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We present a determination of the b-quark mass accurate through Oð�2
sÞ in perturbation theory and

including partial contributions at Oð�3
sÞ. Nonperturbative input comes from the calculation of the � and

Bs energies in lattice QCD, including the effect of u, d and s sea quarks. We use an improved NRQCD

action for the b quark. This is combined with the heavy quark energy shift in NRQCD determined using a

mixed approach of high-� simulation and automated lattice perturbation theory. Comparison with

experiment enables the quark mass to be extracted: in the MS scheme we find mbðmbÞ ¼ 4:166ð43Þ GeV.
DOI: 10.1103/PhysRevD.87.074018 PACS numbers: 12.38.Bx, 12.38.Gc

I. INTRODUCTION

The accurate determination of quark masses is an im-
portant component of high-precision tests of the Standard
Model. Because quarks cannot be isolated experimentally,
the mass must be defined carefully, and its extraction from
quantities that are accessible to experiment must be well
controlled from the theory side. The b-quark mass is
particularly important: its uncertainty feeds into errors in
tests of the Standard Model in B physics as well as into the
cross section for the Higgs decay, H ! b �b.

The most accurate results to date for the b-quark mass
come from comparison of the experimental cross section
for eþe� to hadrons in the bottomonium region with high-
order (�3

s) continuum QCD perturbation theory [1–3].
Errors of 0.5% are possible. A similar method has now
been applied to lattice QCD results [4,5], using pseudo-
scalar correlators made from heavy quarks instead of the
experimental cross section. For these calculations, the
experimental input is the value of the meson mass
(in this case the �b) used to tune the lattice b-quark
mass. Again a 0.5% error is achieved, and good agreement
is seen with the continuum results.

It is important to test these determinations against a
different method of obtaining the b-quark mass which
has completely uncorrelated systematic errors. This is the
aim of the present paper. We use a direct determination
from full lattice QCD calculations of the binding energy of
both � and Bs mesons. Since we use a nonrelativistic
effective theory for the b quark (NRQCD) [6,7] this needs
a calculation of the heavy quark energy shift. We do this in
lattice QCD perturbation theory through two loops (with
partial three-loop contributions), significantly improving

on earlier determinations that used one-loop calculations
[8]. We have also implemented a one-loop improved
NRQCD action to reduce systematic errors.
Calculating higher-order loop corrections in lattice per-

turbation theory for heavy quarks in NRQCD grows ever
more difficult with each order, owing to the increasing
number of diagrams and the complicated vertex structure.
Various authors [9–11] have suggested an approach in
which the heavy quark propagator is measured in the
weak coupling regime and the renormalization parameters
are fitted to a polynomial in �s, thus obtaining the radiative
corrections beyond one loop. This method is certainly
practical for obtaining the quenched contributions to re-
normalization parameters since quenched gauge configu-
rations are relatively cheap to generate. At two-loop order
there are relatively few remaining diagrams with sea quark
loops, and these can be feasibly computed using automated
lattice perturbation theory. In contrast, there are many two-
loop diagrams containing only gluon propagators that pose
a challenging task for direct evaluation with automated
lattice perturbation theory. We therefore employ a mixed
approach to the determination of the two-loop heavy quark
energy shift, combining quenched high-� calculations
with automated lattice perturbation theory for the sea quark
pieces.
In Sec. II we discuss how we extract the b-quark

mass from simulations of lattice NRQCD. Section III A
describes the automated lattice perturbation theory com-
putation of the fermionic contributions to the two-loop
energy shift. We present our implementation of the
high-� method in Sec. III B, including the concomitant
finite volume perturbation theory in Appendix A. The de-
tails of the standard nonperturbative part of the calculation
are given in Sec. IV. Finally we detail the extraction of the

MSmass in Sec. Vand present our conclusions in Sec. VII.*http://www.physics.gla.ac.uk/HPQCD
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II. EXTRACTING THE b-QUARK MASS

Quark confinement ensures that quark masses are not
physically measurable quantities, so the notion of quark
mass is a theoretical construction. A wide range of quark
mass definitions exist, often tailored to exploit the physics
of a particular process. One common choice of quark mass
is the pole mass, defined as the pole in the renormalized
heavy quark propagator. The pole mass, however, is a
purely perturbative concept and suffers from infrared
ambiguities known as renormalons [12,13]. A better mass

is the running mass in the MS scheme, which is free of
renormalon ambiguities by construction, and is the usual
choice for quoting the quark masses. Lattice calculations
use the renormalon-free bare lattice mass, which must then

be matched toMS to enable a meaningful comparison. We

match bare lattice quantities to theMSmass using the pole
mass as an intermediate step. Any renormalon ambiguities
cancel in the full matching procedure between the lattice

quantities and the MS mass, as we argue below. For an
explicit demonstration, see [14].

A. Extracting the pole mass

We determine the heavy quark pole mass Mpole by

relating it to the experimental � mass M
expt
� . The mass of

a heavy meson is given by twice the pole quark mass plus
the binding energy. In an effective theory such as NRQCD,
physics above the scale of the b-quark mass is removed and
the origin of energy for the heavy quark is shifted by E0,
leading to the relation [15]

2Mpole ¼ M
expt
� � a�1ðaEsim � 2aE0Þ: (1)

Here Esim is the energy of the�meson at zero momentum,
extracted from lattice NRQCDdata at lattice spacing a. The
quantity ðEsim � 2E0Þ corresponds to the ‘‘binding energy’’
of the meson in NRQCD, and we must determine E0 per-
turbatively in order to findMpole. With our NRQCD action,

we can also calculate the pole mass using the Bs meson,

Mpole ¼ M
expt
Bs

� a�1ðaEBs

sim � aE0Þ: (2)

We use this as a check for systematic errors, which could be
quite different in heavy-heavy and heavy-light systems.

In principle, one could extract the quark mass by
directly matching the pole mass to the bare lattice
NRQCD mass in physical units, m0, via the heavy quark
mass renormalization Zm0

,

Mpole ¼ Zm0
ðam0Þm0: (3)

We found, however, that extracting a sufficiently precise
quenched two-loop mass renormalization from high-�
simulations was not possible with the statistics available.
In this paper, we therefore discuss only the energy shift
method.

B. Matching the pole mass to the MS mass

The mass renormalization relating the pole mass to the

MS mass, mb, evaluated at some scale �, is given by

mbð�Þ ¼ Z�1
M ð�ÞMpole; (4)

and has been calculated to three loops in [16].
Although the pole mass is plagued by renormalon ambi-

guities, these ambiguities cancel when lattice quantities

are related to the MS mass. This can be seen by equating
Eqs. (1) and (3) and rearranging them to obtain

2ðZm0
m0 � E0Þ ¼ M

expt
� � Esim: (5)

The two quantities on the right-hand side of the equation

are renormalon-ambiguity-free: Mexpt
� is a physical quan-

tity and Esim is determined nonperturbatively from lattice
simulations. Any renormalon ambiguities in the two power
series Zm0

and E0 on the left-hand side of the equation must

therefore cancel at every order in �s. This renormalon
cancellation is also evident in the direct matching of the

bare lattice mass to the MS mass,

mbð�Þ ¼ Zm0
ðam0ÞZ�1

M ð�Þm0; (6)

as both mb and m0 are renormalon-free.
We combine Eqs. (1) and (4) to relate lattice quantities to

the MS mass,

mbð�Þ ¼ 1

2
Z�1
M ð�Þ½Mexpt

� � a�1ðaEsim � 2aE0Þ�; (7)

and similarly for the Bs meson,

mbð�Þ¼Z�1
M ð�Þ½Mexpt

Bs
�a�1ðaEsim;Bs

�aE0Þ�: (8)

These relations will be used to extract mbðmbÞ once we
have calculated E0 and Esim, which we describe in detail in
the next sections.

C. NRQCD, gluon and light quark actions

We now describe the heavy quark, gluon and light quark
actions used in our calculation. We use the Symanzik-
improved Oðv4Þ NRQCD action, given in [8,17], which
has already been successfully used by HPQCD in a number
of heavy quark physics calculations; see, e.g., [8,17–21].
The Hamiltonian is given by

aH ¼ aH0 þ a�H; (9)

aH0 ¼ � �ð2Þ

2am0

; (10)

a�H¼�c1
ð�ð2ÞÞ2
8ðam0Þ3

þc2
ig

8ðam0Þ2
ðr� ~E� ~E �rÞ

�c3
g

8ðam0Þ2
� � ð~r� ~E� ~E� ~rÞ

�c4
g

2am0

�:~Bþc5
a2�ð4Þ

24am0

�c6
að�ð2ÞÞ2

16nðam0Þ2
: (11)
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�ð2Þ, r and �ð4Þ are covariant lattice derivatives, ~E and ~B
are improved chromo-electric and magnetic field strengths,
n is a stability parameter that will be described below, and
am0 is the bare b-quark mass in lattice units. The ci are the
Wilson coefficients of the effective theory, and the terms

are normalized such that they have the expansion ci ¼ 1þ
�sc

ð1Þ
i þOð�2

sÞ. All gauge fields are tadpole improved
with the fourth root of the plaquette u0;P.

The one-loop corrections cð1Þi are described in [17], and
we include these for c1, c4, c5, c6 in the high-� simulation

and the nonperturbative determination of Esim. The c
ð1Þ
i are

functions of the effective theory cutoff, in this case, the
bare quark mass am0, but the total coefficient will also
depend on the scale for �s. We estimate the appropriate
scale for several of the coefficients using the Brodsky-
Lepage-Mackenzie (BLM) procedure [22], which gives
q� ¼ 1:8=a for c1, c6 and q� ¼ 1:4=a for c5. For c4 we
take q� ¼ �=a. The values of the one-loop corrections for
two bare masses relevant to this calculation are given in
Table I. We use �s in the V scheme.

The b-quark propagators are generated by time evolu-
tion using the equation

Gðx; tþ 1Þ ¼
�
1� a�H

2

��
1� aH0

2n

�
n
Uy

t ðxÞ

�
�
1� aH0

2n

�
n
�
1� a�H

2

�
Gðx; tÞ (12)

for some initial condition Gðx; 0Þ. The parameter n is
included for numerical stability and is set to 4, which is
sufficient for all quark masses used here. Once it is high
enough, results do not depend on the value of n [8].

The gluon action is a Symanzik-improved Lüscher-
Weisz action [23,24],

SLW½U� ¼ �pl

X
x

1

Nc

ReTrð1�UplÞ

þ �rt

X
x

1

Nc

ReTrð1�UrtÞ

þ �pg

X
x

1

Nc

ReTrð1�UpgÞ; (13)

where

�pl ¼ 10

g2
; (14)

�rt ¼ � �pl

20u20;P
ð1þ 0:4805�sÞ; (15)

�pg ¼ � �pl

u20;P
0:03325�s: (16)

u0;P is the tadpole improvement factor coming from the

fourth root of the plaquette. The same action is used for the
MILC gauge configurations used in the nonperturbative
determination of Esim and for the high-� simulations.
The action in the high-� simulations includes an additional
factor coming from the use of twisted boundary conditions;
see Sec. III B. The value of �s used in the improvement
coefficients is given by the formula used by the MILC
Collaboration [25]:

�s ¼ 1:3036 log ðu0;Pð�ÞÞ: (17)

Here we use the quenched values of u0;Pð�Þ determined

from our high-� configurations. The MILC configurations
used in our nonperturbative analysis include sea quarks and
thus have additional Oðnf�2

sÞ contributions. However,

these only affect E0 at Oðnf�3
sÞ and thus appear in terms

we have not calculated anyway. These terms are part of our
error budget. We give more details of the generation of
high-� configurations in Appendix B.
Light sea quarks are included with the ASQtad-

improved staggered action [26] in both the nf ¼ 2þ 1

MILC gauge configurations used to determine Esim

[25,27] and in the automated perturbation theory for E0.

III. PERTURBATIVE DETERMINATION OF
THE HEAVY QUARK ENERGY SHIFT

Here we first describe the calculation of the one-loop
contribution and the two-loop fermionic contribution toE0.
The high-� method used to compute the gluonic two-loop
contribution is described in the Sec. III B.

A. Automated lattice perturbation theory

We calculate the one-loop gluonic and the two-loop sea
quark contributions to the heavy quark renormalization
constants using the automated lattice perturbation theory
routines HIPPYand HPSRC [28,29]. These routines have now
been widely used and extensively tested in a variety of
perturbative calculations, for example, in [10,17,30–35].
Evaluating the relevant Feynman integrals with HIPPY

and HPSRC is a two-stage process: first, the PYTHON routine
HIPPY generates Feynman rules encoded in ‘‘vertex files.’’

These vertex files are then read in by the HPSRC code, a
collection of FORTRAN modules that reconstruct the

TABLE I. Values of the one-loop corrections in the series

ci ¼ 1:0þ �sc
ð1Þ
i at two bare masses, and the scale at which

each coefficient is evaluated.

cð1Þi cð1Þi

Coefficient am0 ¼ 2:5 am0 ¼ 1:72 q�

c1 0.95 0.766 1:8=a
c4 0.78 0.691 �=a
c5 0.41 0.392 1:4=a
c6 0.95 0.766 1:8=a
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diagrams and evaluate the corresponding integrals numeri-
cally, using the VEGAS algorithm [36]. All derivatives of
the self-energy are implemented analytically using the
derived TAYLOR type, defined as part of the TAYLUR

package [37].
There are several advantages associated with using au-

tomated lattice perturbation theory, and the HIPPY/HPSRC

routines in particular. First, automation removes the need
to manipulate complicated expressions by hand. Second,
the modular nature of the HIPPYand HPSRC routines greatly
simplifies the use of different actions. Once Feynman
diagrams are encoded in an HPSRC routine, the same cal-
culation can be easily repeated with different quark and
gluon actions by simply changing the input vertex files.
This allows one to relatively easily reproduce previously
published results for different actions, which serves as a
nontrivial check of the routines.

Furthermore, the modules in HPSRC can be reused. We
take advantage of this for the two-loop calculations pre-
sented in this paper: the same fermionic insertions in the
gluon propagator appear in the two-loop diagrams for both
the heavy quark energy shift and the tadpole improvement
factor, u0.

We wrote two ‘‘skeleton’’ one-loop HPSRC routines: one
to calculate the one-loop energy shift and one for the one-
loop tadpole improvement factor. Reproducing previously
published results, such as those in [38,39], respectively, we
confirmed that these one-loop routines were correct. The
corresponding two-loop diagrams (see Fig. 1) are simply
the one-loop skeleton diagrams with the ‘‘bare’’ gluon
propagator replaced by the ‘‘dressed’’ gluon propagator
that includes the fermion insertions; these insertions were
calculated in a separate routine GLUON_SIGMA. This routine
was debugged by confirming that the appropriate Ward
identity was satisfied by the dressed gluon propagator.

At two loops there are four diagrams with internal
fermions that contribute to the energy shift. We illustrate
these contributions in Fig. 1. Double lines are heavy quark
propagators coming from the improved NRQCD action,
single lines are ASQtad sea quark propagators, and curly
lines are from the Symanzik-improved gluon action. The
radiative corrections to the NRQCD and ASQtad actions

described in Sec. II C are not included in the perturbative
calculation, as these only affect E0 at higher orders in �s.
We calculate the heavy quark energy shift at two differ-

ent heavy quark masses, discussed in Sec. IV. At each
heavy quark mass we use nine different light quark masses
and extrapolate to zero light quark mass. We tabulate our
extrapolated results in Table V (see Sec. V), where they

appear as the nf-dependent contribution to Eð2Þ
0 .

The energy shift is infrared finite, but we introduce a
gluon mass as an intermediate regulator to ensure conver-
gence for the numerical integration. We confirm that the
results are independent of the gluon mass for sufficiently
small gluon mass, which in this case was approximately
a2�2 < 10�6.
We will also need the sea quark contribution to the

tadpole improvement factor u0 since the high-� simulation
includes only the gluonic piece. We calculate this using the
automated perturbation theory. The perturbative expansion
for the tadpole factor is written as

u0 ¼ 1� uð1Þ0 �L � uð2Þ0 �2
L þOð�3

LÞ: (18)

The two-loop expansion for the plaquette tadpole is given
by Mason [41], and we explicitly computed the one-loop
coefficient and the two-loop nf coefficient, which we quote

here and which both agreewith Mason’s work. The result is

u0;P ¼ 1� 0:76708ð2Þ�L � ð1:7723� 0:069715ð7ÞnfÞ�2
L

þOð�3
LÞ: (19)

We require only the coefficient of nf�
2
L. For completeness,

we also compute the two-loop nf contribution to the

Landau tadpole. The quenched two-loop Landau tadpole
was computed by Nobes et al. [39] and, together with our
result, the Landau tadpole is

u0;L ¼ 1� 0:7501ð1Þ�L � ð2:06ð1Þ � 0:0727ð1ÞnfÞ�2
L

þOð�3
LÞ: (20)

B. The high-� method

The high-� method allows us to compute the gluonic
contributions to the quark propagator by generating an
ensemble of quenched lattice gauge configurations at
very weak coupling and calculating the dressed b-quark
propagator. The energy of the propagator can then be
described very well by a power series in the QCD coupling,
which we fit to the Monte Carlo data to extract the relevant
two-loop and higher contributions to E0.
It is important in high-� studies to eliminate nonpertur-

bative contributions that are due to the tunneling of fields
and their associated Polyakov lines, or torelons, between
Z3 vacua associated with toron gauge configurations [42].
Such tunneling is suppressed using twisted boundary con-
ditions [43–45] for which there is no zero mode for the
non-Abelian gauge field. The Polyakov line that traverses

FIG. 1. Fermionic contributions to E0, calculated using auto-
mated lattice perturbation theory. Double lines indicate heavy
quarks, curly lines are gluons, and single lines represent light sea
quarks.

LEE et al. PHYSICAL REVIEW D 87, 074018 (2013)

074018-4



all the directions with twisted boundary conditions has a
nonzero expectation value for a given configuration. This
expectation value is complex and, if no tunneling has
occurred, it is proportional to an element of Z3. We verify
that this is the case for the configurations we use. As is
shown later in this section [see the discussion leading to
Eqs. (43) and (44)], twisted boundary conditions also con-
siderably reduce finite-size, L-dependent effects, which
significantly aids the fitting process.

We carry out the high-� simulation on finite-size lattices
of volume L3 � T, with typically T ¼ 3L, for a range of
values for � and L. Here L is the spatial extent and T the
temporal extent of the lattice. We use L values from 3 to 10
inclusive and �pl values of 12, 15, 16, 20, 24, 27, 32, 38,

46, 54, 62, 70, 80, 92, and 120. We then perform a simul-
taneous fit in �s and L to deduce the L ! 1 limit for the
expansion of measured quantities as a power series in �s.

We denote the gauge fields by U�ðxÞ, and on a lattice

with L� sites in the � direction, they satisfy the boundary

condition

U�ðxþ L	e	Þ ¼ �	U�ðxÞ�y
	; (21)

where the twist matrices are defined by

���	 ¼ zn�	�	��; z ¼ exp ð2�i=NcÞ;
n�	 2 ð0; . . . ; Nc � 1Þ:

(22)

Here n�	 is antisymmetric and its values must be chosen so

that 
�	��n�	n�� ¼ 0jNc
. This choice ensures that con-

figurations have zero topological charge. For Nc ¼ 3 we
apply a nontrivial twist in the spatial directions, which we
label 1, 2, and 3, with n12 ¼ n13 ¼ n23 ¼ 1 and n�4 ¼ 0.

With twisted boundary conditions, the fermion fields c
are Nc � Nc color-times-smell matrices. ‘‘Smell’’ is a new
quantum number that allows twisted boundary conditions
to be applied to fermion fields; color labels the rows and
smell the columns. Then, as for the gauge fields,

c ðxþ L	e	Þ ¼ �	c ðxÞ�y
	: (23)

Under a gauge transformation given by the SUðNcÞ field
gðxÞ the quantum fields transform as

U�ðxÞ ! gðxÞU�ðxÞgyðxþ e�Þ; c ðxÞ ! gðxÞc ðxÞ;
(24)

where gðxþ L	e	Þ ¼ �	gðxÞ�y
	 . We define the auxiliary

gauge fields

~U�ðxÞ ¼
8<
:U�ðxÞ x� � L�;

U�ðxÞ�� x� ¼ L�:
(25)

Then, under a gauge transformation, ~U�ðxÞ transforms

as in Eq. (24) but now with gðxÞ regarded as periodic:
gðxþ L�e�Þ ¼ gðxÞ.

The gauge action is of the form

SðUÞ ¼ �
X

P;x2�

cPfPðxÞPð ~U; xÞ; (26)

where � is the set of all lattice sites; Pð ~U; xÞ is the trace
over a general Wilson loop; cP is a numerical coefficient;
and fPðxÞ 2 ZNc

is a phase factor defined by

fPðxÞ ¼
Y
�<	

ðzn�	Þ�!�	ðP;xÞ: (27)

Here !�	ðP; xÞ is the winding number of the Wilson loop

projected onto the ð�; 	Þ plane about the point x� ¼ x	 ¼
ðLþ 1=2Þ. An explicit representation for the twist matrices
�� is not needed to compute fPðxÞ. When fermions are

included, however, the implementation of twisted bound-
ary conditions for general Wilson lines does require a
representation for the �� to be chosen.

One method for implementing the boundary conditions
extends the lattice by tiling with twisted periodic trans-
lations of the original configuration, effectively surround-
ing the lattice with a halo of links. This method has major
disadvantages: it is difficult to parallelize because the
physical sites are a subset of the tiled lattice array; it
requires more storage; and in improved NRQCD the
Wilson lines can extend far into the tiled region, which
means that the extent of the halo needs to be significant.
Rather than extending the lattice we write the action in
terms of the auxiliary gauge fields, ~U�ðxÞ. Then one can

show that all Wilson lines can be constructed using the
auxiliary gauge fields with periodic boundary conditions
multiplied on the right by an SUðNcÞ matrix. This SUðNcÞ
matrix, which we denote RðP Þ, is constructed from a
product of the twist matrices �� and is determined by

the ordered and signed sequence in which the line crosses
the boundaries. We now discuss this construction in more
detail.
A general path P ðx; y; sÞ starting at site x on a lattice

in dimension D is defined by an ordered list s ¼
½s0; s1; . . . sl�1� of signed integers, si, 1 � jsij � D, which
denote the steps along the path. The jth point on the path is
zj, where

z0 ¼ x; zjþ1 ¼ zj þ esj ; 0 � j < l; (28)

with the endpoint defined by y ¼ zl. We define the ordered
product of links along the path P ðx; y; sÞ as

Lð ~U;P Þ ¼
"
T
Yl�1

i¼0

~UsiðziÞ
#
; (29)

where, for � 2 f1; 2; . . . ; Dg,
~U��ðxÞ ¼ ~Uy

�ðx� e�Þ; e�� ¼ �e�; (30)

and the ~U fields satisfy the periodic boundary condition

~U�ðxþ L	e	Þ ¼ ~U�ðxÞ: (31)
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The ordering operator T means that matrices in the prod-
uct are ordered from left to right with increasing index i.
The Wilson line Lð ~U;P Þ associated with the path
P ðx; y; sÞ is then

Lð ~U;P Þ ¼ Lð ~U;P ÞRðP Þ: (32)

To implement the twisted boundary conditions without
using a lattice halo, we define the SUðNcÞ matrix as fol-
lows. A list ½c0ðxÞ; c1ðxÞ; . . . ; cp�1ðxÞ� is associated with

the Wilson line starting at x, where the cj are signed

integers 1 � jcjj � D. The line crosses a boundary of

the hypercube p times. On the jth crossing it crosses a
boundary in a direction parallel to the �j axis in the

positive (negative) direction. We define the corresponding
cj to be cj ¼ ��jð�jÞ. RðP Þ is then given by

RðP Þ ¼
 
T

Yp�1

j¼0

�cj

!y
; (33)

with the convention��� ¼ �y
� and whereT is the index-

ordering operator defined above. Lð ~U;P Þ is then the par-
allel transporter from the endpoint y back to the starting
point x. By expressing the Wilson line in terms of the ~U
fields, the boundary conditions are implemented simply by
right-multiplication by RðP Þ. A similar result holds for the
evolution of the NRQCD Green function, as we will de-
scribe below. With these conventions, a Wilson loop
Wðx; sÞ, located at x and defined by the path P ðx; x; sÞ, is
given by

Wðx; sÞ ¼ 1

Nc

TrðLð ~U;P ðx; x; sÞÞÞ: (34)

The basis states for the fermion field c are the
N2

c-independentNc � Nc, color-times-smell, real matrices.
Twisted boundary conditions admit fractional momenta on
the lattice, and for twisted boundary conditions in the 1, 2,
3 directions and periodic boundary conditions in the fourth
direction, the allowed momenta are of the form

p ¼ 2�

NcL
ðn1; n2; n3; 0Þ þ k;

k ¼
�
�l1
L

;
�l2
L

;
�l3
L

;
�l4
T

�
;

(35)

where the lr, for r ¼ 1, 2, 3, are integers with �L=2<
lr � L=2 and �T=2< l4 � T=2 (with L and T assumed
to be even). The possible entries in the integer vector n ¼
ðn1; n2; n3; n4Þ depend on the number of directions in
which the boundary condition is twisted. In our case we
have 0 � n1, n2 <Nc, n3 ¼ �ðn1 þ n2ÞjNc

and n4 ¼ 0.

In NRQCD the source on the initial time slice for a
Green function with momentum p is

�ðp; xÞ ¼ 1

L3Nc

�ne
ip�x;

�n ¼ z
1
2ðn1þn2Þðn1þn2�1Þ��n2

1 �n1
2 :

(36)

We need an explicit representation for the ��, where

� ¼ 1, 2, 3, and for Nc ¼ 3 we choose

�1 ¼
z 0 0

0 1 0

0 0 z�

0
BB@

1
CCA �2 ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA

�3 ¼ �y
1�

y
2 :

(37)

In the case of purely periodic boundary conditions we
can take the source for the NRQCD Green function to be
1 � eip�x, where 1 is the Nc � Nc unit matrix. This evolves
all quark color states in one go. The analogous approach
for quarks labeled by color times smell is not convenient,
and so we evolve a source appropriately chosen from the
basis of Nc � Nc matrices described above; color and
smell singlet states, if needed, must then be constructed
explicitly. The Green function Gðx;p; tÞ satisfies the usual
twisted boundary conditions

Gðxþ Le	;p; tÞ ¼ �	Gðx;p; tÞ�y
	: (38)

The NRQCD evolution for Gðx;p; tÞ is given by the full
NRQCD action and takes the form

Gðx;p; tþ 1Þ ¼X
y

Kðx; y; tÞGðy;p; tÞ: (39)

The kernel K is given by

Kðx; y; tÞ ¼
�
1� �H

2

��
1�H0

2n

�
n
Uy

4

�
�
1�H0

2n

�
n
�
1� �H

2

�
; (40)

with H0, �H defined in Sec. II C.
We implement the operators in K using a PYTHON pre-

processing package that defines each operator in H0 and
�H as a list of Wilson paths. The Wilson paths are each
defined by a list swith a complex amplitude; these operator
definitions are read in at run time. We apply the action of
each operator on Gðy;p; tÞ with a standard function that
first constructs the parallel transporter Lð ~U;P ðx; ysÞÞ for
each path weighted by the associated amplitude, where
x ¼ ðx; tþ 1Þ; y ¼ ðy; tÞ, then performs the parallel trans-
port ofG from the tth to the ðtþ 1Þth time slice, and finally
accumulates the results in Gðx;p; tþ 1Þ. We solve the
problem of implementing the twisted boundary conditions
in carrying out this calculation by using ~U fields. The net
result is that the evolution equation can be written as

Gðx;p; tþ 1Þ ¼ X
m

bm

�X
y

Lð ~U;PmÞ �Gðy;p; tÞRðPmÞ
�
;

(41)
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where Pm ¼ P ðx; y; sÞm and the sum over m runs over all
lists sm that define the kernel Kðx; y; tÞ, with bm the
amplitude of the mth line. The matrix RðPmÞ implements
the twisted boundary conditions and is simple to compute
for each Pm. Because R right-multiplies the Green’s func-
tion and time evolution is a left-multiplying operation, we
can perform the time evolution for a givenm using periodic
boundary conditions for the ~U fields and then indepen-
dently right-multiply by the associated R matrix. This
method removes the need for any halo of gauge fields,
and the whole calculation can be easily parallelized.

Furthermore, twisted boundary conditions reduce finite-
size effects in color singlet observables. To illustrate this
result, we can consider the example of the correlator for a
meson at rest, which is given by

MðtÞ ¼ X
y;�

Tr½G�ðy; 0; tÞGy
�ðy; 0; tÞ�; (42)

where � labels the basis matrix used for the source of the
quark propagator located at the origin; all irrelevant spin
degrees of freedom have been suppressed. The correlator
MðtÞ is the sum of weighted Wilson loops consisting of a
Wilson line L1, connecting x ¼ ð0; 0Þ to y ¼ ðy; tÞ, fol-
lowed by L2 connecting y back to x and defined by the
paths P 1 ¼ P ðx; y; s1Þ and P 2 ¼ P ðy; x; s2Þ, respectively.
Then MðtÞ is of the form

MðtÞ ¼ X
P 1;P 2;y;�

fðP 1;P 2ÞTr½L1��R1R2�
y
�L2�; (43)

where fðP 1;P 2Þ is the amplitude associated with the loop,
(P 1 þ P 2), Li ¼ Lð ~U;P iÞ and Ri ¼ RðP iÞ, for i ¼ 1, 2.
Irrespective of the details of L1 and L2, the term sand-
wiched in the middle isX

�

��R1R2�
y
� ¼ Tr½R1R2�1: (44)

Since R1R2 is a product of the � matrices and their
conjugates, the trace in the above formula vanishes unless
R1R2 ¼ 1. Thus, for a nonzero contribution, the Wilson
loop composed of P 1 and P 2 must loop around the spatial
torus a multiple of Nc times in such a way that R1R2 ¼ 1.
This reduces finite-size effects, as the effective size of the
lattice is now of order Nc times its spatial extent.

1. Perturbative fitting of E0

We obtain the quark propagator by averaging Gðx;p; tÞ
over the ensemble of high-� configurations. Because
Gðx;p; tÞ is not gauge invariant we fix the configurations
to Coulomb gauge. We then define the Coulomb ensemble-
averaged quark propagator by

Ĝðp; t; �; LÞ ¼
�X

x

ReTrð�y
ne�ip�xGðx;p; tÞÞ

�
L;�

: (45)

Here we write Ĝðp; t; �; LÞ as a function of L to indicate
explicitly that there are finite-size effects, which must be
accounted for to extract the desired L ! 1 result.
In order to extract the two-loop and three-loop

coefficients in the perturbation expansion for E0 using
the high-� method, it is necessary to carry out a simulta-
neous two-parameter fit in �s and L. The fit is a power
series in �s and in 1=L, and we measure the L ! 1
coefficient of the �n

s , for n ¼ 2, 3, terms. Because the
signal for the two-loop, �2

s , term is small compared with
the one-loop contribution, the accuracy of the fit is greatly
improved by calculating the one-loop coefficient analyti-
cally, thus determining the coefficient of �s in the fit.
However, Feynman perturbation theory on the lattice gives
the result for lattices of large temporal extent, T ! 1,
while here we need to carry out the perturbation theory
for varying finite T ¼ 3L. We describe the finite volume
perturbation theory for the NRQCD evolution equation in
Appendix A. It turns out that a minor modification of the
rules for automated Feynman perturbation theory accounts
for the effects of finite T in the one-loop case.
For large enough t, we have that

Ĝðp; t; �; LÞ ¼ Zc e
ðE0þp2=2Mpoleþ���Þt; (46)

and by fitting to this form for a range of values of p, we
can, in principle, extract the renormalization constants Zc ,

Zm0
and E0. However, for the current work we do not need

Zm0
, as we extract Mpole using Eq. (1) rather than Eq. (3)

since, as remarked in Sec. II A, the statistics available are
not sufficient to extract a reliable value for Zm0

. We

therefore evaluate Ĝ for p ¼ 0 and measure E0ð�;LÞ,
the energy as a function of � and L.

From the boundary condition we have Ĝðp;t¼0;�;LÞ¼
1, and so we cannot fit to the asymptotic form below
some value t ¼ tmin . It is a feature of Coulomb gauge
that Zc is very close to unity. This is borne out by our

one-loop perturbation theory and also by simulation.
Consequently, considering Zc and E0 as functions of t,

we expect the t dependence of Zc to be small compared

with that of E0 and that tmin is not too large. While
accounting for the need to measure in the asymptotic
region by fitting only for t � tmin , it is useful to account
for any residual t dependence by including a transient
function of t in the exponent in Eq. (46). From the finite
volume perturbation theory and from Eqs. (A11) and

(A12), Eð1Þ
0 ðL; T; tÞ and Zð1Þ

c ðL; T; tÞ depend on t, and a fit

to their t dependence for small t gives a good indication of
the explicit transient function we should choose. Using the
one-loop calculation in this way, we find that to extract

E0ð�; LÞ from the high-� simulation, the form for Ĝ
should be chosen as

Ĝð0;t;�;LÞ¼Zc ð�;LÞeðE0ð�;LÞtþC=tÞ; t� tmin ; (47)

where, in practice, we choose tmin ¼ 5 for all L.
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We fit E0ð�pl; LÞ to a joint power series in �
ðnfÞ
V ðq�Þ and

1=L, with nf ¼ 3. In order to do this we need to compute

the value of �ð3Þ
V ðq�Þ given the value of �pl with which the

quenched configurations were generated. We first compute

�ð0Þ
V ðq�Þ from the measured plaquette using perturbation

theory. The lattice coupling �L, deduced directly from the
value of �pl, can be expressed as a perturbation series in

�
ðnfÞ
V ðq�Þ for any nf. We eliminate �L by equating the

series for nf ¼ 0 with that for nf ¼ 3 and thus deduce a

power series for�ð3Þ
V ðq�Þ expanded in powers of�ð0Þ

V ðq�Þ. In
this way we compute the required value of�ð3Þ

V ðq�Þ for each
value of �pl. The details follow.

We choose the V scheme defined in terms of the color
Coulomb potential, and the value of q� is found by using
the BLM procedure [22,46] applied to the heavy quark
self-energy for determining E0; Müller [40] gives q� ¼
0:794a�1 for this case. To determine �ð3Þ

V ðq�Þ given � we
use the value of the Wilson plaquette, W11ð�Þ, from our

configurations to calculate �ð0Þ
V ðq�Þ using the perturbative

expansion of W11. The BLM procedure gives the optimal
value of q� ¼ 3:33a�1 for this quantity [41,47,48]. Note

that we compute �ð0Þ
V ðq�Þ in this manner, i.e. for nf ¼ 0,

since we are using quenched configurations. Then we have
(nf ¼ 0)

log ðW11Þ ¼ �3:068�ð0Þ
V ðq�Þð1� 0:5945ð2Þ�ð0Þ

V ðq�Þ
� 0:589ð38Þ�ð0Þ

V ðq�Þ2 þ � � �Þ: (48)

We do not find any dependence of W11 on L since it is a

short-distance, UV, quantity. We now relate �ð0Þ
V ðq�Þ to

�LðaÞ using [41,49]

�LðaÞ ¼ �
ðnfÞ
V ðqÞð1� v

ðnfÞ
1 ðqÞ�ðnfÞ

V ðqÞ
� v

ðnfÞ
2 ðqÞ�ðnfÞ

V ðqÞ2Þ;
v
ðnfÞ
1 ðqÞ ¼ 2�0 log ð�=qÞ þ 3:57123� 0:001196nf;

v
ðnfÞ
2 ðqÞ ¼ 2�1 log ð�=qÞ � ½vðnfÞ

1 �2 þ 5:382� 1:0511nf;

where �0 and �1 are the coefficients in the � function,

�0 ¼ 1

4�

�
11� 2

3
nf

�
; �1 ¼ 1

ð4�Þ2
�
102� 38

3
nf

�
;

(49)

and then we use this expansion to reexpress the result in

terms of �
ðnfÞ
V ðq�Þ. We find

�
ðnfÞ
V ðqÞ ¼ �ð0Þ

V ðqÞð1þ u1ðqÞ�ð0Þ
V ðqÞ þ u2ðqÞ�ð0Þ

V ðqÞ2Þ;
u1ðqÞ ¼ v

ðnfÞ
1 ðqÞ � vð0Þ

1 ðqÞ;
u2ðqÞ ¼ v

ðnfÞ
2 ðqÞ � vð0Þ

2 ðqÞ þ u1ðqÞvðnfÞ
1 ðqÞ:

We then run �Vðq�Þ from q� ¼ 3:33a�1 to q� ¼ 0:794a�1,
appropriate for the fit to E0ð�;LÞ, using the three-loop
running

d�Vð�Þ
d log�2

¼ ��Vð�Þ2ð�0 þ �1�Vð�Þ þ �2V�Vð�Þ2Þ;

�2V ¼ 1

ð4�Þ3 ð4224:18� 746:006nf þ 20:8719n2fÞ;

where we suppress the nf superscript from now on, using

nf ¼ 3 implicitly.

We fit Ĝð0; t; �; LÞ separately, as discussed above, for the
set of �, L values and deduce E0ð�;LÞ. As the data may
contain residual autocorrelations, we resample via blocking
to determine the true statistical error. Within independent
chains, sequential measurements are grouped together into
bins, and the means of each bin are treated as statistically
independent. The size of the bins is determined by examin-
ing the scaling of the variance as a function of the bin size,
and is dependent on the values ofL and�pl, and the operator

being measured. We then fit these values to the form

E0ð�; LÞ ¼ ðEð1Þ
0 ðL; T=2Þ þ �Þ�Vðq�Þ

þ
�
c20 þ 1

L
c21

�
�Vðq�Þ2 þ c30�Vðq�Þ3; (50)

with q� ¼ 0:794a�1 and T ¼ 3L. Here Eð1Þ
0 ðL; T=2Þ is

the calculated value for the one-loop contribution which
includes the contribution from tadpole improvement of the
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FIG. 2 (color online). E0ð�V ðq�Þ; LÞ for aM ¼ 1:72 for both
data and the fit for the values of lattice size L3 � T, T ¼ 3L used
in the extraction of the two- and three-loop quenched coefficients
in the perturbation series for E0. We write E0 as a function of the
�V ðq�Þ value rather than �pl. Here q� ¼ 0:794a�1. This fit has

�2 ¼ 1:2.
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NRQCD Hamiltonian; this contribution is a constant, inde-
pendent of � and L. We allow for a small additive adjust-
ment �, independent of �pl and L, in the values of the

Eð1Þ
0 ðL; T=2Þ accounting for any minor mismatch between

their analytical and numerical calculations; as we should
expect, � is found to be very small. The finite-size, L,

dependence of E0 is included in Eð1Þ
0 ðL; T=2Þ and in the

two-loop coefficient. We find that this parametrization is
sufficient for a very good fit to the data; within errors we
do not discern any �2=L2 or �3=L contributions. The fit is
for 116 degrees of freedom (4 parameters, 15� values and 8
L values), and we find �2 ¼ 1:2 and 1.1, respectively, for
am0 ¼ 1:72, 2.5. In Fig. 2 we show E0ð�; LÞ plotted versus
�Vðq�Þ for the different L and for am0 ¼ 1:72. The

quenched results that we require are Eð2Þ;q
0 ¼ c20.

IV. NONPERTURBATIVE
DETERMINATION OF Esim

We now briefly discuss the nonperturbative determina-
tion of the meson energies Esim. The method is standard,
and this NRQCD action [17] has been thoroughly tested by
HPQCD in a range of calculations.

We use two ensembles of gauge configurations gener-
ated by the MILC Collaboration with nf ¼ 2þ 1 ASQtad

sea quarks, which we denote as coarse (� 0:12 fm) and
fine (� 0:09 fm) [25,27]. Details are given in Table II. The
light quark masses on these ensembles are not particularly
chiral, but we have seen that the light sea quark mass has a
negligible effect on most quantities in the bottomonium
spectrum [17]. The lattice spacing on these ensembles has
been determined using the static quark potential parameter
r1 in [50] and is given in the table.

The NRQCD action is given in Sec. II C and includes
one-loop radiative corrections to the coefficients calculated
in [17,51]. The coefficients are listed in Table III. The same
coefficients are used in the perturbative calculations and in
the high-� simulations, but with �s evaluated at a scale
appropriate for �, as discussed in Sec. II C.

Tuning the bare b-quark mass accurately is an important
part of the calculation, as this is a potential source of error
in �mbð �mbÞ. The heavy quark energy shift means that we
cannot tune using the meson energy directly, but we must
use the kinetic mass determined from the dispersion

relation, which is much noisier. A detailed study of the
systematic errors incurred and their effect on the accuracy
of the bare mass was carried out in Ref. [17]. To reduce
systematic errors we use the spin average of the vector and
pseudoscalar bottomonium states,

Mb �b ¼ ð3Mkin;� þMkin;�b
Þ=4; (51)

which eliminates errors from missing spin-dependent
higher-order terms and radiative corrections in the action.
We must also take account of missing electromagnetic
effects, sea charm quarks and annihilation of the �b to
gluons by shifting the experimental values appropriately.
These effects were estimated in [20], resulting in an

adjusted experimental value of M
expt

b �b
¼ 9:450ð4Þ GeV,

where the error comes from taking a large uncertainty on
the shifts that were applied. The correctly tuned bare
b-quark masses in lattice units that we obtain are
2:49ð2Þstatð1Þsys on the coarse lattice, and 1:71ð2Þstatð1Þsys
on the fine lattice. The first error includes a sizable statis-
tical error from the kinetic mass and all lattice spacing
errors; the second includes the systematic errors in the
kinetic mass estimated in [17]. The effect of these errors
is included in the final error budget.
The valence strange quark propagators used in the Bs

mesons utilize the highly improved staggered quark
(HISQ) action [52] and are tuned using the �s meson.
This is a fictitious s�s particle which, with the addition of
experimental data for M�, MK and chiral perturbation
theory, is a very convenient choice for tuning the s mass
and fixing the scale. The value on the nf ¼ 2þ 1 ensem-

bles that we are using is M�s
¼ 0:6858ð40Þ GeV [50].

The ground state energies Esim are extracted from
multiexponential Bayesian fits [53] to meson correlation
functions that use multiple smeared sources for the quark
propagators. To further improve statistics we use stochastic

TABLE II. Details of the two ASQtad gauge configurations
used in the nonperturbative determination of Esim. � is the gauge
coupling, a�1 is the inverse lattice spacing determined using the
static quark potential parameter r1, u0aml, u0ams are the light
sea quark masses, L and T are the lattice dimensions, and ncfg is

the size of the ensemble.

Set � a�1 (GeV) u0aml u0ams L� T ncfg

Coarse 6.76 1.652(14) 0.01 0.05 20� 64 1380

Fine 7.09 2.330(17) 0.0062 0.0310 28� 96 904

TABLE III. Coefficients used in the nonperturbative simula-
tion. u0;P is the plaquette tadpole improvement factor, and ci are
the coefficients in �H.

Set u0;P c1 c2 c3 c4 c5 c6

Coarse 0.86879 1.31 1.0 1.0 1.2 1.16 1.31

Fine 0.878214 1.21 1.0 1.0 1.16 1.12 1.21

TABLE IV. Masses and extracted energies from the nonper-
turbative simulations. am0 and ams are the bare (valence) b and
s masses, and aEsim;X are the fitted ground state energies of the

meson X in lattice units. The first row is for the coarse ensemble
and the second for fine. The errors are from statistics and/or
fitting only.

am0 amval
s aEsim;� aEsim;�b

aEsim;Bs
aEsim;B�

s

2.50 0.0496 0.46591(6) 0.42579(3) 0.6278(5) 0.6595(6)

1.72 0.0337 0.41385(4) 0.38124(2) 0.4812(5) 0.5027(7)
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noise sources and run 16 time sources on each configura-
tion for the �, and 4 for the Bs. The results are listed in
Table IV.

V. CALCULATING THE MS b-QUARK MASS

Now that E0 and Esim have been determined, we can
combine the results into a perturbative series formbðmbÞ in
the MS scheme. This requires various scheme conversions
and changes of scale to give the series at the scale relevant
for the b-quark mass. This then gives the result at nf ¼ 3,

and we can use known formulas to convert this to the usual
nf ¼ 5 result. We repeat this whole process at both values

of the bare mass to check for discretization errors which
will then be included in our error.

To further reduce systematic errors, we adjust Eq. (1) so
that we use the spin-averaged bottomonium mass Mb �b ¼
ð3M� þM�b

Þ=4. This removes any error from spin-

dependent terms in the NRQCD action. As discussed in
Sec. IV, the experimental result used must be adjusted to
Mb �b;expmt ¼ 9:450ð4Þ GeV to reflect the absence of elec-

tromagnetism, sea charm quarks and �b annihilation.

A. Perturbative series for mbðmbÞ
So far, all our perturbative results have been expressed in

terms of �V , the coupling constant defined in the V scheme
at the scale q� ¼ 0:794=a.

aE0 ¼ aEð1Þ
0 �Vðq�Þ þ ðaEð2Þ

0 þ aEu0;f
0 Þ�2

Vðq�Þ
þ aEð3Þ;q

0 �3
Vðq�Þ: (52)

The results for each component are given in Table V.
The series expansion of aE0 is truncated at �3

s , and we
take nf ¼ 3, as this is the number of sea quarks in the

nonperturbative determination of Esim. No fermionic �3
s

contributions are included in the series. The effects of the
one-loop tadpole corrections are directly included in the
tadpole-improved results from the high-� simulation, as
are the quenched two-loop tadpoles. However, the two-
loop fermionic tadpole contributions are not included in
the high-� results so we must add the corresponding

correction aEu0;f
0 to the energy shift. aEu0;f

0 is given by [38]

aEu0;f
0 ¼

�
1þ 7

2am0

� 3

2

�
1

a3m3
0

þ 1

2na2m2
0

��
uð2Þ;f0 ; (53)

where uð2Þ;f0 is the fermionic contribution to u0;P given in

Sec. III A.
The other perturbative factor that we need is the pole to

MS renormalization ZM, which is reproduced in
Appendix C. Inserting these two series into Eq. (7) gives
a series for mbðmbÞ.
We now relate�Vðq?Þ to�MSðq?Þ. This is done using the

three-loop relation in [54–56], which is summarized in

Appendix C, and we express E0 as a series in the MS
scheme. Matching is done at q� to avoid logarithmic con-
tributions. The series is then run to� ¼ 4:2 GeV using the

four-loop MS beta function.
To evaluate the series we need the relevant value of

�MS, which in this case is the three-flavor value at �mb.

Since MS is a mass-independent scheme, high mass
particles do not explicitly decouple from the beta func-
tion, and one must construct an effective theory with nl ¼
nf � 1 quarks when crossing a quark mass threshold [57].

This introduces discontinuities in the running of �MS at

the thresholds which have been calculated to four loops in
[58], and we give the relevant formulas in Appendix C.
We start with the current PDG average �MSðMZ;nf¼5Þ¼
0:1184ð7Þ which we run to 4.2 GeV using the four-loop
running with nf ¼ 5 [59]; then we match to the nf ¼ 4

theory and run down to 1.2 GeV to match to
nf ¼ 3, before running back up to 4.2 GeV with nf ¼ 3

running. We find �MSð �mb; nf ¼ 3Þ ¼ 0:2159ð20Þ. Small

changes in the matching scales have a negligible effect on
the value.
Using this value of the coupling, the results using M �bb

are mbðmb; nf ¼ 3Þ ¼ 4:195ð8Þ GeV on the coarse lattice

and mbðmb; nf ¼ 3Þ ¼ 4:198ð10Þ GeV on the fine lattice.

We also tried allowing the scale to float and solving such

that � was exactly the MS mass, but this makes a negli-
gible difference to the result. The results using the Bs mass
givembðmb; nf ¼ 3Þ ¼ 4:177ð8Þ GeV on the coarse lattice

and mbðmb; nf ¼ 3Þ ¼ 4:191ð10Þ GeV on the fine lattice.

These are consistent with the bottomonium results. This
error includes statistical errors in the perturbation theory
integrals, lattice spacing error, and simulation errors in the
ground state masses (negligible). We have not yet included
an estimate of the truncation error in the perturbative
series.
Our calculations were performed using lattice results

with nf ¼ 3 sea quarks. In order to compare to the real

world we must match this value to nf ¼ 5. As with the

coupling constant, a running quark mass in a mass-
independent scheme is discontinuous at flavor thresholds
and must be matched to an effective theory with a different
number of flavors. The formula for the mass decoupling is
given in Appendix C in Eq. (C12). We run down to 1.2 GeV

TABLE V. Perturbative results required to extract the MS
mass. The quenched results, indicated by the superscript q, are
from high-� simulations. The one-loop data are the exact
perturbative results extrapolated to infinite lattice size. The
two-loop results include both quenched and fermionic contribu-
tions. The three-loop values include only quenched results. We
evaluate all results in the V scheme at a characteristic scale of
q? ¼ 0:794a�1 [40].

am0 aEð1Þ
0 aEð2Þ

0 aEu0;f
0 aEð3Þ;q

0

2.50 0:6786ð1Þ 1:16ð4Þ � 0:2823ð6Þnf 0:158531ð16Þnf 2.3(3)

1.72 0:5752ð1Þ 1:30ð4Þ � 0:3041ð3Þnf 0:186607ð19Þnf 2.3(3)
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with three flavor mass running [59], match to a theory with
nf ¼ 4, run up to 4.2 GeVand match to the nf ¼ 5 theory.

Again, small changes to the matching scale or the final
scale at which we evaluate the mass have a negligible
effect. After this running, the values we obtain for the
M �bb results are mbðmb; nf ¼ 5Þ ¼ 4:161ð10Þ GeV on the

coarse lattice and mbðmb; nf ¼ 5Þ ¼ 4:164ð12Þ GeV on

the fine lattice, where from now on we state nf explicitly.

Overall, matching to the nf ¼ 5 theory shifts the mass

down by around 30 MeV.
In principle, there may be discretization errors arising

from lattice artifacts. Since we have two lattice spacings
available we can fit the results as a function of a to obtain
the physical result and to allow a systematic error for this
dependence. In fact, the dependence is very mild, as is
clear from the fact that all of the results are consistent with
each other. Our NRQCD action contains discretization
corrections that get renormalized as a function of the cutoff
am0, and so we allow an additional mild dependence of
the fit function on am0. This makes no difference on the fit.
The form is

mbðmbÞða; �xmÞ ¼ mbðmbÞ �
"
1þX2

j¼1

djð�aÞ2j

� ð1þ djb�xm þ djbbð�xmÞ2Þ
#
; (54)

where we have allowed discretization effects with a
scale of � ¼ 0:5 GeV and cutoff dependence via �xm ¼
ðam0 � 2:1Þ=ð2:5� 1:7Þ which varies between 	0:5.
Priors on the values are 4.2(5) for the mass, 0.0(3) for the
a2 term (since our action is one-loop improved), and 0(1)
for everything else.

Some of the errors in the data are correlated, and we
allow for this in the fit. We multiply the �mb values by a
ð1þ nf�

3
sÞ truncation error (discussed below) which is

100% correlated between the points on the two lattice
spacings. The errors on all quantities coming from the
high-� simulations are correlated with corresponding
errors on the other lattice spacing. Statistical errors coming
from VEGAS integrals are uncorrelated.

We only fit the bottomonium results, as the Bs results are
in very good agreement. The fit is shown in Fig. 3 and gives
mbðmb; nf ¼ 5Þ ¼ 4:166ð42Þ GeV.

B. Error budget

Broadly, the three main sources of uncertainty in our
result for the b-quark mass are statistical errors, errors from
truncating the perturbation series, and other systematic
errors. We expect the Oð�3

sÞ perturbative contributions to
dominate the uncertainty in our final result. In this section
we discuss each of these sources of error in turn and
tabulate our error budget in Table VI.

(a) Statistical errors.—Statistical errors arise in the
nonperturbative calculation of Esim and in the con-
tributions at each order in the expansion of the heavy
quark energy shift E0. The statistical error in Esim

comes from the fit to lattice two-point functions and
is completely negligible. The statistical error in the
one-loop piece of E0 comes from the evaluation of
diagrams using VEGAS and from the extrapolation to
infinite volume. The uncertainties in the two-loop
and three-loop quenched coefficients of E0 arise
from the simultaneous fit to � and L. This is signifi-
cant at 14 MeV. The statistical error in the two-loop
fermionic coefficient is due to the numerical evalu-
ation of the Feynman diagrams and the extrapolation
to zero light quark mass.
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a2 fm2
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n
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)

Using Mϒ

Using MBs

FIG. 3 (color online). Results for the nf ¼ 5 MS mass using
both bottomonium and Bs meson simulation data, and the fit to
the bottomonium results. The errors on the data points include
statistics, error on �MS and a correlated truncation error on

the perturbative series. Additional (subdominant) errors are
described in the text.

TABLE VI. The b-quark mass error budget. Systematic error
estimates are discussed in more detail in the text.

Source Error (MeV) Error (%)

nf�
3
s perturbative error 36 0.9

M�, M�b
experiment <0:1 <0:01

aEsim <0:1 <0:01
am0 tuning 6 0.14

VEGAS integration <0:1 <0:01
High-� statistics 14 0.35

a dependence 16 0.38

Scale uncertainty 4.4 0.10

�s uncertainty 0.2 0.01

Relativistic v6 5 0.12

Radiative �sv
4 2.5 0.06

E&M, charm sea, annih. 1.9 0.05

Total 43 MeV 1.0%

MASS OF THE b QUARK FROM LATTICE NRQCD AND . . . PHYSICAL REVIEW D 87, 074018 (2013)

074018-11



(b) Perturbative errors.—The three-loop fermionic
contribution to the energy shift is unknown, so
we estimate the error due to this contribution as
Oðnf � �3

MS
Þ. This is the dominant source of error

in our calculation. Perturbative errors from running
the coupling and quark mass are negligible, as the
formulas are higher order.
The fermionic contributions are the only unknown
source of uncertainty at three loops in our result.
In principle, these effects can be calculated using
automated lattice perturbation theory. However,
there are a large number of diagrams to evaluate,
many of which are likely to have complicated pole
structures and possible divergences (the energy shift
is infrared finite, but individual diagrams may have
divergences that ultimately cancel). The complexity
of such a calculation would be considerable.

(c) Other systematic errors
(i) Bare mass tuning: The tuning of the bare

b-quark mass used in E0 and Esim is a source
of error. We can estimate the error due to mis-
tuning using the errors given on the tuned
masses 2:49ð2Þstatð1Þsys and 1:71ð2Þstatð1Þsys and
by estimating the bare mass dependence of each
quantity. We use only the one-loop piece of E0

and compute the value at an extra mass; we find
a linear dependence with a slope of 0.13. For
Esim we use the results at different bare masses
given in [17] and find a dependence that is less
than 0.01, which we take to be linear for these
small increments. By recomputing mbðmbÞ tak-
ing a 1� deviation in the bare mass, we find
errors of 4 MeVon the coarse lattice and 6 MeV
on the fine lattice. We take the larger of these as
an error on our result.

(ii) Corrections for missing electromagnetism,
charm quarks in the sea and �b annihilation
were estimated and applied to the experimental
�, �b masses. We add the errors linearly rather
than in quadrature and propagate this error
through to the final result, which gives 1.9 MeV.

(iii) Higher-order relativistic corrections: These
arise from not including Oðv6Þ terms in our
NRQCD action and, with v2 � 0:1, could con-
tribute 1% of the binding energy, which is
5 MeV.

(iv) Radiative corrections: �2
sv

4 should be smaller
at around half a percent of the binding energy,
so we take 2.5 MeV.

(v) Lattice spacing errors, including r1=a: These
are included as the ‘‘statistical’’ error on the
data points in the plot, but we estimate their
contribution to the final error to be 4.5 MeV.

(vi) Lattice spacing dependence: We incur an error
from fitting the two masses as a function of a,

which we can estimate from the fit. The lattice
spacing dependence is not significant, but we
find 16 MeV; this is already included in the
total error quoted from the fit.

(vii) Sea quark mass dependence: We have only
used one sea quark mass in our calculation,
but in previous calculations we have observed
very mild dependence in Esim [17]. Errors
from light sea quark mass dependence should
be negligible compared to our other errors.

With these errors included, our final result for the MS
b-quark mass is

mbðmb; nf ¼ 5Þ ¼ 4:166ð43Þ GeV: (55)

VI. DISCUSSION

We can compare our result to previous values from the
literature. As discussed in Sec. I, there are a number of
accurate theory results from comparing continuum QCD
perturbation (through �3

s) for moments of the vector char-
monium current-current correlator to experimental results
extracted from �ðeþe� ! hadronsÞ in the b region. In [1],
for example, the result mbðmbÞ ¼ 4:163ð16Þ GeV is ob-
tained. In [5] lattice QCD calculations of time moments of
the �b correlator are used instead of the experimental
results to give mbðmbÞ ¼ 4:164ð23Þ GeV. It is important
in this calculation to use pseudoscalar correlators in a
lattice QCD formalism (HISQ) that has absolutely normal-
ized pseudoscalar currents. Our result agrees with these
two values. It is not as accurate because we are not using
such high-order QCD perturbation theory, but it neverthe-
less provides a check from a completely different perspec-
tive at the level of 1%.
There are also a number of results using alternative

methods from lattice QCD, but these are not typically
very accurate. An early result for mb with NRQCD b
quarks on the nf ¼ 2þ 1 MILC configurations including

u, d and s sea quarks was 4.4(3) GeV [8], the large error
here arising from the use of one-loop lattice QCD pertur-
bation theory for ZM. More recently, methods have been
developed by the ALPHA Collaboration for determining
the energy shift for lattice heavy quark effective theory
nonperturbatively, including next-to-leading-order terms in
the inverse heavy quark mass expansion for the valence b
quarks [60]. This has been implemented on gluon field
configurations including u and d sea quarks in the clover
formalism. Combining with the experimental B meson
mass in a similar approach to the one used here, we get
mbðmbÞ ¼ 4:22ð11Þ GeV. The error here is dominated by
lattice statistical and systematic errors. Another method by
the ETM Collaboration [61] uses a ratio of quark masses to
heavy-light meson masses with a known infinite mass
limit. This is implemented on gluon field configurations
including u and d sea quarks in the twisted mass formalism
and valence b and light twisted mass quarks. Interpolating
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to the b quark and using experimental meson masses
gives mbðmbÞ ¼ 4:29ð14Þ GeV, with an error dominated
by lattice statistical errors. Note that neither the ALPHA or
ETM results include s quarks in the sea, and the error from
this is not estimated.

Figure 4 collects a number of lattice and continuum
QCD determinations of the b-quark mass for comparison.
The evaluation of 4.18(3) GeV in the Particle Data Tables
[62] is shown by the grey band. There is good consistency
between all determinations, including the new result of this
paper and results not yet included in the PDG average [80].

VII. CONCLUSION

In this paper we have presented a new determination of
the b-quark mass from simulations of lattice NRQCD at
two heavy quark masses. The uncertainty associated with
previous determinations of the b-quark mass from lattice
NRQCD was dominated by the one-loop perturbative cal-
culations used to extract the b-quark mass. By calculating
the heavy quark energy shift at two loops, we have sig-
nificantly reduced this uncertainty. The resulting error is
now in line with the most precise lattice determinations
available.

In order to efficiently calculate renormalization parame-
ters at two loops, we implemented a mixed approach,
combining quenched high-� simulation with automated
lattice perturbation theory. We were also able to extract
estimates of the three-loop quenched contributions to the
energy shift from high-� simulations and found that all
perturbative coefficients are well behaved. The reliable

extraction of the two-loop energy shift convincingly dem-
onstrates the effectiveness of our approach.
As part of this calculation, we also determined the

fermionic contributions to the two-loop tadpole improve-
ment factor for both the Landau and plaquette tadpole
definitions.
We undertook a number of checks of both the automated

lattice perturbation theory and the high-� simulations. For
the former, we confirmed that we could reproduce pub-
lished one-loop results, that the energy shift was infrared
finite, and that the fermionic insertions in the gluon propa-
gator obeyed the relevant Ward identity. For the latter, we
were able to compare one-loop results to the exact finite-
size perturbation theory results to ensure the correctness of
our fits.
The uncertainty in our result is now dominated by the

unknown fermionic contributions to the three-loop energy
shift, which is, in principle, calculable with automated
lattice perturbation theory. Greater statistics in the
high-� simulations may also allow us to extract the
quenched contributions to the mass renormalization with
sufficient precision to enable an independent determination
of the b-quark mass by direct matching.
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APPENDIX A: FINITE VOLUME
PERTURBATION THEORY

Without loss of generality, we consider a scalar model
that is sufficient to demonstrate the approach. We take the
NRQCD evolution for the heavy quark Green function
to be

~Gðp; tÞ ¼ ~Kðp; t� 1Þ ~Gðp; t� 1Þ; (A1)

where

~Kðp; tÞ ¼ ~K0ðp; tÞ
�
1� g

2



�
;

~K0ðpÞ ¼
�
1� p2

2mn

�
n
:

(A2)

Here Kðx; tÞ is the approximation to the evolution operator
e�H with
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FIG. 4 (color online). Comparison of our result with other
recent theory-based b-quark mass determinations. We include
all determinations listed in the PDG summary table [62]
but separate lattice QCD determinations with nf ¼ 2 and nf ¼
2þ 1 sea quarks for easier comparison [1,2,5,60,61,67–79].
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H ¼
�
1þ r2

2m
� g


�
: (A3)

We then have that

~G 0ðp; tÞ ¼ ~KðpÞt; with ~G0ðp; 0Þ ¼ 1: (A4)

The diagram we consider is the rainbow diagram. The
vertices are labeled with ðp; tÞ coordinates, appropriate
for the Hamiltonian formalism. The vertices are separated
by time �. The rainbow diagram has � > 0, while the
associated tadpole diagram has � ¼ 0. There is no effect
of finite T on the calculation of the tadpole diagram, which
is therefore given by finite-L Feynman perturbation theory.
At Oðg2Þ from the diagram we have the contribution

~G2ðp;tÞ¼g2
XT�1

q;�¼1

ðt��Þ ~K0ðpÞt���ðq;�Þ ~K0ðp�qÞ�: (A5)

The factor (t� �) is the number of temporal positions the
graph can adopt, and �ðq; �Þ is the 
-field propagator,
given by

�ðq; �Þ ¼ 1

T

XT�1

�¼0

~�ðq; q0Þeiq0�;

~�ðq; q0Þ ¼ 1

q̂2 þ q̂20 þ�2
;

(A6)

where

q0 ¼ 2��

T
; q̂0 ¼ 2 sin

q0
2
;

qi ¼ 2�Qi

L
; q̂i ¼ 2 sin

qi
2
;

(A7)

with 0 � �< T and 0 � Qi < L. Then the contribution
from the rainbow diagram is

~G2ðp; tÞ ¼ ~K0ðpÞtg2
�

1

L3T

X
Qi;�

Xt
�¼1

ðt� �Þ

� ~�ðq; q0Þ
�
eiq0

~K0ðp� qÞ
~K0ðpÞ

�
�
�
: (A8)

We now let

Rðp; qÞ ¼
�
eiq0

~K0ðp� qÞ
~K0ðpÞ

�
; (A9)

where q 
 ðq0; qÞ. Then, using Eq. (A4), the one-loop
rainbow diagram correction to the Green function is

~Gðp; tÞ ¼ ½1� g2Aðp; tÞtþ g2Bðp; tÞ�G0ðp; tÞ
� ½1þ g2Bðp; tÞ�e�g2Aðp;tÞtG0ðp; tÞ; (A10)

and we deduce that Eð1Þ
0 ðL; T; tÞ ¼ g2Að0; tÞ and

Zð1Þ
c ðL; T; tÞ ¼ g2Bð0; tÞ. Note that both Eð1Þ

0 and Zð1Þ
c

depend on t but that for t sufficiently large both quantities
will approach their asymptotic value. We then have

Eð1Þ
0 ðL; T; tÞ ¼ �g2

1

L3T

X
Qi;�

Xt
�¼1

~�ðq; q0ÞRð0; qÞ�; (A11)

Zð1Þ
c ðL; T; tÞ ¼ g2

1

L3T

X
Qi;�

Xt
�¼1

�~�ðq; q0ÞRð0; qÞ�: (A12)

We first consider Eð1Þ
0 ðL; T; tÞ. We carry out the geometrical

sum and find

Aðp; tÞ ¼ �g2
1

L3T

X
Qi;�

~�ðq; q0Þ Rðp; qÞ
1�Rðp; qÞ ð1�Rðp; qÞtÞ:

(A13)

For jRð0; qÞj< 1, for q, the limits T ! 1, t ! 1 can be
taken. We have that

Rðp; qÞ
1� Rðp; qÞ ¼

~K0ðp� qÞ
eiðp0�q0Þ � ~K0ðp� qÞ

¼ eiðp0�q0Þ ~K0ðp� qÞ ~G0ðp� qÞ; (A14)

where we have used the on-shell condition for the external
quark: eip0 ¼ ~K0ðpÞ. In this limit we find

Aðp;1Þ ¼ �g2
1

2i�L3

X
Qi

Z
jzj¼1

dz

z
e�iðp0�q0Þ

� ~K0ðp� qÞ ~G0ð!;p� qÞ; (A15)

where ! ¼ eiðp0�q0Þ, with z ¼ e�iq0 , and the integral is
over the unit circle in the complex z plane. This is the
expression for the rainbow diagram derived from the
NRQCD Feynman rules applicable in the limits T ! 1,
t ! 1.
We conclude that, to account for the effect of finite

temporal extent of the lattice in the perturbation theory,
we make the replacement

~G0ð!;p� qÞ ! ~G0ð!;p� qÞ½1� Rðp; qÞt� (A16)

for the internal quark propagator and carry out the sums
over the discrete values of q and q0. There remains the
choice for the value of t in this expression. We found that
the results were insensitive to this choice as long as t was
not close to either 0 or T, and so we chose t ¼ T=2 for our
calculations. Rðp; qÞ is computed automatically by a nu-
merical search for the poles of the external and internal
propagators which gives ~K0ðpÞ and ~K0ðp� qÞ. For

Eð1Þ
0 ðL; T; tÞ we set p ¼ 0.
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The wavefunction renormalization Zð1Þ
c is given by

Zð1Þ
c ðL; T; tÞ ¼ ig2

@

@p0

1

L3T

X
Qi;�

Xt
�¼1

~�ðq; q0Þ

� ½eiðp0�q0Þ ~K0ðp� qÞ��; (A17)

evaluated on shell: e�ip0 ¼ ~K0ðpÞ. This is the usual
formula applied to our augmented Feynman rule, and the
derivative is computed using our automated TAYLOR

derivative procedure.
In some cases we can have jRj> 1. This is the situation

for some values of q given p and certainly occurs in
moving NRQCD (mNRQCD) [63]. Because NRQCD is
in the Hamiltonian formalism the value of t in Eq. (A8) is
finite and the singularity in the quark propagator is remov-
able. The poles in the gluon propagator are at z ¼ z	 with
jz	j _ 1 and zþz� ¼ 1. Schematically, Eq. (A15) takes
the form

AðpÞ¼C
X
Qi

Z
jzj¼1

dz
1

z�z�
1

z�zþ
zð1�ða=zÞtÞ

z�a
(A18)

where C is a constant and a ¼ ~K0ðp� qÞ= ~K0ðpÞ. The
integration contour is jzj ¼ 1 and is determined by the
formalism; no distortion is available in the NRQCD evo-
lution to avoid pole crossing. However, the singularity at
z ¼ a is removable, and so there is no issue of it crossing
the contour. The integration is done by Cauchy’s theorem
at the z ¼ zþ pole, and the factor from the geometric
summation is then evaluated to be ð1� ða=zþÞtÞ; the
need to consider the pole of order (t� 1) at the origin is
then avoided. Since jaj< jzþj the limit t ! 1 can now be
taken. This corresponds to the usual rule for analytic
continuation in the calculation of the Feynman diagram,
where the radius jzj of the contour is increased to avoid
crossing by the quark pole at z ¼ a.

APPENDIX B: GENERATING CONFIGURATIONS
AND GAUGE FIXING

1. Langevin Markov chain configurations

Configurations for the Monte Carlo simulations are gen-
erated with a Markov chain that is updated via a Langevin
algorithm. The Langevin method treats the Markov chain
as a classical path in phase space, using the action as a
potential to enforce the Boltzmann distribution. Using the
notation of Sec. III B, the Langevin equation is given by

@ ~U

@�
¼ � @S

@ ~U
þ �; (B1)

where S is the action, � is a random noise term, and � is the
distance along the path. Using the Fokker-Plank equation it
can be shown that this path will sample the configuration
space with probability density

Pð ~UÞ ¼ e�S½ ~U�; (B2)

the Boltzmann distribution, as desired.
As Eq. (B1) is an initial value problem, its solution can

be approximated via an iterative method, where the deriva-
tive on the left-hand side is written as a finite difference,
with step size 
. This introduces step-size errors in the
action so that the distribution that is simulated is altered to

�Pð ~UÞ ¼ e� �S½ ~U;
�; (B3)

where �S½ ~U; 
� is the simulated action which is expansible as

�S½ ~U; 
� ¼ Sþ 
S1 þ 
2S2 þ � � � : (B4)

The step-size errors in Eq. (B4) can be systematically
eliminated using higher-order approximations to the de-
rivative in Eq. (B1). In this work a second-order Runge-
Kutta algorithm (RK2) which eliminates Oð
Þ errors was
used. This is implemented as a midpoint method adapted
to diffusion on a group manifold [64].
Simulations were run with a step size 
 ¼ 0:2. Analysis

shows that 
 scaling errors are of the order � 0:05%.
Autocorrelation times were measured to be of the order
of 5–10 (25–50 updates) for the plaquette and 10–20
(50–100 updates) for the twisted Polyakov loop [10].
Here 100 configurations were skipped between measure-
ments. For each value of �pl on each lattice size, 32

independent Markov chains were generated. Each chain
produced 128 configurations (4096 configurations in total).

2. Gauge fixing with twisted boundaries

Configurations generated from the Markov chain have
the gauge freedom described in Eq. (24). This can be fixed
by the application of a gauge condition. In this work we
wish to fix the configurations to Coulomb gauge. In the
continuum Coulomb gauge is achieved by the gauge trans-
formation that satisfies

@iA
g
i ¼ 0: (B5)

On the lattice this corresponds to maximizing the quantity

W½g� ¼ X3
x;i¼1

�
gðxÞ ~UiðxÞgyðxþ eiÞ

� 1

16
gðxÞ ~UiðxÞ ~Uiðxþ eiÞgyðxþ 2eiÞ

�
; (B6)

with respect to the gauge transform field gðxÞ for each time
slice. This is Oða2Þ improved [65]. The maximization is
performed via a conjugate-gradient method, using a back-
track line search. Each time slice is gauge fixed separately.
Errors due to numerical maximization are estimated to be
insignificant.
Fixing to Coulomb gauge leaves an ambiguity, since it is

possible to construct an additional purely temporal gauge
transformation
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~U4ðx; tÞ ! ~UgðTÞ
4 ðxÞ ¼ gðTÞðtÞ ~U4ðxÞgðTÞyðtþ 1Þ: (B7)

This gauge transformation must obey the twisted boundary
conditions

gðTÞðtÞ ¼ �ig
ðTÞðtÞ�y

i ; (B8)

for i ¼ 1, 2, 3. The only solutions are

gðTÞ ¼ 1zn; (B9)

for n ¼ 0; . . . ; Nc, where z is given in (22).
After fixing to Coulomb gauge, each time may be in a

different gauge. In order to measure time-dependent
operators, the time slices must all be in the same gauge.
The gauges are all fixed to be the same as that on the first
time slice. Since the gauge transformations in (B9) form a
group, this is achieved by applying an additional trans-
formation. The gauge transformation on the first time slice
is set to the unit matrix,

gðTÞðt ¼ 0Þ ¼ 1: (B10)

The transformations on subsequent time slices are chosen
sequentially to maximize

Re½TrgðTÞðt� 1Þ ~U4ð0; t� 1ÞgðTÞyðtÞ�; (B11)

for t ¼ 1; . . .T � 1.

APPENDIX C: MS MATCHING FORMULAS

The relation between �V and �MS is given by [49,54,55]

�V ¼ �MSð1:0þ c0�MS þ c1�
2
MS

Þ: (C1)

The coefficients are

c0 ¼ ða1 þ �0 log ðxÞÞ=4�;
c1 ¼ ða2 þ ð�0 log ðxÞÞ2 þ ð�1 þ 2�0a1Þ log ðxÞÞ=ð4�Þ2;
with log ðxÞ ¼ 0, since both couplings are evaluated at the
same scale,

�0 ¼ 11� 2nf=3; (C2)

�1 ¼ 2ð51� 19nf=3Þ; (C3)

a1 ¼ ð31Ca � 20TfnfÞ=9; (C4)

a2 ¼
�
4343

162
þ 4�2 � �4=4þ 22�ð3Þ=3

�
C2
a

�
�
1798

81
þ 56�ð3Þ=3

�
CaTfnf

�
�
55

3
� 16�ð3Þ

�
CfTfnf þ 400

81
T2
fn

2
f: (C5)

Note the discrepancy between [49,54].

The pole to MS renormalization is calculated to three
loops in [16]

M
pole
b ¼ ZMð �mbÞ �mbð �mbÞ; (C6)

with

ZMð �mbÞ¼1þ4

3

�MSð �mbÞ
�

þ
�
�MSð �mbÞ

�

�
2ð�1:0414nfþ13:4434Þ

þ
�
�MSð �mbÞ

�

�
3ð0:6527n2f�26:655nfþ190:595Þ:

(C7)

We actually need the inverse of this series, which we define
as the three-loop approximation to 1=ZM. With nf ¼ 3

this is

Z�1
M ð �mbÞ ¼ 1� 0:42441318�MS

� 0:86542701�2
MS

� 2:94639�3
MS

: (C8)

TheMS coupling is discontinuous at quark mass thresh-
olds since the heavy mass quarks are explicitly decoupled
by matching to a theory with a different number of flavors.
The formula for matching the nf theory to a theory with

nl ¼ nf � 1 flavors at the threshold is [58]

�ðnlÞ
MS

¼ �
ðnfÞ
MS

�
1þ c2

�2

�
�
ðnfÞ
MS

�
2 þ c3

�3

�
�
ðnfÞ
MS

�
3
�
; (C9)

with everything evaluated at the threshold scale of the nf
theory and the coefficients

c2 ¼ 11

72
; (C10)

c3 ¼ 82043

27648
�ð3Þ þ 564731

124416
� 2633

31104
nl: (C11)

Crossing thresholds for a running mass in a mass-
independent scheme gives the same difficulties as the
coupling. The relation between the nl flavor effective

theory and the nf flavor theory for the MS running mass

at the threshold is [66]

mðnlÞ ¼ mðnfÞ
�
1þ 0:2060

�2

�
�
ðnfÞ
MS

�
2

þ ð1:8476þ 0:0247nlÞ
�3

�
�
ðnfÞ
MS

�
3
�
: (C12)

For the inverse of these operations we include higher-order
terms so that it reproduces the original value to better
accuracy.
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[44] M. Lüscher and P. Weisz, Nucl. Phys. B266, 309 (1986).
[45] H. Trottier, N. Shakespeare, G. Lepage, and P. Mackenzie,

Phys. Rev. D 65, 094502 (2002).
[46] K. Hornbostel, G. Lepage, and C. Morningstar, Phys. Rev.

D 67, 034023 (2003).
[47] Q. Mason, H. Trottier, C. Davies, K. Foley, A. Gray, G.

Lepage, M. Nobes, and J. Shigemitsu (HPQCD
Collaboration and UKQCD Collaboration), Phys. Rev.
Lett. 95, 052002 (2005).

[48] K. Y. Wong, H. D. Trottier, and R. Woloshyn, Phys. Rev. D
73, 094512 (2006).

[49] Y. Schroder, Phys. Lett. B 447, 321 (1999).
[50] C. Davies, E. Follana, I. Kendall, G. P. Lepage, and C.

McNeile (HPQCD Collaboration), Phys. Rev. D 81,
034506 (2010).

[51] T. Hammant, A. Hart, G. von Hippel, R. Horgan, and
C. Monahan, Phys. Rev. Lett. 107, 112002 (2011).

[52] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G.
Lepage, J. Shigemitsu, H. Trottier, and K. Wong
(HPQCD Collaboration), Phys. Rev. D 75, 054502 (2007).

[53] G. P. Lepage, B. Clark, C. T.H. Davies, K. Hornbostel,
P. B. Mackenzie, C. Morningstar, and H. Trottier, Nucl.
Phys. B, Proc. Suppl. 106-107, 12 (2002).

[54] M. Peter, Phys. Rev. Lett. 78, 602 (1997).
[55] M. Peter, Nucl. Phys. B501, 471 (1997).
[56] Y. Schroeder, Phys. Lett. B 447, 321 (1999).
[57] G. Prosperi, M. Raciti, and C. Simolo, Prog. Part. Nucl.

Phys. 58, 387 (2007).
[58] K. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Phys.

Rev. Lett. 79, 2184 (1997).
[59] T. van Ritbergen, J. Vermaseren, and S. Larin, Phys. Lett.

B 400, 379 (1997).
[60] F. Bernardoni, B. Blossier, J. Bulava, M. Della Morte,

P. Fritzsch et al., arXiv:1210.6524.
[61] P. Dimopoulos et al. (ETM Collaboration), J. High Energy

Phys. 01 (2012) 046.
[62] J. Beringer et al., J. Phys. D 86, 010001 (2012).
[63] R. R. Horgan et al., Phys. Rev. D 80, 074505 (2009).
[64] S. Catterall, I. Drummond, and R. Horgan, Phys. Lett. B

254, 177 (1991).
[65] G. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B.

Mackenzie, C. Morningstar, and H. Trottier, Nucl. Phys.
B, Proc. Suppl. 106-107, 12 (2002).

MASS OF THE b QUARK FROM LATTICE NRQCD AND . . . PHYSICAL REVIEW D 87, 074018 (2013)

074018-17

http://dx.doi.org/10.1103/PhysRevD.80.074010
http://dx.doi.org/10.1103/PhysRevD.80.074010
http://dx.doi.org/10.1016/j.physletb.2011.12.047
http://dx.doi.org/10.1016/j.physletb.2011.11.058
http://dx.doi.org/10.1103/PhysRevD.78.054513
http://dx.doi.org/10.1103/PhysRevD.78.054513
http://dx.doi.org/10.1103/PhysRevD.82.034512
http://dx.doi.org/10.1103/PhysRevD.43.196
http://dx.doi.org/10.1103/PhysRevD.43.196
http://dx.doi.org/10.1103/PhysRevD.46.4052
http://dx.doi.org/10.1103/PhysRevD.72.094507
http://dx.doi.org/10.1103/PhysRevD.72.094507
http://dx.doi.org/10.1016/0920-5632(95)00263-9
http://dx.doi.org/10.1016/0920-5632(95)00263-9
http://dx.doi.org/10.1103/PhysRevD.70.034501
http://dx.doi.org/10.1103/PhysRevD.70.034501
http://dx.doi.org/10.1016/0370-2693(94)90268-2
http://dx.doi.org/10.1016/0550-3213(94)90314-X
http://dx.doi.org/10.1016/0550-3213(94)90314-X
http://dx.doi.org/10.1103/PhysRevD.60.054008
http://dx.doi.org/10.1103/PhysRevD.60.054008
http://dx.doi.org/10.1103/PhysRevLett.73.2654
http://dx.doi.org/10.1016/S0370-2693(00)00507-4
http://dx.doi.org/10.1016/S0370-2693(00)00507-4
http://dx.doi.org/10.1103/PhysRevD.85.054509
http://dx.doi.org/10.1103/PhysRevLett.108.102003
http://dx.doi.org/10.1103/PhysRevD.86.094510
http://dx.doi.org/10.1103/PhysRevD.86.094510
http://dx.doi.org/10.1103/PhysRevD.83.014506
http://arXiv.org/abs/1302.2644
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1016/0370-2693(85)90966-9
http://dx.doi.org/10.1016/0370-2693(95)01131-9
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://dx.doi.org/10.1103/PhysRevD.59.074502
http://dx.doi.org/10.1103/PhysRevD.70.094505
http://dx.doi.org/10.1016/j.jcp.2005.03.010
http://dx.doi.org/10.1016/j.cpc.2009.04.021
http://dx.doi.org/10.1103/PhysRevD.66.094509
http://dx.doi.org/10.1016/S0920-5632(03)01589-5
http://dx.doi.org/10.1103/PhysRevD.68.057501
http://dx.doi.org/10.1103/PhysRevD.75.014008
http://dx.doi.org/10.1103/PhysRevD.75.014008
http://dx.doi.org/10.1103/PhysRevD.83.034501
http://dx.doi.org/10.1103/PhysRevD.83.034501
http://dx.doi.org/10.1103/PhysRevLett.107.112002
http://dx.doi.org/10.1103/PhysRevLett.107.112002
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1016/j.cpc.2009.10.025
http://dx.doi.org/10.1016/j.cpc.2009.10.025
http://dx.doi.org/10.1103/PhysRevD.69.074501
http://dx.doi.org/10.1103/PhysRevD.69.074501
http://dx.doi.org/10.1016/S0920-5632(01)01860-6
http://dx.doi.org/10.1016/0550-3213(83)90436-4
http://dx.doi.org/10.1016/0550-3213(79)90595-9
http://dx.doi.org/10.1016/0550-3213(86)90094-5
http://dx.doi.org/10.1103/PhysRevD.65.094502
http://dx.doi.org/10.1103/PhysRevD.67.034023
http://dx.doi.org/10.1103/PhysRevD.67.034023
http://dx.doi.org/10.1103/PhysRevLett.95.052002
http://dx.doi.org/10.1103/PhysRevLett.95.052002
http://dx.doi.org/10.1103/PhysRevD.73.094512
http://dx.doi.org/10.1103/PhysRevD.73.094512
http://dx.doi.org/10.1016/S0370-2693(99)00010-6
http://dx.doi.org/10.1103/PhysRevD.81.034506
http://dx.doi.org/10.1103/PhysRevD.81.034506
http://dx.doi.org/10.1103/PhysRevLett.107.112002
http://dx.doi.org/10.1103/PhysRevD.75.054502
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1103/PhysRevLett.78.602
http://dx.doi.org/10.1016/S0550-3213(97)00373-8
http://dx.doi.org/10.1016/S0370-2693(99)00010-6
http://dx.doi.org/10.1016/j.ppnp.2006.09.001
http://dx.doi.org/10.1016/j.ppnp.2006.09.001
http://dx.doi.org/10.1103/PhysRevLett.79.2184
http://dx.doi.org/10.1103/PhysRevLett.79.2184
http://dx.doi.org/10.1016/S0370-2693(97)00370-5
http://dx.doi.org/10.1016/S0370-2693(97)00370-5
http://arXiv.org/abs/1210.6524
http://dx.doi.org/10.1007/JHEP01(2012)046
http://dx.doi.org/10.1007/JHEP01(2012)046
http://dx.doi.org/10.1103/PhysRevD.80.074505
http://dx.doi.org/10.1016/0370-2693(91)90417-O
http://dx.doi.org/10.1016/0370-2693(91)90417-O
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(01)01638-3


[66] K. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Nucl.
Phys. B510, 61 (1998).

[67] S. Bodenstein, J. Bordes, C. Dominguez, J. Penarrocha,
and K. Schilcher, Phys. Rev. D 85, 034003 (2012).

[68] A. Laschka, N. Kaiser, and W. Weise, Phys. Rev. D 83,
094002 (2011).

[69] R. Boughezal, M. Czakon, and T. Schutzmeier, Phys. Rev.
D 74, 074006 (2006).

[70] O. Buchmuller and H. Flacher, Phys. Rev. D 73, 073008
(2006).

[71] A. Pineda and A. Signer, Phys. Rev. D 73, 111501 (2006).
[72] C.W. Bauer, Z. Ligeti, M. Luke, A.V. Manohar, and

M. Trott, Phys. Rev. D 70, 094017 (2004).

[73] A. Hoang and M. Jamin, Phys. Lett. B 594, 127 (2004).
[74] J. Bordes, J. Penarrocha, and K. Schilcher, Phys. Lett. B

562, 81 (2003).
[75] G. Corcella and A. Hoang, Phys. Lett. B 554, 133

(2003).
[76] M. Eidemuller, Phys. Rev. D 67, 113002 (2003).
[77] J. Erler and M. xing Luo, Phys. Lett. B 558, 125 (2003).
[78] N. Brambilla, Y. Sumino, and A. Vairo, Phys. Rev. D 65,

034001 (2002).
[79] A. A. Penin and M. Steinhauser, Phys. Lett. B 538, 335

(2002).
[80] A. Hoang, P. Ruiz-Femenia, and M. Stahlhofen, J. High

Energy Phys. 10 (2012) 188.

LEE et al. PHYSICAL REVIEW D 87, 074018 (2013)

074018-18

http://dx.doi.org/10.1103/PhysRevD.85.034003
http://dx.doi.org/10.1103/PhysRevD.83.094002
http://dx.doi.org/10.1103/PhysRevD.83.094002
http://dx.doi.org/10.1103/PhysRevD.74.074006
http://dx.doi.org/10.1103/PhysRevD.74.074006
http://dx.doi.org/10.1103/PhysRevD.73.073008
http://dx.doi.org/10.1103/PhysRevD.73.073008
http://dx.doi.org/10.1103/PhysRevD.73.111501
http://dx.doi.org/10.1103/PhysRevD.70.094017
http://dx.doi.org/10.1016/j.physletb.2004.04.080
http://dx.doi.org/10.1016/S0370-2693(03)00542-2
http://dx.doi.org/10.1016/S0370-2693(03)00542-2
http://dx.doi.org/10.1016/S0370-2693(03)00003-0
http://dx.doi.org/10.1016/S0370-2693(03)00003-0
http://dx.doi.org/10.1103/PhysRevD.67.113002
http://dx.doi.org/10.1016/S0370-2693(03)00276-4
http://dx.doi.org/10.1103/PhysRevD.65.034001
http://dx.doi.org/10.1103/PhysRevD.65.034001
http://dx.doi.org/10.1016/S0370-2693(02)02040-3
http://dx.doi.org/10.1016/S0370-2693(02)02040-3
http://dx.doi.org/10.1007/JHEP10(2012)188
http://dx.doi.org/10.1007/JHEP10(2012)188

	Mass of the b quark from lattice NRQCD and lattice perturbation theory
	Recommended Citation

	untitled

