  comparison to f i e ld  data fo r  

the period  from cycle 164 to cycle 177 (Figure A4). This corresponds 

to the ca l ib ra t io n  period  and re su l ts  here echo those of the f in a l  

c a l ib ra t io n  run. The re su l ts  for n i t r i t e - n i t r a t e  n itrogen  compare well 

with f i e ld  r e su l ts  fo r  a l l  s ta t io n s  with the exceptions o f s ta t io n s  4 

and 5 fo r the period of cycles 120-121 (Figures A5 and A6 ) . During 

th a t  period of high nonpoint runoff model p red ic tions  are lower than 

corresponding f i e ld  data . Perhaps there  e x is ts  some delay between the 

time of p re c ip i ta t io n  over the creek drainage basin  and the en try  of 

runoff in to  the t id a l  portion  of the creek which has not been taken 

in to  account in  the nonpoint source model.

Comparing graphs fo r s ta t io n s  4 and 5 for ammonia nitrogen 

reveals a phase d ifference  of about 180 degrees in  the concentration
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curves a t  those s ta t io n s .  Concentrations are lowest a t  high t id e  a t  

s t a t io n  4 and are h ig hest  a t  high t id e  a t  s ta t io n  5. The STP o u t f a l l  

i s  loca ted  between s ta t io n s  4 and 5 and such a phase d ifference  would 

be expected fo r  those parameters fo r  which the po in t source inputs are 

dominant. Rain events are ind ica ted  in  the graphs of ammonia and 

n i t r i t e - n i t r a t e  n itrogen  by rapid  decreases in  concentrations a t  the 

upstream s ta t io n s .  These e f f e c ts  are evidence fo r  the dominance of 

po in t  source inputs over nonpoint inputs fo r  these two parameters.

Long-term model p red ic tion s  fo r  organic n itrogen  (Figures A7 and 

A8 ) are generally  in  agreement with f i e ld  data . With the exceptions of 

the low slackwater survey of 7/8/80 (cycle 92.5) the f i e ld  data points  

generally  f a l l  w ithin  or j u s t  outside the range of p red ic ted  

concentra tions. Concentrations of organic n itrogen  also e x h ib it  the 

phase d ifference  between s ta t io n s  4 and 5 bu t only during periods of no 

major ra in  events. Rain events are revealed in  the graphs of organic 

n itrogen  by rapid  increases in  concentrations. This ind ica te s  th a t  

nonpoint loading i s  an important source of organic n itrogen  and can 

become the dominant.source during periods of heavy runoff.

In general, f i e ld  data points f a l l  w ithin  or near the 

concentrations p red ic ted  fo r  inorganic  (ortho) phosphorus (Figures A9 

and A10). A notable exception i s  the concentrations measured during 

the 8/14/80 (cycle 164.0) high slackwater survey a t  s ta t io n s  4 and 5. 

This survey i s  unique among the slackwater surveys, not only in  the 

magnitude of i t s  measurements of inorganic phosphorus, bu t also  in  th a t  

i t  i s  the only slackwater survey where high concentrations were 

recorded a t a l l  four s ta t io n s  along the creek.

Organic phosphorus concentrations p red ic ted  by the model for
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s ta t io n s  2 and 3 agree well with f i e ld  data. At s ta t io n s  4 and 5 

(Figures A ll and A12) the model does not p re d ic t  the low concentrations 

measured during the July 22- 23, 19 80 in ten s ive  survey (cycles 120-121). 

And, as with inorganic  phosphorus, the f i e ld  data fo r  8/14/80 (cycle 

164.0) are much h igher than model sim ulation  re s u l t s  a t  s ta t io n s  4 and 

5.

In the graphs for organic and inorganic phosphorus ra in  events 

are ind ica ted  by a very rap id  r i s e  in  p red ic ted  concentrations. The 

magnitude o f these increases suggest th a t  nonpoint source inputs 

dominate, a t  l e a s t  fo r  the upstream s ta t io n s .  A d iu rnal v a r ia tio n  in 

inorganic phosphorus a t  a l l  four s ta t io n s  i s  a lso  in d ica ted  by the 

graphs.

Long-term p red ic tions  fo r  CBOD concentrations compare w ell in  

general fo r  s ta t io n s  2, 3 and 4. Figure A13 compares model p red ic tions  

to f i e ld  data from s ta t io n  4. P red ic tions fo r  s ta t io n  5 compare w ell 

with f i e ld  data with the exception of the measurement during the 

8/14/80 survey which i s  w ell  above p red ic ted  values (Figure A14) .

In most ins tances model p red ic tion s  of chlorophyll 1 aT 

concentrations a t  a l l  s ta t io n s  compare w ell with f i e ld  data (Figures 

A15-A18). However, p red ic tions  fo r  s ta t io n s  4 and 5 fo r  the period 

corresponding to the 6/24/80 slackwater survey (cycle 65.5) are well 

above f i e ld  measurements. The average values obtained from the d iu rnal 

and in ten s iv e  surveys f a l l  w ith in  or near the model p red ic t io n s .  This, 

taken with the c a l ib ra t io n  re s u l t s  fo r  ch lorophyll, in d ica te s  th a t  

while the model does not reproduce the range of chlorophyll in  a 

diurnal cycle, i t  appears to adequately p re d ic t  the average 

concentrations fo r  the cycle.
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Rain events are d iscem able  in  the graphs of chlorophyll as 

rapid  decreases in  concentrations a t  s ta t io n s  4 and 5 (Figures A17 and 

A18). During periods of high runoff concentrations drop to near zero 

a t  these upstream s ta t io n s .  This is  a r e s u l t  of s e t t in g  nonpoint 

inputs fo r  chlorophyll to zero. F ield  measurements a t  the non tida l 

s ta t io n  7 y ie lded  h ighly  varied  concentrations between surveys (Table 

IV) and no d iscem ab le  p a t te rn .  Although i t  i s  not possib le  to 

determine a reasonable average concentration fo r nonpoint chlorophyll 

concentration from s ta t io n  7 data , i t  appears th a t  the value of zero 

supplied by the NVPDC does not r e f l e c t  true input to the creek. This 

could expla in  some of the discrepancy between model p red ic tions  and 

f i e ld  measurements made during rainy days -  e . g . ,  the June 3 diurnal 

survey (cycles 25-26) and the July 22-23 in tens ive  survey (cycles 

120-121). A more d e ta i le d  view of model p red ic tion s  versus f ie ld  

measurements of chlorophyll from the 6/3/80 d iurnal survey i s  given in  

Fi gure 35.

The e f f e c t  of the la rge  change in  downstream boundary condition 

fo r  chlorophyll beginning a t  approximately cycle 9 2 i s  no ticeab le  even 

a t  s ta t io n  5 , although th is  e f f e c t  i s  considerably damped and the 

p ic tu re  confused by a s e r ie s  of ra in  events. A s trong  d iurnal e f f e c t  

i s  exh ib ited  in  the model re su l ts  for chlorophyll a t  a l l  four s ta t io n s .

The model adequately p red ic ts  dissolved oxygen concentrations in 

most ins tances (Figures A19 and A20) . The g re a te s t  d ifference  between 

f i e ld  measurements and model p red ic tions  occur a t  s ta t io n  5. Rain 

events appear in  the DO graph fo r  s ta t io n  5 as increases in  

concentra tions, the r e s u l t  of the NVPDC p red ic tion  of a constant 10.0 

mg/1 concentration fo r  nonpoint dissolved oxygen. As can be seen in
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45.00
X Field data 
—  Model

15.00 "X

0 . 00
0. 4 60.S 2 . 01 .

TIDRL CYCLES - DJURNRL SURVEY
a. Station 5

X Field data 
—  Model

Qf71 o iq  
■ j  j u  .  a  <J __

0 . 00

1.60.4 0.3 1.2
TIORL CYCLES - DJURNRL SURVEY

b. Station 2
Figure 3 5 . Model predictions versus field measurements of 

chlorophyll 'a' from the June 3, 198 0 diurnal 
survey.
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Table IV, f i e ld  measurements a t  the non tid a l  s ta t io n  ( s ta t io n  7) never 

approach the value p red ic ted  by the NVPDC. Of p a r t ic u la r  i n t e r e s t  are 

the low values recorded during the 6 /3 , 7/8 and the 7/22-2 3 surveys.

In  these surveys, each made during a ra in  period , DO concentrations of 

6 .3 ,  4.5 and 4.2 mg/1 were recorded, re sp ec tive ly . In l ig h t  of these 

f i e ld  measurements a second long-term sim ulation was undertaken in  

which nonpoint DO concentrations were s e t  to 4.2 mg/1 for a l l  time.

The r e s u l ts  are given in  Figures A21 and A22. In these figures i t  can 

be seen th a t  under th is  new condition DO p red ic tions  fo r  the periods 

corresponding to the June d iurnal survey (cycles 25-26) and the July 

in ten s ive  survey (cycles 1 2 0 - 1 2 1 ) are much c lo se r  to the average values 

from f i e ld  data . P red ic tions for periods of low runoff are l i t t l e  

a ffec ted  by th is  change in  nonpoint DO. Figures 36 and 37 p resen t a 

more d e ta i led  look a t  f i e ld  data versus model p red ic tions  fo r  the 

period  of the d iurnal survey. In Figure 36 nonpoint DO concentrations 

were s e t  to 10 mg/1. In Figure 37 concentrations were s e t  to 4.2 mg/1.

In genera l, the model succeeds in  sim ulating  the water q u a li ty  

conditions of the creek even though the re s u l ts  of the long-term 

sim ulation f a i l s  to match some of the data p o in ts .  In comparing 

slackwater survey data with model s im ulation  r e s u l t s ,  i t  should be born 

in  mind th a t  each data po in t i s  from a s in g le  grab sample and th a t  data 

s c a t te r in g  i s  in e v i ta b le .  The model not only adequately simulates the 

impact of po in t source loadings on the water q u a l i ty ,  but a lso  the 

water q u a li ty  response to the time varying nonpoint source loadings. 

Both the seasonal time sca le  and i n t r a - t i d a l  time sca le  of water 

q u a li ty  v a r ia tio n s  can be simulated with the model in  a s in g le  model 

run. This i s  possib le  because of the e f f i c i e n t  numerical scheme
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16.02
X Field data 
—  Model

6 .0 0

X X
X X  * *  x x

0 . 00 * I i * I ’ i
0.0 0.4 0.8 1.2 1.6 2.0

TJDRL CYCLES - DJURNRL SURVEY
a. Station 5

X Field data 
—  Model

12.22

XX

0.0 0.4 0.8 1.2 1.6 2.0
TIQRL CYCLES - DJURNRL SURVEY

b. Station 2

Figure 3 6 . Model predictions versus field measurements from 
June 3, 1980 diurnal survey - nonpoint DO 
concentrations set to 10.0 mg/1.
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IS. 03
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TIDAL CYCLES - DIURNAL SURVEY

a. Station 5

18.00
X Field data 
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X x
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2 . 01.60 . 8 1.20 . 0

TIDAL CYCLES - DIURNAL SURVEY
b. Station 2

Figure 37. Model predictions versus field measurements 
from June 3, 1980 diurnal survey — nonpoint 
DO concentrations set to 4.2 mg/1.
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employed in  the model and the smallness of the creek.

D. Diagnostic C ap ab ili t ie s  of the Model

A fter a model has been ca lib ra ted  and v a lida ted  i t  can then be 

used to in v e s t ig a te  the cause-and-effeet re la t io n sh ip s  operative in  the 

system, and to  evaluate future water q u a li ty  conditions under p o te n t ia l  

changes in  the system. The various scenarios may include changes in 

po in t source or nonpoint source loadings, or proposed changes in  system 

geometry. The re su l ts  o f such analyses can then be useful to decision 

makers in  developing a l te rn a t iv e  water qua li ty  management p lans.

A s e r ie s  of model runs was made to determine the impact of po in t 

source and nonpoint source loadings on the water q ua li ty  of the L i t t l e  

Hunting Creek. The input data employed in  model c a l ib ra t io n s  were used 

as the base of th is  an a ly s is .  A model run was made with po in t source 

loadings for the n itrogen  parameters, the phosphorus parameters and 

CBOD s e t  to zero. For th is  run STP discharge was held  a t  0.22 cubic

meters per second with a DO concentration of 8.1 mg/1. A separate  run

was made with a l l  nonpoint loadings of CBOD, n itrogen  and phosphorus

s e t  to zero. For th is  run, as with the ca l ib ra t io n  runs, nonpoint

inflow varied  with each day of sim ulation and nonpoint DO was a 

constant 1 0 . 0  mg/1 .

The e lim ination  of nonpoint loadings made l i t t l e  d ifference in  

concentrations o f ammonia n itrogen . S e tt ing  po in t source inputs to 

zero led  to d ra s t ic  reductions in  ammonia throughout the creek (Figure 

38). Reducing nonpoint source inputs to zero had a s ig n i f ic a n t  e f f e c t  

on the upstream concentrations of n i t r i t e - n i t r a t e  n itrogen , however, 

the e lim ination  of the po in t source had a g rea te r  e f f e c t  in a l l  reaches
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below reach 5 (Figure 39). Organic n itrogen  showed a moderate decrease 

when po in t source loadings were e lim inated , bu t reducing the nonpoint 

source to zero had a g rea te r  e f f e c t .  These r e su l ts  suggest th a t  the 

n i t r i t e - n i t r a t e  n itrogen  and the ammonia n itrogen  in  the creek are 

p rim arily  contribu ted  by the po in t source, while organic n itrogen  is  

p rim arily  contribu ted  by nonpoint runoff.

E lim ination of the po in t source had l i t t l e  e f f e c t  on e i th e r  

organic or ortho-phosphorus concentra tions. However, the e lim ination  

of nonpoint inputs had a s ig n i f ic a n t  e f f e c t  on concentrations of both 

forms o f phosphorus (Figures 40 and 41). These re su l ts  suggest th a t  

nonpoint runoff i s  the major con tribu to r of phosphorus in  the creek.

Both the po in t source and the nonpoint source are s ig n i f ic a n t  to 

CBOD concentrations in  the creek. The e lim ina tion  of the nonpoint 

source had a g rea te r  e f f e c t  on reaches upstream of reach 1 0  while the 

e lim ination  of po in t source inputs  had a s l ig h t ly  g rea te r  e f f e c t  

downstream of th a t  reach.

While the e lim ination  of the po in t source had some e f f e c t  in  

reducing phytoplankton growth (Figure 42), the e lim ination  of nonpoint 

loadings re su l ted  in  a la rg e r  decrease in  the phytoplankton population 

(Figure 4 3) . Comparing these re su l ts  to those of n itrogen  and 

phosphorus suggests th a t  when po in t sources were elim inated 

phytoplankton growth was n itrogen  l im ited ,  while when nonpoint inputs 

were e lim inated  growth was phosphorus lim ited .

The e lim ination  of the po in t source a ffec ted  the d is tr ib u t io n  

curve fo r  average dissolved oxygen in  two ways. The po in t of minimum 

DO moved upstream a d istance of 0.4 kilom eters and the DO a t  th is  po in t 

was 1 mg/1 h igher than the old minimum (Figure 44) . The improvement in
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DO concentrations can be a t t r ib u te d  to a sharp reduction in  oxidizable 

m atter -  CBOD and ammonia n itro gen . The reduction in  CBOD and ammonia 

more than outweigh the e f fe c ts  of reduced phytoplankton growth.

On the o ther hand, the e lim ination  of nonpoint inputs led  to a 

decline in  average dissolved oxygen concentrations throughout the 

creek. The average DO value fo r  two t id a l  cycles decreased by 0.6 mg/1 

a t  the sag p o in t (Figure 45). This r e s u l t  can be a t t r ib u te d  to the 

reduced phytoplankton growth which i s  due to the d ra s t ic  decrease in  

ortho-phosphorus inp u t.

A separa te  model run was made to assess the ro le  of sediment 

oxygen demand (SOD) . S e tt ing  SOD to zero re su lted  in  an increase  of 

3.5 mg/1 a t  the minimum po in t of the DO d is t r ib u t io n  curve (Figure 46).

Two model runs were made in  which the downstream boundary 

conditions fo r  a l l  parameters except dissolved oxygen were s e t  to zero 

to assess the importance of inputs from the Potomac River. These runs 

ind ica ted  th a t  the downstream boundary conditions fo r  CBOD, the 

n itrogen  parameters and the phosphorus parameters have l i t t l e  e f f e c t  on 

conditions upstream of the STP o u t f a l l  (reach 11) where the water 

q u a li ty  problem ex is  t s . S e tt in g  the chlorophyll ’ a 1 boundary condition 

to zero had a s ig n i f ic a n t  e f f e c t  fo r  some d is tance upstream of the STP 

o u t f a l l  (Figure 47). This r e s u l t  i s  due to the r e la t iv e ly  high 

boundary condition fo r  chlorophyll obtained from f i e ld  data and used in  

model c a l ib ra t io n .

Two model runs were made in  which i t  was assumed th a t  the 

Potomac River was p e r fe c t ly  clean -  no n itro gen , phosphorus, CBOD or 

phytoplankton. For one of these runs the DO boundary condition was 

l e f t  a t  the o versa tu ra ted  le v e l  ind ica ted  by f i e ld  measurements. The
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run under these conditions re su l ted  in  a s l ig h t  depression of average 

DO concentrations throughout the creek due to the lower phytoplankton 

concentrations mentioned above. In the second run the dissolved oxygen 

concentration of the Potomac was assumed a t  sa tu ra ted  lev e l  while a l l  

o ther boundary conditions were maintained a t  zero. The lowering of the 

DO boundary condition had s ig n i f ic a n t  e f f e c t  on DO concentrations only 

in  th a t  portion  of the creek downstream of the STP o u t f a l l .



V. SUMMARY AND CONCLUSIONS

An i n t r a - t i d a l ,  rea l- tim e mathematical model based on the 

one-dimensional forms of the momentum, continu ity  and mass-balance 

equations has been developed to simulate hydrodynamic behavior and 

w ater q u a li ty  conditions in  a t i d a l  system. The model is  composed of 

two submodels. In the hydrodynamic submodel a sem i-im plic it f in i t e  

d iffe rence  scheme i s  used to solve the one-dimensional continuity  and 

momentum equations simultaneously for the ve loc ity  and surface 

e lev a tio n  as functions of time and long itu d ina l d is tance . This dynamic 

approach to modeling hydrodynamic behavior insures th a t  the in te ra c t io n  

between t id es  and freshwater inflows i s  adequately addressed. The 

information provided by the hydrodynamic submodel is  used as input to 

the water q u a li ty  submodel. The water q u a li ty  submodel consis ts  of a 

s e r ie s  of one-dimensional mass-balance equations describing the 

long itu d ina l and temporal d is t r ib u t io n  of e ig h t in te ra c t in g  dissolved 

or suspended substances. The mass-balance equations are solved v ia  an 

im p l ic i t  f i n i t e  d iffe rence  method.

The mathematical model developed here has been applied to the 

L i t t l e  Hunting Creek, a small t i d a l  creek o ff  the Potomac River. I t  

has e f fe c t iv e ly  reproduced both the short-term  ( in t r a - t i d a l  and 

d iurnal) v a r ia tio n s  and long-term (seasonal) v a r ia tio n s  of water 

q u a li ty  in  the creek. The model1s c a p a b i l i t ie s  in  p red ic ting  

long itu d ina l and temporal changes in  the concentrations of dissolved

1 1 2
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substances due. to the changes in  wasteloadings or v a r ia tio n s  in  the 

physical t ranspo rt  processes has been demonstrated in  the re su l ts  of 

the long-term v a lid a tio n  sim ulation .

The modelTs usefulness as a d iagnostic  too l has also been 

demonstrated by the case study. Model re su l ts  in d ica te  tha t  sediment 

oxygen demand has the la rg e s t  influence on the d issolved oxygen 

d is t r ib u t io n  in  L i t t l e  Hunting Creek, causing a d e f ic i t  of over 3 mg/1 

a t  the sag p o in t.  In comparison, po in t source loadings of oxidizable 

m a te r ia ls ,  second to SOD in  in f lu ence , causes a d e f ic i t  of

approximately 1 mg/1 at the sag. Model re su l ts  in d ica te  th a t

chlorophyll concentrations in  the creek are strongly  influenced by flux  

across the downstream boundary. Population f luc tu a tion s  influenced by 

p reva il ing  conditions in  the creek are superimposed on the r e la t iv e ly  

la rg e  boundary condition e f f e c t .  Model re su l ts  also suggest tha t  

phytoplankton growth in  the creek i s  phosphorus lim ited  and th a t

phosphorus i s  p rim arily  contributed  by nonpoint runoff. The

elim ination  of nonpoint source loadings would fu r th e r  in h ib i t  

phytoplankton growth by s ig n i f ic a n t ly  reducing the inorganic phosphorus 

ava ilab le  fo r  uptake. On the o ther  hand, the e lim ination  of point 

source loadings would d ra s t ic a l ly  reduce the concentrations of 

inorganic  n itrogen  throughout the creek, re su l t in g  in  phytoplankton 

growth being n itrogen  l im ited .

The hydrodynamic submodel s a t i s f a c to r i ly  simulates the 

in te ra c t io n  between tides  and upstream inflows during periods of heavy 

runoff as w ell as during dryer periods. With a very few changes in  

inputs the hydrodynamic submodel can be used to simulate e i th e r  a 

freshwater t i d a l  stream, as in  the case study p resen ted , o r a system
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where s a l i n i t y  gradients e x i s t .

The water q u a li ty  submodel combines the influences exerted  by 

po in t source and nonpoint source w aste load ings, exchanges between the 

surroundings and the water column-, and biochemical transform ations, 

toge ther with information on advection and d ispersion  generated by the 

hydrodynamic submodel. The model can e a s i ly  be adapted to include 

ad d it ion a l dissolved or suspended substances.

The rea l- tim e approach employed allows for the in v e s t ig a t io n  of 

important water q u a li ty  measures in  terms of maximum amnd minimum 

values occuring w ith in  a t i d a l  or a d iurnal cycle . U t i l iz a t io n  of th is  

model to simulate long-term changes in  water q u a li ty  is  made 

economically v iable  through the use of an e f f i c i e n t  numerical scheme. 

The time increment fo r  the L i t t l e  Hunting Creek case study i s  s e t  as 

0.01 t i d a l  cycles. I t  takes approximately 2.8 minutes to simulate ten 

t id a l  cycles using the Prime 750 computer.

While the model s a t i s f a c to r i l y  simulates the i n t r a - t i d a l ,  

d iu rnal and seasonal v a r ia tio n s  in  water q u a li ty  in  the case study, 

there  are some d ifferences between model p red ic tions and measurements 

made in  the f i e ld .  Model p red ic tions  fo r  i n t r a - t i d a l  v a r ia tio n s  

e x h ib it  a reduced range of concentrations in  comparison to f i e ld  

measurements. Some reduction in  concentration ranges is  an expected 

re s u l t  of the one-dimensional f in i te -d if f e re n c e  scheme which produces 

average concentrations over the to ta l  volume of a segment, while f i e ld  

data represen ts  measurements taken at a s ing le  point along the channel.

I t  has been shown th a t  the model developed here s a t i s f a c to r i l y  

p red ic ts  the v a r ia tio n s  in  water q u a li ty  w ith in  the l im ita t io n s  imposed 

by the one-dimensional rep resen ta tion  and by the use of estim ated



load ings, inflows and boundary conditions. The accuracy of model 

p red ic tions  of fu ture  water q u a li ty  w i l l  depend on the accuracy of 

p red ic ted  inputs and driving fo rces. "The importance of an adequate 

data base cannot be overs tressed .



V I. DISCUSSION AND RECOMMENDATIONS

Where poss ib le ,  i t  i s  desirab le  to model small t i d a l  systems up 

to the l im i t  of t i d a l  in fluence . This allows fo r  e a s ie r  d e f in i t io n  of 

upstream boundary conditions. However, model sim ulation w i l l  break 

down i f  a t  any time lo c a l  surface e leva tion  f a l l s  below the channel 

depth sp ec if ied .  This i s  most l ik e ly  to occur in  the upstream portion  

of the creek and may be the r e s u l t  of describing the creek geometry by 

specify ing  average mean t ide  depths fo r  model tran sec ts  and reaches. A 

possib le  so lu tio n  to th is  problem may l i e  in  more d e ta i le d  approach in  

describing  change in  c ro ss -sec tio n a l  areas with change in  surface 

e lev a tio n .

The model’s p red ic t iv e  cap ab il i ty  is  r e s t r i c te d  by the necess ity  

of specify ing  boundary conditions. The downstream boundary condition 

of surface e lev a tion  necessary for the hydrodynamic submodel may be 

addressed by using information ava ilab le  from tide  tab les  or t id e  gauge 

records. Unfortunately, such sources do not e x is t  fo r  use in  

determining downstream boundary conditions for d issolved  or suspended 

substances. Lack of information on changes in  downstream boundary 

conditions may se r io usly  a f fe c t  model p re d ic t io n s ,  a t l e a s t  in  the 

lower portion  of the system.

Sim ilar u n ce r ta in t ie s  are introduced in terms of upstream 

inflows and loadings. Nonpoint source f ie ld  da ta , when av a ilab le ,  is  

usually  sketchy. Nonpoint source loadings w i l l  generally  be in  the

116
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form of p red ic tions  generated by a nonpoint source model. Although 

such models employ information on lo c a l  land use to acheive 

p re d ic t io n s ,  important d ifferences between the various drainage basins 

may no t be adequately addressed. More research and development in  

nonpoint source modeling is  e s s e n t ia l  for successfu l app lica tion  of 

w ater q u a l i ty  models.

Sediment oxygen demand is  o ften  an important influence on 

d issolved  oxygen concentrations in  an estuary  and i t s  determination 

through f i e ld  techniques i s  becoming more rou tine . However, techniques 

fo r  measuring the e f fe c ts  o f sediments and benthic organisms on o ther  

d issolved  substances are not y e t  w ell developed. Aside from the 

d i f f i c u l ty  in  measurement, in  systems with extensive shallows there  is  

the question  o f where to measure in  order to determine t ru ly  

rep resen ta tiv e  values fo r  benth ic  fluxes. I t  i s  not l ik e ly  th a t  

measurements made along the channel w i l l  be useful in  quantify ing  a 

process th a t  fo r  the most p a r t  occurs in  the shallow areas. Some 

average of measurements made in  deep and shallow areas would be more 

appropriate  fo r  use in  a model o f the system.

Rooted aquatic  p lan ts  are o ften  abundantly p resen t in  small 

t i d a l  streams during ce r ta in  times of the year. Where n u tr ie n ts  are 

s u f f ic ie n t  the surfaces of the shallow portions of the stream may 

e s s e n t ia l ly  be covered by vegetation . The e f fe c ts  o f these p lan ts  on 

w ater q u a l i ty ,  through photosynthesis , r e s p i ra t io n ,  shading and the 

uptake of n u t r i e n t s ,  are not w ell known. For these reasons, including  

rooted aquatic  vegetation  in  a mathematical model is  not yet p r a c t ic a l .  

However, inform ation on the in fluence of such p lan ts  would be u sefu l in  

assessing  model performance.
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A mathematical model i s  an important too l in  the decision making 

process of water q u a li ty  management. Models are an a id  to researchers 

in  id en tify in g  fac to rs  a f fec t in g  water q u a li ty  and in  assessing  th e i r  

r e la t iv e  importance. Models permit evaluation  of proposed changes in  

wasteload a l lo ca tio n s  and changes in  system use or geometry. U ti l iz in g  

models to assess appropriate  in-stream  water q u a li ty  standards and in  

evaluating  the maximum allowable wasteloading tha t s t i l l  meets these 

standards affords the b es t  hope fo r man to gain optimum use of 

e s tu a r in e  systems. A ll too o ften , however, th is  powerful too l i s  la id  

aside a f te r  the decisions are made and is  never taken up again. This 

i s  unfortunate in  tha t usefu l information can be lo s t  when there is  no 

comparison between model p red ic tions and the ensuing re su l ts  of program 

implementation. Id e a l ly ,  such a comparison would r e s u l t  in  a 

rea ff irm atio n  of the modelTs c a p a b il i t ie s  allowing the model to be 

employed with confidence in  the study of o ther s im ila r  systems.
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APPENDIX. RESULTS OF MODEL VALIDATION

  model

O siackwater survey 
measurements

#  in ten s ive  or d iurnal 
survey -  average
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