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Magnetic transition in a correlated band insulator
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The effect of on-site electron-electron repulsion U in a band insulator is explored for a bilayer Hubbard
Hamiltonian with opposite sign hopping in the two sheets. The ground-state phase diagram is determined at
half-filling in the plane of U and the interplanar hybridization V through a computation of the antiferromagnetic
(AF) structure factor, local moments, single-particle and spin wave spectra, and spin correlations. Unlike the
case of the ionic Hubbard model, no evidence is found for a metallic phase intervening between the Mott and
band insulators. Instead, upon increase of U at large V , the behavior of the local moments and of single-particle
spectra give quantitative evidence of a crossover to a Mott insulator state preceding the onset of magnetic order.
Our conclusions generalize those of single-site dynamical mean-field theory, and show that including interlayer
correlations results in an increase of the single-particle gap with U .

DOI: 10.1103/PhysRevB.87.125141 PACS number(s): 71.10.Hf, 02.70.Uu, 71.27.+a

I. INTRODUCTION

Whether interactions might drive metallic behavior in
two-dimensional disordered systems, where disorder just
marginally succeeds in localizing all the eigenstates, is a
question that has been the subject of considerable experimental
and theoretical scrutiny.1–3 It is natural to ask the same question
concerning band insulators which likewise have vanishing dc
conductivity in the absence of interactions. In the case of band
insulators, carrier density plays an especially central role, since
the band must be precisely filled. This lends an additional
complexity to the issue, since interactions might also give rise
to Mott insulating and magnetic behavior.

The possible connection between disordered interacting
systems, and correlated band insulators is made more concrete
by considering the Anderson model, where random site
energies couple to the local density, and the “ionic” Hubbard
model (IHM)4 which has a superlattice potential where the
site energy has a regular structure, taking two distinct values
on the sublattices of a bipartite lattice. On the one hand, it
is plausible that the same physical effects that could cause
a metallic transition for random site energies, the reduction
of charge inhomogeneity and resulting delocalization of the
electronic wave functions by interparticle repulsion, would
also be operative in the patterned case. On the other hand,
momentum is still a good quantum number in the presence of
a regular array of site energies, suggesting possible differences
between the effect of U in the two situations.

The approximations made in the most simple, single-
site, dynamical mean-field theory (DMFT) approach5 to the
treatment of electron-electron interaction emphasize some of
the possible nuances in attempting to elucidate the physics of
correlated band insulators. Single-site DMFT can capture the
band insulator (and how it differs from an Anderson insulator)
by incorporating a density of states with N (EF) = 0. However,
it also minimizes the role of momentum, and hence blurs some
of the distinction between band and Anderson insulators.

DMFT has, in fact, been used to explore whether cor-
relations can drive a band insulator metallic. Garg et al.

found6 that for the IHM, treated within single-site DMFT,
the band gap becomes zero at a critical Uc1, with a Mott gap
re-emerging at a larger Uc2. In between, the system is metallic.
A subsequent cluster DMFT study of Kancharla et al.7 which
incorporated antiferromagnetic correlations, found a phase
diagram with somewhat different topology, but still exhibiting
an intermediate region which was suggested to have bond
ordered wave character.

II. MODEL

In this paper, we shall consider a bilayer Hubbard Hamil-
tonian:

Ĥ = −
∑

〈jk〉,l,σ
tl (c†j,l,σ ck,l,σ + c

†
k,l,σ cj,l,σ )

−V
∑
j,σ

(c†j,1,σ cj,2,σ + c
†
j,2,σ cj,1,σ ) −

∑
j,l,σ

μl nj,l,σ

+U
∑

j,l

(
nj,l,↑ − 1

2

)(
nj,l,↓ − 1

2

)
, (1)

which provides a specific realization of the effect of electronic
correlation in band insulators. In Eq. (1), c

†
j,l,σ (cj,l,σ ) are

creation(destruction) operators for fermions of spin σ on site
j of layer l = 1,2. The intralayer hoppings are tl between
near-neighbor sites j,k of a two-dimensional square lattice,
and the interlayer hopping is V . Correlation is introduced in
the model through the on-site repulsion U . We have included
a chemical potential μl for generality. However, here we focus
on the half-filled case μl = 0.

If the in-plane hoppings are chosen with opposite sign,
t1 = −t2 ≡ t , Eq. (1) is a band insulator at U = 0 with
Eq = ±

√
ε2

q + V 2. (In the remainder of this paper t = 1 will
be taken as the unit of energy.) This bears a strong resemblance
to the dispersion relation of the 2D IHM whose superlattice
potential �

∑
j(−1)jnj similarly has the effect of opening a

band gap at q = (π,π ), altering the � = 0 dispersion relation
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εq to Eq = ±
√

ε2
q + �2. Real space quantum Monte Carlo

(QMC)8 has supplemented DMFT studies of the IHM6 by
allowing for magnetic order and concluded that U could cause
the appearance of a metallic phase. However, despite the
similarity in Eq between the IHM and Eq. (1), the physics
of the two models is fundamentally different: The bilayer has
twice as many allowed q points and uniform average density,
〈nj,l,σ 〉 = 1

2 . This is in contrast to the staggered charge density
wave pattern in the presence of the superlattice potential in the
IHM. This difference, combined with the local character of the
interaction, is at the origin of the contrast in the ground-state
properties which we will present.

As with the IHM, the Hamiltonian in Eq. (1) has been
previously studied within the DMFT formalism,9 with a model
hybridizing two bands with identical, semielliptical density of
states. DMFT finds a scenario remarkably similar to the one
observed for the metal-insulator case in the standard single
band model at half-filling: a first-order transition between band
and Mott insulator characterized by a discontinuous change
in the double occupancy. Remarkably, upon increasing the
interaction, DMFT also predicts that the single-particle gap
should monotonically shrink in stark contrast with the behavior
in the Mott phase where the gap grows monotonically with U .

We will explore these issues using determinant quan-
tum Monte Carlo (DQMC).10 This method allows an exact
calculation11 of the properties associated with the Hamiltonian
in Eq. (1), on lattices of finite spatial extent. Here we will
show results for systems consisting of two sheets of up to
N = 14 × 14 sites.

III. MAGNETIC TRANSITION

We start our discussion of the phases of Eq. (1) by looking
for possible antiferromagnetic long-range order (LRO). The
most direct signature is the thermodynamic extrapolation of
the in-layer structure factor (which has the same value on the
two layers),

S(q) = 1

6N

∑
j,k,l

〈
σ z

k,lσ
z
j,l + 2 σ−

k,lσ
+
j,l

〉
eiq·(k−j),

(2)
σ z

j = c
†
j↑cj↑ − c

†
j↓cj↓; σ+

j = c
†
j↑cj↓; σ−

j = c
†
j↓cj↑,

converging to a nonzero value as N → ∞. We will focus
on antiferromagnetism, Saf = S(π,π ), which is the expected
dominant magnetic instability at half-filling. Because of the
continuous spin symmetry and the fact that we are in two
dimensions, we expect LRO only at T = 0.

The finite-size scaling analysis necessary to locate the
critical value of U for onset of magnetic order is presented
in Fig. 1 for V = 0.5. At weak coupling U � 4.0 there is no
LRO. As the on-site repulsion increases, LRO sets in around
U ≈ 4.2. Our value of Uc is significantly smaller than the
DMFT estimate of approximately 5.59 which was, however,
computed for a transition to a Mott insulating state without
long-range magnetic order.

We repeated the finite-size scaling analysis for several other
values of V and obtained the phase diagram shown in the
inset of Fig. 1. There is a qualitative difference between
the DQMC results and the transition line mean-field theory
(MFT) predicts. Beyond V = 0.5 the DQMC curves rises
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FIG. 1. (Color online) Finite-size scaling of the AF structure
factor at V = 0.5. Symbols are DQMC data for Saf . Lines are fits
to third-order polynomials in the inverse linear lattice size 1/

√
N .

The inset shows the transition line computed with DQMC (dashed)
and MFT (dotted). The vertical line corresponds to the critical V ,
predicted by studies on the Heisenberg model, above which no
magnetic long order is possible. Circles correspond to maxima in
dm/dU as a function of U at constant V (see Fig. 2).

much more sharply than the MFT one as a result of the
competition between interplanar singlet formation and AFM
correlation which is lacking in the mean-field description. Note
also that known results for the Heisenberg bilayer12,13 imply
that for V > Vc = 1.59, no order is established regardless of
the magnitude of U . Determining the values of Uc as Vc is
approached becomes quickly intractable for V > 1.0 since the
energy scale at which magnetic correlations develop decreases
and fluctuations in the DQMC measurements of long-range
correlations increase.

IV. LOCAL MOMENTS

Within DMFT,9 the phase boundary is determined by a
discontinuity in the double occupancy d, the latter being
related to the local moment m by

m = 1

N

∑
j

〈(
σ z

j

)2〉 = 1 − 2

N

∑
j

〈nj ↑nj ↓〉 = 1 − 2d.

Local moment formation is the key signature for the onset of
Mott insulating behavior and it has been previously reported
to happen discontinuously at a Mott metal-insulator transition
within other approaches as well, such as path-integral renor-
malization group14 and variational Monte Carlo.15 Figure 2(a)
shows the dependence of m on interaction strength for several
values of V with no evidence of the sharp discontinuity found
in DMFT.

However, for small V (e.g., V = 0.5), we found that the
magnetic transition is located in correspondence to a maximum
in ∂m/∂U [see Fig. 2(b)]. Numerical differentiation does not
allow us to establish whether there is an actual singularity in
the behavior of ∂m/∂U—so that one could use this quantity to
characterize a phase transition—or whether the maximum is
a simple manifestation of a crossover to the local moment
regime. At larger V the value of U where the maximum
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FIG. 2. (Color online) (a) Local moment m as a function of U

for 8 × 8 layers at β = 15 (symbols). (b) First derivative of the local
moment with respect to U , ∂m/∂U , shows a peak at the transition to
the Mott insulating state. (c) A close-up view of (b) shows the peak
is no longer present for any U above Vc ≈ 1.2.

appears is reduced [Fig. 2(c) and circles in Fig. 1], presumably
as a consequence of the increased electron localization on
the interplane bonds, whereas Uc for the onset of AFLRO
is expected to grow monotonically. This decoupling of the
behavior of local moments from magnetism is suggestive of
the possibility of an intervening Mott insulating state with no
broken symmetries.

V. ENERGY GAPS AND SPECTRAL FUNCTIONS

We now investigate the evolution of the energy spectra.
The single-particle gap �sp and spin excitation gap �S were
extracted from the imaginary time-dependent correlations:

G(τ ) =
∑
i,σ

〈ci,σ (τ )c†i,σ (0)〉 ∝ e−τ�sp ,

χ (τ ) =
∑
i,σ

〈σ z
i,σ (τ )σ z

i,σ (0)〉 ∝ e−τ�S .

Figure 3(a) shows the evolution of these gaps when the
interaction U is increased, for different values of the interlayer
hybridization V . Starting from the noninteracting limit, where
the single-particle gap and the spin gap are expected to
be, respectively, equal to V and 2V , the two quantities
follow opposite evolutions regardless of whether there is a
tendency toward AFM (small V ) or singlet formation (large
V ). In particular, we found that for all three values of V

considered in Fig. 3, the effect of correlation is negligible
up to U � 2, in agreement with the findings of Sentef.9

However, we observe a significant discrepancy between the
effect of correlation in DMFT and in DQMC: in DQMC the
single-particle gap �sp shows no indication of the shrinking
trend predicted by DMFT, not even in the small U limit where
the role of long-range correlation should be negligible and the
paramagnetic solution is likely the correct ground state within
single-site DMFT. We checked that the values of the gaps are
converged in both size of the cluster [Fig. 3(b)] and temperature
[Fig. 3(c)]. Although it is certainly the case that this difference
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FIG. 3. (Color online) (Main panel) Gaps in the single-particle
spectral function and the spin-spin correlation function are shown as
functions of interaction U for several values of interlayer hopping V .
At weak U , the spin gap �S is precisely twice the single-particle gap
�sp, as expected in a Fermi liquid phase. The smaller panels at right
show the finite size (top) and finite temperature (bottom) effects for
the spin gap.

in physics is associated with the effects of nonlocal spatial
correlations on spectral properties, as noted in discussions
of cluster extensions of DMFT,16–18 our calculation does not
allow one to address the interesting issue of whether the
discrepancy originates from the neglect of interlayer singlet
correlation or intralayer short-range antiferromagnetism. The
former represents a somewhat more severe failure of single-site
DMFT as the difference would be largely independent of the
underlying lattice structure and on whether or not the latter
supports any ordering tendencies.

In-layer momentum-resolved single-particle and spin exci-
tation spectra [A(q,ω) and χ (q,ω)] are obtained by inverting
the integral equations,

G(q,τ ) =
∫ β

0
A(q,ω)

e−ωτ

1 + e−βω
dω,

χ (q,τ ) =
∫ β

0
χ (q,ω)

e−ωτ

1 − e−βω
dω,

using the maximum entropy method.19,20 G(q,τ ) and χ (q,τ )
are the in-layer momentum resolved counterparts of the
correlation functions previously introduced. Figure 4 shows
the single-particle (top panels) and spin (bottom panels)
spectral densities and compare an AFM situation (left) against
a case where no order is found by a finite-size scaling analysis
(right). Thanks to the Goldstone theorem, the spin spectra
provide a complementary indication of the presence or lack
of AFM long-range order. We verified that, indeed, parameter
regimes that were predicted to be AFM by scaling analysis
are characterized by the existence of a massless mode at
(π,π ) which is conspicuously absent in paramagnetic cases.
The single-particle spectrum, on the other hand, helps in
characterizing the paramagnetic phase more precisely as it
shows an almost rigid shift of the noninteracting bands, a
behavior indicative of a Mott insulating regime. At large V , but
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FIG. 4. (Color online) (Top row) Single-particle spectral function
in the presence (left) and absence (right) of AFM order. (Bottom
row) Same as top row but for the spin spectral function. Results are
computed on an N = 12 × 12 cluster at β = 20. Lines in the top
panels are the corresponding energy bands when U = 0.

still below Vc, our results therefore suggest that, upon increase
of U , the system shows a first crossover to a featureless Mott
insulating state and then a transition into the antiferromagnet.
It is the crossover that can be most directly contrasted with the
DMFT scenario which predicts a split narrowing resonance in
the weak-to-intermediate U range and then a transition to a
Mott insulator.

VI. SPIN CORRELATIONS

The real space spin correlations across the layers 〈σj1 · σj2〉
are shown in Fig. 5(a). The generic behavior of bilayer models
(and related Hamiltonians like the periodic Anderson model)
is the development of singlets with increasing V at fixed
U , and the associated destruction of AFLRO, signalled by a
growth in 〈σj1 · σj2〉. The development of such interplane spin
correlations can be seen in Fig. 5 by comparing the different
curves at fixed U . The evolution at fixed V also provides
consistent indications of the underlying physics previously
inferred from the structure factor Saf , the local moment
m, and the excitation gaps. Specifically, the interlayer spin
correlations first increase as interactions are turned on, but
then have a kink, or even turn over, as the AF phase is entered.
For V = 0.5 for example, the kink appears at U ≈ 4.0.

The intraplane real space nearest-neighbor spin correlations
are shown in Fig. 5(b). They increase monotonically (in abso-
lute value) with U for all V , indicating that the on-site Hubbard
U enhances short-range intraplane antiferromagnetism.21 This
quantity offers yet another local diagnostic for the onset of
order as it shows an inflection point in close correspondence
to the transition. Moreover, comparison of the results in the two
panels at V = 0.5 and small U reveals that it is the interplane
spin correlation that grows more rapidly. We take this as a
further indication that the discrepancy in the behavior of the
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FIG. 5. (Color online) Near-neighbor real space spin-spin cor-
relations (a) across the layers and (b) within an individual plane. At
small V < 1.2 the correlations converge to finite values characterizing
the magnetic ordered phase, while for large V = 2.0, the system is
made of almost decorrelated singlets.

single-particle gap between our calculation and single-site
DMFT is not due to the presence of intralayer short-ranged
magnetic order but to the inclusion, by the DQMC approach
used here, of interlayer singlet correlations.

VII. CONCLUSIONS

In this paper we studied the effect of introducing local
interaction in the band insulator formed by a bilayer with
opposite sign of the hopping integral. We found strikingly
different physics from the ionic Hubbard model owing to
the fact that the system is perfectly homogeneous and
accompanied by a tendency toward singlet formation as the
band gap increases. As the strength of the interaction is
increased, and below a critical interplane hybridization, a
transition to a Mott insulator with antiferromagnetic order
ensues. This transition was studied by examining several
physical observables such as the magnetic structure factor, the
local moments, single-particle and spin excitations resolved
in both energy and momentum, and spin correlations. The
behavior of ∂m/∂U and spectral functions suggests that, as V

grows, the magnetic transition is preceded by a crossover into
a featureless Mott insulating state. A more subtle question is
whether such crossover may, in fact, be a transition. Obviously,
this is a delicate point that requires validation from calculations
on larger clusters and the use of a direct estimator for ∂m/∂U

rather than the finite difference employed in this work.
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