




3.4. Satellite Remote Sensing Products

Satellite‐derived sea surface Chl a concentrations were obtained from
Level 3 processed, 9‐km resolution measurements from SeaWiFS (Sea‐
viewing Wide Field‐of‐view Sensor) between July 1997 and June 2002
and from MODIS‐Aqua between July 2002 and June 2017. Similarly, sea
ice coverage estimates were obtained from the Special Sensor
Microwave/Imager (SMM/I) and the Special Sensor Microwave Imager/
Sounder (SMMIS) on the Defense Meteorological Satellite Program
(DMSP) satellite from the National Snow and Ice Data Center (NSIDC)
between July 1997 and June 2017 at 25‐km resolution and Level 3 proces-
sing. All data presented here are monthly averaged values in the Dalton
Polynya, within the region between 65.8 and 67.0°S and 119 and 121°E
(see Figure 1).

4. Results
4.1. Hydrographic and Biogeochemical Properties

AASW (σθ < 27.55 kg/m3) in the DP was relatively warm and fresh,
reflecting the summer conditions of surface warming and local sea ice
melt (Figures 2 and 5 and Table 2). Sea surface salinity was between about
33.9 and 34.3 within the DP (east of 119°E). In the northern DP, minimum
surface salinity (S < 33.9) was observed toward the end of the voyage,
likely driven by melting sea near the Dalton Iceberg Tongue. Sea surface
temperatures were warmer in the central DP with values ranging from
−1.2 to +0.4 °C, and colder near the outer edges of the polynya and near
the TIS with a minimum of −1.8 °C (Figure 5b). In front of the TIS, WW
outcropped to the surface, and salinities of ~34.25 were observed.

The mean concentration of dissolved oxygen (~341 μmol/kg) in AASW
was greater than values found elsewhere in East Antarctica (Roden
et al., 2016; Shadwick et al., 2014), with concentrations more comparable
to saturated conditions (~350–360 μmol/kg) though similar surface tem-
perature and salinity was observed (Table 2). The percent saturation of
dissolved oxygen at the sea surface was greatest (>99%) in the central,
open waters of the Dalton Polynya (Figure 3d) and decreased toward
and along the outer edges of the polynya and near the TIS (Figure 4d).
In front of the TIS, surface dissolved oxygen reached a minimum concen-
tration (305 μmol/kg, 85% saturation), coincident with the WW outcrop
and entrainment of oxygen‐poor subsurface waters. Dissolved oxygen
concentration further decreased with depth below the surface mixed layer
in WW (Figures 3d and 4d) to values ranging between 300 and 330
μmol/kg, signaling the biological imprint of dissolved oxygen consump-
tion. The cumulative influence of the remineralization of organic matter
over longer time scales (i.e., years) is seen more dramatically in mCDW,
where dissolved oxygen reaches as low as 220 μmol/kg due to its isolation
from the atmosphere.

4.2. Underway fCO2 and Air�Sea CO2 Exchange

The surface and mixed layer distribution of dissolved oxygen spatially mirrors the trends in underway fCO2

(Figures 3d, 4d, and 5c), where the lowest concentrations of dissolved oxygen are found in areas of high
fCO2. The sea surface fCO2 indicates that the region was mostly supersaturated or near equilibrium with
respect to the average atmospheric value (379 μatm; Figures 5c and 6a) in both the DP and near the TIS.
There was a distinct difference in surface fCO2 in areas with the absence (within DP) or presence (near
TIS) of sea ice. In areas of open water in the DP, fCO2 ranged from 370 to 405 μatm, extending to a

Figure 5. Underway surface measurements in the Dalton Polynya for
(a) salinity, (b) sea surface temperature (SST; °C), and (c) fCO2 (μatm).
The mean atmospheric fCO2 (379 μatm) is indicated by the gray line in
the color bar of (c). Colored circles correspond to the underway measure-
ments taken at the time of CTD sampling. TIS = Totten Ice Shelf; MUIS =
Moscow University Ice Shelf.
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maximum of 410 μatm near the eastern MUIS. The largest fCO2 values
were recorded near the TIS, with a maximum of 424 μatm at the western
edge, exhibiting the correspondingly greatest degree of supersaturation
relative to the atmosphere (ΔfCO2 = +45 μatm). In contrast, the northern
DP showed the greatest degree of undersaturation with respect to the
atmosphere (ΔfCO2 = −20 μatm).

The Dalton Polynya was a net source of CO2 to the atmosphere during the
sampling period as determined by both the long‐term and instantaneous
air‐sea CO2 fluxes with means and standard deviations of 0.5 ± 0.6 mmol
C m−2 day−1 and 0.7 ± 0.9 mmol C m−2 day−1, respectively. FCO2 values
evaluated with a long‐term k value reached a maximum of 2.3 mmol
C m−2 day−1 in the most supersaturated waters near the TIS and a mini-
mum of −1.1 mmol C m−2 day−1 in the northern DP (DP3). Using short‐
term winds, values of instantaneous FCO2 had a larger range, between a

maximum surface uptake of 1.0 mmol C m−2 day−1 to a maximum surface outgassing of 5.1 mmol C m−2

day−1 from within the center of the DP (DP2) during the study period. Short‐term wind speeds were locally
variable throughout, ranging between near 0 to 10 m/s (Figure 6b); these fluctuations imposed a correspond-
ingly large variation in flux. In particular, during periods of enhanced wind, defined here as wind speed >8
m/s, and conditions with largeΔfCO2, there were correspondingly large fluxes of CO2 (Figure 6, shaded). We
observed three high wind events: one at the beginning and two near the end of the study. In the first high
wind event, the relatively large ΔfCO2 resulted in an outgassing of roughly 4.3 mmol C m−2 day−1. During

Table 2
Characteristic Mean Values of Potential Density Anomaly (σθ; kg/m3),
Potential Temperature (θ; °C), Salinity (S), Dissolved Oxygen (O2; μmol/
kg), Total Dissolved Inorganic Carbon (TCO2; μmol/kg), Total Alkalinity
(TA; μmol/kg), pH, and Aragonite Saturation State (ΩAr) of Each Water
Mass in the Dalton Polynya Region of East Antarctica

Parameter AASW WW ISW mCDW

σθ 27.48 27.59 27.56 27.74
θ −1.24 −1.84 −1.94 −0.36
S 34.17 34.27 34.24 34.53
O2 341 316 311 251
TCO2 2,200 2,215 2,214 2,242
TA 2,310 2,315 2,313 2,335
pH 8.04 8.01 8.01 7.94
ΩAr 1.30 1.17 1.17 1.03

Figure 6. Underway measurements as a function of time between 24 December 2014 and 9 January 2015. (a) ΔfCO2
(μatm); (b) daily mean wind speed (m/s). Wind speeds >8 m/s are defined as high wind events and are indicated by
the red shading in DP1 and blue shading in DP2. (c) Instantaneous FCO2 (mmol C m−2 day−1) where a positive flux
indicates a net ocean source of CO2. See Figure 1 for color references.
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the second high wind event in the DP, a maximum FCO2 of 5.1 mmol C m−2 day−1 was observed. Although
bothminimum andmaximumΔfCO2 values were recorded near the northernDP and TIS, respectively, these
gradients were observed during periods of much lower wind speeds (~1 to 3 m/s) and were associated with
correspondingly weaker CO2 fluxes on the order of ~0.02 mmol C m−2 day−1.

4.3. CO2 System Properties in the Dalton Polynya

Vertical profiles of TCO2 and TA from stations in the DP during each sampling period (DP1, DP2, and
DP3) were similar, reflecting the different properties within each water mass (Figure 7). Surface TCO2 con-
centrations ranged between 2,190 and 2,211 μmol/kg in the central DP. Minimum surface TCO2 concen-
trations (~2,170 μmol/kg) were found in the northern polynya (yellow; DP3), corresponding with the
surface salinity minimum. Similarly, surface TA values ranged between 2,303 and 2,314 μmol/kg in the
central DP, with a similar feature of minimum values of ~2,276 μmol/kg found in the northern DP.
Subsurface parameters converge at a depth of approximately 150 m to an average TCO2 concentration of
2,214 ± 3 μmol/kg and TA concentration of 2,315 ± 2 μmol/kg in WW (Figures 7a and 7b), similar to other
observations made in shelf waters in the East Antarctic (Table 2; Shadwick et al., 2014; Roden et al., 2016).

Profiles of pH and ΩAr exhibit similar patterns with depth, reflecting the changes in TCO2 and TA concen-
trations. The surface pH and ΩAr were elevated relative to subsurface values, enhanced by the biological
drawdown of TCO2 by photosynthesis. We observed pH values ranging from 8.01 to 8.07 at the surface.
Surface ΩAr ranged from 1.22 and 1.38, with lower values near the western ice edge in the DP (not shown)
coincident with regions of elevated surface TCO2.ΩAr was supersaturated throughout most of the water col-
umn, although undersaturated values of ΩAr (i.e., ΩAr < 1) were found at depth in the TCO2‐rich mCDW
layer. Below ~400 m, TCO2 and TA continued to increase while pH and ΩAr decrease with depth in the
mCDW water mass.

The precipitation of calcium carbonate (ikaite) during sea ice formation in the previous autumn and
winter season may influence the TCO2 to TA ratio in both the newly formed sea ice and the underlying
seawater (Dieckmann et al., 2008; Jones et al., 2010; Rysgaard et al., 2012; Shadwick et al., 2017).
However, from our observations the conservative behaviors of the TA‐salinity and the nTA‐nTCO2 rela-
tionships (Figure 7d inset) suggests that ikaite formation is not a dominant process in the
Dalton Polynya.

Salinity‐normalizing TCO2 and TA values accounts for the freshwater dilution of sea ice melt in the Dalton
Polynya on surface concentrations; surface to subsurface gradients in nTCO2 and nTA are thus much
weaker than in the in‐situ observations (Figures 7c and 7d). Surface nTCO2 values ranged between 2,200
and 2,216 μmol/kg and surface nTA to between 2,315 and 2,323 μmol/kg. Higher surface nTCO2 values were
found along the western sea ice edges in the DP as compared to the center of the DP (not shown). At 150 m
depth, mean nTCO2 concentration was 2,216 ± 2 μmol/kg, which is assumed to represent the winter concen-
tration of nTCO2 at the surface (see section 3.3).

4.4. CO2 System Properties Near the Totten Ice Shelf

Profiles of CO2 system parameters show somewhat different properties near the TIS than those described
above (Figure 8). Here, WW outcrops to the surface near the TIS, particularly in the western edge (see
Figure 4) where MLDs extended over 360 m. The stations occupied in the east TIS (magenta) show a simi-
lar pattern with depth as those in the DP, where AASW is present at the surface and MLDs ranged between
12 and 46 m. Surface TCO2 in the eastern TIS stations show a mean value of 2,205 μmol/kg, similar to the
DP, whereas surface TCO2 in the western TIS show higher values with an average of 2,213 μmol/kg
(Figure 8a). Surface nTCO2 was more depleted in the east (~2,212 μmol/kg) than in the west (~2,218
μmol/kg). In WW, the nTCO2 in stations near the TIS converged to 2,217 ± 2 μmol/kg. In stations in
the western TIS, nTCO2 at the surface was modestly elevated (between 0 and 4 μmol/kg) relative to the
subsurface winter value.

Mean surface pH (~8.02) and ΩAr (~1.24) near the TIS were lower as compared to the DP. Surface pH and
ΩAr values also increased from west to east spatially in front of the TIS, corresponding to higher concentra-
tion of TCO2 in the west. ΩAr reached undersaturation (ΩAr < 1) at depths >750 m.

10.1029/2018JC014882Journal of Geophysical Research: Oceans

ARROYO ET AL. 10



5. Discussion
5.1. Net Community Production

Seasonal depletions of TCO2 in the upper 100 m were determined and attributed to a combination of physi-
cal and biological processes in both waters in the ice‐free DP and ice‐covered TIS (Figure 9 and Table 3).
Processes such as sea ice melt (formation), CO2 outgassing (ingassing) and photosynthesis (respiration) will
decrease (increase) the concentration of TCO2. Total integrated deficits of TCO2 (ΔTCO2

total; Table 3) were
larger in ice‐free regions as compared to areas with greater sea ice coverage. In the DP, the contribution from
the seasonal melting of sea ice accounted for less than half of the total change in TCO2 in DP1 and DP2 but
was more significant in DP3. Observations of surface salinity and temperature in DP3 suggest that sea ice
melt was ongoing near the Dalton Iceberg Tongue (section 4.1). At all stations in the Dalton Polynya,
NCP was positive, ranging between 1 and 21 mmol C m−2 day−1 (Figure 10a; see section 3.3), indicating

Figure 7. Profiles of CO2 system properties in the Dalton Polynya. (a) TCO2 (μmol/kg), (b) TA (μmol/kg) with TA versus
TCO2 inset, (c) nTCO2 (μmol/kg), (d) nTA (μmol/kg) with nTA vs. nTCO2 inset, (e) pH, and (f) saturation state of ara-
gonite (ΩAr). Bin‐averaged profiles are indicated in each with a bold line.
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net autotrophy or the dominance of primary production over respiration (Table 3). Both the nTCO2 deficits
and the resulting NCP values were greatest in the center of the DP and lower near the western boundary and
the sea ice edge. Estimates of NCP are on the order of 10 to 20 mmol Cm−2 day−1 within the ice‐free regions
in the polynya and increase over the duration of the of the cruise, from DP1 to DP3, in parallel with
decreasing mixed layer nTCO2 concentrations (Figure 10). In the northernmost stations of the polynya
(DP3), sea ice melt locally enhanced stratification and stabilized the mixed layer (MLDs = ~12 m),
increasing light availability and contributing to enhanced biological activity and greater NCP. This is
consistent with observations of decreased fCO2 in the region (Figure 4a). By contrast, the nTCO2 deficits
and NCP are lower in front of the TIS (Table 3), ranging from −3.8 to a maximum of 6.6 mmol C m−2 day
−1, increasing spatially from west to east in parallel to decreasing MLDs and the increasing dominance of
AASW at the surface (Figure 4). In the eastern edge of the TIS (ET), deficits of TCO2 are dominated by
changes in salinity with smaller contributions from biological CO2 uptake resulting in weakly autotrophic

Figure 8. Profiles of CO2 system properties in front of the Totten Ice Shelf. (a) TCO2 (μmol/kg), (b) TA (μmol/kg) with TA
versus TCO2 inset, (c) nTCO2 (μmol/kg), (d) nTA (μmol/kg) with nTA versus nTCO2 inset, (e) pH, and (f) saturation state
of aragonite (ΩAr). Binned‐averaged values are indicated in each with a bold line.
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conditions. At stations of the western TIS (WT), NCP was negative ranging from −3.8 to 0 mmol C m−2

day−1, suggesting the region may be weakly heterotrophic in the summer season, consistent with highly
supersaturated fCO2 in the surface waters of the region (Figure 5c).

These estimates of NCP include uncertainties associated with the analytical determination of TCO2 con-
centrations as well as the assumptions regarding winter TCO2 concentrations. Vertical transport processes
that may influence mixed‐layer TCO2 have not been explicitly accounted for, although it is assumed the
integration to 100 m accounts for deeper mixing (e.g., Sweeney et al., 2000). In addition, both CaCO3

precipitation/dissolution and the air‐sea exchange of CO2 are not explicitly included in the seasonal
deficit approach, although the former has been shown to be a negligible process during the period of
observation (section 4.3). The mean instantaneous FCO2 computed from our shipboard observations
was 0.7 ± 0.9 mmol C m−2 day−1. If this mean flux were to persist since 1 November (defined as the
beginning of the productive season), then this would lead to an additional nTCO2 concentration of
0.4 μmol/kg in the upper 100 m from the air‐sea exchange of CO2, which is small (<2%), relative to
the integrated deficits.

The onset of biological activity in the coastal Antarctic is generally thought to occur when MLDs <40
m (Smith et al., 2000). As most MLD in the open waters of the DP are <40 m, photosynthesis dominates
respiration, associated with positive values of NCP. It is likely we observed the beginning of the productive
season when NCP rates were relatively low, capturing conditions consistent with the transition from winter
to summer. In this period, the biological driver of fCO2 drawdown has not yet fully compensated for the
increased winter fCO2 due to remineralization (and small seasonal warming of surface waters); thus, surface
waters remain supersaturated in fCO2 despite the positive NCP (i.e., autotrophic conditions). Similarly, dis-
solved oxygen concentration in AASW within the open waters of the DP was still slightly undersaturated
(~1–12%) during the period of observation, suggesting the autotrophic community has not yet fully compen-
sated for loss of dissolved oxygen during the predominating winter heterotrophy. The continuation of sum-

mer surface productivity beyond the period of shipboard observation is
supported by satellite Chl a and discussed in more detail below.

The negative NCP that was observed near the TIS may be fueled by the
remineralization of allochthonous organic material, which can include
production remaining from previous years, assuming the particulate and
dissolved organic carbon is labile or semilabile. Upwelling and mixing
of TCO2‐rich waters could also be associated with accumulated signals
of biological remineralization (rather than the accumulation of organic
matter) from distant sources. The MLDs near the western end of the TIS
were relatively deep, reaching over 300 m in certain areas, extending well
below the depth of our definition for winter TCO2 concentration and sea-
sonal integration (100 m). This deep mixing could entrain TCO2‐rich

Figure 9. Schematic representing the physical and biological processes driving the changes in TCO2 concentration in the
upper 100 m from the transition from winter to summer in the Dalton Polynya. Physical processes such as sea ice for-
mation and ingassing of atmospheric CO2 increase TCO2 concentrations while sea ice melt and outgassing of CO2
decrease TCO2 concentrations. Biological photosynthesis reduces TCO2 concentration through the formation of organic
matter, while respiration and the remineralization of this organic matter increases TCO2 concentration.

Table 3
The Total Deficit in Surface TCO2 (ΔTCO2

total; μmol/kg), With
Contributions From Seasonal Sea Ice Melt (ΔTCO2

salinity; μmol/kg) and
Biological Processes and CO2 Gas Exchange (ΔTCO2

bio+gas; μmol/kg) and
Estimates of Net Community Production (NCP; mmol C m−2 day−1) for
Each Region During Observations

Variable DP1 DP2 DP3 WT ET

ΔTCO2
total 8.2 9.5 19.6 −0.9 3.4

ΔTCO2
salinity 3.5 3.6 12.6 2.3 3.0

ΔTCO2
bio+gas 4.7 5.9 7.0 −3.2 0.4

NCP 12.7 12.9 14.1 −1.5 4.5
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subsurface water into the summer mixed layer; if these deeper waters have sufficiently high TCO2

concentrations (from the remineralization of organic matter over timescales that exceed a season), the
resulting deficit would indicate net heterotrophic conditions. Finally, since the ice‐covered waters near
the TIS appear to be significantly less productive than those in the ice‐free Dalton Polynya (inferred from
the degree of fCO2 undersaturation), these early summer observations may represent pre‐bloom
conditions in the TIS perhaps due in part to light limitation associated with sea ice coverage. If the
observations had been made later in the season, it is possible that greater surface TCO2 depletions in a
more open TIS region would result in positive NCP (i.e., net autotrophy), similar to conditions observed
in the ice‐free regions of the adjacent Dalton Polynya. This potential bias due to the timing of
observations with respect to ice melt and the onset of open water biological production will be discussed
in more detail in the next section.

5.2. Interannual Variability

Coastal shelf waters are known to exhibit significant variability that is difficult to diagnose with shipboard
observations (Kaufman et al., 2014; Roden et al., 2013). Fortunately, satellite remote sensing products allow
this variability to be assessed over seasonal and interannual timescales in regions where direct biogeochem-
ical observations do not exist. Surface Chl a concentrations and sea ice coverage can serve as proxies to assess
the variability in biological productivity and the physical environment, respectively, allowing long‐term
trends in regions with sparse in‐situ observations to be evaluated.

Climatological estimates of Chl a (mg/m3) and percent sea ice coverage (%) between 1997 and 2017
(Figure 11) reveal significant interannual variability in the Dalton Polynya. The average seasonal cycle of
Chl a indicates that the onset of productive season can begin as early as October, when light returns in
the austral spring, and suggests that the productive season was underway at the time of observations in early
summer. Maximum concentrations of Chl a typically peak in January, with an average maximum concen-
tration of 2 mg/m3 when sea ice coverage is below 50%. In winter (between May and October), there is little
and/or nondetectable surface Chl a and sea ice coverage is on the order of 70%. Sea ice retreat typically
begins in November.

In contrast to the long‐term average Chl a concentration, the 2014/2015 surface Chl a concentrations
remained relatively low until February, roughly 1 month after then end of the voyage (black line;
Figure 11a). Assuming that Chl a can be considered as reliable proxy for biomass, it is likely that increased
fCO2 undersaturation coincided withmaximum surface Chl a concentrations due to biological drawdown by
photosynthesis. During the period of observations in early January, areas of the Dalton Polynya exhibited
fCO2 supersaturation and low surface Chl a concentrations. Thus, during the 2014/2015 season, our sam-
pling preceded the height of the open‐water productive season, and we observed the early spring‐to‐summer
transition when the surface waters were still supersaturated with respect to atmospheric CO2. If the growing
season persisted throughMarch of the sampling year, as the satellite record suggests, it is likely that the open
surface waters would have become undersaturated in the region as a whole and may have transitioned to a
sink for atmospheric CO2 in the late summer and early autumn seasons. This suggests that our seasonal esti-
mates of NCP in the Dalton Polynya may be underestimated, and these values cannot be extrapolated over

Figure 10. Mean (a) NCP (mmol C m−2 day−1) and (b) nTCO2 (μmol/kg) in the mixed layer for each region. Error bars
represent the standard deviation.
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longer time scales. Similarly, as sea ice coverage near the TIS continued to decline in February, the region
may also have transitioned to net autotrophic conditions.

In addition to the role of sea ice in light limitation, sea ice provides a source of dissolved iron to the surface
waters during the seasonal melt (Lannuzel et al., 2007), which may stimulate biological productivity (e.g.,
Sedwick & Ditullio, 1997). During the 2014/2015 season, the onset of sea ice melt in October is in line with
the long‐term mean (Figure 11b). However, there was an increase in sea ice coverage in December and
January, resulting in a greater degree of coverage than the long‐term average. This late season sea ice growth
would have impeded light penetration, limiting biological productivity and may have restricted the delivery
of iron to the surface waters via sea ice melt in early summer.

5.3. Comparison of the Dalton Polynya With Other Coastal Antarctic Systems

Coastal polynyas range widely in their physical icescapes, formation mechanisms, seasonal sea ice
dynamics, and wind and current regimes, which ultimately influence spring and summer biological produc-
tion and CO2 system properties (e.g., Arrigo et al., 2015). Of the 13 major Antarctic coastal polynyas identi-
fied by Nihashi and Ohshima (2015) and Ohshima et al. (2016), the Dalton Polynya ranks eleventh in terms
of average wintertime polynya area (3.7 ± 2.0 103 km2/year with daily standard deviation) and twelfth in
terms of its mean annual sea ice production (31 ± 3 km3/year) between 2003 and 2011.

The Dalton Polynya has a substantially lower seasonal NCP and summer air‐sea CO2 flux than the majority
of observed coastal polynyas and bays in the East Antarctic (Table 4). NCP from this study in the Dalton
Polynya was similar to values reported in the Mertz Polynya (Adélie and George V Land region of East
Antarctica, 143–148°E) in January 2001 and January 2008, before the calving of the Mertz Glacier Tongue
(MGT) in 2010 (Sambrotto et al., 2003; Shadwick et al., 2014). Precalving air‐sea CO2 fluxes in the Mertz
Polynya were also slightly greater (−15 mmol C m−2 day−1) than the instantaneous fluxes in the Dalton
Polynya reported here due to larger degrees of surface fCO2 undersaturation (Shadwick et al., 2014).
However, NCP and air‐sea CO2 exchange rates in the Dalton Polynya stand in contrast to rates from the post-
calving configuration of theMertz Polynya. TheMGT calving event substantially reducedMertz Polynya size
and sea ice production in the subsequent years (Nihashi & Ohshima, 2015; Tamura et al., 2012), yet postcal-
ving deficits inmixed‐layer TCO2 concentrations and the rates of NCP and air‐to‐sea flux of CO2 in theMertz

Figure 11. Satellite record of mean monthly (a) surface Chl a concentration (mg/m3) from SeaWiFS (July 1997–June
2002) and MODIS‐Aqua (July 2002–June 2017) and (b) percent sea ice coverage (%) from NSIDC (July 1997–June 2017)
in the Dalton Polynya. Error bars represent the monthly standard deviations. The black line in each represents the Chl a or
percent sea ice coverage between July 2014 and June 2015. The absence of points and black line in (a) represents no data.
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Polynya dramatically increased in following summers (Shadwick et al., 2017). These corresponding impacts
to the CO2 system have been primarily attributed to an enhancement in biological production as a result of
large increases in sea ice meltwater, potentially delivering a source of dissolved iron to the mixed layers
(Shadwick et al., 2013). A recent analysis by Moreau et al. (2019) concluded that a larger volume of sea ice
meltwater in the Mertz Polynya and neighboring Ninnis Polynya best explained their enhanced biological
productivities relative to the Dalton Polynya. The calving of the MGT in the Mertz Polynya set up an
interesting natural experiment to assess how changes to the Antarctic icescape impact polynya
productivity. As the Dalton Polynya is sustained by the Dalton Iceberg Tongue to the east, a natural
calving or shift in the sea ice regime near the Dalton Polynya could potentially lead to changes in the CO2

system as similarly experienced in the Mertz Polynya system.

NCP and FCO2 are significantly smaller in the Dalton Polynya than continental shelf waters of the Ross Sea,
where annual rates of primary production can reach up to 180 g Cm−2 year−1, among themost productive in
the Southern Ocean (Arrigo, van Dijken, & Bushinsky, 2008; Smith & Gordon, 1997). Rates of seasonal NCP
exhibit a large range of variability in space and time (Peloquin & Smith, 2007; Smith et al., 2006), though they
are several times greater than those observed in the Dalton Polynya (Table 4). In the Terra Nova Bay (TNB)
polynya in the western Ross Sea (163–167°E), late summer NCP is an order of magnitude larger than the
Dalton polynya at roughly 425 mmol C m−2 day−1 (Table 4; DeJong et al., 2017). Biological production in
TNB is typically dominated by diatoms in summer when stratification is stronger and mixed layers are
shallower (Arrigo et al., 2000; Tortell et al., 2011), in contrast to the Phaeocystis antarctica communities in
the Dalton Polynya (Moreau et al., 2019). Polynya formation in TNB is primarily driven by intense offshore
katabatic winds (Bromwich & Kurtz, 1984) that prevent a consolidated sea ice pack from forming in the lee
of the Drygalski Ice Tongue, with wind speeds often ranging between 10 and 30 m/s (Bromwich, 1989).
DeJong et al. (2017) hypothesize these katabatic winds create ideal conditions for the formation of
Langmuir circulation cells that encourage frazil ice formation, concentrate algal biomass in the surface,
and potentially introduce micronutrient‐ (e.g., iron‐) rich subsurface waters to boost productivity in late
summer. The coupling between enhanced late season primary production and the corresponding undersa-
turation of surface fCO2 and strong wind speeds results in extremely high CO2 uptake rates in TNB surface
waters (−75 ± 32 mmol C m−2 day−1; Table 4). An analysis of environmental controls on coastal Antarctic
productivity by Arrigo et al. (2015) revealed that continental shelf width plays an important role in control-
ling hot spots of productivity. Wider continental shelves, such as in TNB in the Ross Sea, increase the contact
time of bottom waters with iron‐rich sediments. Advection of iron‐rich subsurface waters to the upper sunlit
layers could play a role in driving the late summer TNB productivity (DeJong et al., 2017). This mechanism
of iron delivery is less likely on the narrower continental shelf waters in the Dalton Polynya.

In Prydz Bay, located in the Indian Ocean sector of the Antarctic (70–80°E) , NCP rates on the order of
15 ± 3 mmol C m−2 day−1 (1.8 ± 0.4 mol C/m2 over a 4‐month period) have been reported (Roden et al.,
2013). Seasonal deficits in mixed‐layer TCO2 were attributed to a combination of sea ice melt and

Table 4
Estimates of Net Community Production (NCP) and Air‐Sea CO2 Exchange From Coastal Regions in East Antarctica

Region Location NCP Air‐Sea CO2 Exchange Year Reference

Dalton Polynya 66.5 °S 120 °E 10 – 20 −1 to 5 2015 This study
Mertz Polynya 66.5 °S 145 °E 26 – 70 –30 to –5 2013 Shadwick et al. (2017)

35 – 76 2012 Shadwick et al. (2017)
25 – 78 2011 Shadwick et al. (2017)
13 – 27 –15 2008 Sambrotto et al. (2003)
11 – 19 2001 Shadwick et al. (2014)

Terra Nova Bay,
Ross Sea

68.5 °S 75 °E 425 ± 204 2013 DeJong et al. (2017)

–72 ± 32 2013 DeJong & Dunbar (2017)
Prydz Bay 75.0 °S 165 °E 15 ± 3 –15 to 2 2011 Roden et al. (2013)

–28.4 1995 Gibson & Trull (1999)
–37.2 1994 Gibson & Trull (1999)

Note. All units are mmol C m−2 day−1.
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biological production (Roden et al., 2013), similar to the drivers of TCO2 depletion in the Dalton Polynya,
resulting in low surface water fCO2 and an air‐to‐sea flux of CO2. Recent studies in Prydz Bay propose
that glacial meltwater from the nearby Amery Ice Shelf may bring a large, bioavailable source of dis-
solved iron from marine‐accredited ice beneath the ice shelf, locally enhancing primary productivity
(Herraiz‐Borreguero et al., 2016). In contrast to the glacial meltwaters introduced by the intrusions of
mCDW beneath the TIS and MUIS (warm‐regime) to Dalton Polynya, the glacial meltwaters introduced
into Prydz Bay are the result of intrusions of cold Dense Shelf Water beneath the Amery Ice Shelf (cold
regime; Silvano et al., 2016). The resulting outflow of supercooled ISW can entrain subglacial dissolved
iron into the marine ice layer beneath the ice shelf and, upon basal melting, can deliver dissolved iron
onto the continental shelf in concentrations up to 4 orders of magnitude higher than typical Southern
Ocean waters (Herraiz‐Borreguero et al., 2016). In the analysis by Arrigo et al. (2015), the input of basal
meltwater by nearby ice shelves can explain almost 60% of the variance in mean Chl a concentrations in
Antarctic polynyas. The ongoing input of glacial meltwater from the basal melting of the TIS and MUIS
may drive future changes to the biological productivity and carbonate chemistry in the adjacent Dalton
Polynya waters.

6. Conclusions

New shipboard observations from the Dalton Polynya were used to assess the biological and physical con-
trols on the CO2 system during the early summer season between December 2014 and January 2015.
Profiles of TCO2 concentration allowed the seasonal NCP to be estimated. The Dalton Polynya is found to
be net autotrophic in ice‐free areas, though the rates are lower than those observed elsewhere in the East
Antarctic. The surface waters near the Totten Ice Shelf show relatively little TCO2 drawdown, likely due
to the ice coverage impeding light penetration to support photosynthesis. NCP near the TIS suggest weakly
heterotrophic conditions, with a surplus of organic matter to fuel remineralization potentially coming from
the TCO2‐rich winter water during deep mixing. Because polynyas are open or have reduced sea ice cover
year‐round, they are often thought of as areas of intense biological production leading to enhanced air‐sea
CO2 exchange and uptake of atmospheric CO2. The observations presented here provide an alternative view
of Dalton Polynya, with midsummer outgassing of CO2 to the atmosphere. However, satellite derived Chl a
concentrations suggest that late‐summer productivity increased in parallel with declining sea ice coverage
after the completion of the voyage. Long‐term remote sensing data indicate interannual variability in surface
productivity in the Dalton Polynya and neighboring areas is significant. Improved understanding of CO2 sys-
tem dynamics in the coastal Southern Ocean will require more observations to accurately assess the status of
these systems as CO2 sources or sinks.
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