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ABSTRACT

Injuries are a significant aspect of every sport, with the ability to impact a player’s
career and the success of a team in their season. As sensor data is able to pick up
on a player’s physical state, recently it has been analyzed for its ability to predict
player injuries. We inspect the predictive power of player stats, subjective player
responses, GPS data, and training load data in forecasting game injuries from an
NCAA American football team during the 2019 season. Data processing
techniques are used to remove noise and decrease correlated data, and as large
portions of the data is missing, multiple methods of data interpolation are tested.
Survey data and player stats have the most predictive power for injuries with GPS
and training load data performing at near-random levels. Overall, when modeling
player stats and survey data together, injury predictions had a precision of .47,
recall of .74, and an F1 score of .52 significantly outperforming random guessing.
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1 Introduction

Football is a popular American sport where two teams attempt to move a ball across

the field to score points. In the process, players need to sprint, pivot, tackle, block, and

pass the ball to each other. Within each team, players specialize in the role that they play,

with each position having a different job on the field. These include throwing the ball,

tackling the opponent with the ball, or preventing opposing team members from moving

the ball down the field. These movements are typically carried out in rapid bursts called

plays, during which injuries can occur due to the force exerted on joints and muscles [40].

Typically, injuries are classified as contact injuries that result from player contact, non-

contact injuries in movements like pivoting or accelerations, and chronic injuries that are

a result of joint overuse.

In recent years, football’s image has been hit hard due to the risk of injuries associated

with the sport, especially the number and severity of concussions. While the National

Football League (NFL) attempted to create rule changes to make the game safer and less

injury-prone, their success has been limited [34]. Beyond affecting the safety of the sport,

injuries also affect the short-term performance of players and the players’ teams. Some

injuries also have a long-term impact on a player’s health, and repeated concussions often

result in mental health consequences later in life. From the policy-making perspective,

the two major ways of reducing injuries in football are through new technology and rule

changes [34]. Athletic trainers and coaches also aim to minimize injuries by managing

the physical preparation of athletes through their training regiment. In this study, we

will examine how machine learning can further reduce the risks of injury associated with

football by investigating its potential to foresee injuries before they occur.

While previous research on injury prediction in football is limited, GPS data has been

shown to be successful in forecasting injuries in soccer [32]. That being said, American

football and soccer are two very different sports, and the physical exertion on players is also

very different, as there is much less contact between players in soccer. In Australian foot-
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ball, subjective player data collected through surveys was able to forecast player injuries

one week out [21]. While there is contact in Australian football, the play is continuous in

Australian football, and the positions are much less rigid compared to American football.

Thus, while some information might be useful for injury detection in one sport, it will not

necessarily be as useful in other sports. This raises the question: What contextual and

collected data can be used to predict injuries in football?

To address this question, we collected player statistics, GPS data, subjective player

responses, training load data about practice intensity, and omegawave data about physical

recovery. This was collected on a Division 1 College football team over the course of the

2019 season, which consisted of 11 games spanning four months. We collected data on a

total of 101 players, where 31 of the top players that saw more game time collected more

data.

As with other real-world studies, a significant portion of data was missing in our study,

affecting the effectiveness of the machine learning algorithms. Some of the missing data

was a result of not having enough sensors to collect on all of the players, while other

missing data resulted from not collecting on off days or from athletes simply forgetting

to collect data. Typically, the issue of missing data is addressed by relying on contextual

information; however, as there was no best way of filling in missing values for our given

context, we evaluated multiple methods of data interpolation on each data stream.

Lastly, using the interpolated data, we analyzed the predictive power that GPS data,

training load data, survey data, and player statistics have in forecasting game injuries.

This was done by fitting a Logistic Regression on each collected feature and evaluating

the statistical significance of the slope of that Logistic Regression. Next, we examined if

the features that are statistically significant in the training data retained their predictive

power in the test set in order to evaluate the predictive power of the selected features.

This study’s main contributions are the following:

• We collected a data set by recording player stats, GPS data, survey responses,
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training load data, and Omegawave recordings that preceded injuries in a NCAA

Division 1 American football team over the course of one season.

• We examined the effectiveness of five methods of data interpolation in order to ad-

dress the common issue of missing data. We found that Matrix Completion methods

had outperformed other data interpolation methods in most cases.

• We analyzed the predictive power that GPS data, survey responses, training load

data, and player statistics have in predicting American football injuries. We found

that survey data and player stats had some ability to predict injuries, while none of

the GPS or training load features had statistically significant predictive power.

The rest of the thesis is structured as follows. We start by describing previous work

done with sport injury predictions in Section 2. Then, the collected data is described in

Section 3. Next, as large portions of the collected data is missing, multiple interpolation

methods are tested to achieve the best injury prediction model. This is done in Section 4.

In Section 5, we remove highly correlated features and create new features that provide

novel information, such as how the features change from one week to the next. After that,

in Section 6, we select features that have predictive power for game injuries. In Section

7, we model the data using different machine learning techniques to predict game injuries

on the top players. Lastly, we wrap up with our discussion and conclusion.

2 Related Work

Machine learning has been applied to sports science to tackle a variety of issues. These

include performance prediction and injury risk analysis, amongst other issues such as

team management and match attendance [6]. These studies have been carried at both

the collegiate and professional levels [6] across different sports, including track and field

[28], soccer [32], and Australian football [32]. While some previous studies focused on

overall injuries, many studies focused on specific injuries, such as knee injuries [29] or
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heart malfunction [1]. In extension of these works, we consider the problem of predicting

overall injuries in American football. As the rest of our thesis does not focus on one

specific injury, this section does not discuss work done with predicting specific injuries.

Neural Networks have been used to assess the physical readiness of athletes by forecast-

ing athletic performance at competitions. Peterson [28] used Recurrent Neural Networks

to predict sprinting performance based on heart rate variance data collected on an NCAA

track and field athlete over the course of 32 competitions. He was able to predict race times

with an above random accuracy when testing on 6 held out competitions [28]. While this

does not predict injuries and is limited to one athlete, the omegawave data had predictive

power for an individual’s performance, reflecting individual physiological preparation that

can be linked with injuries.

In addition to athletic performance, Peterson [27] also researched sports injuries. He

monitored 21 female student-athletes on three undisclosed teams to predict injuries based

on accelerometer data, heart rate variance data, and self-reported data. He used Bayesian

Networks to look at key injury predictors that can be detected from the collected data.

Peterson conducted three rounds of 5 fold cross-validation and was able to outperform the

accuracy of naive classification [27]. Similar to Peterson [27], we collect GPS data, training

load data, survey data, and omegawave data; however, we look at injury prediction for

games in order to address weekly patterns in the data that precede competitions since

competitions result in a higher number of injuries.

McCullagh and Whitfort [21] used artificial neural networks (ANNs) to estimate when

players will get injured in Australian football. Each week, they analyzed thirty attributes

that included physical preparation tests and subjective player responses to fit an artificial

neural network with 15 hidden nodes to predict injuries in the following week. They used

10 fold cross-validation and were able to train the ANN with an accuracy of 82% and an

F1 score of .59 [21]. Similar to this study, we use subjective player data to predict injuries

on a weekly basis. However, we also compare it with GPS data and more detailed training

load data when predicting American football injuries. We evaluate our system leaving
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one game out for testing as opposed to cross validation in order to better simulate injury

predictions for future games.

Lastly, Rossi et al. [32] predicted injuries in soccer based on GPS data using Decision

Trees, Random Forests, and a Logistic Regression. They conducted this study on 26

participants with a total of 23 non-contact injuries over the course of 23 weeks and had a

total of 931 player points (data-points for a player on any given day). They used thirty

percent of their data to select features and tune parameters. Next, then they split the

remaining data into two equal folds, training and evaluating each model on each of the

folds. This procedure was repeated 1000 times, changing the way that they split their

data. In the end, they were able to predict game and practice injuries with an F1 score of

.6 [32]. Compared with Rossi et al., we evaluated survey and training load data in addition

to GPS data, and we predict injuries during games that the model was not trained on,

making the results more rigorous.

Overall, multiple sources of data have shown to have forecasting power to predict

injuries across a variety of sports. Physical preparation tests and player surveys had

predictive power in predicting injuries in Australian football [21], and GPS features were

shown to be effective at predicting injuries in soccer [32]. Omegawave heart rate variance

data was also shown to be effective in forecasting athletic performance [28]. In this thesis,

we predict football injuries, and, as sports differ in the way they are played, it is not

necessarily the case that the predictive power of one data source carries over across sports.

Thus, we evaluate GPS data, training load data, and survey data for their predictive power

in American football. By testing our results on games that are left out of the training set,

the results show predictive power for games that have not been observed.

3 Data Collection

The data was collected on an NCAA Division 1 American football team (101 players)

over the course of 113 days in their 2019 season. During the season, there were a total of
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173 recorded injuries, where over half (89) of them occurred during games that made up

only 10% of all days. Thus, we observe that injuries were more common during games,

as can be seen in Figure 1. To determine ways of foreseeing these injuries, we recorded

five different streams of data that include player stats, training load data, survey, GPS,

and omegawave data. Player stats, training load, and surveys are collected on all players

as they do not require special sensors. However, due to costs of omegawave [24] sensors

and Catapult’s Playertek [16] GPS sensors, we were not able to collect GPS data and

omegawave data on all of the athletes, so we prioritized data collection on some players

over others. For example, starters and the players with the most game time were given

GPS monitors because these players are most important to the team’s success and typically

sustain the largest amounts of injuries. Omegawave sensors were also given to players that

were considered to be most critical for the team’s success and the ones that would be the

most consistent with data collection as these players would have the largest impact on

the team’s performance and the sensors required larger efforts from the players for data

collection. Overall, GPS data was collected on 31 athletes, and omegawave data was

collected on five players. The study was IRB approved, and all of the players gave their

written consent to participate. In the remainder of this section, we describe how the data

was collected and what type of information is valuable from each source of data, how it

was collected, and when it is missing. We will start by discussing the weekly practice

schedule in order to put the patterns observed in the data in context.

Figure 1: Injuries and Schedule
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Schedule During the season, the football team typically had games on Saturdays. Sun-

days were lighter practices, and Mondays were off days. Tuesdays and Wednesdays were

harder practices with some scrimmages, and Thursdays and Fridays were lighter days be-

fore games on Saturday. There was one game that took place on Friday; however, all other

games happened on Saturdays. The practice schedule can be seen in Figure 1.

Figure 2: When Data Was Missing

Figure 2 presents when data was missing for each source of data. Each data row is

broken down into 113 days, and the the percentage of players that collected that sensor is

indicated by the color of a box. Dark colors indicate that most players collected a certain

sensor on a given day, and light levels indicate that the sensor was not collected on most

players on a given day.

Table 1: Collected Player Stats

Feature Description

Date Date of data-point

Weekday Day of the week (Mon-Sun)

Player Id Id associated with player

Position The position of the player

Class The year in school

Starter If a player is a starter or not

Skill Group Players were separated into three skill groups

Number of Injuries Number of Injuries that a player has had

Game Whether or not it is game day

Game Participation Whether or not a player played in the game

Practice Whether or not there is practice

Conditioning Whether or not there is conditioning
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Player Stats Player stats are measurements that reflect basic information about a

player and the type of exercise that they do on a given day. Unlike the other data, while

these statistics might suggest how likely a given player will get injured on a given day, they

do not reflect information about a player’s health. They include the a player’s position,

class standing, and the number of injuries that they have had during the season. While

more player stats are included in Table 1, only the ones mentioned here are relevant for

game injuries. The other statistics such as Day of Week or Game, Practice, and Condi-

tioning indicate player activity and provide useful information about training sessions in

general that are not limited to games. These values are collected by coaches and staff

rather than the players so none of the data is missing.

Table 2: Collected Training Load Data

Duration Duration of training session

RPE Rate of perceived exercise (1-10)

Global Load Overall training load measure (RPE × Duration)

Training Load Training load data reflects information about practice intensity. It is

composed of practice and game duration and the rate of perceived exercise (RPE). The

rate of perceived exercise is a subjective measure of exercise intensity on a scale from

one to ten provided by each player at the end of each practice. Global load is calculated

by multiplying RPE by the practice duration. These metrics are commonly collected by

teams to keep track of practice intensity [22], and are displayed in Table 2. As RPE and

Duration were recorded by the players at the end of practice, training load data is present

for 93% of the players during games and practice days. However, no training load data

was collected on off days. Thus it can be observed that days with 100% of the training

load data missing in Figure 2 correspond with off days in Figure 1.
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Table 3: Collected Survey Data

Sleep Quality Rate the quality of your sleep (deep, restful, satisfying) [1-10]

Hours of Sleep How many hours did you sleep? [1-10]

Recovered How physically strong and recovered does your body feel? [1-10]

Mood How is your mood? [1-10]

Energy How is your energy (alertness, focus)? [1-10]

Soreness Do you have any muscle or joint soreness, stiffness, or tightness? [1-10]

Wellness Quotient Overall subjective measure of player health [0-100]

Survey Data Survey responses record subjective data about the quality of a player’s

recovery and how they feel. These include information about sleep quality on a scale from

one to ten, the number of hours that a player sleeps, the feeling of how recovered they

are, their mood, energy, and soreness. These are commonly collected values adopted from

the Hooper-Mackinnon Wellness questionnaire [13, 38]. All of these are on a scale from

one to ten and are presented in Table 3. Lastly, this data is used to compute a quotient

reflecting a players wellness on a scale from one to 100. It is calculated by finding the

z score of a recorded survey value compared to that value’s readings for a player in the

two previous weeks. These z scores are then scaled to 1 with the following mapping:

{> 1.5 : 1, > .9 : .9, > 0 : .75, < 1.5 : .6}. They are then averaged amongst all of the values

for mood, energy, and the other features from a given day, and then multiplied by 100

to find the Wellness Quotient. While methods to calculate an overall quotient vary, it is

common for it to be calculated [38]. To collect survey data, surveys were delivered to the

players each day as a google survey. As players started recording their responses one week

before the first game, the first few weeks are missing. Since the players were also able

to complete the surveys at home, they were collected more evenly throughout the week

compared with other data sources; however, they still fluctuated throughout the week.

Surveys were most frequently collected Tuesdays through Fridays and on Sundays. Thus,

an average of 39% of player surveys are missing from those days, and an average of 75%

of the surveys are missing on Saturdays and Mondays. Only the top players were asked to
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collect surveys on Saturdays as those were game days, and Mondays were typically days

off. This corresponds with Figure 2, where Saturdays and Mondays tend to have 70 % of

the data missing.

Table 4: Collected GPS Data

Duration Duration of training session

Distance Distance a player ran in a training session

Sprint Distance Distance a player ran at a speed greater than
5 m/s

Power Plays # of actions in which power exceeds 20 wat-
t/kg of player weight

Energy burned kcal burned during training session

# Impacts Detects impacts greater than 5g

# Accelerations Number of times a player accelerates

# Decelerations Number of times a player decelerates

# Sprints Number of times a player sprints

Top Speed Top speed of a player

Distance Per Min Average speed of player

Power Score Power output per kg of player weight

Work Ratio Percent of time that player was moving faster
than 1.5 m/s

Player Load Sum of all accelerations across training session

Player Load Per Min Time averaged player load

Dist. & Time in Speed Zone (1-5) Distance that a player covers when running at
different speeds

# of impacts by level of impact (1-5) Number of impacts that a player has at differ-
ent levels of impact

# Power plays by duration (1-5) Number of powerplays separated into groups
based on time

Dist., Time & Num for Accel. Zones (1-5) Time, distance, and number of accel. in zones
based on accel. intensity

Dist., Time & Num for Decel. Zones (1-5) Time, distance, and number of decel. in zones
based on decel. intensity

Dist. & Time in Power Zones (1-11) Time and distance in zones grouped by the
power that a player exerted

GPS Data While survey data reflects recovery, GPS data reflects practice intensity by

recording player motion during practices. It records information about the duration over
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Table 5: Zones recorded by GPS

Name Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Speed Zone (% MAX) 0 - 20 % 20 - 50 % 50 - 75 % 75 - 90 % > 90 %

Power Play Duration Zones 2.5 - 5 s 5 - 7.5 s 7.5 - 10 s > 10 s -

Accel & Decel Zones 0 - 1 m/s/s 1 - 2 m/s/s 2 - 3 m/s/s 3 - 4 m/s/s > 4 m/s/s

Power Zones (1-5) 0 - 5 w/kg 5 - 10 w/kg 10 - 15 w/kg 15 - 20 w/kg 20 - 25 w/kg

Zones (6-10) 25 - 30 w/kg 30 - 35 w/kg 35 - 40 w/kg 40 - 45 w/kg 45 - 50 w/kg

Zone 11 > 50 w/kg - - - -

which it was recording, the total distance that a player traveled, and the distance that

a player sprinted, amongst other factors as shown in Table. 4. Player motion was also

partitioned into different zones, including speed zones, acceleration zones, deceleration

zones, heart rate zones, and power zones, recording the information about the distance

and duration of each of those zones [16]. While the other zones were separated based on

one standard threshold, the threshold for speed zones are broken down into the percentages

of the maximum speed averaged over all of the players that play the same position. This

is similar to what was done by O’Connor et al. [25]. The specific values of each zone

are presented in Table 5, and all of the values that the GPS recorded are presented in

Table 4. GPS data was collected using the PlayerTek System [16] composed of a GPS,

a tri-axial accelerometer, and a tri-axial magnetometer that is placed on a player’s back

during practices and games [16, 33]. As we only had access to 28 GPS units, GPS data

was consistently collected on 31 players, and 70 percent of the data is missing on practice

and game days. From Figure 2, it can also be observed that there is no data collected on

rest days, and there are conditioning days when GPS data was not collected. Lastly, for

6 of the 11 games, GPS data was collected on the Fridays prior to the games.

Omegawave Omegawave data measures physiological information about the central

nervous system and the cardiovascular system. This sensor was used to measure DC

potential and heart rate variance data in order to reflect athletic readiness. For each of

12



Table 6: Collected Omegawave Data

Cardiac Readiness 1-7 measure reflecting how awake or relaxed a player is

DC Potential 1-7 measure of .5 Hz brainwave reflecting how ready the brain is for stress

Adaptation Reserve 1-7 measure reflecting how long cardiac system can respond to training

Stress 1-7 measure reflecting the tension in response to load

CNS Readiness comprehensive measure of central nervous system readiness (1-7)

the recordings, a proprietary algorithm is used to produce a number from 1 to 7 to reflect

readiness [12]. These values include direct current potential, a measure associated with

consciousness in decision making or alertness [7]. Other measures associated with the

ability to cope with stress or reaction time are calculated on a scale from one to seven

[7]. Omegawave was collected by players when they woke up by placing an ECG belt

on their chest, one electrode on the forehead, and another on the thumb. As we had a

limited number of omegawave devices, we collected data on those players that were most

critical to the team’s success and the ones who were most willing to collect the data.

Omegawave data was collected on five people, and at the beginning of the season four

players regularly collected it. However, due to the challenges in collecting the data and

compliance limitations, as the season progressed, athletes got less consistent with the data

collection. By the end of the season, none of the players collected it consistently, and 98%

of the data collected by omegawave is missing. Thus, it is not investigated further.

4 Data Interpolation

When collecting the data, parts of it were missing, which is a common problem in

machine learning. We had a limited number of sensors so some players did not have GPS

data collected on them, and we only collected GPS and training load data during practices,

so these data sources were missing on off-days. Lastly, some missing data was caused

by players simply forgetting to collect data. As the features for each data stream were

collected together, each stream has all of the features either missing or present for any given
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data-point. Thus, we are able to interpolate each source of data individually. For each

source of data, we add it to other data that is previously filled, and interpolate the missing

values using five different interpolation methods. This way previously filled data sources

can provide information for the data interpolation. Since player stats has no missing

values, we interpolate survey data, adding it to player stats. Then we include training

load data, and lastly we add and interpolate GPS data. After each data interpolation, we

evaluate the performance of the different interpolation methods by using the interpolations

to predict injuries one day out. In this section, we will first discuss common approaches

to handling missing data. Then, we will describe how we interpolate the missing data and

discuss our results. The filled in data is then used in Section 5.

4.1 Techniques for Addressing Missing Data

There are multiple methods of addressing the issue of missing data. When missing data

is encountered, one method of interpolation is typically chosen based on prior knowledge.

Imputed values are then impacted by prior assumptions. However, in some cases, it is not

clear which method of data interpolation should be used [31]. For example, when GPS

data was missing on Mondays, the average value could be used to fill missing data as that

is what we would expect to see when everything is normal. On the other hand, missing

values could be imputed with zeros as there are no practices on Mondays, and values of

zero would reflect a more realistic expectation of exercise levels [42]. Values of negative one

could also be used as a way to indicate that the data is missing. Rashid et al. [31] tested

three different types of data interpolation methods to see which performs best, including

Matrix Completion based methods, Interpolation based methods, and Regression based

methods [31]. Matrix Completion based methods are ones where data is interpolated to fit

the larger dimensions in the existing data. Interpolation based methods are those where

data is interpolated based on surrounding data-points, and regression based methods

form models which then predict missing values [31]. As there was no definite method of

interpolation that fits our data, we follow a similar approach and test five models of data
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interpolation.

For mean interpolation, missing data is filled with the average value for a given param-

eter. For previous interpolation, missing values are interpolated with the previous day’s

value. K-Nearest Neighbors interpolation fills values with the average of the three nearest

points using the 2 norm (Euclidean distance) to calculate distance [37]. Next, a Matrix

Completion is used by applying the Soft Impute algorithm. Soft Impute minimizes the

Frobenius norm of the new matrix and the Nuclear Norm of the matrix that is imputed

[20]. Lastly, we test multiple imputations by chained equations algorithm (MICE) using

ten iterations. This method iteratively models all of the feature’s values by creating a

regression from the other features, filling the missing values of a modeled feature with the

result [3].

4.2 Data Interpolation

As we tested multiple methods of data interpolation, we evaluated those imputations

by modeling injuries one day out. That is, we use the interpolated data collected each day

to predict who will sustain an injury on the following day. More so, as different sensor

types can be interpolated using different methods, for each sensor, the sensor’s data is

interpolated using each method. Then, the data from the interpolation that performs

best is added that to previously interpolated data. We start with player statistics, then

added survey, training load, and then GPS data in that order.

The interpolations are tested by fitting the data using five models: a Logistic Re-

gression, Support Vector Machine (SVM), Decision Tree, k-Nearest Neighbors algorithm,

and a Gaussian Naive Bayes. Using all of the players and all of the days, we use 5-fold

cross-validation to test the results. For the Logistic Regression, no regularization is in-

cluded, and the injury days are weighted heavier than non-injury days in order to address

a disproportionate number of non-injury data-points [8, 19]. A cubic SVM with a radial

basis function kernel is used without regularization, and with weighted classes [23]. This

is a simple SVM for modeling unbalanced data. For the Decision Tree, the ”gini” criteria
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is used to identify the best split of the data, splitting the data until the data-points are

fully separated [30]. Again, these are standard hyper-parameters for a Decision Tree. For

the k-Nearest Neighbors algorithm, the nearest two points are used, with each point being

weighted by the distance to the missing value [17]. Lastly, we use a standard Gaussian

Naive Bayes algorithm with prior probabilities adjusted to the injury distribution [15].

Upon creating the models of the data, we use the F1 score calculated on the test set

to evaluate each model’s ability to predict injuries one day out. The F1 score is used as

it penalizes models that identify non-injuries as injuries as well as penalizing models that

do not detect injuries at all [10]. To calculate the F1 score, the True Positive (TP), False

Positive (FP), and False Negative (FN) rates are first computed. True Positives are the

days where the model correctly predicts that a player got injured. False positives are the

days where a player did not get injured that the model classifies incorrectly as injured

days. Lastly, False Negatives are days where a player got injured, yet the model fails

to predict an injury. Next, the precision and recall are calculated. Precision and recall

can be expressed as P and R with formulas that are expressed below. Precision reflects

the number correctly labeled injuries out of all of the days that are labeled as injuries.

Similarly, recall reflects the number of correctly labeled injuries out of the total number of

injuries that were observed. Lastly, the F1 score is a combination of the two scores with

the following equation [10]:

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2(P ×R)

P + R

In order to create a baseline, we first use player stats from one day to predict injuries

on the following day for any recorded day. Next, we interpolate survey, training load, and

GPS data in that order. The best results after each data stream is added to the previous

data are presented in Table 7. Modeling player stats individually, the largest F1 score is

.20 when an SVM is fit. Then, survey data is interpolated using the five different methods

when combining it with player stats. Matrix Completion performs best, producing the
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Table 7: Best Performing Imputation Results (F1 scores)

Data & Interpolation Log. Regression SVM KNN Decision Tree Gaussian Bayes

PS .06 .2 .02 .09 .03

PS + Survey (MC∗) .1 .16 .04 .18 .03

PS + TL (MC∗) .16 .20 .02 .10 .03

PS + TL + GPS (MC∗) .17 .23 .09 .17 .03

PS – Player Stats MC∗ – Matrix Completion TL – Training Load

largest F1 score of .16 when using a SVM model. Since the performance is reduced

when survey data is included, survey data is left out when interpolating future sensors.

Next, we add training load data to the player stats. Matrix Completion interpolation

outperforms all other interpolation methods with an F1 score of .2 for Support Vector

Machines and an F1 score of .16 when fitting a Logistic Regression. As including training

load data improves overall performance compared to player statistics, it is included in the

interpolated dataset. GPS data is then interpolated using multiple methods and added

to training load and player stats. For GPS data interpolation, Matrix Completion again

outperforms other interpolation methods when testing using all models other than KNN.

When fitting using the KNN algorithm, the k-Nearest Neighbors interpolation method

outperforms matrix completion interpolation. The Logistic Regression improves from an

F1 score of .16 to .17 when the interpolation is added, and the Support Vector Machine

improves from an F1 score of .20 to .23 when Matrix Completion interpolation is applied

to GPS data. As including GPS data improves the F1 score of our prediction, we keep

GPS data that is interpolated using Matrix Completion.

Although there is a large amount of data missing, and there is no one best way to

interpolate it, we address this issue by testing multiple methods of data interpolation. We

find that using Matrix Completion interpolation and an SVM model produces the best

result for all data streams. However, for some models, other methods of data interpolation

slightly outperform Matrix Completion. This suggests that while Matrix Completion
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interpolation does not produce the best results for each type of model, in general Matrix

Completion produces the best result for most models. While we filled in missing data for

predicting injuries one day out, in the next section, we will further process this data in

order to model game injuries with better effectiveness.

5 Data Processing

Once the missing data is filled in, it needs to be processed to extract new information

and to decrease the correlation between existing data while keeping its intrinsic meaning.

We accomplish this by examining how features changed from the previous week and by

creating normalized features for each player. Then, we remove features that are highly

correlated with other features to address repetitiveness within data. Lastly, we average

features prior to games in order to decrease the amount of noise within the data.

Looking at how data changes from one week to the next (differencing) can offer novel

information [2]. Hence, We first extract new information by calculating the weekly change

in all of the features. The change from each previous day is not calculated as weekly

schedules differ day by day, and calculating the change in features from the previous day

would add noise. On the other hand, since practice schedules follow a weekly pattern,

GPS and training load data is expected to remain similar for each given day of the week.

Similarly, survey data is strongly impacted by weekly class and practice schedule, so the

change from the previous week is calculated rather than a change from the previous day.

After calculating the new features, we have 178 GPS features from each day, many of

which are highly correlated. Specifically, the GPS features that are collected by zones:

within each group of zones, the average Pearson correlation coefficient is .61, and the

average correlation coefficient between adjacent zones is .73. To reduce the number of

repetitive features, Principle Component Analysis (PCA) is applied to each group of zones

individually. For example, when PCA is applied to the five speed zone features, five new

features are extracted that are uncorrelated. The features extracted from the PCA that
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account for a variance greater than .001 are then left. This way, all of the features that

are left have intrinsic meaning about a specific zoned data while significantly reducing the

number of features from each day [41]. Next, to reduce the dimensionality of the features

while maintaining the interpretability, when a pair of features has a Pearson correlation

coefficient with an absolute value greater than .75, one of the features is removed [4]. This

way, the 178 GPS features that were collected each day from GPS data are reduced to 38

features. As training load has only three features collected each day, none of the training

load features are removed. As none of the survey features have a correlation coefficient

with an absolute value greater than .75, all of them were also kept.

Lastly, the exercise intensity can vary from player to player, and what would be a

difficult work load for one player might be typical for a different player. This would be

reflected in different ranges of GPS features amongst different players. Similarly, as survey

data is subjective, the range of values that one player records can differ from the range of

values that a different player records, and one extreme recording for one player might be

normal for a different player. To address this, new features were included in the dataset

where the data was normalized amongst each player’s data. That is, for each feature, the

mean and standard deviation are calculated amongst a player’s data. Then, the mean is

subtracted from each data-point, and the difference is divided by the standard deviation.

By doing so, the days that are more extreme for a player can be identified more easily

[35]. In the end, we are left with the original features, the original features normalized by

player, features about how how the data changes from one week to the next, and those

features normalized.

Once all of the features are processed, we specify our predictions to game injuries.

This increases the predictive power that the features have and reduces possible outside

noise caused by factors such as variability in practice schedule and player participation.

First, we chose to look specifically at game injuries as 52% of the injuries occur during

games. By limiting our predictions to games, we prevent the model from simply predicting

injuries on game days and outperforming random guessing. More so, multiple days leading
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up to games have a consistent schedule, so the noise due to the differences in the schedule

is reduced and patterns can be picked up more easily. Next, 70% of the 89 injuries

were sustained by the top 30 players who consistently play in the games and whose data

collection was most consistent. Thus, in order to prevent the model from classifying the

top players as those that have a higher risk of injury compared with other players, only

the top players are used when modeling game injuries. Lastly, to minimize the effect of

missing data and data interpolation, for each sensor we selected players who had collected

a sensor’s data four or more times during the preceding week. This way, a large portion of

the game data-points are kept, and the data interpolation preceding the observed games

is minimal. In the end, GPS data had 233 player game points with 51 injuries, there

were 316 training load player game points with 62 injuries, and 225 player game points

for survey data, with 49 injuries.

Lastly, features multiple days prior to a game could possibly be used to forecast injuries.

That being said, individual days have lots of noise and could affect the predictive power

of a feature. Thus, we average across multiple days during the week to remove noise.The

average of the three days prior to a game and a weekly average is calculated in order

to remove noise. The three-day average before games reflects information that is most

relevant to a game as it is most recent, and the data averaged over a week aims to reduce

the amount of noise that is picked up. Similarly, the average between 2 and 4 days

(inclusive) before games is calculated for each feature to average the data collected on the

more strenuous practices where the training load could cause fatigue that would carry over

into a game. In the end, in order to predict game injuries, we use the features averaged

over the past three days, the features averaged over the whole week, and the features

averaged over the three harder practice days, tripling the number of features. After all of

the features are calculated, there are 446 GPS features, 50 training load features, and 177

survey features prior to each game.
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6 Feature Selection

As we have a large number of features compared to the number of data-points, we

would like to select those features that have predictive power for injuries. Having features

without predictive power can lead to overfitting [11]. In other words, since we have many

features, the noise within some of those features might fit injury occurrences well. We

would like to separate those features where injury prediction is caused by noise from those

that have predictive power. To do this, we first split the dataset into 11 training and testing

sets (train/test sets), leaving out a different game for each test set. This way, it is most

similar to predicting injuries in future games that have not been observed yet. For each

feature in the data set, we calculate the p-values associated with the slope of a Logistic

Regression fit on the training set [36]. Then, we evaluate how the Logistic Regression

performs on the test set by calculating the area under the curve for the receiver operating

characteristic curve (AUC). The AUC measures the ability of a model to predict injuries.

It does so by reflecting the model’s ability to distinguish game data-points with injuries

from game data-points without injuries when given a data-point’s features [14].

Figure 3: Predictive Power in Survey Data

Figures 3 - 5 show the predictive power that features from a specific source of data

have. First, they display the p statistic that a Logistic Regression’s slope has for a training
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Figure 4: Predictive Power in GPS Data

Figure 5: Predictive Power in Training Load Data

set feature. They also display the the predictive power that the corresponding feature has

in the test set. This relationship will be later used to select useful features. The three

different data streams are observed separately. Within each plot, each red point represents

a feature in one of the train/test sets. The x value of a train/test point indicates the p-value

associated with the slope of the training set Logistic Regression. The y value indicates

the test AUC of the Logistic Regression that is fit on a feature in the training set. The

black lines measure the local test AUC average over the nearest 20 points. The blue lines
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measure the p-value associated with selecting a specific threshold. That is, it reflects the

probability that all of the red points to the left of a certain threshold appear at random

with a mean of .5. Thus, when the blue line is low, it indicates that the test AUC of the

red points to the left of a given x value is not due to chance. Lastly, the horizontal grey

lines are at .5, which is the expected value of a random test AUC sample, and the green

horizontal lines are the mean AUCs of the test AUCs for a given sensor. That is, the

green line is the mean y value of the red points and is where a feature’s AUC would be

expected to appear if it was selected at random from the sensor’s features.

From Figures 3 - 5, we can observe the predictive power for injuries that the three

types of data have. For each type of data, we would like to find a threshold for p-values in

the training set where the features below that threshold have AUCs that outperform ran-

dom guessing by a statistically significant amount. On average, survey data outperforms

random guessing, where the average AUC across all of the features and train/test sets

is above .5. Similarly, we can see that at low p-values, the features outperform random

guessing. On the other hand, when the p-value of a feature is large in the training set, this

indicates that a feature does not have much predictive power. When selecting features that

have a p-value smaller than a .05 threshold, those features have a statistically significant

slope associated with the Logistic Regression for the training set. They are also able to

forecast injuries in the test set above levels of random guessing by a statistically significant

amount. This suggests that p-values can be used to access predictive power for survey

features. However, this .05 threshold does not carry over to GPS and training load data.

When low p-values are selected for GPS data, they perform worse than average as the

average AUC is below .5 for p-values less than .1. More so, as the average AUC is equal to

.5, which is the expected AUC score for randomly selected features, GPS data’s predictive

power is limited. Lastly, training load features have little predictive power when selecting

features with p-values below a .4 threshold. From Figure 5, we can see that selecting

any lower threshold corresponds to an AUC that outperforms random guessing, yet when

comparing AUC values of the features to AUC values of random guessing, the test AUC’s
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Table 8: Survey p-values

p-value Feature

0.0036 Player Normalized weekly change in soreness averaged over 3 days prior to game

0.0097 Weekly change in soreness averaged over 3 days prior to game

0.0163 Weekly change in wellness quotient averaged over week

0.0169 Weekly change in wellness quotient averaged over 3 harder practice days

0.0274 Player normalized weekly change in wellness quotient averaged over week

0.0365 Soreness value averaged over last 3 days

0.0380 Player normalized weekly change in wellness quotient averaged over four harder days

p-value (blue lines in Figures 5) is above .2 for any threshold below .4. However, the

average AUC value for the features is slightly over .5, and the p-value of all of the AUCs is

less than .05 suggesting some predictive power across all of the training load data. Thus,

while statistical significance in the training set does not carry over to the test set, Figures

5 suggests that some training load features do have slight predictive power.

While there are 177 features in the survey data, if the features are fully random,

there is a 37% chance of observing a p-value of .005 (1/177). However, as there exists

correlation within our data from averaging days, the probability of seeing a p-value of

1/177 significantly decreases. More so, we observe that the features with p-values below

.05 outperform random guessing in the test set. The associated test AUC values with the

selected features have less than a .02 percent likelihood of appearing at random, validating

the use of a .05 p-value threshold for feature selection.

Selected Features We see that survey features with low p-values in the training set

have predictive power in the test set. Thus, by examining survey features with p-values

smaller than .05, we are able to identify the survey information with the most predictive

power. While some GPS features had equally low p-values, when features that had p-

values below a .05 threshold were selected, these features performed worse than guessing

injuries at random. This suggests that the low p-values in the GPS data are caused

by noise. Since GPS data has 446 features, and Survey data has 177 features, p-values
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below .05 are more likely to be caused by chance in GPS data. More so, while survey

features have predictive power for injuries, each individual feature is not examined for a

threshold above which an injury is likely. This is because individual features do not have

enough predictive power for injuries and would require larger models to be useful. Thus,

a threshold for an individual feature would not provide useful information.

After calculating the p-values for survey features over all of the data, the features

where the slope of the Logistic Regression have a p-value less than .05 are presented

in Table 8. Player soreness in the days leading up to games has predictive power as

features that rely on this value have multiple p-values below .05. While the change in

soreness from the previous week that is normalized by each player and averaged over three

days has the most predictive power, soreness values averaged over the three days also

have statistically significant predictive power. This suggests that normalizing the data

and finding the change in features from the previous week improves predictive power in

some features. The change in the Wellness Quotient from the previous week also has

statistically significant predictive power when averaged over the week and over the three

harder practice days. As the Wellness Quotient is a collection of multiple factors, its

predictive power suggests that all of the features can provide some useful information,

yet there isn’t enough data to observe statistical significance in each feature individually.

Overall, player soreness and the Wellness Quotient have the most predictive power out of

all of the collected data. In the next section, we will evaluate how well all of the features

can be combined to model injury prediction.

7 Modeling

In the previous section, we selected the most useful features by using a Logistic Regres-

sion to model each feature individually. In this section, multiple, more complex models

predict game injuries based on each type of sensor data. Then survey data and player

stats model game injuries as both data streams have predictive power for injuries when
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they are modeled individually.

Using the features selected on each train/test set, a baseline model is created by fitting

a Logistic Regression to each feature. These Logistic Regressions vote on each game data-

point, and the average of their predictions is used as the final prediction [9]. Next, a

variety of models with different hyper-parameters are tested. These include 11 Logistic

Regressions, 26 SVMs, 20 KNN models, 21 Decision Tree classifiers, and 8 Random Forest

classifiers. Each time, we use 11 train/test sets where a different game is left out for each

testing set.

Logistic Regression models are tested using different values of C, an inverse regular-

ization parameter. At small values of C, model complexity is punished, and models are

affected less by the noise in the data. On the other hand, when values of C are large,

more complex models are formed that can fit more complex patterns related to injuries.

We test Logistic Regression models with C values ranging from .01 to 2 and always use

the Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm for optimization [18]. The

SVM models use different kernels, including linear, polynomial, sigmoid, and radial basis

function kernels. Three models with third degree radial basis function kernels are tested

with C values of .3, 1, and 3. Five models with linear kernels are tested with C values

ranging from .1 to 10. Ten models with third degree polynomial functions are tested with

C values ranging from .01 to 100. Lastly, 8 SVM models with sigmoid kernels are tested

with C values ranging from .01 to 30. Next, seven KNN models are tested with the num-

ber of neighbors ranging from 2 to 90. Ball tree, kd tree, and brute algorithms are tested

on KNNs that use both five and eight nearest neighbors. Lastly, seven KNNs using five

nearest neighbors evaluate a range of leaf sizes, ranging from five to 150. For Decision

Trees, six models are tested where the maximum depth ranges from two to ten. These

models use ”gini” impurity to evaluate the quality of a split, a measure of well samples

in a tree node are split into different classes [30]. Four models are tested by varying the

number of samples that are required to split a leaf node, ranging from two to ten. Next,

four models test different minimums for the number of samples required in a leaf. These
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range from three to ten. Next, six models test these ranges where the maximum depth

of the tree is limited to four nodes. One model uses entropy as a measure for the split

quality. Lastly, the eight Random Forest classifiers are tested with the maximum depth

ranging from 2 to 50 [26]. For each model, the training and testing AUC, precision, recall,

and F1 score are calculated. We test a range of parameters for each model as one variation

of a model might fit the data better than others. In the end, changing parameters did not

lead to a significant change in model performance. Thus, it is not discussed in depth.

7.1 Player Stats Model

First, we create a model using player statistics to predict game injuries on top players.

This data contains a total of 62 injuries in a total of 316 game data-points. Using a random

model, we would expect the AUC to be .5, and if the F1 score is maximised by predicting

all game data-points as injured, the F1 score would be .32. However, if (62/316) games

are predicted as injured at random, the F1 score would be .19.

Figure 6: Mean Results for Player Statistics

Figure 6 presents results that are averaged by each model type. Figure 7 presents

results with the largest Test AUC for each model type. Each row presents results from a

specific model type, and each column presents a different metric for a given model collected

on either the training or testing data.

When fitting a Logistic Regression on each feature, and having each Logistic Regression
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Figure 7: Best Results for Player Statistics

vote on whether an injury occurs or not, the resulting test AUC and F1 are .63 and .40

respectively. This result suggests that a baseline model outperforms random guessing.

When full models are used, on average a Logistic Regression performs best with an average

Test AUC of .79, as seen in Figure 6. This suggests that using a full Logistic regression

improves the performance over a baseline voting model. Similarly, when observing the

best performing Logistic Regression, the test AUC is .8, and the test F1 score is .45.

This model has an parameter C of .5. While decreasing the value of C results in a slight

improvement in the Test AUC, changing the value of C does not have a strong effect on

the performance of the Logistic Regression.

7.2 Survey Model

Modeling the survey data separately, only the game data-points from the top players

are included, and if a player did not complete four or more surveys in the preceding week,

the data-point is removed. The resulting data consists of 49 injuries over the course of

225 game data-points. Using a random model, we would expect the AUC to be .5, and

if the F1 score is maximized by predicting that all game data-points will have an injury,

the F1 score would be .36. However, if (49/225) random game data-points are predicted

as resulting in an injury, the F1 score would be .21.

Figure 8 presents results that are averaged by each model type. Figure 9 presents
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Figure 8: Mean Results for Survey Data.

Figure 9: Best Results for Survey Data.

results with the largest Test AUC for each model type. Similar to figures from Section

7.1, each row presents results from a specific model type, and each column presents a

different metric for a given model collected on either the training or testing data.

When multiple Logistic Regressions vote on whether an injury occurs or not, the result-

ing test AUC and F1 are .59 and .35 respectively. As the resulting test AUC outperforms

a random AUC, the result suggests that Survey data has prediction power and establishes

a baseline for other models. Modeling survey data using full models, on average a Logistic

Regression performs best, and is able to outperform the baseline voting model as seen in

Figure 8. Similarly, the Logistic Regression model achieved the largest Test F1 score, with

a regularization parameter C of 2. As the value of C had minimal effect on the Logistic

Regression, it is unlikely that the this model was over fitting the data. While the best
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SVM improved the test AUC, the improvement is minimal and the test F1 score decreased

compared with the Logistic Regression. While a Random Forest model had a higher Test

AUC, the test F1 score also dropped significantly compared with the Logistic Regression.

Reasons why this can occur are discussed in Section 7.6.

7.3 GPS Model

Next, we model the GPS data separately, and the only data-points that are included

are those from the top players where GPS data is collected on four or more days in the

week prior. This consists of 44 injuries over the course of 191 game data-points. Using a

random model, we would expect the AUC to be .5, and if we maximize the F1 score by

predicting all data-points as injured, the F1 score would be 0.37. However, if (44/191) of

the players’ games are randomly predicted to result in an injury, the F1 score would be

0.23.

Figure 10: Mean Results for GPS data.

Figure 10 presents results that are averaged by each model type. Figure 11 presents

results with the largest Test AUC for each model type. Again, each row presents results

from a specific model type, and each column presents a different metric for a given model

collected on either the training or testing data.

Fitting a Logistic Regression on each feature, with each of them voting whether or not

an injury occurs, the resulting test AUC and F1 are .47 and .28 respectively, performing
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Figure 11: Best Results for GPS data.

worse than at random. Similar to the baseline model, the average test AUC across each

model type also perform worse than random. This cooresponds with a limited prediction

power in GPS data that was seen in Section 6. While there is a a Support Vector Machine

model that outperforms random guessing with a Test AUC of .55, it is likely a result of

overfitting as other SVMs perform at near random level. Similarly, while on average the

test F1 score for SVM models is greater than that of predicting 44/191 as data-points as

injured at random, the increase in the F1 score is minimal.

7.4 Training Load Model

When we select the game data-points on the top players with five or more days of

collected training load data, there are 62 injuries in 316 player game data-points. Using a

random model, we would again expect the AUC to be .5, and if the F1 score is maximized

by predicting all data game points as injured, the F1 score would be 0.32. If we predict

(62/316) games as injured at random, the F1 score would be 0.19. As there are only 36

features, nine of the test cases have no features with a p-value less than .05. Thus, we

present results on the two games that had such parameters.

Figure 12 presents results that are averaged by each model type. Figure 13 presents

results with the largest Test AUC for each model type. Each row presents results from a

specific model type, and each column presents a different metric for a given model collected
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Figure 12: Mean Results for Training Load.

Figure 13: Best Results for Training Load.

on either the training or testing data.

When using the results to fit a Logistic Regression and vote on game data-points, the

model has an AUC of .51 and an F1 score of .18, which is similar to random guessing. The

mean AUCs for Logistic Regressions, SVMs, and Decision Trees all outperform random

AUCs slightly as can be seen from Figure 12. Moreso, a test AUC of .68 is achieved

when using when using a Decision Tree with a maximum deapth of 10 nodes. That

being said, the testing AUC and F1 are larger than the training AUC and F1 for the

best performing SVM and KNN models, suggesting over-fitting is occurring for the best

performing models. More so, as there are only two train/test splits in the training load

data such that a parameter with a p-value less than .5 existed, we observe the predictive
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power of training load data is very limited in our data-set.

7.5 Survey & Player Stats Model

Survey and player stats are both able to model the data separately, performing at

above random levels. On the other hand, when training load and GPS data are used, only

a few features outperform random guessing. For the dataset, we only use the data-points

when survey data is collected four or more times on a given week. This is the same data

set as was used for modeling survey data individually. As such, there are 225 game data-

points, 49 of which are injuries. A maximized F1 score would be 0.36, and .21 if (40/173)

games are predicted to be injuries at random.

Figure 14: Best Results for Player Stats and Survey Data

Figure 15: Best Results for Player Stats and Survey Data
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Figure 14 presents results that are averaged by each model type. Figure 15 presents

results with the largest Test AUC for each model type. Each row presents results from a

specific model type, and each column presents a different metric for a given model collected

on either the training or testing data.

When multiple models vote on injuries, the test AUC is .67, and a test F1 score is .41.

This results in improved baseline results compared to individual models for player stats

and survey data. Modeling using a Logistic Regression results in the largest average test

AUC with an average AUC of .81. When fitting a Logistic Regression with a C value of 3,

the test AUC is .82 and the test F1 is .52, outperforming all other models and predicting

injuries with above random accuracy. This is the best model that is achieved on the

dataset, and can be seen in Figure 14.

7.6 Modeling Analysis

In this section, independent stats, survey data, GPS data, and training load data are

used to model game injuries on the top players. In Section 6, survey data had features

with statistically significant prediction power, and in this section, multiple models were

able to model game injuries when using player stats. Thus, player stats and survey data

were combined to model game injuries. We observe the average model results in each

model and the best results. The average results of each model type reflect how well the

data is able to be modeled by any machine learning algorithm. This allows us to compare

the model with random guessing, where if the data fails to be modeled, then the average

result of the models will be similar to that of random. On the other hand, the best results

from any given model type reflect how well any model is able to fit the data. That being

said, it is subject to overfitting as the best model is selected from multiple models. This

provides an estimate for the best performance that can be achieved by using a specific

data type.

Overall, survey data and and player stats are able to model game injuries on the top

players while training load and GPS data are not able to significantly outperform random
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guessing. First, player statistics are able to predict game injuries with above random

accuracy as all of the model types have a test AUC greater than .6. Specifically, the

Logistic Regression has the best model performance with a test AUC of .8. However, we

can observe that the best performing Logistic Regression does not significantly improve

performance over the other logistic regressions. Similar to player statistics, survey data is

also able to fit game injuries well. All of the model averages outperform random guessing,

and the worst model average AUC is .57. While the test AUC is above average for all

of the models, the test F1 score is worse than random guessing for KNNs and Random

Forests. This suggests that while the data is able to be split, the threshold used to classify

a datapoint as injured is too large, leading to a low recall and a low F1 score. Similar

patterns are observed in the GPS, training load, and combined models. For survey data,

all of the best performing models have a similar test AUC, with an average AUC of

.66. This corresponds with survey data having features with predictive power in Section

6. When modeling GPS data, none of the model averages outperform random guessing

when observing the mean AUC. This cooresponds with Section 6, where the GPS features

had limited predictive power. While there is an SVM that is able to model the game

injuries, this is likely due to chance. Lastly, there are only two train/test sets where

training load features have low p-values in the training set. Thus, there are only two

train/test sets for the training load data. Out of all of the models, only Decision Trees

consistently outperform random guessing. Similarly, within each model type there are

models that are able to outperform random guessing, yet this is likely a result of the

small train/test sample. As a result, neither GPS or training load data is included in the

combined model. When combining player stats and survey data, a Logistic Regression has

the largest average AUC of .81, which is .02 greater that that when modeling player stats

individually. When observing the best performing models, the test AUC again improves

by .02 for the best Logistic Regression model. On the other hand, the SVM, KNN, and

the Decision Tree models improve slightly more when survey data is included with player

stats. This suggests that survey data stores useful information that is not in player stats
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as it improves the predictive power of a model when it is used along with player stats.

8 Discussion

In this section, we will first summarise our findings related to sport injury prediction

and compare them to previous findings. We explain why some sensor data that was useful

in other work was not useful for us. As a few GPS features had predictive power while

the others did not, we discuss their significance. Next, we discuss our findings with regard

to interpolating missing data, comparing it with related works. Lastly, we discuss the

limitations that existed within our study and suggest direction for future work.

In this study, we analyzed the predictive power that GPS, survey, and training load

data have in forecasting football injuries. Survey data about player health and player

statistics have predictive power, where the features that had the most predictive power

were the number of previous injuries, how sore a player feels in the days leading up

to games, and a general quotient summarizing how recovered a person feels. While some

GPS features and training load features have predictive power, the overall data has limited

predictive power for injuries. More data or novel approaches are necessary in order to more

accurately identify the usefulness of GPS and training load data.

Our survey data results correspond with McCullagh & Whitfort’s [21] results where

they used subjective player data to quantify injury risks in Australian football one week

out [21]. On the other hand, GPS data was useful in predicting soccer injuries, while it has

limited predictive power in football. One possible explanation for this is that differences

in the physical demands of the two sports cause variation in what data is useful. In soccer,

the gameplay is more continuous compared with rapid bursts in American football, which

affects the features that are picked up by the GPS [5, 39]. More so, in football, the physical

demands vary more between players than in soccer, where a player’s positions in football

can cause a large difference in the running distance, amongst other player movement

characteristics [39]. Lastly, the physiological stress exerted in soccer differs from that in

36



football due to the physical contact in football. This causes a higher prevalence of contact

injuries in football. Thus, the different injury types can effect the ability of GPS sensors

to pick up on injuries. Since the usefulness of GPS data in forecasting injuries differs

amongst sports, this is an area that could be investigated further.

It is the case that using all of the GPS features leads to results without any statistical

significance. However as there are many GPS features, there may be a few with limited

predictive power that are not selected due to noise. If only features derived from the

impacts and the power zone durations are used, some predictive power is observed. When

the same procedure for data processing and feature selection is used as described in section

5, a model reflecting votes from multiple Logistic Regressions produces an AUC of .56 and

an F1 score of .37. This model’s AUC outperforms a random AUC, and the F1 score is

consistent with the maximum F1 score that a trivial model would perform at. More so,

when this is modeled using a sigmoid kernel, with a C value of .3, the AUC is .61, and the

average F1 is .33 for the testing data. While these observations are subject to overfitting,

they do suggest predictive power in the GPS data that would require further inquiry. As

more data is collected, future studies can inspect for similar effects.

While we investigated what sensors have the most contribution to injury prediction,

our data also contained many missing values, so we investigated the effectiveness of various

data imputation methods. Similar to Rashid et al. [31], we were not able to use domain

knowledge to impute missing values as is commonly done in practice; thus, we tested

five different methods [31]. After interpolating our data, we modeled the following day’s

injuries based on a current day’s data using a Logistic Regression, a SVM, a Decision Tree,

and a Gaussian Bayes model. We used 5 fold cross-validation and computed the F1 score

to evaluate the performance. Matrix Completion based methods outperformed previous

interpolation, mean interpolation, KNN interpolation, and MICE imputation methods on

each of the sensor imputations that we did. This is consistent with Rashid et al.’s findings,

where Matrix Completion methods also outperformed the other imputation methods [31].

One of the major limitations of this study was the amount of data that was collected.
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While there were 30 different players, they were all on the same team, and the study

spanned only one season with a consistent practice schedule. As this study took place

over the course of one season, we only analyzed data from 11 games, limiting the ability to

test consistency between games. More so, as we only observed 11 games, the features that

we examined may have had little predictive power in our data set due to unaccounted for

variability, and more data would help us account for that variability. Lastly, as we only

collected data over the course of a season, we limited our predictions to game injuries to

minimize the amount of noise. As more data is collected, this noise may have less adverse

effects, and training injuries could be further analyzed. The quality of the data is also

impacted by the sensor, where newer sensors may be able to pick up less noise. Lastly,

omegawave data was collected in limited amounts due to challenges associated with the

data collection. As Peterson [28] had been able to use it in forecasting game play, and

other studies had used it to forecast injuries, it should be further inspected. Similarly, it’s

relationship with other sensor data can be analyzed to see if a relationship exists. Future

studies can be conducted about alternative sensors that were not mentioned, and their

ability forecast injuries in football. In addition, new data processing techniques may be

identified that will have stronger predictive power. Lastly, similar studies can be applied

across other sports, across more football teams, and over the course of a longer time frame.

These may all provide new insight into methods of predicting injuries in sports.

9 Conclusion

In this study, we collected sensor data on a team of 101 NCAA Division 1 football

players over the course of a season. As there were challenges involved in data collection,

where large portions of the data was missing, multiple interpolation methods were tested

and Matrix Completion had shown to be most effective. Next, we processed features from

GPS, survey, and training load data in order to create a set of features prior to games

that would be used to predict injuries. Survey data, especially the Wellness Quotient and
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soreness had the most predictive power. Player stats also had predictive power, especially

the number of injuries that a player had previously sustained. While GPS and training

load had limited predictive power, our data sample was limited to 11 games, and a more

extensive study could prove otherwise. In the end, we were able to predict injuries with a

precision of .46, recall of .75, and F1 score of .51.
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