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1. Introduction

It is known that among all real symmetric (complex Hermitian) n-by-nmatrices, the complete rela-

tionship between the diagonal entries and eigenvalues is characterized by majorization [5]. However,

for even very large subclasses of the real symmetric matrices, there may be additional restrictions (in

addition to majorization). For example, classes of additional inequalities have recently been identified

for graph Laplacians [1]. Our purpose here is to examine additional restrictions based upon the sign

pattern class of the off-diagonal entries. As none of the diagonal entries, eigenvalues or symmetry

is changed by signature or permutation similarity, we are interested in sign pattern classes, up to

these symmetries. Of course, majorization implies that the largest (smallest) eigenvalue is at least (at

most) the largest (smallest) diagonal entry, and we are primarily interested in inequalities between

the ith largest eigenvalue and the kth largest diagonal entry. We give a new (universal) such inequal-

ity for matrices with nonpositive off-diagonal entries that generalizes an inequality recently proven

for graph Laplacians [1], but further graph Laplacian inequalities do not generalize to the nonpositive

off-diagonal case. In low dimensions, necessary and sufficient inequalities are given, though these

involve more complicated inequalities, and interesting sufficient conditions for both nonnegative and

for nonpositive off-diagonal entries are given for general n.

2. Known results and definitions

First, we present several definitions that will help us later to divide matrices into types, and also

several well known theorems and lemmas that deal with eigenvalues of symmetric or nonnegative

matrices.

Definition 1. A signature matrix is a diagonal matrix whose diagonal entries are ±1.

Definition 2. A signature similarity of a square matrix A is a product of the form SAS , with S is a

signature matrix.

We continue with the definition for majorization.

Definition 3. Let α = [αi] ∈ R
n and β = [βi] ∈ R

n be given. The order of the entries of α and β is

as follows:

αjn � αjn−1
� · · · � αj1 , βmn

� βmn−1
� · · · � βm1

.

The vectorβ is said tomajorize the vectorα if
∑k

i=1βmi
� ∑k

i=1αji for all k = 1, 2, . . . , nwith equality

for k = n.

The following lemmas and theorems are from [5].

Lemma 2.1. Let A be an n-by-n real symmetric matrix with eigenvalues λn � λn−1 � · · · � λ1 .

Thenλk = max
{ 〈Ag,g〉

〈g,g〉 |g⊥vk−1, vk−2, . . . , v1
}
,when vk−1, vk−2, . . . , v1 are eigenvectors of eigenvalues

λk−1, λk−2, . . . , λ1 respectively.

Lemma 2.2. Let n be a given positive integer, and let
{
λi|i = 1, 2, . . . , n

}
and

{
λ̂i|i = 1, 2, . . . , n + 1

}
be two given sequences of real numbers such that λ̂n+1 � λn � λ̂n � λn−1 � · · · � λ1 � λ̂1.

Let � = diag
(
λn, λn−1, . . . , λ1

)
. There exists a real number a and a real vector y ∈ R

n such that{
λ̂n+1, λ̂n, . . . , λ̂1

}
is the set of the eigenvalues of the real symmetric matrix
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Â ≡
⎛
⎝ � y

yT a

⎞
⎠ ∈ Mn+1(R).

Furthermore, a and y may be constructed in the following way:

a =
n+1∑
i=1

λ̂i −
n∑

i=1

λi.

In order to construct y, define the polynomials

f (t) =
n+1∏
i=1

(
t − λ̂i

)
, g(t) =

n∏
i=1

(
t − λi

)
.

Define s(t) = f (t)/g′(t) (s(t) is in lowest terms). For all 1 � i � n, yi can be chosen to be some solution

of the equation yi
2 = −s(λn−i+1).

Remark. By the proof of this lemma, −s(λn−i+1) is nonnegative, hence this equation always has a

solution, and if this solution is nonzero, then both of the options for the solution may be chosen in

order to construct the vector y.

The following theorem shows that majorization is a complete description of the relationships be-

tween the eigenvalues and diagonal entries of a general real symmetric matrix.

Theorem 2.3 [5]. Let n � 1 and let an � an−1 � · · · � a1 and λn � λn−1 � · · · � λ1 be given real

numbers. If the vector λ = [λi] majorizes the vector a = [ai], then there exists a real symmetric matrix

A = [aij] ∈ Mn(R) with spectrum
{
λi

}
such that aii = ai for i = 1, 2, . . . , n.

Next, we recall the Interlacing Theorem [5].

Theorem 2.4 (Interlacing Theorem ). Let A ∈ Mn be a given Hermitian matrix, and let B ∈ Mn−1 be

a principal submatrix of A. Let the eigenvalues of A and B be denoted by {λi} and {λ̂i}, respectively, and
assume that they have been arranged in nonincreasing order λ1 ≥ · · · ≥ λn and λ̂1 ≥ · · · ≥ λ̂n−1. Then

λi ≥ λ̂i ≥ λi+1 for all 1 ≤ i ≤ n − 1.

Finally, we also recall part of the Perron–Frobenius Theorem for nonnegative matrices [5]. We use

ρ(A) to denote the spectral radius of A.

Theorem 2.5 (Perron–Frobenius). If A ∈ Mn and A is nonnegative matrix, then ρ(A) is an eigenvalue of

A and there is a nonnegative vector x � 0, x 
= 0, such that Ax = ρ(A)x.

3. Matrix types

Here,weconsider the connectionsbetween the signpatternof theoff-diagonal entries, and inequal-

ities that involve diagonal entries and eigenvalues. Nonpositive off-diagonal entries will be denoted

by “−", and nonnegative off-diagonal entries will be denoted by “+". If some off-diagonal entry is zero,

we may denote it either with “+" or “−", and so if a matrix has some zero off-diagonal entries, there

are several sign patterns that may be associated with it. We now divide matrices into several types,

based upon their off-diagonal sign pattern. It may be that if a matrix has a zero off-diagonal entry, it

will be associated with more than 1 type.

As we mentioned in Section 1, the operations permutation and signature similarity do not change

the diagonal entries, eigenvalues or symmetry. We will say that all the matrices from some set are of

the same type if for each twomatrices from the set, we canmove from the off-diagonal sign pattern of
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the first one to the off-diagonal sign pattern of the other one, using only the operations permutation

and signature similarity. We do not take into account the signs of the entries that are on the main

diagonal.

We will define now two important types:

Definition 4. A real symmetric matrix A = [aij] ∈ Mn(R) is of Type Z, if it is possible to bring it to

the form for which all the off-diagonal entries are nonpositive, using only the operations permutation

and signature similarity.

Definition 5. A real symmetric matrix A = [aij] ∈ Mn(R) is of Type P, if it is possible to bring it to

the form for which all the off-diagonal entries are nonnegative, using only the operations permutation

and signature similarity.

In the next lemma, we give a full characterization of the types for n = 3, 4. This characterization
will be also useful later, when we examine the relations between diagonal entries and eigenvalues of

special types.

Lemma 3.1. There are exactly two types of real symmetric matrices of size 3-by-3: Type P and Type Z.

For 4-by-4 real, symmetric matrices, there are exactly three types: Type P and Type Z, and another type,

which we call Type 3.

Proof. We start with the 3-by-3 case. If A is a real symmetric 3-by-3 matrix with nonnegative off-

diagonal entries, then by performing signature similarity with each one of the matrices⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

−1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

we get a matrix with two nonpositive off-diagonal entries, and one nonnegative (and there are three

options for the place of the nonnegative entry, depends on which signature matrix of the three above

we chose). By the definition, all these three kinds of matrices, together with the matrix with the same

off-diagonal sigh pattern as A, are of Type P. Similarly, if we start with a real symmetric 3-by-3 matrix

with nonpositive off-diagonal entries, and perform the same operations, we get a Type Zmatrix. Since

there are exactly eight different off-diagonal sign patterns, it is clear that all of them appeared above,

so for the 3-by-3 case, there are exactly these two Types P and Z.

Consider the 4-by-4 case. There are 16 different signature matrices of size 4-by-4, and 64 different

off-diagonal sign patterns that a real symmetric 4-by-4 matrix can have. Now, if A = [aij] ∈ M4(R),
and S is a signature matrix, then SAS = (−S)A(−S). It is easy to check that if we go through all

the matrices S of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

±1 0 0 0

0 ±1 0 0

0 0 ±1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, then we may divide the 64 different off-diagonal sign

patterns to eight different equivalence classes, each equivalence class has eight different off-diagonal

signpatternsmatrices, and inside each classwe canmove fromoneoff-diagonal signpattern to another

by applying signature similarity with thematrix S of the form above, so each one of the eight different

signature matrices above is associated with a different class. The class that contains the off-diagonal

sign pattern in which all the off-diagonal entries are nonnegative would be Type P. Similarly, the

class that contains the off-diagonal sign pattern in which all the off-diagonal entries are nonpositive

would be Type Z (and in both classes, it is easy to check that performing permutation similarity

on some off-diagonal sign pattern from the class will leave us inside the class). Now, there are six

different off-diagonal sign patterns, in which one entry (above the main diagonal) is nonpositive, and
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the others are nonnegative. It is impossible to move from one such off-diagonal sign pattern to the

otherwith signature similarity, hence these six off-diagonal signpatterns appear eachone in adifferent

equivalence class. On the other hand , we canmove from each one with such off-diagonal sign pattern

to the other by applying permutation similarity. Therefore, all these six classes,which have 48 different

off-diagonal sign patterns in total, are of the same type, and we name it Type 3. The following pattern

is an example of Type 3:

⎛
⎜⎜⎜⎜⎜⎜⎝

? + + +
+ ? + +
+ + ? −
+ + − ?

⎞
⎟⎟⎟⎟⎟⎟⎠

we refer to this pattern as the canonical form of Type 3. �

Note that A is of Type P if and only if −A is of Type Z, and also if A is of Type 3 then −A is also of

Type 3. In this paper, we are primarily interested in the relations among eigenvalues, diagonal entries

and types of symmetric matrices. In order to make the wordings more clear, we have the following

notation: Let λ = [λi]ni=1, d = [di]ni=1 be two vectors of length n. We say that {λ, d} ∈ E(R, n) if there
exists a real symmetric matrix of order n and of type R for which λ is the set of eigenvalues and d is

the set of diagonal entries. Generally, R may be one of types P, Z and Type 3, or some different type

if n > 4. An interesting question that one may ask is what is the number of the different types of

matrices of order n. In [3], the following is proven:

Theorem3.2. Thenumber of sign patterns of totally nonzero symmetric n-by-nmatrices, up to conjugation

by permutation and signature matrices and negation, is equal to the number of unlabeled graphs on n

vertices.

Note that the definition of “types" in this theorem is slightly different from ours (we do not allow

negation while the theorem does, and we do not care about the signs of the off-diagonal entries while

the theorem does), but that can be a good starting point for one that is interested in calculating the

number of different types.

4. Bounds for eigenvalues of special types

We start with a lower bound for the second largest eigenvalue of a Type Z matrix. This bound is a

generalization of the bound for Laplacian matrices that appears in [1].

Theorem 4.1. Let A be an n-by-n (n � 3) real symmetric Type Z matrix, with diagonal entries dn �
dn−1 � · · · � d1, and eigenvalues λn � λn−1 � · · · � λ1. Then d3 � λ2.

Proof. Suppose at first that n = 3. Let A be a 3-by-3 symmetric Z-matrix, and let h be an eigenvector

associated with the eigenvalue λ1. From Lemma 2.1 we have

(∗) λ2 = max

{ 〈Ag, g〉
〈g, g〉 |g⊥h

}
.

There are two possibilities:

(1) One of the entries of h is zero.

(2) All the entries of h are different from zero.
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In case (1), we assume that ht = 0 for some 1 � t � 3. We take a vector g such that

gi =
⎧⎨
⎩ 0 if i 
= t

1 if i = t
.

Since g is orthogonal to h , we get from (*) that λ2 � 〈Ag,g〉
〈g,g〉 , and hence

λ2 � 〈Ag, g〉
〈g, g〉 = att � min

{
d1, d2, d3

} � d3

and we are done.

In case (2), at least two of the entries of h have the same sign. Suppose without loss of generality

that hs, ht have the same sign for some 1 � s, t � 3, s 
= t. Define a vector g by

gi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i 
= t, s

1 if i = t

−δ if i = s

with δ > 0 such that g is orthogonal to h (since hs, ht are with the same sign there exists such positive

δ ). Therefore

λ2 � 〈Ag, g〉
〈g, g〉 = att − δats − δast + δ2ass

1 + δ2
.

A is Z-matrix, and hence ats and ast are nonpositive. In addition, δ is positive, and hence

λ2 � att − δats − δast + δ2ass

1 + δ2

� att + δ2ass

1 + δ2
� min

{
att, ass

}
� min

{
d1, d2, d3

} � d3

and we are done. Suppose now that A is an n-by-n symmetric Z-matrix, n > 3 , with diagonal entries

dn � dn−1 � · · · � d1. Let A1 be a principal 3-by-3 submatrix of A whose diagonal entries are

d1, d2, d3. It follows that λ2(A1) � d3, and hence by the Interlacing Theorem, λ2(A) � λ2(A1) �
d3. �

Corollary 4.2. Let A be an n-by-n (n � 3) symmetric Type P matrix, with diagonal entries dn � dn−1 �
· · · � d1, and eigenvalues λn � λn−1 � · · · � λ1. Then dn−2 � λn−1.

Proof. By the definition, −A is a Z-matrix, and hence from Theorem 4.1, λ2(−A) � d3(−A). Since
λ2(−A) = −λn−1(A) andd3(−A) = −dn−2(A)weget−λn−1(A) � −dn−2(A), andhencedn−2(A) �
λn−1(A). �

Note that Theorem 4.1 and Corollary 4.2 are, of course, not valid for general, symmetric matrices. In

the next section, we give a comprehensive description of the relation between λ and d in the 3-by-3

case.

5. Full characterization of the 3-by-3 case

We start with the following corollary, which is a direct consequence of Lemma 3.1 ,Theorem 4.1

and Corollary 4.2.
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Corollary 5.1. Let A be a 3-by-3 real symmetric matrix, with diagonal entries d3 � d2 � d1, and

eigenvalues λ3 � λ2 � λ1. Then one of the following happens:

(1) A is of Type Z, and λ2 � d3.

(2) A is of Type P, and λ2 � d1.

The next theorem will help us to give a full characterization of the 3-by-3 case:

Theorem 5.2. Let
{
λ1, λ2, λ3

}
and

{
d1, d2, d3

}
be two given sequences of real numbers such that d3 �

d2 � d1 and λ3 � λ2 � λ1. Suppose that the vector λ = [λi] majorizes the vector d = [di]. Then:
(1) If λ2 � d3, then {λ, d} ∈ E(Z, 3).
(2) If λ2 � d1, then {λ, d} ∈ E(P, 3).

Proof. We start by proving (1). From Theorem 2.3 and the fact that [λi] majorizes [di], there exists a

2-by-2 symmetric matrix with diagonal entries d1, d2 and eigenvalues λ1, d1 + d2 − λ1. If the off-

diagonal entries of this matrix are positive, we modify the matrix by multiplying it from both of the

sides with the matrix

⎛
⎜⎜⎝

−1 0

0 1

⎞
⎟⎟⎠. This multiplication does not change neither the eigenvalues nor the

diagonal entries.

Let B =
⎛
⎜⎜⎝

d1 c

c d2

⎞
⎟⎟⎠ be such matrix. As we mentioned before, the eigenvalues of B are λ1, d1 +

d2 − λ1, and c is nonpositive. There exists a real orthogonal matrix Q ∈ M2(R) such that B =

Q

⎛
⎜⎜⎝

d1 + d2 − λ1 0

0 λ1

⎞
⎟⎟⎠QT , and the columns of Q are the eigenvectors of B.

From majorization and the assumption in (1), we have the following equalities and inequalities:

d1 + d2 � λ1 + λ2, (1)

d3 � λ2, (2)

d1 + d2 + d3 = λ1 + λ2 + λ3. (3)

Combining (3) and (3) yields

λ1 + λ3 � d1 + d2. (4)

Hence, from (4) we have

λ3 � d1 + d2 − λ1, (5)

and from (2) we have

d1 + d2 − λ1 � λ2. (6)

Therefore,
{
λ1, λ2, λ3

}
are interlaced with

{
λ1, d1 + d2 − λ1

}
, since from (5) and (6) we have

λ3 � d1 + d2 − λ1 � λ2 � λ1 � λ1. (7)
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Using Lemma 2.2, there exists a real number a and a vector y =
(
y1

y2

)
∈ R

2 such that
{
λ1, λ2, λ3

}

is the set of the eigenvalues of the matrix K =
⎛
⎜⎝ d1 + d2 − λ1 0 y1

0 λ1 y2

y1 y2 a

⎞
⎟⎠ where

a = λ1 + λ2 + λ3 − λ1 − (d1 + d2 − λ1)

= λ1 + λ2 + λ3 − d1 − d2

= d1 + d2 + d3 − d1 − d2

= d3.

Define

A =
⎛
⎝ Q 0

0 1

⎞
⎠ K

⎛
⎝ QT 0

0 1

⎞
⎠ =

⎛
⎝ B Qy

(Qy)T a

⎞
⎠ =

⎛
⎝ B Qy

(Qy)T d3

⎞
⎠ .

Notice that the eigenvalues ofA are
{
λ1, λ2, λ3

}
, and that its diagonal entries are

{
d1, d2, d3

}
. Therefore

we only need to show that A is of Type Z, and then we are done. Since c is nonpositive, it is enough to

show that ymay be chosen in such way that Qywill be nonpositive. From the definition of Q , the first

column of Q is the eigenvector that corresponds to the smallest eigenvalue of B. Since B is of Type Z,

from Perron–Frobenius Theorem we may conclude that the first column of Q is nonnegative.

Using the notation from Lemma 2.2 we have

f (t) = (t − λ1)(t − λ2)(t − λ3), g
′(t) = [(t − λ1)(t − d1 − d2 + λ1)]′ = 2t − d1 − d2.

Now, from the remark after Lemma 2.2, y1 can be chosen to be some nonpositive number. Since

f (λ1) = 0 there are two options:

• g′(λ1) 
= 0.
• g′(λ1) = 0.

In the first case, from Lemma 2.2, y2
2 = −f (λ1)/g

′(λ1) = 0, and hence y2 = 0. Therefore,

Qy = Q

⎛
⎝ y1

y2

⎞
⎠ =

⎛
⎝ Q11y1

Q21y1

⎞
⎠ ,

and since the first column of Q is nonnegative, and y1 is nonpositive, we get that Qy is nonpositive,

and therefore A is of Type Z.

In the second case, g′(λ1) = 0 implies 2λ1 = d1 + d2. Now,

2λ1 = d1 + d2 � λ1 + λ2 � 2λ1,

and therefore d1 + d2 = λ1 +λ2, which implies that d3 = λ3. In this case wemay take A =
⎛
⎝ B 0

0 d3

⎞
⎠

and again, A is of Type Z, with eigenvalues
{
λ1, λ2, λ3

}
and diagonal entries

{
d1, d2, d3

}
.

In order to prove (2), consider the lists −λ = { − λ3, −λ2, −λ1

}
, and −d = { − d3, −d2, −d1

}
.

We have −λ1 � −λ2 � −λ3, and −d1 � −d2 � −d3. Now, since λ majorizes d then −λ majorizes

−d. In addition, according to (2), λ2 � d1, and hence −λ2 � −d1. In conclusion, the lists −λ and −d

satisfies the requirements of (1), andhence it is possible to construct a TypeZmatrixAwith eigenvalues{ − λ1, −λ2, −λ3

}
and diagonal entries −d1 � −d2 � −d3. Hence −A is a Type P matrix which

satisfies all the requirements of (2). �
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Finally, we are ready now to give a full characterization in the 3-by-3 case, as is presented in the

following two theorems:

Theorem 5.3. Let
{
λ1, λ2, λ3

}
and

{
d1, d2, d3

}
be two given sequences of real numbers such that d3 �

d2 � d1 and λ3 � λ2 � λ1. Suppose that the vector λ = [λi] majorizes the vector d = [di]. Then:
(1) {λ, d} ∈ E(Z, 3) if and only if λ2 � d3.

(2) {λ, d} ∈ E(P, 3) if and only if λ2 � d1.

Theorem 5.4. Let
{
λ1, λ2, λ3

}
and

{
d1, d2, d3

}
be two given sequences of real numbers such that d3 �

d2 � d1 and λ3 � λ2 � λ1. Suppose that the vector λ = [λi] majorizes the vector d = [di]. Then:
(1) If λ2 > d1, then {λ, d} ∈ E(Z, 3) and {λ, d} /∈ E(P, 3).
(2) If d1 � λ2 � d3, then {λ, d} ∈ E(Z, 3) and {λ, d} ∈ E(P, 3).
(3) If λ2 < d3, then {λ, d} /∈ E(Z, 3) and {λ, d} ∈ E(P, 3).

Remark. One important family of Type P matrices is the family of symmetric nonnegative matrices.

For such 3-by-3matrices, our results in parts (2) of Theorems5.2 and 5.3 are analogous to the following

result due to Fiedler [4]:

Lemma 5.5. Let λ1 � λ2 � λ3 and d1 � d2 � d3 � 0. Then There exists a 3-by-3 symmetric

nonnegative matrix B with eigenvalues
{
λ1, λ2, λ3

}
and diagonal entries

{
d1, d2, d3

}
if and only if the

following conditions are satisfied:

• λ1 � d1.• λ1 + λ2 � d1 + d2.• λ1 + λ2 + λ3 = d1 + d2 + d3.• λ2 � d1.

6. Special inequalities for general n

In this section,we present a large class of sufficient conditions for the existence ofmatrices of Types

P and Z for general n.

Theorem6.1. Let
{
λ1, λ2, . . . , λn

}
and

{
d1, d2, . . . , dn

}
(n � 3) be two given sequences of real numbers

such that dn � dn−1 � · · · � d1 and λn � λn−1 � · · · � λ1. Suppose that the vector λ = [λi]
majorizes the vector d = [di]. Then:

(1) If λj � dj+1 for all j = 2, 3, . . . , n − 1, then {λ, d} ∈ E(Z, n).
(2) If λj � dj−1 for all j = 2, 3, . . . , n − 1, then {λ, d} ∈ E(P, n).

Proof. Westartwith case (1). Inorder toprove it,wewill use inductiononn. The casen = 3 isproven in

Theorem5.2. Suppose then that the statement is true forn−1, andwewill show that it is true also forn.

Consider the lists d̂ = {d1, d2, . . . , dn−2, dn−1}, γ =
{
λ1, λ2, . . . , λn−3, λn−2,

∑n−1
i=1 di −

∑n−2
i=1 λi

}
.

Since λ majorizes d, and

λ1 + λ2 + · · · + λn−3 + λn−2 +
n−1∑
i=1

di −
n−2∑
i=1

λi = d1 + d2 + · · · + dn−2 + dn−1

we get that γ majorizes d̂. In addition, using the assumption in (1) we have λj � dj+1 for all

j = 2, 3, . . . , n − 2. Hence, by the inductive assumption, there exists a real symmetric matrix

B = [Bij] ∈ Mn−1(R) of Type Z such that bii = di for i = 1, 2, . . . , n − 1 and such that γ
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is the set of the eigenvalues of B. There exists a real orthogonal matrix Q ∈ Mn−1(R) such that

B = Qdiag
(∑n−1

i=1 di −
∑n−2

i=1 λi, λn−2, λn−3, . . . , λ2, λ1

)
QT , and the columns of Q are the eigenvec-

tors of B. Frommajorization and the assumption in (1), we have the following equalities and inequali-

ties:

n−1∑
i=1

di �
n−1∑
i=1

λi, (8)

n∑
i=1

di =
n∑

i=1

λi, (9)

dn � λn−1. (10)

From (8) we get

n−1∑
i=1

di −
n−2∑
i=1

λi � λn−1. (11)

From (9) and (10) we have

n−1∑
i=1

di �
n−2∑
i=1

λi + λn, (12)

and hence

n−1∑
i=1

di −
n−2∑
i=1

λi � λn. (13)

Therefore, using (11), (13) and the definition of γ we get that λ is interlaced with γ . Using Lemma 2.2,

there exists a real number a and a vector y ∈ R
n−1 such that λ is the set of the eigenvalues of the

matrix

K =

⎛
⎜⎜⎜⎝

diag

⎛
⎝n−1∑

i=1

di −
n−2∑
i=1

λi, λn−2, λn−3, . . . , λ2, λ1

⎞
⎠ y

yT a

⎞
⎟⎟⎟⎠ ∈ Mn(R),

where

a =
n∑

i=1

λi −
⎛
⎝n−1∑

i=1

di −
n−2∑
i=1

λi

⎞
⎠ −

n−2∑
i=1

λi

=
n∑

i=1

λi −
n−1∑
i=1

di

= dn.

Define

A =
⎛
⎝ Q 0

0 1

⎞
⎠ K

⎛
⎝ QT 0

0 1

⎞
⎠ =

⎛
⎝ B Qy

(Qy)T a

⎞
⎠ =

⎛
⎝ B Qy

(Qy)T dn

⎞
⎠ .

Now, since B is of Type Z, it is enough to show that ymay be chosen in suchway thatQywill be nonpos-

itive. We denote yT = (y1, y2, . . . , yn). The first column of Q is the eigenvector that corresponds to

the smallest eigenvalue of B, and again fromPerron–Frobenius Theoremwe know that the first column

of Q is nonnegative. Using the notation from Lemma 2.2 we have
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f (t) = ∏n
i=1

(
t − λi

)
, g′(t) =

⎛
⎝

⎛
⎝t −

⎛
⎝n−1∑

i=1

di −
n−2∑
i=1

λi

⎞
⎠

⎞
⎠ ∏n−2

i=1

(
t − λi

)⎞⎠′
.

Now, y1 can be chosen to be some nonpositive number. Since f (λi) = 0 for all i = 1, 2, . . . , n − 2,

there are two options:

• g′(λi) 
= 0 for all i = 1, 2, . . . , n − 2.
• There exists at least one i ∈ 1, 2, . . . , n − 2 such that g′(λi) = 0.

In the first case, similarly to the proof of Theorem 5.2, we get yj = 0 for all j = 2, . . . , n−1. Therefore

Qy is equal to the first column of Q (which is a nonnegative vector), multiplied by y1 (a nonpositive

number). Hence Qy is a nonpositive vector, and so A is of Type Z and we are done.

In the second case, let us pick some j ∈ {1, 2, . . . , n−2} for which g′(λj) = 0. First, consider the case

λj =
n−1∑
i=1

di −
n−2∑
i=1

λi. (14)

In this case we have

λj +
n−2∑
i=1

λi =
n−1∑
i=1

di. (15)

Now, since

λn−1 � λj, (16)

we get

n−1∑
i=1

λi � λj +
n−2∑
i=1

λi =
n−1∑
i=1

di. (17)

On the other hand, we have

n−1∑
i=1

λi �
n−1∑
i=1

di. (18)

From (17) and (18) we conclude that

n−1∑
i=1

λi =
n−1∑
i=1

di, (19)

and hence

λn = dn. (20)

Note that the inequality in (16)has tobeanequality (otherwisewegetacontradiction to theassumption

that λmajorizes d). Hence the eigenvalues of B are
{
λn−1, λn−2, λn−3, . . . , λ2, λ1

}
. Define thematrix

A to be

⎛
⎝ B 0

0 dn

⎞
⎠. A is of Type Z, and it satisfies all the requirements of the theorem, and hence in this

case we are done.

Assume now that (14) does not hold. Since g(λj) = 0, g′(λj) = 0, λj is as a root h(t) of multiplicity

x, such that x � 2, when h(t) = ∏n−2
i=1

(
t − λi

)
. The multiplicity of λj as a root of f (t) and g(t) is then

at leat x, and exactly x respectively. Therefore, the term t − λj appears at least one time more in f (t)

than in g′(t). Hence, using the notation s(t) from Lemma 2.2, we get s(λj) = 0, and from here the

solution continues in the same way as in the first case and we are done.
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Regarding the proof of (2), we can follow similar argument to the one we did at Theorem 5.2. �

Remark. A related result, which has a bit different point of view, may be found in [2] (Theorem 2.25).

Toconclude this sectionwepresenta relation to the followingTheorem,which isdue toSuleimanova

[7].

Theorem 6.2. Let {λi}ni=1 be a collection of n real numbers such that λj < 0 for all j ∈ {2, 3, . . . , n} and∑n
i=1λi � 0. Then there exists a real symmetric nonnegative matrix with the spectrum {λ1, λ2, . . . λn}.
Note that we may say that not only there exists a real symmetric nonnegative with the given

spectrum, but according to Theorem 6.1, there exists such matrix whose all diagonal entries are zero

except one of them which is equal to
∑n

i=1λi. More generally, using Theorem 6.1 we can prove the

following:

Theorem 6.3. Let λ1 � 0 > λ2 � · · · � λn, and let d1 � d2 � · · · � dn such that dn−2 � 0. Suppose

that the vector λ = [λi] majorizes the vector d = [di]. Then {λ, d} ∈ E(P, n).

Note that this theorem generalizes the theorem of Suleimanova.

7. The 4-by-4 case

So far,we have given a full characterization in the 3-by-3 case, and somepartial results for general n.

We next discuss the 4-by-4 case. Awide range of possibilities is covered.We startwith some necessary

conditions for eigenvalues of matrices of given types.

Theorem 7.1. Let A be a 4-by-4 real symmetric matrix with diagonal entries d4 � d3 � d2 � d1, and

eigenvalues λ4 � λ3 � λ2 � λ1. Then, at least one of the following happens:

1. A is of Type Z, and then must satisfy

λ2 � d3
2d1 � λ1 + λ4

d2 + d3 � λ2 + λ4.

2. A is of Type P, and then must satisfy

λ3 � d2
2d4 � λ1 + λ4

d2 + d3 � λ1 + λ3.

3. A is of Type 3, and then must satisfy

λ3 � d1
λ2 � d4.

In addition, A satisfies at least one of the following:

(a) λ2 � d3
d2 + d3 � λ2 + λ4.

(b) λ2 � d3
λ3 � d2
d1 + d2 � λ2 + λ4.

(c) d2 + d3 � λ1 + λ3

d2 + d3 � λ2 + λ4.

(d) λ3 � d2
d2 + d3 � λ1 + λ3.

Proof. From Lemma 3.1 we know that any 4-by-4 matrix has to be either of Type Z, P or 3. First, let us

suppose that A is of Type Z. From Theorem 4.1 we have λ2 � d3. Now, consider the 3-by-3 principal
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submatrix B of A whose diagonal entries are
{
d2, d3, d4

}
. Denote its eigenvalues by μ3 � μ2 � μ1.

By using the Interlacing Theorem, we have

λ4 � μ3 � λ3 � μ2 � λ2 � μ1 � λ1. (21)

B is of Type Z, and hence, from Theorem 4.1 we have

μ2 � d4. (22)

In addition,

μ3 + μ2 + μ1 = d2 + d3 + d4. (23)

From (22) and (23) we get

μ3 + μ1 � d2 + d3. (24)

And then, from (21) and (24) we have

λ4 + λ2 � d2 + d3. (25)

Let us look at−A+d1I. Thismatrix is a nonnegativematrix, andhence fromPerron–Frobenius Theorem

we get

−(−λ1 + d1) � −λ4 + d1, (26)

and therefore

2d1 � λ1 + λ4. (27)

Suppose now that A is of Type P. Hence −A is of Type Z, and we finish by applying on −A the results

from above. The last case is the assumption that A is of Type 3. From the proof of Lemma 3.1, using

only permutation and signature similarity we can bring A to the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

dσ(1) + + +
+ dσ(2) + +
+ + dσ(3) −
+ + − dσ(4)

⎞
⎟⎟⎟⎟⎟⎟⎠

σ ∈ S4 and each one of the signs +, − includes also the option of having zero in that entry. Now, by

applying Corollary 4.2 on B[1, 2, 3|1, 2, 3] and using the Interlacing Theorem, we get

λ3 � max
{
dσ(1), dσ(2), dσ(3)

} � d1. (28)

Consider B[2, 3, 4|2, 3, 4]. We can apply Theorem 4.1 and the Interlacing Theorem, in order to get

λ2 � min
{
dσ(2), dσ(3), dσ(4)

} � d4. (29)

Finally, let us look atA[1, 2, 3|1, 2, 3] andA[2, 3, 4|2, 3, 4].Without loss of generality,wemay assume

that aii = di for all i = 1, 2, 3, 4. Using Lemma 3.1, here is the list of the possibilities:

• A[1, 2, 3|1, 2, 3] is of Type Z and A[2, 3, 4|2, 3, 4] and is of Type Z.
• A[1, 2, 3|1, 2, 3] is of Type Z and A[2, 3, 4|2, 3, 4] and is of Type P.
• A[1, 2, 3|1, 2, 3] is of Type P and A[2, 3, 4|2, 3, 4] and is of Type Z.
• A[1, 2, 3|1, 2, 3] is of Type P and A[2, 3, 4|2, 3, 4] and is of Type P.

In the first case, by looking at A[1, 2, 3|1, 2, 3], A[2, 3, 4|2, 3, 4] and applying Theorem 4.1 and the

Interlacing Theorem we have

λ2 � d3 (30)
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and

λ2(A[2, 3, 4|2, 3, 4]) � d4 (31)

respectively. Since

λ1(A[2, 3, 4|2, 3, 4]) + λ2(A[2, 3, 4|2, 3, 4]) + λ3(A[2, 3, 4|2, 3, 4]) = d4 + d3 + d2 (32)

from (31) and (32) we get

λ1(A[2, 3, 4|2, 3, 4]) + λ3(A[2, 3, 4|2, 3, 4]) � d3 + d2. (33)

Therefore, using The Interlacing Theorem we have

λ2 + λ4 � d3 + d2. (34)

In the second case, by looking at A[1, 2, 3|1, 2, 3], A[2, 3, 4|2, 3, 4] and applying Theorem 4.1, Corol-

lary 4.2, and The Interlacing Theorem we get

λ2 � d3 (35)

and

λ3 � d2. (36)

Now, since

λ2(A[1, 2, 3|1, 2, 3]) � d3, (37)

we have

λ1(A[2, 3, 4|2, 3, 4]) + λ3(A[2, 3, 4|2, 3, 4]) � d1 + d2, (38)

and hence by The Interlacing Theorem,

λ2 + λ4 � d1 + d2. (39)

In the thirdcase, by lookingatA[1, 2, 3|1, 2, 3]andapplyingCorollary4.2, and the InterlacingTheorem,

we get

λ2(A[1, 2, 3|1, 2, 3]) � d1. (40)

Now,

λ1(A[1, 2, 3|1, 2, 3]) + λ2(A[1, 2, 3|1, 2, 3]) + λ3(A[1, 2, 3|1, 2, 3]) = d1 + d2 + d3, (41)

and therefore from (40) and (41) we get

λ1(A[1, 2, 3|1, 2, 3]) + λ3(A[1, 2, 3|1, 2, 3]) � d3 + d2. (42)

Finally,

λ1 + λ3 � d3 + d2. (43)

The statement

λ2 + λ4 � d3 + d2 (44)

can be proven in the same way as (34). Finally, consider the last case. The statements

λ3 � d2 (45)

and

λ1 + λ3 � d3 + d2 (46)

can be proven in the same way as (36) and (43) respectively. In conclusion, we proved statements

(28)–(30), (34)–(36), (39), (43), (44)–(46). Therefore, if A is of Type 3, we are done. �
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Before discussing the 4-by-4 case further, we present the following useful lemma.

Lemma 7.2. Let A be a 4-by-4 real symmetric matrix with diagonal entries d4 � d3 � d2 � d1, and

eigenvalues λ4 � λ3 � λ2 � λ1. Then, exactly one of the following happens:

• λ2 � d3 and λ3 > d2.• λ2 < d3 and λ3 � d2.• λ2 � d3 and λ3 � d2.

Proof. We need to show that it is impossible to have λ2 < d3 and λ3 > d2. Suppose in contradiction

that it could happen. Then

λ2 < d3 � d2 < λ3

which is clearly impossible, so we get a contradiction. �

Wemay nowgive a full characterization associatedwith each of the first two cases from Lemma7.2.

The following theorem covers a wide range of possibilities.

Theorem 7.3. Let
{
λ1, λ2, λ3, λ4

}
and

{
d1, d2, d3, d4

}
be two given sequences of real numbers such that

d4 � d3 � d2 � d1 and λ4 � λ3 � λ2 � λ1. Suppose that the vector λ = [λi] majorizes the vector

d = [di]. Then,
1. If λ3 > d2, we have:

(a) {λ, d} ∈ E(Z, 4).
(b) {λ, d} /∈ E(P, 4).
(c) If in addition λ3 � d1 then {λ, d} ∈ E(Type 3, 4). If λ3 > d1, then {λ, d} /∈ E(Type 3, 4).

2. If λ2 < d3, we have:

(a) {λ, d} /∈ E(Z, 4).
(b) {λ, d} ∈ E(P, 4).
(c) If, in addition, λ2 � d4 then {λ, d} ∈ E(Type 3, 4). If λ2 < d4, then {λ, d} /∈ E(Type 3, 4).

Proof. We start with case number 1. From Lemma 7.2, since λ3 > d2, we have λ2 � d3. In addition,

λ3 � d4. Hence by using Theorem 6.1 we can deduce that {λ, d} ∈ E(Z, 4). Now, since λ3 > d2,

then according to Corollary 4.2, {λ, d} /∈ E(P, 4). Similarly, from Theorem 7.1, λ3 � d1 is a necessary

condition for being Type 3, so if λ3 > d1, then {λ, d} /∈ E(Type 3, 4). Let us assume now that λ3 � d1.

We will show that there exists a real symmetric matrix B = [bij] ∈ M3(R) of Type Z with diagonal

entries
{
d2, d3, d4

}
and eigenvalues

{
λ2, d2 + d3 + d4 − λ2 − λ4, λ4

}
. At first, since

λ1 + λ2 + λ3 + λ4 = d1 + d2 + d3 + d4 (47)

and

λ1 � d1, (48)

we have

λ2 + λ3 + λ4 � d2 + d3 + d4. (49)

And therefore

λ3 � d2 + d3 + d4 − λ2 − λ4. (50)

Now, we do not knowwhich of λ2 and d2 + d3 + d4 − λ2 − λ4 is bigger, but we do know (using (50))

that both of them are equal to or greater than λ4. Therefore, since

d2 < λ3 � λ2 � max
{
λ2, d2 + d3 + d4 − λ2 − λ4

}
(51)

and
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d2 + d3 � λ2 + λ3 � λ2 + d2 + d3 + d4 − λ2 − λ4, (52)

we get that
{
λ2, d2 + d3 + d4 − λ2 − λ4, λ4,

}
majorizes

{
d2, d3, d4

}
. In addition, since

d4 � λ3 � min
{
λ2, d2 + d3 + d4 − λ2 − λ4

}
, (53)

then from Theorem 5.2, there exists a matrix B which satisfies the conditions that were described

above. Now, from (47) and the inequality λ3 � d1, we get

λ1 � d2 + d3 + d4 − λ2 − λ4. (54)

Hence, from (50) and (54), one of the two following inequalities is satisfied:

λ1 � d2 + d3 + d4 − λ2 − λ4 � λ2, (55)

λ2 � d2 + d3 + d4 − λ2 − λ4 � λ3. (56)

Therefore, in both cases,
{
λ1, λ2, λ3, λ4

}
are interlaced with

{
λ2, d2 + d3 + d4 − λ2 − λ4, λ4

}
. Using

Lemma 2.2, there exists a real number a (which is, in this case, d1) and a real vector y ∈ R
3 such that

the matrix

C =
⎛
⎝ diag(λ4, d2 + d3 + d4 − λ2 − λ4, λ2) y

yT d1

⎞
⎠

has eigenvalues
{
λ1, λ2, λ3, λ4

}
. In addition, there exists a real orthogonal matrix Q ∈ M3(R) such

that B = Qdiag(λ4, d2 + d3 + d4 − λ2 − λ4, λ2)Q
T , and the columns of Q are the eigenvectors of B.

Define

A =
⎛
⎝ Q 0

0 1

⎞
⎠ C

⎛
⎝ QT 0

0 1

⎞
⎠ =

⎛
⎝ B Qy

(Qy)T d1

⎞
⎠ .

Letusobserve the structureofQ . FromPerron–FrobeniusTheorem, thefirst columnofQ is nonnegative.

The second and the third columns are orthogonal to the first one, hence, the three entries of each one

of them cannot be of the same sign.We can assume that each one of them has two nonnegative entries

and one nonpositive entry (we can do it since if v is an eigenvector then −v is also an eigenvector).

In addition, since the second column of Q is orthogonal to the third one, the places of the nonpositive

entry in each one of them are different. So up to permutation of the rows, the sign pattern of Q is of

the form:

⎛
⎜⎜⎜⎝

+ + +
+ + −
+ − +

⎞
⎟⎟⎟⎠ where each one of the signs +,− includes also the option of having zero in that

entry. Since B is of Type Z, in order to show that A is of Type 3, it is enough to show that y can be chosen

in such way that Qywill have at least one nonpositive entry, and at least one nonnegative entry. Since

this property (of having at least one row from each kind) is not changed if the rows of Q are permuted,

we can assume that the sign pattern of Q is as given above. Using the notation from Lemma 2.2 we

have

f (t) = (t − λ1)(t − λ2)(t − λ3)(t − λ4), g
′(t) = [(t − λ4)(t − (d2 + d3 + d4 − λ2 − λ4))(t − λ2)]′.

We can see that f (λ4) = 0. Now, from (53), if g′(λ4) = 0 then in particular λ4 = λ3. But since

λ3 > d2, we get d4 � λ4 > d2 which is impossible. Hence, g′(λ4) 
= 0, so from Lemma 2.2, we can

choose y1 = 0. Regarding λ2, we have f (λ2) = 0. If g′(λ2) 
= 0, then according to Lemma 2.2, one

of y2,y3 is zero (it depends on whether λ2 is smaller or bigger than d2 + d3 + d4 − λ2 − λ4). The

other one can be chosen to be nonnegative, and hence the sign pattern of Qy equals either to the sign

pattern of the second column of Q , or to the sign pattern of the third column. In both cases A is of Type

3 and we are done. The last case that we need to check is g′(λ2) = 0. This case may appear only if

λ2 = d2+d3+d4−λ2−λ4. Therefore, from Lemma 2.2, y2 and y3 can be chosen such that y2
2 = y3

2.
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Let us choose −y2 = y3, y2 is nonnegative. Hence Qy is of the form

⎛
⎜⎜⎝

+ + +
+ + −
+ − +

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0

y2

−y2

⎞
⎟⎟⎠, and it is

easy to see that its second entry is nonnegative, while its third entry is nonpositive, and hence we get

again that A is of Type 3, and we are done. Consider case number 2. We have now the assumption

that λ2 < d3. In a very similar way to the proof of case number 1, we can prove (a),(b) and (c) for the

assumptionλ2 < d4. Hence the only case that is left is λ2 � d4. The lists
{−λ1, −λ2, −λ3, −λ4

}
and{−d1, −d2, −d3, −d4

}
satisfy the assumptions of case number 1, and hence it is possible to construct

a Type 3matrix Awith these given lists of diagonal entries and eigenvalues. By the proof of Lemma 3.1,

−A is also Type 3, so we can look at −A and we are done. �

We conclude with a full characterization in the case in which all diagonal entries are equal (we

assume that they are all equal to d).

Theorem 7.4. Let
{
λ1, λ2, λ3, λ4

}
be a given sequence of real numbers such that λ4 � λ3 � λ2 � λ1.

Let d be a given real number, and suppose that the vector λ =
(
λ1 λ2 λ3 λ4

)
majorizes the vector

D =
(
d d d d

)
. Then we have the following cases:

1. λ2 < d.

Then {λ,D} ∈ E(P, 4), {λ,D} /∈ E(Z, 4), {λ,D} /∈ E(Type 3, 4).
2. λ3 > d.

Then {λ,D} ∈ E(Z, 4), {λ,D} /∈ E(P, 4), {λ,D} /∈ E(Type 3, 4).
3. λ2 � d and λ3 � d.

Then {λ,D} ∈ E(Type 3, 4). In addition, there are several options:

(a) λ1 + λ4 > 2d.

Then {λ,D} ∈ E(P, 4) and {λ,D} /∈ E(Z, 4).
(b) λ1 + λ4 < 2d.

Then {λ,D} ∈ E(Z, 4) and {λ,D} /∈ E(P, 4).
(c) λ1 + λ4 = 2d.

Then {λ,D} ∈ E(Z, 4) and {λ,D} ∈ E(P, 4).

Proof. We start with case 1. Since λ2 < d, then from Theorems 4.1 and 7.1, we have {λ,D} /∈ E(Z, 4)
and {λ,D} /∈ E(Type 3, 4). By Theorem 2.3, there exists a real symmetric matrix A = [aij] ∈ M4(R)
with the given lists of eigenvalues and diagonal entries. Hence this matrix A has to be of Type P. Case

number 2 can be proven in a very similar way to case number 1, by using Theorems 2.3 and 7.1, and

Corollary 4.2. Let us consider case number 3, part (a). From Theorem 7.1, {λ,D} /∈ E(Z, 4). Now, since

λ1 + λ4 > 2d, we get

2d − λ4 < λ1. (57)

In addition, we have

2λ2 � λ1 + λ2 = 4d − λ3 − λ4 = 2d − λ3 + 2d − λ4 � 2(2d − λ4), (58)

and therefore

λ2 � 2d − λ4. (59)

Hence, from (57), (59) and the assumptions in case 3,
{
λ1, λ2, λ3, λ4

}
are interlaced with

{
2d − λ4, d, λ4

}
. Consider the matrix B =

⎛
⎜⎜⎜⎝

d λ4 − d 0

λ4 − d d 0

0 0 d

⎞
⎟⎟⎟⎠. Its eigenvalues are
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{
2d − λ4, d, λ4

}
. Define Q =

⎛
⎜⎜⎜⎝

1/
√

2 0 1/
√

2

1/
√

2 0 −1/
√

2

0 1 0

⎞
⎟⎟⎟⎠, and we have B = Qdiag(λ4, d, 2d − λ4)Q

T .

Using Lemma 2.2, there exists a vector y =

⎛
⎜⎜⎜⎝

y1

y2

y3

⎞
⎟⎟⎟⎠ ∈ R

3 such that
{
λ1, λ2, λ3, λ4

}
is the set of the

eigenvalues of the matrix K =
⎛
⎝ diag(λ4, d, 2d − λ4) y

yT d

⎞
⎠ ∈ M4(R). Define

A =
⎛
⎝ Q 0

0 1

⎞
⎠ K

⎛
⎝ QT 0

0 1

⎞
⎠ =

⎛
⎝ B Qy

(Qy)T d

⎞
⎠ .

Using the notation from Lemma 2.2 we have

f (t) = (t − λ1)(t − λ2)(t − λ3)(t − λ4), g
′(t) = [(t − λ4)(t − d)(t − (2d − λ4))]′.

Now, f (λ4) = 0. If g′(λ4) = 0, then either λ4 = d or λ4 = 2d − λ4, which implies again λ4 = d.

Therefore, Sinceλ3 � d, we haveλ3 = d. Henceλ1+λ2 = 2d, and sinceλ2 � dwe getλ1 = λ2 = d.

In this case, λ1 + λ4 = 2d which contradicts the assumptions. Therefore, g′(λ4) 
= 0, and hence we

can chose y1 = 0. Therefore A is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

d λ4 − d 0 y3/
√

2

λ4 − d d 0 −y3/
√

2

0 0 d y2

y3/
√

2 −y3/
√

2 y2 d

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now, each one of y2, y3 can be chosen to be either nonpositive, or nonnegative. Since λ4 − d < 0, if

we chose y2 and y3 to be nonpositive, Then A is of both Types 3 and P (this is because we can decide

whether we look at zero as “+" or as “−". For the Type 3 case we will look at both zeros as “−", and for

the Type P case we will look at the zero in the first line as “+", and on the other one as “−"). The next

case is number 3, part (b). We can apply the proof from above on −A, and we are done. The last case

is number 3, part (c). Since λ1 + λ4 = 2d, then λ2 + λ3 = 2d. Define

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

d d − λ4 0 0

d − λ4 d 0 0

0 0 d d − λ2

0 0 d − λ2 d

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of this matrix are
{
λ1, λ2, λ3, λ4

}
, and A is of Types Z, P and 3. �

Wewould like to emphasize some of the advantages of Theorem 7.4. First, we present the following

result, due to Fiedler [4]:

Theorem 7.5. Let λ1 � λ2 � · · · � λn, a1 � a2 � · · · � an satisfy

1.
∑s

i=1λi � ∑s
i=1 ai, s = 1, 2, . . . , n − 1.

2.
∑n

i=1λi = ∑n
i=1 ai.

3. λk � ak−1, k = 2, 3, . . . , n − 1.
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Then there exists an n-by-n symmetric nonnegativematrix Bwith eigenvaluesλ1, λ2, . . . , λn and diagonal

entries a1, a2, . . . , an.

In [6] it is shown that for n � 4, the conditions in Theorem 7.5 are only sufficient. The authors

provide the following example:

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

5 2 1
2

1
2

2 5 1
2

1
2

1
2

1
2

5 2

1
2

1
2

2 5

⎞
⎟⎟⎟⎟⎟⎟⎠
.

B is a symmetric nonnegative matrix with eigenvalues 8, 6, 3, 3 and diagonal entries 5, 5, 5, 5 in

which λ2 > a1, and hence condition 3 in Theorem 7.5 is not satisfied. However, these eigenvalues and

diagonal entries satisfy the conditions of Theorem 7.4 part 3(a).

In conclusion, we have investigated various relations between diagonal entries and eigenvalues of

different types of matrices. Still, the general question of describing the different types and giving the

exact relations between diagonal entries and eigenvalues that correspond to these types is still open

for n > 5. In addition, for n = 4, the third case in Lemma 7.2 is also still open. For example, through

majorization it is easy to show that there exists a 4-by-4 symmetric matrix with eigenvalues 5, 4, 0,

−3 and diagonal entries 3, 3, 0, 0. However, since this case falls down in the open case of Lemma 7.2,

it is unclear at this point which types exactly can be constructed with this eigenvalues and diagonal

entries.
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