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Figure 11. Examples of obtaining aerial elevations from lidar and conducting  hydro-correction to 

assure unobstructed ditch and creek channels persist for hydrologic transport of  king tide inundation 

in the City of Hampton, VA. Red highlighted boxe s correspond to areas depicted in Figure 12A,B. 

 

Figure 12. Ditches extracted and represented at the sub-grid DEM pixel level for effective 

representation of drainage ditches leading to (A) the west edge of Tabbs Creek and (B) the south edge 

of the creek draining the fairways of Eaglewood Go lf Course, both identified for hydro-correction in 

Hampton, VA, USA. 

Upon filtering for these three things, it was found that the Tidewatch Map comparisons on 5 
November 2017 during Catch the King 2017 had an overall MHDD of 5.9 m (19.3 ft). This statistic was 
calculated from 57,986 of the 59,718 total high water marks collected after less than 3% of the citizen 
scientists’ measurements were filtered out for any of the six reasons previously noted for relative 
error on duration, depth, or degree of flooding. In a similar fashion, comparisons between the high 
water marks collected by citizen scientists during Catch the King 2018 observed a slightly less 
favorable overall MHDD of 6.2 m (24.6 ft), likely attrib uted to the winds from the mild nor’easter that 

Figure 12. Ditches extracted and represented at the sub-grid DEM pixel level for effective representation
of drainage ditches leading to (A) the west edge of Tabbs Creek and (B) the south edge of the creek
draining the fairways of Eaglewood Golf Course, both identified for hydro-correction in Hampton,
VA, USA.

Upon filtering for these three things, it was found that the Tidewatch Map comparisons on 5
November 2017 during Catch the King 2017 had an overall MHDD of 5.9 m (19.3 ft). This statistic was
calculated from 57,986 of the 59,718 total high water marks collected after less than 3% of the citizen
scientists’ measurements were filtered out for any of the six reasons previously noted for relative error
on duration, depth, or degree of flooding. In a similar fashion, comparisons between the high water
marks collected by citizen scientists during Catch the King 2018 observed a slightly less favorable overall
MHDD of 6.2 m (24.6 ft), likely attributed to the winds from the mild nor’easter that occurred in the
hours leading up to the event. This MHDD was calculated from 30,920 of the 33,847 total high water
marks collected after 8.6% of the citizen scientists’ measurements were filtered out of the surveyed data.

In the interest of improving future forecasts, it was found that less than 1% of the filtered GPS
high water marks were still not within 50 m of the Tidewatch Map’s predicted inundation raster.
Further investigation into these sites identified two reasons for the discrepancy, both related to errors
in hydrologic correction of the model’s DEM calculated water depth assumptions. Figure 11 outlines a
series of above-ground drainage ditches in Hampton VA, that occasionally become inundated when
the water table rises with extra high tidal waters. Connection through these narrow drainage ditches
can be obscured by thick canopied trees adjacent to the narrow tidal creeks and mostly non-tidal
ditches that feed those creeks (Figure 12). The model’s elevations are attributed to averaged digital
elevations from aerial lidar surveys to source the DEM that the model uses to represent reality. Thus,
the depths of the bottoms of these fine scale ditches (<1 m wide) were not likely to be correct unless the
point spacing is extremely high. Naturally, this is acceptable, since the model was scaled to (at best)
1 m spatial resolution, and cannot accurately represent the slopes of such detailed drainage features
without scaling to a 0.33 m resolution. Yet, these ditches were found to become tidal conduits for
fluid movement capable of causing inundation far from the shoreline during king tides [46]. In other
places, bridges over typically non-tidal creeks were not removed from the aerial survey data used to
build the DEM, and removal of the occluding feature aided hydro-correction to correct the model’s
incorrect volume displacement in areas where entire creeks were shown to be dry due to the artificial
dam imposed by a bridge, constricting proper fluid flow (Figure 13). Thus, one of the most important
and immediately noticeable achievements that Catch the King accomplished for the hydrodynamic
model’s validation was the aid of hydro-correction for several small streams that were obscured in
the aerial lidar surveys informing the Tidewatch Maps. In the case of several ephemeral creeks that
temporarily became tidal during the king tide, the citizen scientists’ survey identified locations where
these ditches needed to be corrected (Figure 14) [47].
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Figure 13. Conceptualization of macro-roughness features in an urban environment resolved within 
the street level inundation forecasts. In the example shown in (A), a bridge artificially obstructs flow 
from passing through to the hydrodynamic model grid cell below the one shown. With hydrologic 
correction provided by the citizen scientists via Catch the King (B) shows the grid opened, where a 
nearby flood contour can be extracted and applied to translate the inundation underneath the bridge 
and open flow to the opposite side, no longer impeding fluid flow. 

Figure 13. Conceptualization of macro-roughness features in an urban environment resolved within
the street level inundation forecasts. In the example shown in (A), a bridge artificially obstructs flow
from passing through to the hydrodynamic model grid cell below the one shown. With hydrologic
correction provided by the citizen scientists via Catch the King (B) shows the grid opened, where a
nearby flood contour can be extracted and applied to translate the inundation underneath the bridge
and open flow to the opposite side, no longer impeding fluid flow.
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Figure 14. Citizen Science flood extent observations aided in hydrologic correction for an ephemeral
stream feeding Wolfsnare Creek in Virginia Beach, VA. (A) Citizen scientists mapped the tidal
inundation extent approximately an hour before the king tide’s peak. (B) Hydrologic correction fixed
the lidar-derived DEM to permit flow through the small box culvert beneath the bridge to enhance the
model’s spatial accuracy via better estimation of cross-sectional flow and volume conservation.

For example, a typically non-tidal creek feeding Wolfsnare Creek in Virginia Beach was inundated
during the king tide in 2017. Catch the King volunteers mapped the king tide approximately an hour
before the king tide’s peak, and the large initial mean horizontal distance difference from this cluster
of points drew researchers’ attention to investigate the hydrodynamic model’s under-prediction of
inundation. The error was traced back to a faulty elevation assumption attributed to obstructed flow
underneath a bridge. VIMS researchers hydro-corrected the landscape to open flow using neighboring
elevations from the DEM through the box culvert underneath the bridge and corrected ground
elevations impacted by thick tree canopies surrounding a creek bed with low aerial lidar-point-spacing.

5. Conclusions

A large-scale flood monitoring citizen science data collection effort was used to favorably validate
an automated browser-based flood mapping service driven by a cross-scale hydrodynamic model
predicting storm tide inundation in coastal Virginia, USA. The operational modeling effort for predicting
tidal flooding can be mapped using multiple methods, yet the most effective method was found to be the
automated implementation of a street-level hydrodynamic model. The Tidewatch Maps implemented
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by the Virginia Institute of Marine Science (VIMS) leveraged their SCHISM hydrodynamic model
with inputs of: atmospheric wind and pressure data, tidal harmonic predictions at the open boundary,
and prevailing ocean current inputs, such as the Gulf Stream. This information was successfully
computed from a large scale model and translated to the street-level via SCHISM’s computationally
efficient non-linear solvers, and semi-implicit numerical formulations aided by a sub-grid geometric
mesh with embedded lidar elevations.

Validation in the vertical scale found that the SCHISM model outputs via the Tidewatch web
mapping platform compared well in Hampton Roads among the 32 extant water level sensors during
the highest astronomical tide of the year on 5 November 2017, a king tide, yielding an aggregate
RMSE of 3.5 cm. The region expanded its sensor base to 48 through an IoT sensor project, StormSense,
to compare well again during the king tide on 27 October 2018, resulting in an RMSE of 3.7 cm.
Horizontal validation was aided by time-stamped GPS flood extent data collected by citizen scientists
through the world’s largest environmental survey (in terms of the most contributions in the least
amount of time), Catch the King. The citizen science flood mapping survey was established in Hampton
Roads in 2017 and recruited volunteers through local, print, and social media outlets. The survey’s
organizers then trained the citizen scientists in the use of the free Sea Level Rise mobile flood mapping
application at frequently inundated public spaces in the months leading up to each king tide event.

The citizen scientists’ flood monitoring data formed time-indexed GPS breadcrumbs to form
contours that were successfully aggregated and compared with the maximum inundation extents of
the same time interval from VIMS’ Tidewatch Maps. The data were filtered to minimize bias attributed
to errors related to observing flooding duration, depth, and degree. Once the Catch the King survey data
were filtered for these three things, it was found that the Tidewatch Map comparisons on 5 November
2017 had an overall mean horizontal distance difference of 5.9 m (19.3 ft). The model comparison with
the observations collected during the king tide on 27 October 2018 were found to be less favorable,
yielding an average distance deviation of 6.2 m (24.6 ft), likely attributed to the winds from the mild
nor’easter that occurred in the hours leading up to the event. In each spatial validation effort, less than
9% of the surveyed data were excluded from the analysis.

Lessons learned from citizen science surveys have improved the model through cost-effective
hydrologic correction of mission conduits for fluid flow. These were identified by filtered GPS
observations that the model missed in its initial automated forecast, but were corrected in hindcast,
in preparation for the next significant inundation event. Errors in hydro-correction did not relate
to errors in friction parameterization of the model, but were more associated with flow pathways
that were occluded from aerial lidar surveys. These areas included bridges, culverts, and stormwater
drainage systems without tidal backflow prevention valves, which formed artificial dams in the digital
surface model embedded in the forecasted Tidewatch Maps. Many of these identified areas have been
corrected and have recently been used alongside the successful model validation in Hampton Roads to
expand the forecast area of the Tidewatch Maps beyond southeast Virginia to include the entire coastal
zone of Virginia in 2019.

As king tides are currently simply nuisance floods, which primarily inundate streets and driveways
without significantly damaging infrastructural assets, the issues are presently geared towards traffic
and transportation issues. Common concerns from citizen scientists involved in the Catch the King
mapping events involved concerns regarding whether their vehicle could be safely street parked or if
their vehicles needed to be safely moved into a garage during king tides. Others questioned whether
they should take an alternate route to work or school or the store due to potential street flooding.
As technology progresses, these questions will become more prevalent as we aim to ascertain whether
modern route guidance mobile applications will be intelligent enough to account for intermittent
inundation, or unintentionally lead vehicles down flooded streets simply because there is no traffic
detected on them while an adjacent elevated street is congested. Some navigation applications, such as
Waze, have aimed to crowdsource all road hazard data through their “Connected Citizens” program,
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but this method is only a temporary solution, as a model cannot currently automate road hazard flags
for flooded locations where those particular app users are not or have not logged data.

Naturally, adeptly answering these questions becomes increasingly difficult once self-driving
vehicles are involved. Thus, the outcomes of inundation modeling efforts for this tidal calibration
effort will more significantly be realized once this trained citizen scientist army is deputized into
post-hurricane surveys. Since 2011 Hurricane Irene was the last hurricane to significantly impact
Virginia’s Hampton Roads region, the Tidewatch automated mapping model has yet to demonstrate
widespread accuracy amidst a significant inundation event since the Sea Level Rise app’s advent in
2014. The goal is to continue to improve the model with each Catch the King tidal calibration and train
volunteers so they will be aware of where to find the latest flood forecast information, and how to collect
meaningful flood validation data. Thus, this monitoring coordination approach with hydrodynamic
modeling provided a novel procedural release of information to depict predicted maximum inundation
extents for expediently effective model validation through the use of an overwhelming quantity of
quality event data with relatively low risk to volunteer citizen scientists.
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