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Abstract. Resource allocation to reproduction is a pri-
mary physiological concern for individuals, and can vary
with age, environment, or a combination of both factors.
In this study we quantified the impact of environment and
individual age on the reproductive output of female oys-
ters Crassostrea virginica. We determined the relative
fecundity, egg total lipid content, and overall and omega-
3/omega-6 (w3/w6) fatty acid signatures (FAS) of eggs
spawned by female oysters over a 2-year period (n = 32
and n = 64). Variation was quantified spatially and
ontogenetically by sampling young and old oyster popu-
lations from two rivers in Chesapeake Bay, totaling four
collection sites. During Year 1, when oysters underwent
oogenesis in different locations, overall and w3/w6 egg
FAS varied significantly by river, with no significant
differences observed in the FAS of oysters by age in Year
1. In Year 2, when oysters from different sites underwent
oogenesis in a single location, no significant differences
in the overall egg FAS or w3/w6 egg FAS by river or age
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were observed. These findings suggest that oysters inte-
grate environment into their reproductive output, but that
time spent growing at a specific location (in this case,
represented by oyster age) plays a relatively minor role in
the biochemical composition of oyster eggs. These re-
sults have consequences for our understanding of how
resources are allocated from the female oyster to eggs
and, more generally, the impact of environment and
ontogeny on reproductive physiology.

Introduction

Interactions between species and the environment are
fundamental to the study of the ecology of systems. Foun-
dational studies in ecology have examined how the envi-
ronment may impact species number and diversity (Andre-
wartha and Birch, 1954; Lewis, 1964; Dayton, 1971). More
recently, attention has focused on how the physiology of
species may change in different environments (Dahlhoff
et al., 2002; Porter et al., 2002; Kearney and Porter, 2009).
For example, in habitats characterized by sharp environ-
mental gradients, physiological parameters such as meta-
bolic rate and tolerance to hypoxia are a primary determi-
nant of species abundance and distribution (Phillips, 2007;
Chown and Gaston, 2008). An understanding of the rela-
tionship between physiology and environment is critical in
evaluating the factors that may influence abundance and
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distribution, and will lead to more informed decisions about
species management and recovery.

Allocation of resources to growth and to reproduction are
two primary physiological concerns of animals in nature
(Brown et al., 2004). This resource allocation can change
ontogenetically; many species invest energy towards so-
matic growth in the early life stages, then prioritize repro-
ductive success, and, finally, can experience reproductive
senescence later in life (Bell, 1984; Promislow, 1991;
Philipp and Abele, 2010). This ontogenetic variation in the
allocation of reproductive resources has implications for
species that are managed by size or age. Often, regulations
are aimed at allowing animals to remain in the wild until
they have had the opportunity to successfully reproduce.
While data on the minimum reproductive size are available
for many species, the reproductive dynamics of older, larger
individuals are less well understood. The goal of this study
was to examine how environment and ontogeny may impact
the quantity and quality of the reproductive output of an
important species in the Chesapeake Bay ecosystem, the
eastern oyster Crassostrea virginica.

The eastern oyster is an ideal species in which to examine
the impacts of environment and ontogeny on resource allo-
cation to reproductive output. Oysters are ubiquitous in
many of the world’s estuaries; they are reef-forming marine
bivalves and are found from Central America through the
Atlantic coast of North America. In Chesapeake Bay, the
largest estuary in the continental United States, oysters form
a critical component of the food web. They provide services
to the ecosystem such as water filtration and habitat cre-
ation (Peterson et al., 2003; Rodney and Paynter, 2006;
Grabowski and Peterson, 2007), and serve as important
benthic-pelagic couplers (Newell et al., 2003; Porter et al.,
2004). We also targeted the eastern oyster because the
females produce new eggs each winter, and so their repro-
ductive output may reflect environmental changes. There-
fore, the water quality and phytoplankton species abun-
dance and diversity that adult female oysters are exposed to
may become a factor in the quality of reproductive output
(Thompson et al., 1996).

The eastern oyster population in the Maryland portion of
Chesapeake Bay was ideal for this study. As a result of a
decades-long hatchery seeding program, the exact ages of
many of the restored oyster populations throughout the state
are known. This situation contrasts with other oyster popu-
lations throughout the continental U.S., where natural re-
cruitment can make it difficult to know the exact age of any
given oyster.

As synchronous broadcast spawners, eastern oyster fe-
males produce large numbers of eggs, increasing the like-
lihood that some eggs are fertilized (Kennedy, 1996). Fe-
male fecundity in C. virginica has been quantified as
number of eggs produced, gonadal mass, or fertilization
success (Cox and Mann, 1992; Choi er al, 1993; Kang

et al., 2003; Royer et al., 2008). Factors influencing fecun-
dity in females include age, salinity, and concentration and
quality of the phytoplankton diet (Hofmann et al., 1992;
Powell et al., 1992; Enriquez-Diaz, 2004). However, little
information exists about changes in the quality of eggs
produced by female C. virginica that are associated with
oyster age or geospatial location where oogenesis occurred.
Current data exist for a single age class (Kennedy er al.,
1995) and as means across multiple ages (Gallager et al.,
1986; Deslous-Paoli and Heral, 1988), leaving a dearth of
knowledge regarding ontogenetic and geospatial variation
in the quality of oyster eggs.

In this study we used the fatty acid signature (FAS) of the
eggs as a proxy for egg quality; certain fatty acids play a
critical role in the development of bivalve embryos. The
relative proportions of the various fatty acids in each indi-
vidual animal and/or tissue comprise its FAS, and differ-
ences in these proportions have been linked to important
developmental milestones. In bivalves, specific omega-3
fatty acids (20:5n-3 and 22:6n-3) are considered especially
important (Whyte et al., 1990, 1991; Helm et al., 1991;
Marty et al., 1992). Changes in the proportions of these fatty
acids in oyster eggs may have consequences for a develop-
ing embryo, although the magnitude of the difference re-
quired to elicit a response is not known. Fatty acid signature
analysis has been widely used in the ecological literature to
quantify the diets of marine animals from fish to phyto-
plankton to marine mammals (Watanabe, 1982; Bell et al.,
1986; Sargent et al., 1987; Ahlgren et al., 1990). Fatty acids
obtained from the diet are either directly incorporated into
the animal tissue or further modified by the individual in
vivo. Although changes in FAS have been linked to changes
in diet (Kirsch et al., 1998; Raclot et al., 1998; Iverson
et al., 2004), little work has been done to understand the
effects of changes in diet on the quality of the reproductive
output of individuals.

The goal of this study was to determine the influence of
environment and ontogeny on the reproductive output of
eastern oysters from northern Chesapeake Bay. Little is
known about the influence of oyster age and geospatial
location on fecundity measures. For the study, we identified
two populations of adult oysters from two rivers. Each river
has a different phytoplankton composition, according to
Chesapeake Bay Program (CBP) data (Chesapeake Bay
Program, 2013), a fact that could represent differences in
available diet for the adult oysters. Our aim was to examine
the effects of both oyster age and river (as a proxy for diet)
on the reproductive output of adult female oysters. We
hypothesized that both age and river would influence certain
aspects of the reproductive output of adult female oysters.
We predicted that 1) age would have a negative effect on the
total number of eggs produced and 2) river would influence
the fatty acid signatures of the oyster eggs.
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Figure 1. Adult oyster sampling locations in northern Chesapeake Bay. Each site was sampled in both 2010
and 2011 unless indicated on the map (i.e., CO, oysters were sampled in 2010 only, and CO, oysters were
sampled in 2011 only). Inset, east coast of the United States, with area of interest boxed for geographical
reference. C, Choptank River; M, Magothy River; O, old; Y, young; CO,, Choptank old, Year 1; CO,, Choptank
old, Year 2; CY, Choptank young; MO, Magothy old; MY, Magothy young.

Materials and Methods
Specimen collection

To examine the effects of both environment and ontogeny
on the reproductive output of eastern oysters in Chesapeake
Bay, sampling locations that varied by oyster age and river
source were identified. The two rivers selected are located
on opposite sides of Chesapeake Bay (Fig. 1), and, as was
mentioned above, differ in their phytoplankton composition
(Chesapeake Bay Program, 2013). It is important to keep in
mind that the CBP data are general to each river, and do not
fully capture the variation in phytoplankton composition in
these rivers on daily and seasonal scales. The data also may
not fully represent what oysters are eating in the water

column; previous work has reported that oysters may selec-
tively feed (Newell and Jordan, 1983). However, the general
differences observed in the CBP data show that oysters are
exposed to different phytoplankton populations on the river
scale. The sites within each river are relatively close by (no
more than 10 km apart), but contain oysters that differ in age
by at least 6 years. Therefore, samples from each site
incorporated differences in both exposure time (oyster age)
and food availability and quality. Since no replicate ages
were sampled within rivers, the age comparisons may be
confounded by river in this study.

For the 2010 spawn, 200 oysters were collected by divers
from two sites each in the Choptank and Magothy Rivers on
June 18, 2010. Animals were stored at the Horn Point
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Table 1

Oyster naming codes for age and location

River Site (oyster bar) Age (2010) Age (2011) Code
Magothy Chest Neck 4 5 MY
Magothy Dobbins 11 12 MO
Choptank States Bank 3 4 CY
Choptank Howell Point 9 N/A Co,
Choptank Shoal Creek N/A 10 CO,

C, Choptank; M, Magothy; O, old; Y, young; CO,, Choptank old Year
1; CO,, Choptank old Year 2.

Oyster Hatchery (HPOH) for 12 days prior to spawning to
acclimate to the hatchery environment before assessment.
This collection scheme allowed for analysis of the repro-
ductive output of oysters of both age classes (young and
old) and from both rivers. Young oysters (3-y-old) from the
Choptank River (“Choptank Young;” CY) were from the States
Bank oyster bar. Old oysters (9-y-old) from the Choptank
River (“Choptank Old Year 1;” CO,) were collected from
Howell Point oyster bar. Young oysters (4-y-old) from the
Magothy River (“Magothy Young;” MY) were collected
from Chest Neck oyster bar, and old oysters (11-y-old) from
the Magothy River (“Magothy Old;” MO) were from Dob-
bins oyster bar (Table 1, Fig. 1).

The 2010 spawn occurred on June 30, 2010. During this
acclimation period, oysters were kept in running Choptank
River water at a controlled temperature of 20 °C and at
ambient salinity (~10 ppt). Oysters were not fed supple-
mental food during the acclimation period; the phytoplank-
ton community already present in the Choptank River water
was used to feed the oysters during this time. Although a
strict light:dark cycle was not maintained during the accli-
mation period, lights were generally turned on during work
hours (08:00—18:00) and turned off for the remainder of the
day.

For the 2011 spawn, 200 oysters from each of the same 2
sites in the Magothy River, the Chest Neck and Dobbins
oyster bars, were collected by divers on October 28, 2010.
Another 200 oysters from the 2 sites in the Choptank River,
the States Bank and Howell Point oyster bars, were col-
lected on November 3, 2010. Because the density of adult
oysters at Howell Point (CO,) was too low to support
another 200-oyster collection, oysters from Shoal Creek
oyster bar in the Choptank River (“Choptank Old Year 2;”
CO,) were collected instead. The Shoal Creek oyster bar is
about 8 km from the Howell Point oyster bar, and contains
a large population of oysters of the same age as those
remaining on Howell Point. Oysters were kept for the winter
in plastic floats in a boat basin that had water exchange with
the Choptank River, so that oogenesis for oysters from all
sites would occur in the same location. Oysters were moved

into the hatchery 14 days prior to spawning to acclimate to
the hatchery environment before sampling.

The 2011 spawn occurred on June 14 and 15, 2011. Table
1 defines the naming codes used in the text to refer to
oysters of specific ages and locations.

Spawning

Staff of the Horn Point Oyster Hatchery conducted a
ripeness analysis of two individuals from each site to esti-
mate the population’s readiness to spawn. A ripeness anal-
ysis involves shucking the oyster to examine the size and
swollenness of the gonads, a metric that is related to the
readiness of oysters to spawn (D. W. Meritt; pers. obs.).
Once a portion of the animals appeared ready to spawn,
spawning was initiated to avoid oysters spawning in the
conditioning system. One hundred individual oysters from
each site were placed on separate spawning tables (100
oysters per table; sex unknown until spawning) with run-
ning seawater at a temperature of 27 °C and salinity of 10
ppt, conditions similar to what the oysters would have
experienced in upper Chesapeake Bay in summer. Since the
goal of this study was to examine the eggs of females from
different field locations and ages, the methods used to
induce spawning were carefully chosen to mimic the con-
ditions that females would have experienced in the field.

To stimulate spawning, the temperature was raised to
30 °C over the course of an hour, after which the animals
were left at 30 °C for 1 h. If spawning did not occur after
1 h, sperm from male animals from the same site was
collected by shucking the animal and manually removing
sperm from the ripe gonads. The collected sperm was then
added to the water in each table to stimulate spawning. Once
a female began to spawn, it was immediately removed from
the table to minimize mixing of eggs with other females’
eggs, then placed in a small plastic cup with enough salt-
water to cover the entire oyster. At first, an attempt was
made to spawn individuals in cups rather than starting them
on the table, but oysters did not respond to this method.
Thus, the reported fecundity estimates are underestimates of
the total amount of eggs released by each female, because
some eggs had been released on the spawning table before
females were placed in the cups. Individual cups were
labeled and female oysters were left for a minimum of 1 h
to finish spawning. Spawning males were identified, but
they were left on the table to encourage female spawning.

Oyster and egg processing

Once spawning was complete, the saltwater-egg mixture
from each individual cup was filtered through a 150-micron
(nm) screen to remove debris, and collected in a 30-liter
bucket filled with seawater. A small sample of the diluted
mixture was then placed on a slide and counted, using an
Olympus BX41 compound microscope on the 4 X objective
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Table 2
Microsatellite markers used in this study
Repeat Primer sequence (5'-3") MgCl, T3 primer
Locus structure (F = forward, R = reverse) (mmol 1) 7, (°C)  fluorescent-label Reference
Cvilg8 (CT),6 F: GCTACACACGAAAAATGGG 2.0 46.0 VIC Reece et al., 2004
R: TCAAATGAAGAGCACCTCC
CviSVIMS ~ (CT),q F: ATAAAAGTCCATTCGTAAGC 1.5 47.0 PET Carlsson et al., 2006
R: AGATTTGAAGTATTGCTATCG
Cvi2gl4 (TC),TT(TC),, F: GTCCTAACTACATTTATCACAC 1.5 59.0 VIC Reece et al., 2004
R: TTCTTCTTACAAAACAGACTG
CviGISb4  (GA),s F: G CGG AGA CGA GAC AGA CTC 1.5 56.7 6-FAM2 J. E. Carlsson and K. S. Reece,
R: AGG CTA TCC CAA CCA CCT C (unpubl. data)

MgCl,, magnesium chloride concentration for the polymerase chain reaction (PCR); T, annealing temperature for PCR.

(Olympus America, Inc., Melville, NY). Egg counts repre-
sent the total number of eggs, regardless of fertilization
status. However, approximately 75%—-90% of the eggs were
fertilized as a result of spawning males that were left on the
spawning tables (S. T. Alexander, pers. comm.). Counts
were repeated at least 3 times, with additional counts carried
out if values differed by more than 10%. Spawned oysters
were removed from individual cups, and shell height (mm),
dry tissue weight (g), and Perkinsus marinus (dermo) in-
fection intensity were determined for each female. Dermo
weighted prevalence (scale of infection from 0-5, where
0 = no infection and 5 = very heavy infection) was as-
sessed, using the diagnostic methods of Ray (1952), because
of the known correlation between dermo infection and re-
duced condition index and fecundity in oysters (Choi et al.,
1989; Paynter, 1996). The remaining saltwater-egg mixture
was then run through a 20-um sieve to concentrate the eggs
in a small area. Eggs were removed from the sieve, using a
glass pipette, and placed in a 20-ml centrifuge tube. Eggs
were frozen and stored at —20 °C in vials containing a
nitrogen gas atmosphere, until lipid analysis, according to
standard procedures (Budge et al., 20006).

Genetic analysis

To combat low natural recruitment, the University of
Maryland Center for Environmental Science Horn Point
Oyster Hatchery (HPOH) in Cambridge, Maryland, has
been providing Crassostrea virginica juveniles (spat-on-
shell) for seeding on oyster bars in Chesapeake Bay for over
two decades. Thus, we knew the exact ages of oysters from
locations that were seeded with hatchery-reared spat-on-
shell, including those used in this study. One concern with
using adult oysters produced from hatchery-reared spat is
genetic diversity and possible negative impacts on repro-
ductive success (Hare et al., 2006). Therefore, the genetic
relatedness of oysters from Year 2 was determined using
DNA microsatellite amplification to distinguish potential

patterns observed as a result of environment or oyster age
from those associated with potential kinship.

For genetic analysis in 2011, a small (about 1 cm’)
sample of wet gill tissue was removed from 30 successfully
spawned oysters from each site, placed in a micro-Eppen-
dorf tube with absolute ethanol, and sealed prior to shipment
for analysis. DNA was prepared using a modified Chelex
extraction method (Launey and Hedgecock, 2001). The
fixed tissue was rinsed in distilled water to remove ethanol
before 500 wl of 10% chelating resin (Chelex; Bio-Rad,
Richmond, CA) and 12 ul of Proteinase K (20 mg ml™)
were added to each sample. The mixture was heated at
60 °C for 1 h and boiled (100 °C) for 15 min. Samples were
centrifuged at maximum speed (14,000 rpm), and the su-
pernatant was stored at 4 °C until used as template for
polymerase chain reaction (PCR).

The following microsatellite markers were used (see Ta-
ble 2): Cvi2gl4, Cvilg8 (Reece et al., 2004); CviSVIMS
(Carlsson et al., 2006); and CviGISb4 (J. E. Carlsson and
K. S. Reece, unpubl. data). For amplification of the loci,
a T3 tail (AATTAACCCTCACTAAAGGG) was added to
the 5" end of the forward primers. Loci were amplified in
5-pl reactions with 5-50-ng template DNA and Invitrogen
(Life Technologies Corp., Grand Island, NY) reagents at a
final concentration of 0.2 ug/ul BSA, 1X PCR buffer, 0.2
mmol "' dNTP mixture, 1.5-2 mmol I"' MgCl, (see Table
2 for each locus concentration), 0.025 U Platinum T7agq
polymerase, 0.025 wmol 1! unlabeled forward primer with
a T3 tail, 0.1 wmol 1" reverse primer, and 0.1 wmol 1™
universal T3 tailed primer labeled with a fluorescent dye, as
shown in Table 2.

Microsatellite amplification was carried out on MJ Re-
search thermocyclers (MJ Research, Inc., Waltham, MA),
using the following parameters: initial denaturation at 95 °C
for 4 min, followed by 30 cycles of denaturation at 94 °C for
1 min, annealing for 1 min (see Table 2 for temperatures),
extension at 72 °C for 1 min, and a final extension at 72 °C
for 10 min. Allele sizes were resolved using a 3130XI



190 H. L. GLANDON ET AL.

Genetic Analyzer (Applied Biosystems, Norwalk, CT). Al-
lele size determinations were made using a GeneScan 500
LIZ size standard (Thermo Fisher Scientific, Waltham, MA)
with the GeneMarker ver. 1.75 program (SoftGenetics LLC,
State College, PA). The minimum detectable peak height
was set at 100 arbitrary fluorescence units (FU), and all
allele calls were verified by visual inspection.

Egg total lipid content and fatty acid composition

We chose to examine three metrics of reproductive output
to provide a detailed picture of the overall quality of output
from each oyster. The total number of eggs spawned by
individual oysters has been frequently used (e.g., Barber
et al., 1988; Kennedy et al., 1995) as a metric of the quality
of reproductive output, and was therefore included in the
study. Quantifying the total number of eggs spawned is not
invasive or destructive to the animal, and involves less time
and equipment than other measures of reproductive output,
making it a common metric for quantifying fecundity. We
also incorporated egg total lipid content (ETLC) as an index
of egg quality, because the lipid-rich egg yolk is the primary
energy source for a fertilized embryo and is critical in oyster
larval survival and development (Gallager er al., 1986;
Gallager and Mann, 1986; Helm et al., 1991). Finally, fatty
acid composition data have been widely used in the ecolog-
ical literature to understand the dietary components of ma-
rine animals (Watanabe, 1982; Bell et al., 1986; Sargent
et al., 1987; Ahlgren et al., 1990). Considering the impor-
tance of certain fatty acids in embryonic development in
bivalves (Whyte ef al., 1990, 1991; Helm et al., 1991; Marty
et al., 1992), the fatty acid signature (FAS) of eggs from the
female oysters was used to assess differences in the quality
of eggs by age and river.

Eggs from individual females were analyzed for total
lipid content (% wet weight) and fatty acid composition.
Total lipid was extracted from oyster samples, using a
modified Folch et al. (1957) chloroform:methanol extraction
method, as described in Budge er al. (2002). Each frozen
sample was thawed and centrifuged at 2000 rpm for 10 min to
separate any residual saltwater or protein from the egg mass.
Each weighed egg sample (total amount of spawned eggs per
individual) was placed in 9 ml of 2:1 chloroform:methanol
0.01% butylated hydroxytoluene (BHT) at 4 °C for at least
48 h to ensure complete extraction of lipids. Additional solvent
was used during the extraction stage to maintain the solvent:
water ratios recommended by Budge er al. (2006). The solvent
was evaporated under N, gas such that only lipid remained.
Lipid was re-suspended at 50 mg of lipid/ml in hexane and
stored under nitrogen gas at —20 °C. The mass of the extracted
lipid sample was used to determine the percentage of the initial
sample that was lipid, or the ETLC content.

For gas chromatography (GC) analysis, fatty acid butyl
esters (FABE) were prepared from total lipid extracts to

ensure that any short chains present would not be lost via
volatilization (Koopman et al., 1996, 2003; appendix 5,
Budge et al., 2006). Fatty acids were separated and analyzed
by GC using a Varian capillary GC (3800) with a flame
ionization detector (ID) in a fused silica column (30 X 0.25
mm internal diameter) (Zebron ZB-FFAP; Phenomenex,
Torrance, CA). Helium was used as the carrier gas, and the
gas line was equipped with an oxygen and water scrubber.
The following temperature program was used to separate
fatty acids by carbon chain length: 65 °C for 2 min, then
hold at 165 °C for 0.40 min after ramping at 20 °C min™",
hold at 215 °C for 6.6 min after ramping at 2 °C~", and hold
at 250 °C for 5 min after ramping at 5 °C~'. Up to 50
different fatty acids were identified, following Iverson et al.
(1997, 2002). Fatty acid peaks were identified based on two
sets of standards, a standard suite of known fatty acids
(Nu-Chek Prep, Inc., Elysian, MN), and, for the subset of
peaks present in the commercially available standards, fatty
acids were identified based upon peak identification per-
formed on a Thermo Trace Ultra GC/Polaris Q MS (Thermo
Fisher Scientific). Fatty acids were run on the gas chromato-
graph-mass spectrometer (GC-MS; courtesy S. Budge, Dal-
housie University) using a similar column. Peaks were then
integrated using appropriate response factors (Ackman,
1991) with the Galaxie Chromatography Data System (ver.
1.8.501.1; Agilent Technologies, Santa Clara, CA). Peak
identification was manually confirmed for each run. Each
fatty acid was described using the nomenclature A:Bn-X,
where A is the number of carbon atoms, B is the number of
double bonds, and X is the position of the double bond
closest to the terminal methyl group.

Statistical analyses

Statistical analyses were conducted using SAS ver. 9.2
(SAS Institute, Cary, NC) and Plymouth Routines in Mul-
tivariate Ecological Research (PRIMERG6; Primer-E Ltd.,
Ivybridge, UK) statistical software, with a = 0.05 as the
significance level for each program. For all variables, data
for 2010 and 2011 were initially examined separately and
then also combined. Since the results of the combined data
were not different from the individual years separately, the
data are reported for each year separately to examine dy-
namics within each year. To account for any differences in
female oyster size, the relative fecundity data were exam-
ined as number of eggs per gram of tissue (dry weight).
Variation in relative fecundity (number of eggs per female),
shell height (mm), dry weight (g), and ETLC by collection
site were examined using Kruskal-Wallis rank tests, with
Dunn’s test for multiple comparisons if the overall test was
significant. Nonparametric tests were used for large differ-
ences in sample and variance among sampling groups. The
relationship between relative fecundity and ETLC was ex-
amined using linear regression, and is reported for both
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Table 3

Mean metrics (£ SE) for female oysters by site and year collected

Sampling Site Shell height Egg count/dry wt Dermo
year code n (mm) Dry weight (g) (millions gram™) WP % Lipid

2010 MY 10 105.1° = 5.8 1.4+0.2 7.5+ 1.8 02*=0.1 3.0°*02
MO 4 127.0° = 5.9 22+03 1.5+ 0.6 1.0 £0.7 53**0.6
CY 10 100.9* = 5.2 14+03 112°*23 03 *0.2 2.8+ 0.4
Cco, 8 92.1°+ 59 1.8 0.2 8.8+ 1.2 03 x0.1 2.9°+0.5

2011 MY 20 110.8° = 4.1 2.0+0.2 42°+03 0.3 = 0.1 4.8 0.3
MO 12 134.1* £ 5.8 27+03 24+ 04 1.1* £ 03 50x03
CY 20 100.6° = 4.0 1.9 +%0.2 3.6 + 04 0302 52%+03
CO, 17 107.7° £ 2.9 22*0.1 53°+0.8 0.4°+0.2 47+04

Significant differences (P < 0.05) across the four sites for each variable are calculated separately for each year, and are indicated by different letters (a

or b).

Dermo WP, Perkinsus marinus weighted prevalence. C, Choptank River; M, Magothy River; O, old; Y, young; CO,, Choptank old Year 1; CO,,

Choptank old Year 2.

years combined to increase sample size and to illustrate the
patterns more clearly. Chi-squared analysis was used to test
for differences in weighted prevalence (scale of infection
from 0-5, where 0 = no infection and 5 = very heavy
infection) of dermo (Perkinsus marinus) by collection site.
For genetic analysis, inter- and intra-sample variation were
examined based on multi-locus genotypes, using unbiased
F-statistics (Weir and Cockerham, 1984) based on Fisher’s
exact test, and were calculated using GENEPOP ver. 3.4
(Raymond and Rousset, 1995).

Patterns in fatty acid signatures (FAS) by site (proportion
of all fatty acids present in each individual) were examined
using PRIMER 6 software (Clarke, 1993; Clarke and War-
wick, 2001; Clarke and Gorley, 2006), rather than examin-
ing patterns in individual fatty acids, to obtain a complete
picture of the fatty acid composition of the eggs. Fifty
individual fatty acids were identified using gas chromatog-
raphy analysis; however, our analysis of FAS included only
the fatty acids found in concentrations greater than 1%. The
concentrations of these 18 fatty acids (i.e., 14:0, 16:0, 16:
In-7, 17:0, 18:0, 18:1n-9, 18:1n-7, 18:2n-6, 18:3n-3, 18:
4n-3, 20:1n-11, 20:1n-7, 20:4n-6, 20:5n-3, 22:1n-11, 22:
5n-6, 22:5n-3, and 22:6n-3) were analyzed for differences in
FAS by site in our model. Differences in the omega-3 and
omega-6 (w3/w6) fatty acids included in the overall model
were determined by a separate model (18:2n-6, 18:3n-3,
18:4n-3, 20:4n-6, 20:5n-3, 22:5n-6, 22:5n-3, and 22:6n-3).
If a certain fatty acid was not detected in a single individual,
the concentration of that fatty acid was changed from 0O to
0.005% (Iverson et al., 2002). This value was chosen be-
cause it is below the minimum detectable level of the gas
chromatograph (0.01%), but is not so small that it would
result in extreme outliers (Iverson et al., 2002).

Resemblance matrices of fatty acid concentrations were
created based on Bray-Curtis dissimilarity. Nonmetric mul-
tidimensional scaling (MDS; 25 restarts, Kruskal scheme 1)

analyses were conducted on the fatty acid profiles of all
samples by year. Multidimensional scaling stress values
range from O to 1; low stress values indicated high confi-
dence in the model, and stress values less than 0.2 were
assumed to adequately represent the relationships of the
samples in the model (Clarke and Warwick, 2001). Analy-
ses of similarities (ANOSIM; two-way, maximum permu-
tations = 999) were conducted on all samples by site to
evaluate the impact of oyster age and river on overall and
w3/w6 FAS. Analyses of similarities global R-values range
from O to 1; higher global R-values are more significant.
One-way similarity percentages analysis (SIMPER; two-
way, based on Bray-Curtis dissimilarity, cutoff percent-
age = 90) was conducted if ANOSIM was significant, to
determine which fatty acids contributed the most to the
differences observed between rivers or ages.

Results
Overall metrics: 2010

In 2010, 32 individual female oysters successfully
spawned, out of the 800 animals that were collected from
the 4 river sites. There was no significant difference in dry
weight or dermo weighted prevalence by collection site
(P > 0.05 for all comparisons; Table 3). While no differ-
ence in dry weight was found by site, old oysters (11-y-old)
from the Magothy River (MO) were significantly larger (by
shell height) than oysters from all other sites (P < 0.05 for
all pairwise comparisons with MO). The MO oysters pro-
duced an average of 1.5 million eggs per gram of dry tissue,
a number that was significantly less than the 11.2 million
eggs per gram of dry tissue produced by young oysters
(3-y-old) from the Choptank River (CY) (P < 0.05, Table
3). While young oysters (4-y-old) from the Magothy River
(MY) produced an average of 7.5 million eggs per gram of
dry tissue, and old oysters (9-y-old) from the Choptank
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River (CO,) oysters produced an average of 8.8 million eggs
per gram of dry tissue, both groups of eggs per gram of dry
tissue were not significantly different from the number of
eggs per gram of dry tissue produced by CY oysters in 2010
(P > 0.05 for all comparisons, Table 3). The mean egg total
lipid content (ETLC) of eggs from MO oysters was 5.3%,
significantly higher than the ETLC of eggs from oysters
from all other sites (i.e., MY: 3.0%; CY: 2.8%; CO,: 2.9%;
P < 0.05 for all pairwise comparisons with MO).

Overall metrics: 2011

A total of 64 individual female oysters successfully
spawned, out of the 800 animals that were collected from
the 4 sites in 2011 (Table 3). Similar to the 2010 oysters, no
significant difference in dry weight was observed by col-
lection site (P> 0.05) in 2011, and MO oysters were sig-
nificantly larger (by shell height) than oysters from all other
sites (P < 0.05 for all pairwise comparisons with MO). The
MO oysters produced an average of 2.4 million eggs per
gram of dry tissue, a significantly lower number than the 5.3
million eggs per gram of dry tissue produced by old oysters
(9-y-old) from the Choptank River in 2011 (CO,) and the
4.2 million eggs per gram of dry tissue produced by MY
individuals (P < 0.05 for comparisons with MO). The CY
individuals produced an average of 3.6 million eggs per
gram of dry tissue, which was not significantly different
from the number of eggs per gram of dry tissue produced by
oysters at any other site (P > 0.05 for all comparisons). The
MO oysters displayed an average dermo weighted preva-
lence of 1.1 (on a scale of 0-5), which was significantly
greater than the average dermo weighted prevalence at all
other sites (i.e., MY, 0.3; CY, 0.3; CO,, 0.4; P < 0.05 for
all pairwise comparisons with MO). In contrast to the ETLC
data for 2010, the average 2011 ETLC data did not vary
significantly by site (P > 0.05); for all sites, the average
ETLC was between 4.7% and 5.2% in 2011.

Egg total lipid content (ETLC) by egg count

The data for both 2010 and 2011 were combined to
examine the relationship between ETLC and the number of
eggs per dry weight with maximum statistical power. These
data were examined using linear regression, and showed a
significant negative relationship between lipid content and
number of eggs produced per gram of dry weight (P =
0.002, R* = 0.10).

Genetic analysis

Genetic analyses were conducted on all populations in
2011 to determine genetic relatedness among populations.
Pairwise fixation indices (F,,) and P-values are shown in
Table 4. All pairwise comparisons showed significant ge-

Table 4

E, (above dashed diagonal) and P-values (below dashed diagonal) for
all pairwise comparisons by population collected in 2011

MY MO cY Co,
MY T~ 0014 0.0106 0.0005
MO <0.001 TTse 00242 0.0204
CY <0.001 <0.001 ==~ 00198
CO, 0.112 <0.001 <0001  TT==-__

Individuals analyzed for each site were MY: 20, MO: 12, CY: 20, COy:
17. The data indicate that all populations were significantly different
genetically, except for the MY and CO, samples (in bold).

F, fixation index. C, Choptank River; M, Magothy River; O, old; Y,
young; CO,, Choptank River old Year 2.

netic differences (P < 0.001), except for the MY and CO,
sample comparison (P = 0.11).

Composition of egg fatty acids

Although 50 individual fatty acids were identified using
gas chromatography analysis, our model included only the
18 fatty acids found in concentrations greater than 1%. The
levels of these 18 different fatty acids constituted each
sample’s fatty acid signature (FAS), and were used to com-
pare egg FAS by sampling years and sites (Table 5). In
2010, significant differences were found in the overall FAS
of eggs by river (P = 0.001, global R = 0.467, 2-dimen-
sional (2D) stress = 0.11; Fig. 2a). SIMPER analysis indi-
cated that percent concentrations of 16:0, 20:5n-3, and
22:6n-3 fatty acids, specifically, were the most influential in
separating the fatty acid signatures between rivers. No sig-
nificant differences were observed in the overall FAS of
eggs by age in 2010 (P > 0.05, global R = 0.216). As with
the overall FAS data by river from 2010, significant differ-
ences were found in the w3/w6 FAS of eggs by river in 2010
(P = 0.001, global R = 0.359, 2D stress = 0.10; Fig. 2b).
SIMPER analyses showed that the percent concentrations of
20:5n-3 and 22:6n-3 contributed to at least 63% of the
variation observed in essential FAS by river in 2010. No
significant differences were observed in the w3/w6 FAS of
eggs by age in 2010 (P > 0.05, global R = 0.103). In 2011,
when females from the 4 sites were moved to the same site
before oogenesis, no significant differences were observed
in overall or w3/w6 fatty acid composition of oyster eggs by
river or age (P > 0.05 for both factors; global R = 0.054
and 0.023, respectively; 2D stress = 0.15 and 0.09, respec-
tively; Fig. 3a, b).

Discussion

The goal of our study was to examine the influence of
environment and ontogeny on the quantity and quality of the
reproductive output of four restored oyster populations in
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Table 5

Sampling year, sample size, mean percent composition, and standard error of all fatty acids that were included in non-parametric models to analyze

eastern oyster Crassostrea virginica eggs for patterns in fatty acid signatures

Year Site n 14:0 16:0 16:1n-7 17:0 18:0 18:1n-9 18:1n-7
2010 MY 10 4.19 £ 1.02 25.06 = 2.45 2.90 £ 0.48 1.92 = 0.40 4.25 +0.86 4.64 = 0.33 3.76 £ 0.37
MO 4 5.33 £0.99 27.13 £0.23 2.45 +0.96 1.54 £ 0.21 4.94 +0.77 4.89 = 0.70 2.55 +£0.70
CY 10 6.40 = 1.30 24.75 £2.27 446 =193 1.52 = 0.31 4.15 = 0.66 3.48 = 0.69 443 = 1.78
CO 8 4.88 = 1.29 25.84 = 1.43 4.66 = 0.46 1.36 £ 0.16 4.07 £ 0.38 425 *+0.34 445 *+0.48
2011 MY 20 3,52+ 1.13 25.40 = 0.90 2.21 = 0.49 1.39 £0.17 4.39 = 0.36 5.70 = 0.68 2.90 + 0.79
MO 12 3.01 = 0.85 24.51 = 0.66 1.73 £ 0.53 1.33 £0.12 451 £0.33 5.83 £ 0.61 2.92 £0.33
CY 20 3.15 091 26.00 = 0.80 1.91 £0.52 1.41 £0.16 439 +0.48 5.71 £0.75 2.64 £ 0.95
CO 17 3.14 = 0.89 25.12 = 1.01 2.15 £ 0.51 1.42 £0.14 4.37 £ 0.46 5.76 = 0.74 3.04 +0.39

Year Site 18:2n-6 18:3n-3 18:4n-3 20:1n-11 20:1n-7 20:4n-6 20:5n-3
2010 MY 2.12 £0.25 3.24 £ 0.62 3.02 = 0.51 1.86 = 0.34 3.00 £ 0.26 1.56 = 0.24 8.38 £ 0.97
MO 245 +0.20 3.22 £0.40 4.39 £0.59 1.97 £0.17 2.64 £0.53 1.26 £0.14 8.17 £ 0.88
CY 1.70 = 0.27 3.24 = 0.67 3.08 = 0.67 1.69 += 0.49 3.87 £0.77 1.08 = 0.20 9.11 = 1.26
CO 2.16 £ 0.15 4.59 = 0.57 3.61 =0.36 1.58 £ 0.33 292 £0.42 1.06 £ 0.15 9.52 £ 0.71
2011 MY 3.07 £0.31 441 *=0.89 4.57 £ 0.67 0.49 = 0.09 2.94 £0.41 2.22 +0.63 9.66 = 0.99
MO 3.03 £0.26 5.13 £ 0.69 4.92 +0.35 0.55 = 0.09 3.12 £0.33 2.20 + 0.43 9.71 = 0.97
CY 2.99 +0.29 4.83 = 0.80 4.85 £ 0.63 0.50 = 0.11 2.95 £0.30 1.60 = 0.24 10.31 = 0.96
CO 2.95 £0.30 478 = 0.89 476 £ 0.58 0.52 = 0.10 3.03 =040 1.67 £0.27 10.69 = 1.35
Year Site 22:1n-11 22:5n-6 22:5n-3 22:6n-3 Sum n3 Sum n6 n3:n6
2010 MY 2.40 = 0.28 0.59 £0.11 0.23 £0.15 11.54 £2.43 26.42 4.27 6.18
MO 1.86 £ 0.24 0.35 = 0.20 0.15 £ 0.05 11.94 = 2.16 27.87 4.05 6.94
CY 1.91 +0.80 0.38 = 0.07 0.22 £ 0.12 8.50 = 2.20 24.14 3.15 7.67
CcO 2.07 +£0.43 0.48 = 0.09 0.15 = 0.08 8.98 = 1.67 26.84 3.70 7.26
2011 MY 2.31 £0.35 0.50 =0.23 0.88 = 0.10 13.86 = 1.05 33.38 5.79 5.80
MO 2.35 +0.33 0.50 = 0.16 0.87 £ 0.05 13.24 = 1.17 33.87 5.74 5.92
CY 2.30 £0.18 0.56 = 0.07 0.94 £ 0.05 13.75 £ 1.13 34.68 5.14 6.75
CcO 2.31 £0.52 0.57 = 0.09 0.95 = 0.08 13.53 = 1.11 34.71 5.19 6.70

Means for all omega-3 (w3) and omega-6 (w6) fatty acids, and the ratio of omega-3 to omega-6 fatty acids in the model are also shown. C, Choptank

River; M, Magothy River; O, old; Y, young.

Chesapeake Bay. We achieved this goal by collecting, over
two years, eggs from female oysters of two known ages,
from two different rivers with previously determined differ-
ences in phytoplankton composition in Chesapeake Bay.
We quantified the number of eggs per gram of dried tissue
of individual female oysters from these populations, and
determined the quality of the eggs produced by lipid content
and fatty acid signature analyses. In Year 1, oysters under-
went oogenesis at their respective collection sites, enabling
them to incorporate possible environmental differences into
their reproductive output. During Year 2, oysters were col-
lected from the four different sites in the fall and moved to
a single location for the winter, forcing them all to undergo
oogenesis in the same location.

While quantifying the phytoplankton composition in the
two rivers was outside the scope of this study, we obtained
data on their phytoplankton composition from the Chesa-
peake Bay Program (2013) and isotopic signature (8'°N)
data (Fertig et al., 2010). The phytoplankton data indicated
that oysters that underwent oogenesis in two different rivers in

Year 1 of this study likely experienced different food sources,
both in phytoplankton abundance and species diversity (Ches-
apeake Bay Program, 2013). Therefore, when the oysters un-
derwent oogenesis in the same river during Year 2 of this
study, the difference in food source was likely eliminated.

In addition to known differences in environment and food
composition, the age of all oysters in this study was known,
a rarity in studies of wild bivalve populations. For example,
the lack of natural oyster recruitment in the northern portion
of Chesapeake Bay, combined with a well-documented
hatchery seeding program conducted for the past two de-
cades by the Horn Point Oyster Hatchery (HPOH) in this
same area, made it possible to confidently determine the age
of the oysters in our study. These known differences in
environment (and, likely, food source) and knowledge of
oysters’ age allowed us to assess with confidence the impact
of both on the physiology of oysters in Chesapeake Bay, as
quantified by changes in quantity and quality of eggs.

The data from our study show that environment was a
primary driver of the quality (fatty acid signature (FAS), in
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Figure 2. (A) Multidimensional scaling (MDS) plot of the overall fatty

acid signatures (FAS) of eggs by site in 2010. Analysis of similarities
(ANOSIM) showed significant differences in FAS of eggs by river (P =
0.001, global R = 0.467, two-dimensional (2D) stress = 0.11). Similarity
percentages analysis (SIMPER) showed that percent concentrations of
16:0, 29:5n-3, and 22:6n-3 fatty acids, specifically, were the most influ-
ential in separating the FAS between rivers. No significant differences were
seen in the overall FAS by age of oyster in 2010. (B) MDS plot of the
essential FAS of eggs by site in 2010. ANOSIM showed significant
differences in essential FAS of eggs by river (P = 0.001; global R = 0.359;
2D stress = 0.10). SIMPER analyses showed that the percent concentra-
tions of 20:5n-3 and 22:6n-3 contributed to at least 63% of the variation
seen in essential FAS by river in 2010. No significant differences were
noted in the w3/w6 FAS of eggs by age of oyster in 2010. One young oyster
from the Choptank River (CY) was suspected of being an outlier, but was
retained in the model because trends were similar whether it was included
or excluded. There was no experimental basis for removing the individual.
CO,, Choptank River old Year 1; CY, Choptank River young; MO,
Magothy River; MO, Magothy River old; MY, Magothy River young;
MDS 1, multidimensional scaling axis 1; MDS 2, multidimensional scaling
axis 2.

this study) of oyster eggs, and that oyster age at the time of
spawning was less important in influencing egg quality. In
our study, FAS (overall and w3/w6) from oysters that un-
derwent oogenesis in different rivers also differed signifi-
cantly. Oyster age, on the other hand, was not a driver of
differences observed in the overall or w3/w6 egg FAS
during Year 1. However, in Year 2, when oysters underwent
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Figure 3. (A) Multidimensional scaling (MDS) plot of the overall fatty

acid signatures (FAS) of eggs by collection site in 2011. Analysis of
similarities (ANOSIM) showed no significant differences in the overall
FAS of eggs by river or age (P > 0.05, global R = 0.054, 2D stress =
0.15). (B) MDS plot of the essential FAS of eggs by collection site in 2011.
ANOSIM revealed no significant differences in essential FAS of eggs by
river or age (P > 0.05, global R = 0.023, 2D stress = 0.09). CO,,
Choptank River old Year 2; CY, Choptank River young; MO, Magothy
River old; MY, Magothy River young; MDS 1, multidimensional scaling
axis 1; MDS 2, multidimensional scaling axis 2.

oogenesis at the same location, no significant differences in
the overall or w3/w6 egg FAS were observed in the popu-
lations sampled. These data underscore the importance of
environment during oogenesis in influencing FAS of the
eggs of oysters, and have implications for spatial vari-
ability in the quality of eggs in the Chesapeake Bay
oyster population.

While the patterns observed in the egg FAS of oysters in
this study are compelling, the relative fecundity (number of
eggs per gram of dried tissue) and egg total lipid content
(ETLC) were also examined to provide a complete picture
of the reproductive output. These data suggest a significant
negative relationship between ETLC and the number of
eggs per gram of dry tissue. However, the R* value of this
relationship was very low (0.10), and was likely driven by
a few individuals that produced a large number of eggs, an
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indicator that egg count was not a reliable predictor for
ETLC over the range of egg count per gram of dry tissue in
this study. However, data from old oysters from the Mago-
thy River (MO) oysters in 2010 suggest there may be a fixed
amount of lipid resources which female oysters can allocate
to egg production. The MO oysters produced nearly 75%
fewer eggs than did oysters from all the other sites, and yet
those (MO) eggs contained significantly more lipid than did
eggs from the other sites in 2010 (P > 0.05). Still, the low
number of individuals that produced a very high number of
eggs (greater than 10 million eggs per gram of dried tissue)
in this study limits the applicability of these trends to other
populations.

Every adult female included in this study displayed a low
level of Perkinsus marinus (dermo) infection. High infec-
tion prevalence paired with low infection intensity is com-
mon for adult oysters in northern Chesapeake Bay (Bur-
reson and Calvo, 1996). Dermo infection can have sublethal
effects on adult oysters, such as reducing fecundity (Choi
et al., 1989; Paynter, 1996). However, dermo infection
levels observed in animals in our study were below levels
expected to impact fecundity. Although the MO oysters
collected in 2011 had significantly higher levels of dermo
infection than did oysters from the other sites, the weighted
prevalence of 1.1 (on a scale from O to 5) observed in these
animals was well below the level of concern for sublethal
infections.

The primary finding of our study was the impact of
environment on egg FAS of oysters. Changes in diet impact
the FAS of individuals in many marine species (Kirsch
et al., 1998; Raclot et al., 1998; Iverson et al., 2004), but
data on the impact of parental diet on reproductive outputs
remain limited. We chose to examine the FAS of eggs rather
than the FAS of adult oysters themselves to understand the
impact of parental diet and age on reproductive output. This
technique has proven effective in characterizing the benthic
food web (Kelly and Scheibling, 2012), and has been used
to determine the impact of parental diet on egg lipid content
and FAS in black-lip pearl oysters Pinctada margaritifera
(Ehteshami et al., 2011), identify trophic pathways in
bearded seals Erignathus barbatus and Pacific walruses
Odobenus rosmarus (Budge et al., 2007), and examine
patterns in the milk of Antarctic fur seals Arctocephalus
gazelle (Brown et al., 1999).

Our study found significant differences in the overall and
w3/w6 egg FAS of animals by river in 2010 (see Fig. 2a, b).
While analysis of similarities (ANOSIM) is known to be
sensitive to small sample sizes and differences in dispersion,
we found differences in egg FAS across all sites in 2010, not
just the site with the lowest sample size (2010 MO; n = 4).
Further analyses indicated that no significant differences
were observed in relation to the duration of an animal’s
exposure to a given site (based on its age). However, no
difference in the overall or w3/w6 egg FAS was observed by

river in 2011 (see Fig. 3a, b), when oogenesis occurred in
the same location. Since all population combinations except
MY and CO, were genetically distinct in 2011 (see Table
3), these data suggest that oyster diet, rather than genetic
relatedness through resampling of the same population, has
a significant effect on the fatty acid signatures of the eggs
those oysters produce. The possibility that the similarity in
the FAS observed in the 2011 individuals would have been
present regardless of oogenesis location cannot be over-
looked, since individuals that completed oogenesis in the
original locations were not sampled during that year.

The importance of specific fatty acids to normal devel-
opment early in life has been explored in the literature
(Wainwright et al., 1992; Sargent et al., 1997, 1999). Based
on those studies, we did not expect to see a significant effect
of the female’s diet on the FAS of her eggs. The findings of
this study call into question the idea that the FAS of eggs is
constrained solely by the requirements of the developing
embryo, and underscore the impact of environment on the
quality of reproductive outputs. Since salinity and temper-
ature were similar at all sites during both years of this study,
environmental differences reflect potential differences in
phytoplankton composition between the two rivers exam-
ined. The results of our study indicate that differences in
location of oogenesis can be reflected in oyster egg FAS,
and that these diet differences overwhelm any consistent
FAS present in all oyster eggs.

Certain fatty acids (20:5n-3 and 22:6n-3) are necessary
for oyster egg and larval development (Whyte et al., 1990,
1991; Helm et al., 1991; Marty et al., 1992), but what is not
known is how flexible the proportions of these fatty acids
are in each individual. The concept of a minimum threshold
percentage of certain w3/wb6 fatty acids has been explored in
many bivalve species, particularly as it relates to larval
development (e.g., Caers et al., 2002; Hendriks et al., 2003;
Milke et al., 2004), and may also be at work in this system.
Our data showed that the concentrations of 20:5n-3 and
22:6n-3 fatty acids contributed significantly to the variation
in egg FAS by site in 2010, suggesting influences of envi-
ronment on egg and larval development in our system.
However, the observed differences in fatty acid concentra-
tions of 20:5n-3 and 22:6n-3 in 2010 may be above mini-
mum thresholds for essential fatty acids in all populations,
and may not significantly impact the development of these
eggs into the larval stage and beyond. Understanding the
role of specific fatty acids in the quality of oyster embryos
and larvae in the Chesapeake Bay population is important in
the context of the impact of geospatial location (and vari-
ability in phytoplankton community composition) on oyster
survival in this system.

Our study aimed to quantify the impact of age and
geospatial location on the quality of eggs from oysters
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collected from two locations in Chesapeake Bay with sig-
nificantly different food availability. Considering the obser-
vational nature of our work, a controlled-diet study is nec-
essary to definitively quantify the impact of specific fatty
acids on the FAS of oyster eggs. Embryonic and larval
conditions have been linked to adult survival and fecundity
in a variety of bivalve species (Gallager et al., 1986; Caers
et al., 2002; Milke et al., 2004). Therefore, quantifying the
effects of the differences observed in egg FAS on other
measures of reproductive success, such as fertilization suc-
cess, larval survival, and/or settlement success will place the
findings of this study in the greater context of oyster sur-
vival and ecosystem impact. Determining the effects of
these differences in biochemical composition on oyster sur-
vival will not only prove valuable to understanding the
impacts of environment and ontogeny on reproductive phys-
iology of oysters and other similar species, but may also
provide practical techniques for improving the efficiency of
hatchery production through the targeted creation of high-

quality eggs.
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