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We first give a complete list of polynomial conditions on the data for

TP (TN) completability of partial TP (TN) matrices with just one or

two unspecified entries in either or both of the upper right or lower

left entries. These results are used to identify which such patterns,

and related patterns, are TP (TN) completable. Then, the TN com-

pletable echelon and TP completable jagged patterns are character-

ized. This generalizes earlierwork on combinatorially symmetric TN

completable patterns.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

An m-by-n matrix is called totally positive, TP (totally nonegative, TN) if all its minors are positive

(nonnegative). The many interesting properties of such matrices may be found in [4], as well as in

some prior references [1,6,12]. A partial matrix [7] is one in which some entries are specified and the

remaining unspecified entries are free to be chosen. A completion of a partial matrix is a choice of

values for the unspecified entries, resulting in a conventional matrix. Since TP and TN are conditions

inherited by all submatrices, a necessary condition that a partial matrix have a TP (TN) completion

is that it be partial TP (TN), i.e., that all the minors based entirely upon specified entries are positive

(nonnegative). The pattern of a partial matrix is an inventory of the positions of the specified entries. A

patternP is TP (TN) completable if every partial TP (TN)matrixwith patternP has a TP (TN) completion.

< This work supported by NSF/DMS Grant number DMS-0751964.∗ Corresponding author. Tel.: +44 7508760324.

E-mail addresses: crjohnso@math.wm.edu (C.R. Johnson), zhen.wei11@imperial.ac.uk (Z. Wei).

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2012.11.008

http://dx.doi.org/10.1016/j.laa.2012.11.008
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2012.11.008


2128 C.R. Johnson, Z. Wei / Linear Algebra and its Applications 438 (2013) 2127–2135

For other patterns Q, some partial TP (TN) matrices will have a TP (TN) completion and others will

not. Additional conditions on the data (specified entries) are needed to assure the existence of a TP

(TN) completion. As a consequence of the Tarski–Seidenburg principle [2], each pattern Q will have a

finite list of additional, besides partial TP (TN), polynomial inequality conditions on the data that are

equivalent to the existence of a TP (TN) completion. Such conditions, however, are not generally easy

to find. There are prior results about TP (TN) completable patterns [9,5,11]. Most notably, in [9] the

combinatorially symmetric, TN-completable patterns were characterized. They are the monotonically

labelled, block clique graphs (chordal graphs with all vertex separators of one vertex and multiplicity

one, labelled so thatmaximal cliques occur in numerical order). They are easily seen to be a very special

case of our asymmetric results in Section 3. In [10] it was shown that the combinatorially symmetric

TN-completable patterns are also the TP- completable ones. We conjecture that our TN-completable

patterns identified here are also TP-completable. There are additional completability conditions for

other particular patterns, e.g., [8,3], in the literature.

Our purpose here is to augment both knowledge about (TN/TP) completable patterns and about

the conditions for non-completable patterns. We first identify the additional polynomial conditions

for TP completability of those patterns with one or two unspecified entries in the upper right and/or

lower left corner. We also consider, in addition, the possibility of multiple unspecified entries in the

upper left or lower right. Second, we then consider rather general completable patterns in which the

specified entries are concentrated toward the main diagonal.

We call a (possibly rectangular) pattern echelon if, whenever a position is unspecified, either all

positions north and east (NE) of it are unspecified or south and west (SW) of it are. For example,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ? ? ? ? ?

∗ ∗ ∗ ∗ ∗ ? ? ?

? ∗ ∗ ∗ ∗ ? ? ?

? ? ? ∗ ∗ ∗ ? ?

? ? ? ∗ ∗ ∗ ∗ ?

? ? ? ? ? ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which ∗ denotes a specified and ? an unspecified position, is echelon. Among the echelon patterns,

we characterize those that are TN completable, using the results about completability conditions just

mentioned.

We call a pattern that is a 90 rotation of an echelon pattern a jagged pattern, i.e. if a position is

unspecified, then either every position north and west of it is, or every position south and east of it is.

An example of a jagged pattern is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

? ? ? ∗ ∗ ∗ ∗
? ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ? ?

∗ ∗ ∗ ∗ ? ? ?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We also show that every jagged pattern is TP completable. Examples are given to show that such

patterns need not be TN completable, so that there is a difference between TN and TP completability

of patterns. (We guess that the TN completable patterns are contained in the TP completable ones,

properly.) We also give conjectures about completability of jagged echelon patterns.

2. Patterns with few unspecified entries

Consider them-by-n pattern P1 with just one unspecified entry in the (1, n) position and its trans-

pose P′
1. We call these one-sided patterns. Them-by-n pattern P2, with just 2 unspecified entries, in the

(1, n) and (m, 1) positions, is the two-sided pattern. Since anm-by-nmatrix is TP if and only if its initial

minors [4] are positive, a one-sided partial TP matrix, say with pattern P1, has a TP completion if and

only if the upper right entry can be chosen so that the contiguous upper right minors are all positive.

Call these minors

URi(x) = detA(x)[{1, 2, . . . , i}; {n − i + 1, . . . , n}], in which x denotes the unspecified (1, n) entry
of the partial TP matrix A of pattern P1, i = 1, 2, . . . ,min{m, n}. Here, as throughout, we use the

standard submatrix notation: A[α; β] denotes the submatrix of A lying in the rows indexed by α and

the columns indexed byβ . So, we study the conditions on x underwhichURi(x) > (≥) 0 . SinceURi(x)
is a linear function of x, this is not difficult.We haveURi(x) = URi(0)+x(−1)i+1detA[{2, . . . , i}; {n−
i + 1, . . . , n − 1}]. Thus, if i is odd, we have URi(x) > (≥) 0 iff

x > (≥) − URi(0)/ det A[{2, . . . , i}; {n − i + 1, . . . , n − 1}]
and if i is even, URi(x) > (≥) 0 iff

x > (≥)URi(0)/ det A[{2, . . . , i}; {n − i + 1, . . . , n − 1}].
In case i = 1, the RHS lower bound above is 0. Call the lower bound in the first inequality URLi(A)

and the upper bound in the second inequality URUi(A), so that the third symbol L indicates that i is

odd and the third symbol U indicates that i is even. Now, let

URL(A) = max
i=1,3,...

URLi(A)

and

URU(A) = min
i=2,4,...

URUi(A)

Note that ifm ≤ n, then URL(A) and URU(A) depend only upon the last m columns of A, and ifm ≥ n,

they depend only upon the first n rows of A. We then have the following characterization of those

partial TP matrices of pattern P1 that have a TP completion, in terms only of rational expressions (that

could be converted to polynomial expressions) in the specified entries.

Theorem 1. Let A be an m-by-n partial TP matrix of pattern P1. Then, A has a TP completion if and only if

URL(A) < URU(A).

Proof. The inequality holds iff there are values x in the interval

(URL(A),URU(A)) iff there are values x such that all upper right minors URUi(x) > 0. Since these are

the only initial minors containing x, it is necessary and sufficient that they be positive, as all other

initial minors are fully specified and positive, because A is partial TP. �

There is an analogous result for the pattern P′
1, obtained via transposition, If A is a partial TP matrix

of pattern P′
1, define

LLL(A) = URL(AT )
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and

LLU(A) = URU(AT )

Then,

Theorem 2. Let A be an m-by-n partial TP matrix of pattern P′
1. Then A has a TP completion if and only if

LLL(A) < LLU(A)

There are corresponding statments about TN completion with non-strict inequalities when the relevant

denominator minors are positive.

We next turn to the pattern P2. Note that if P2 is m-by-n with m �= n, there is no incremental

difficulty compared to two separate P1 and P′
1 problems, as there is no contiguous minor containing

both the upper right and lower left entries. Thus, we consider only the case of P2 being n-by-n. In this

event, the only contiguous minor containing both unspecified entries is the determinant itself. Thus,

there is a P1 subproblem and a P′
1 subproblem, which must both be solvable in such a way that their

intervals permit a pair for which the determinant is positive. Let A = A(x, y) be a partial TP matrix of

pattern P2, in which x is the unspecified entry in the 1, n position, and y is the unspecified entry in the

m, 1 position. Then, An1 = A[{1, 2, . . . , n− 1}; {2, 3, . . . , n}] is a partial TP matrix of pattern P1, and

A1n = A[{2, . . . , n}; {1, . . . , n − 1}] is a partial TP matrix of pattern P′
1. If URL(An1) < URU(An1) and

LLL(A1n) < LLU(A1n), then A will have a TP completion iff there is an x ∈ (URL(An1),URU(An1)) and
a y ∈ (LLL(A1n), LLU(A1n)) such that detA(x, y) > 0.

A special case of Sylvester’s determinantal identity [HJ] that has proven to be useful in the analysis

of TP/TN matrices is the following. If A is n-by-n and partitioned as

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 A22 a23

a31 a32 a33

⎤
⎥⎥⎥⎥⎥⎦

with A22 (n − 2)-by-(n − 2) and nonsingular, then

detA =
det

⎡
⎢⎣
a11 a12

a21 A22

⎤
⎥⎦ det

⎡
⎢⎣
A22 a23

a32 a33

⎤
⎥⎦ − det

⎡
⎢⎣

a12 a13

A22 a23

⎤
⎥⎦ det

⎡
⎢⎣
a21 A22

a31 A32

⎤
⎥⎦

detA22

(1)

Because of Sylvester’s determinantal identity, detA(x, y) is maximized by choosing x so as tominimize

detAin and y so as to minimize detAn1, i.e., x and y at extremes of their intervals. We thus have.

Theorem 3. Suppose that A is a partial TP matrix of pattern P2. Then A has a TP completion if and only if

(i) URL(An1) < URU(An1);
(ii) LLL(A1n) < LLU(A1n); and
(iii)(a) detA(URL(An1), LLL(A1n)) > 0 if n is odd; or

(b) detA(URU(An1), LLU(A1n)) > 0 if n is even.

Proof. Conditions (i) and (ii) are clearly necessary. In their presence (iii) is sufficient as the choice

of x = URL(An1) + ε and y = LLL(A1n) + ε for ε sufficiently small when n is odd and the choice
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of x = URU(An1) − ε and y = LLU(A1n) − ε for ε sufficiently small when n is even will make

detA(x, y) > 0. Condition (iii) is necessary, as no other choice of x and y in their respective intervals

can make detA(x, y) larger because of Sylvester’s identity. �

We note that each of Theorems 1–3 may be extended to the TN case, easily when the denominator

minors (coefficient of x and/or y) are positive, and, more subtly, when some are 0 (which may imply

that others are). In the former case, the strict inequality simply becomes nonstrict, and in the latter,

the resulting 0 coefficients lead to fewer conditions. Since, in general, more than just initial minors

need be checked for TN, this may not fully settle the TN cases, but this will not be necessary for the

completion results later.

If the upper left and/or lower right entry or entries of a P1, P
′
1 or P2 are unspecified, then the pattern

may become TP completable. This is because, by Sylvester’s identity, upper left or lower right principal

minors may be made sufficiently large so as to overcome the product of upper right and lower left

minors of the same size. Of course, if an upper right or lower left submatrix is a not completable P1 or

P′
1 pattern, then the pattern in question is not completable.

Example 1. The following A(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1 0.56 x

0.95 1.012 0.99 1

0.45 0.5 0.7 1

0.2245 0.25 0.6 1.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4-by-4 partial TPmatrix has no TP, nor

even TN, completion, though A(x) is partial TP, as det(A(x)) = −0.002804 − 0.179850x is always

negative for x � 0. Another example may be found on p. 187 of [4].

This means that the m-by-n P1 and P′
1 ( by transposition) patterns are not TP completable when

m, n � 4. They are also not TN completable.

Example 2. LetA(x, y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0.4 x

0.4 1 1 .4

0.2 0.8 1 1

y 0.2 0.4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, which is partial TP, but A has no TN completion because

det(A(x, y)) = −.0016 − .008x − .328y − .2xy is always negative for x, y � 0. So, the m-by-n P2
pattern is not TP completable form, n � 4, and also not TN completable (see page 187 of [4]).

Wemay now summarize what we know about our special patterns P1, P
′
1 and P2. Anm-by-n partial

positive and partial TP (TN) matrix of type P1, P
′
1 and P2, with m or n � 3, always has a TP (TN)

completion. If theminimumofm and n is at least 4, this is no longer true and these patterns are neither

TP nor TN completable. However, we have given the necessary additional polynomial conditions for

completability. If, in addition, in the 4-by-4 case, either the upper left, lower right position or a position

adjacent to an already unspecified position is also unspecified, then such a pattern is completable.

3. Echelon and jagged patterns

A pattern is called jagged if, for each unspecified entry, either (1) all entries north andwest of it (i.e.,

if in the (i, j) positive, then all positions (k, l)with k � i, l � j) are unspecified or (2) all entries south

and east of it (i.e., if in the (i, j) position, then all positions (k, l) with k � i, l � j ) are unspecified.

We refer to case (1) only as upper left jagged and case (2) only as lower right jagged. Either of these is

referred to as singly jagged and when both occur, we say doubly jagged.
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A pattern is called echelon if, for each unspecified entry, either (3) all entries both north and east

of it (i.e., if in the (i, j) position, then all positions (k, l) with k � i, l � j) are unspecified or (4) all

entries south and west of it (i.e., if in the (i, j) position, then all positions (k, l) with k � i and l � j)

are unspecified. We refer to case (3) only as upper right echelon and case (4) only as lower left echelon.

Either of these is referred to as single echelon, while when both occur, we say double echelon. Echelon

refers to any of these possibilities.

Finally, a pattern in which we ask only that at least one of (1) and (2) and at least one of (3) or (4)

occur, is called jagged echelon.

We now turn to general echelon and jagged patterns with the purpose of giving our two primary

results, along with examples and lemmas that may be of general interest.

Theorem 4. An echelon pattern is TN completable if and only if it contains no 4-by-4 P1 , P′
1 or P2 as a

subpattern.

We note that an echelon or jagged echelon pattern contains a P1, P
′
1 or P2 subpattern if and only

if it contains a contiguous (consecutive row and column index sets) one of the same size. This makes

checking the condition in Theorem 4 straightforward, especially as the requirement of 4 may be re-

placed by k � 4, in any case, and, in particular for P2. We also note that Theorem 4 asymmetricaly and

significantly generalizes the ranking general TN completion result of [9], as monotonically labelled

block clique graphs (and many more patterns) contain none of the forbidden subpatterns. For jagged

patterns there are no combinational restrictions in the TP-completable case.

Theorem 5. Each jagged pattern is TP completable.

However, such patterns need not be TN-completable.

Examples. Neither singly nor doubly jagged patterns need be TN completable. (a) The pattern⎡
⎢⎢⎢⎢⎣

? ? ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

is not TN-completable as shown by the partial TN data

⎡
⎢⎢⎢⎢⎣

? ? 1

2 0 0

1 1 1

⎤
⎥⎥⎥⎥⎦
. The {1, 3},{2, 3} and

{1, 2},{1, 2} submatrices are in conflict, as the former requires the second ? to be > 1,while the latter

requires it to be 0, in order to have a TN completion.

(b) The pattern

⎡
⎢⎢⎢⎢⎣

? ? ∗
∗ ∗ ?

∗ ∗ ?

⎤
⎥⎥⎥⎥⎦
is not TN-completable as shown by the partial TN data

⎡
⎢⎢⎢⎢⎣

? ? 1

2 0 ?

1 1 ?

⎤
⎥⎥⎥⎥⎦
. The pre-

viously mentioned conflict is still present.

The small size of these example indicates, as we shall see, that most jagged patterns are not TN-

completable. However, we conjecture the following

Conjecture 1. An echelon pattern is TP completable if and only if it contains no P1,P
′
1 or P2 as a subpattern.

This conjecture would be to Theorem 4 what the [10] result is to the [9] result.

Then, we would also conjecture a statement that marries Theorem 5 and Conjecture 1 as a com-

prehensive result that nearly follows from Conjecture 1.

Conjecture 2. A jagged echelon pattern is TP completable if and only if it contains no P1, P
′
1 or P2 as a

subpattern.



C.R. Johnson, Z. Wei / Linear Algebra and its Applications 438 (2013) 2127–2135 2133

Because of the above examples an analogous statement for TN completability cannot be valid.

The strategy for proof of Theorems 4 and 5 is as follows. The necessity of the condition in both

follows from a natural, more general, lemma that we prove (Lemma 1). For sufficiency, we first prove

Theorem 4. This is by showing inductively that if an echelon pattern has none of the offending 4-

by-4 patterns, it has sufficiently many unspecified entries that either its NE or SW submatrices with

one fewer rows and one fewer columns can be completed to be rank deficient, while the remaining

submatrices necessary for application of Sylvester’s Identity are TN. Then, by Sylvester, the maximal

determinants will be nonnegative. This all uses a uniform completion strategy that we call generalized

standard GS, which conveys to submatrices (that are necessarily also echelon). This gives the proof of

Theorem 4. Theorem 5 is then proven by ordering the upper left/lower right unspecified entries so

that, for any data, they may, in order, be made sufficiently large that the partial TP matrix has a TP

completion. This completes the proof of Theorem 5.

We now turn to the details.

Definition . An upper “corner” in an echelon pattern is a specified position, for which the positions

above and to the right are specified, while the next position to the NE is not. A lower corner is defined

similarly for the lower echelon portion of an echelon pattern. The generalized standard completion

of a partial TN matrix with an echelon pattern is defined as follows. Consider an upper corner in the

upper echelon portion of a partial TN matrix and choose values for those unspecified entries that

complete the block determined by the corner, the specified entries in the row and in the column of

the corner entry, so as to produce a rank 1, or less, if possible, block. Completion in the lower echelon

portion is similar. This process continues, in the same way, until, with decreasing numbers of corners,

all unspecified entries are chosen.

For example, if the corner data is positive, we complete

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 ? ?

a21 a22 a23 a24 a25

? ? a33 a34 a35

? ? a43 a44 a45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13
a13a24
a23

a13a25
a23

a21 a22 a23 a24 a25

a21a32
a23

a22a33
a23

a33 a34 a35

a21a43
a23

a22a43
a23

a43 a44 a45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If some corner datum is 0, then, the partial TN data guarantees that either all specified entries NE

or SW of it are 0, as they also will be in the GS completion.

The general fact that implies the necessity of our conditions is the following.

Lemma 1. Suppose that P is not a TN-completable (TP-completable) pattern and that P sits contiguously

in Q as a subpattern, then Q is not TN-completable (TP-completable).

Proof. Let A be a partial TN (TP) matrix of pattern P that has no TN (TP) completion. We wish to

embed A as a contiguous submatrix in a partial TN (TP) matrix B of pattern Q. Then, since A is not

completable, B cannot be completable. We do this inductively as follows. Border A with a row at the

top (if appropriate - otherwise a row at the bottom or a column to one side or the other) by choosing

one entry at a time, working right to left (or appropriate order, otherwise). Choose each successive

entry to be large enough to make any minor it completes nonnegative (positive). This may be done

as this entry will be the upper left entry of any such minor and the complementary minor will be

nonnegative (positive). If the complementary minor is 0, we may border to produce a larger minor of

0. Now, replace any entry that has been specified by an unspecified entry, as appropriate, and continue,

as needed, until a partial TN (TP) B has been produced. (In the event of a row at the bottom, work left

to right; a column at the left, work bottom to top; and a column the right, top to bottom.) �
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We now give a series of lemmas about rank, which, in view of the GS completion strategy, show

that NE or SW blocks are rank deficient, which supports application of Sylvester’s Identity. The first is

known and elementary.

Lemma 2. If G ∈ Mm,n(F) has a p-by-q submatrix of rank r, then

rank(G) � r + (m + n) − (p + q) (2)

Corollary 1. If G ∈ Mm,n(F),m � n, has ap-by-q submatrix of rank r, then, if r+n < p+q, rank(G) < m,

i.e., G is rank deficient.

Lemma 3. If P is an m-by-n, m � n, echelon pattern containing no 4-by-4 P1, P
′
1 or P2 subpattern, then

P has a contiguous s-by-t block of unspecified entries with s + t = n − 1.

Proof. As the claim can be verified by exhaustion for smaller values of m and n, we assume that

4 < m � n. Suppose that the claimed conclusion does not hold. Then, for every contiguous block of

unspecified entries s+ t � n− 2. Among such blocks in the NE, ending before rowm− 3, choose the

one for which s + t is a maximum. Suppose that the values are s1 and t1. Ties do not matter. Now pick

that block with largest sum in the SW, beginning with now s1 + 3. Because si + ti � n − 2, i = 1, 2,
there will either be a P2 that includes row s1 + 1 and s2 + 2, or a P1 or P

′
1 that includes s1 + 1 or s1 + 2,

each k-by-k with k � 4. �

Lemma 4. Let P be an m-by-n echelon pattern that contains no 4-by-4 subpattern P1, P
′
1 or P2. Then in

the GS completion A of any partial TN matrix of pattern P , either A(1; n) or A(m; 1) is rank deficient.

Proof. Since the NE (SW) block of the GS completion, determined inclusively by any corner entry

of the upper (lower) echelon part has rank at most 1, Lemma 3, applied to Corollary 1 verifies the

claim.Which of the two blocks A(1; n) or A(m; 1) is rank deficient is determined bywhether the block

guaranteed in Lemma 3 is upper or lower. Of course, both could occur. �

It is clear that echelon patterns have the following useful feature.

Lemma 5. If Q is the result of deleting a column or row from an echelon pattern P , then Q is an echelon

pattern. Moreover, if A is the GS completion of a partial TN matrix with pattern P , then a similar deletion

from A will leave blocks whose rank is limited by those of A.

With the preceding lemmas we may now turn to a proof of Theorem 4. The proof is inductive,

focusing upon the smaller of m and n, which, by the symmetry of echelon patterns, we may assume

to be m. It is easy to check the validity of the theorem for values of m � 4, using the results of the

prior section and the GS completion. This begins the induction. Now, suppose we consider a value of

m and that the theorem is correct for all smaller values of m, using the GS completion technique. To

show thatmaximalminors (m-by-m) in theGS completion are nonnegative,weuse Sylvester’s identity,

the induction hypothesis (applied to NW and SE minors) and Lemma 4 (to see that either the NE or

SW minor is 0). Smaller minors come more directly from the inductive hypothesis. They are minors

of completions of echelon partial matrices, with smaller values of m, that are tantamount to the GS

completion, by Lemma 5. This completes the proof of Theorem 4.

We now turn to Theorem 5, and first prove it in case there is only one unspecified entry.

Lemma 6. A jagged pattern with just one unspecified entry is TP-completable.

Proof. By the definition of jagged. The unspecified entry must be in the (1, 1) or final, lower right

position. The argument in the two cases is the same. Suppose the (1, 1) position. Then, the unspecified
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entry enters positively into eachminor it completes, as, in each, the complementary minor is positive,

due to the partial TP assumption. Thus, this entry may be chosen sufficiently large that all minors it

completes are also positive. �

A simple consequence is the singly jagged case, when Lemma 6 is applied in the proper order.

Lemma 7. Any singly jagged pattern is TP-completable.

Proof. Again the two cases are the same. Suppose the pattern is upper left jagged. Now the unspecified

entriesmay be ordered lexicographically, beginningwith themost southerly and easterly, so that each

successive unspecified entry may be chosen by applying Lemma 2 to the submatrix of all entries

south and east of it (including it). This application leaves an upper left jagged partial TP matrix that is

successively completed. �

Now, to complete the proof of Theorem 5, distinguish two cases, when the pattern is doubly jagged.

In the first, suppose that no unspecified entry has all the entries both NW and SE of it unspecified.

In this event, Lemma 7 may be applied twice, first to, say, a maximal upper left submatrix that is

singly echelon and then to the entire pattern after the upper left entries have been chosen. Otherwise,

when there are such unspecified entries, the completion may again be divided into two stages via

unspecified, central lines, again applying Lemma 7, insertion of such lines (using the result of [11]) and

finally applying the first mentioned case. This completes the proof of Theorem 5.
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