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ABSTRACT

Benthic invertebrates represent a major link between primary 
productivity and higher trophic levels, such as bottom feeding fish 
and crabs. When anthropogenic activities, such as dredge material 
disposal, threaten the benthic community, the potential damage to 
higher trophic levels should be considered. Studies of secondary 
productivity allows for an estimate of potential production losses as 
a result of dredge material disposal activities. However, predatory 
fish are usually unable to feed on organisms deep in the sediment, 
therefore secondary production is not equally available. Partitioning 
benthic production into available and unavailable units facilitates a 
more reliable estimate of potential biomass losses to higher trophic 
levels.

Two sites from the Wolf Trap region of the Chesapeake Bay have 
been selected as potential dredge disposal areas. A study of benthic 
secondary production was carried out to determine potential disposal 
related effects on production availability to higher trophic levels of 
the disposal. From stomach content analysis of fish taken in the 
area, four species were determined to be trophically important;
fittclymene zonal is» Earanrionoapio sinna£a» Saphtys pitla (cf.
cryptomma) and MaCQga l£H£a* The polychaete Chaetopterus variopedatus 
was included in the study because of its role in structuring the 
community and adding biogenic refuges. The species was not found in 
the available portion of the sediment, and thus did not bias the 
available productivity estimates. These five species produced 26.42

2+/- 6.79 g AFDW/m /yr at the Wolf Trap Primary site and 31.52 +/- 
213.11 g AFDW/m /yr at the Wolf Trap Alternate site. Available 

production to fish species in the upper two centimeters from these two
2sites was estimated to be 6.82 +/- 5.44 g AFDW/m /yr and 7.44 +/- 6.45 

2g AFDW/m /yr respectively at the two sites. Using a transfer 
efficiency of 15%; the Wolf Trap Primary site could support fish 
production of 35.8 +/- 28.6 metric tons of ash-free dry weight and the 
Wolf Trap Alternate site could support 54.6 +/- 47.4 metric tons of 
ash-free dry weight. Damage of the benthic community could result in 
a loss of some or all of this biomass production.



INTRODUCTION

Benthic invertebrates represent a major link between primary 

production and higher trophic levels such as bottom feeding fish and 

crabs, both in the simplified primary producer-benthic organism-pelagic 

consumer food chain (Parsons and Takahashi, 1973; Houston and Haedrich 

1986), and in more realistic food webs (Steele, 1974; Mills and 

Fournier, 1979; Moeller et al., 1985). Energy, in the form of biomass, 

flows from primary producers through the benthic community to higher 

trophic levels. The structural complexity of a community is an 

insufficient basis for constructing energy flow pathways of this nature. 

Many benthic community impact studies deal only with the community 

structure, such as abundances and biomass values. Changes of these 

parameters, however, are not always linked to other ecosystem changes 

(Mathews et al., 1982). It is now accepted that measurements of benthic 

secondary production are needed in order to assess a resource value of a 

benthic community (Borkowski, 1974; Burke and Mann, 1974; Mills, 1975; 

Warwick and Price, 1975, and Diaz and Fredette, 1982).

Since estuarine and shallow water marine environments serve as 

important spawning, nursery, and feeding grounds for many economically 

important species, activities that may potentially disrupt the bottom
I ;

fauna need to be thoroughly investigated (De La Cruz, 1973; Oviatt and 

Nixon, 1973; Diaz and Fredette, 1982). Many studies have reported 

community structure alterations by waste and dredge material disposal

2
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activities, but these did not address the potential effects of disposal 

on the benthic food base responsible for supporting a fishery (Taylor 

and Saloman, 1968; Reish and Kauwling, 1971; Pearce, 1972; Diaz and 

Boesch, 1977; Reid et al ., 1982; Steimle et al., 1982; and Johnson and 

Nelson, 1985). Secondary production studies are especially important 

for predicting the impact from this type of disruption.

Production estimates have long been of interest. The term 

"production" has been defined by Crisp (1971) as: "The part of the 

assimilated food or energy that is retained and incorporated in the 

biomass of the organism, but excluding the reproductive bodies". While 

numerous authors have used the definition (Clark, 1946; Peer, 1970;

Winberg, 1971; Maitland and Hudspeth, 1974, and Wplf and de Wolff, 1977,*
among others), methods of estimating secondary production have varied. 

Boysen-Jensen (1919), Anderson and Hooper (1956), Sanders (1956), and 

Teal (1957) estimated secondary production by summing the mortality of a 

species between successive sample intervals, taking into account the 

weight of the organism at the time of loss. This method is commonly 

known as the removal-summation method. Ricker (1946) and Allen (1949) 

estimated productivity by multiplying the instantaneous rate of growth 

of a species by the standing stock weight over a given time interval. 

This method is known as the instantaneous growth method.

The problem with these methods, as well as their modified 

versions, is that they require having a single species of a known life 

cycle with easily recognizable cohorts to determine rates. These 

conditions are extremely difficult, if not impossible, to achieve with 

many organisms (Hynes, 1961). Recognition of the inherent problems with 

these methods lead Hynes (1961) to formulate a new secondary production
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estimation theory and approach, the Hynes method, which calculates 

production on the basis of summing biomass losses between successive 

size classes. Conceptual errors for the original method were corrected 

by various authors (Hynes and Coleman, 1968; Hamilton, 1969; Benke,

1979; and Menzi, 1980), and the technique is now known as the size- 

frequency method (Waters and Hokenstrom, 1980). Although Hynes original 

idea was to treat all species together to derive one community 

production estimate, later modifications showed that this method was 

most valuable when working with single, multivoltine species for which 

individuals cohorts are not clearly recognizable (see Waters and 

Crawford, 1973 for more detailed examples of production estimate 

methods)•

The original concept of secondary production estimation dealt only 

with species that possessed clearly recognizable cohorts. For a species 

which exhibits continuous reproduction, or steady state conditions in 

Rigler and Downings' (1984) terminology, there is little to be gained by 

trying to follow developmental stages or cohorts on a temporal scale 

(Kimmerer, 1987). Sampling frequencies for steady state species need 

not be timed to catch particular developmental stages, greatly 

simplifying the task of production estimation in many instances*

Although benthic microfauna can make up as much as 87% of the 

total community secondary production with meiofauna accounting for up to 

10% and benthic macrofauna (organisms which are retained on a 0.5 mm 

sieve) as little as 3% (Koop and Griffiths, 1982) to 8% (Rhoads et al., 

1978), it has been shown that micro- and meiofauna may not be directly 

available to most demersal feeding fish (Sissenwine et al., 1984;

Collie, 1987). Therefore, benthic macrofauna appear to be especially
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important as food items for demersal fish, and must be thoroughly 

examined when studying the economic resource value of a benthic 

community*

The majority of benthic secondary production estimates have been 

conducted in stream or fresh water systems (Johnson and Brinkhurst, 

1971a,b; Jonasson, 1972* Morgan, 1972; Mason, 1977; Waters, 1977; 

Tudorancea et al*, 1979; Strayer et al., 1981; and Strayer and Likens, 

1986)* There have been fewer studies in marine or estuarine systems 

(Sanders, 1956; Warwick et al*, 1978; Diaz and Fredette, 1982; Howe and 

Leathern, 1984). Production estimates alone are not sufficient to 

describe the energetics of an ecosystem; details of trophic relations 

are required* Studies focusing on individual species production often 

give little or no thought to the trophic role of the organism* or how 

the energetics of the species effect the ecosystem. To evaluate the 

trophic resource value of the bottom, two types of data are required. 

First, knowledge of the prey species of the major predators are needed. 

Second, secondary production calculations of the prey species are 

required*

A few studies have incorporated trophic links when dealing with 

benthic secondary production resource estimates. Smith (1950) 

calculated quantities of invertebrates and related these values to the 

fishery of Block Island Sound. Kuipers (1977) and Beukema (1974; 1976) 

examined benthic prey production and related these data to predation 

pressures* Production of nine trophically important macrofaunal species 

in a Chesapeake Bay submerged aquatic vegetation habitat was estimated 

by Diaz and Fredette (1982). Evans (1983) investigated secondary 

production of a shallow soft bottom community in a Swedish fjord to
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determine the effects of epibenthic predators on the overall fishery.

The importance of a benthic invertebrate community to trout in a small 

Danish stream was studied by Mortensen and Simonsen (1983). Howe and 

Leathern (1984) determined macrofauna productivity at three stations in 

the Delaware Bay and Coastal Delaware and briefly related these values 

to trophic transfer rates. Steimle (1985) estimated production in a 

stressed coastal area in the New York Bight, and studied contaminated 

sediment effects on the local fishery via the benthic trophic link of 

the food web. Probert (1986) studied energy transfer, in the form of 

carbon flow, through the different components of the benthic community 

(bacteria, meio- and macrofauna) into the higher trophic levels occupied 

by demersal feeding fish.

A refinement on trophic-production link studies has been 

introduced by Lunz and Kendall (1982) who developed the Benthic 

Resources Assessment Technique (BRAT). This technique utilizes both 

fish feeding habit data and benthic invertebrate community biomass data

2 2 to make an estimate of potential prey biomass (g/m ) or energy (Kcal/m )

available in a benthic area as a way to perform more detailed

environmental impact studies. The vertical partitioning of biomass

within the sediment column is assumed to determine the percentage of the

total biomass is available to benthic predators. An assumption of the

technique is that only biomass found in the upper two centimeters is

available for transfer to the higher trophic levels. This technique

allows for an improved resource estimate to be made, as it disregards

biomass unavailable to higher trophic levels. However, BRAT generates

biomass data for only the time at which sampling occured, and therefore
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does not allow for an estimation of potential transfer of biomass over 

time. Secondary production estimations used in association with the 

fish feeding habit data and biomass availability data from the BRAT 

analysis will avoid this problem and produce an even stronger assessment 

of resource value.

The Army Corps of Engineers is planning to deepen the Baltimore 

Channel, the main navigational channel in the Chesapeake Bay, from 42" 

to 50", which will result in approximately 33 million cubic yards of 

dredge material which is to be disposed of in two open water disposal 

sites in the bay. Three channels are to be deepened. Part of the Cape 

Henry and all of the York Spit channels will go to the Wolf Trap 

disposal area (Figure 1). The third channel slated for deepening, the 

Rappahannock Shoals channel, is not a subject of this study. A 

preoperational benthic baseline evaluation of the potential dredge 

disposal sites was performed by the Virginia Institute of Marine Science 

in coordination with the Army Corps of Engineers. Quantitative samples 

were taken to determine macrobenthic community composition (Diaz et al., 

1985) and these data were then used for the BRAT analysis, the results 

of which are reported by Kendall et al. (1985).

Dredge material disposal may effect organisms living on or in the 

bottom in several different ways. The material may cause smothering or 

burial, long-term changes in species diversity and biomass, uptake of 

toxic organics and may result in changes in sediment type and water 

circulation (Allen and Hardy, 1980). Recovery times of the benthic 

community vary greatly. Material composition has a large impact on 

recovery times. The time required for recolonization or recovery from 

fluid mud disposal ranges from three weeks to three months (Diaz and



Figure 1

Wolf Trap Study Sites
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Boesch, 1977)* Organisms buried by more consolidated materials may 

require a much longer recovery time (Hauer et al., 1981). If the 

sediment substrate is altered by the disposal material, predisposal 

species may not be able to recolonize the area (Allen and Hardy, 1980). 

After recovery, the community may become more productive than the 

predredging state (Saila et al. 1972), yet Hirsch et al. (1978) and 

Wright (1978) have shown varying degrees of negative effect of dredge 

material disposal activities on demersal finfish populations due to 

impacts on benthic invertebrates. One possible reason for these 

negative impacts on fish populations while benthic productivity is high 

was proposed by Rhoads et al. (1978), who speculated that the species 

responsible for this increased production are pioneering species with 

high growth rates and short generation times, and this type of species 

may not be an important food item for the demersal feeding fish of the 

region. These data again point out the need for an understanding of 

trophic links of a food chain, and illustrate how simple production 

estimates may be misleading.

The aim of this study was to perform a trophic resource analysis 

of the Wolf Trap disposal sites, in association with the Baltimore 

Channel Aquatic Benthos Investigation, employing different secondary 

production estimates of the major benthic macrofauna utilized by fish as 

food.

OBJECTIVES:

1.) To estimate secondary production for trophically important benthic 

macrofauna.
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2.) To use these estimates to determine an overall study site 

production estimate for trophically important benthic macrofauna.

3.) To determine the trophic resource value of the disposal areas.

STUDY AREA

The Wolf Trap study area is located in the main basin of the lower 

Chesapeake Bay. There are two potential disposal sites, the Wolf Trap 

Primary (WTP) and the Wolf Trap Alternate (WAP) sites (Figure 1). The
o  - o 'Wolf Trap Primary site is centered at 37 21 N, 76 06 W and is

2approximately 35 km in area. The Wolf Trap Alternate site is centered
o * o 2at 37 19 N, 76 09 W and is approximately 49 km in area. The average

depth of the sites is 39 feet.

Chesapeake Bay is the largest estuary in the United States, with a

2drainage area of 120,000 km and a yearly fresh water runoff rate of 

3 - 11,600 m sec (Ludwick, 1973). The bay and its tributary estuaries have

3 2 3a surface area of 11.5 X 10 Km a mean low water volume of 74 1cm with a

mean depth of 6.5 m (Schubel and Pritchard, 1986). The circulation

pattern of the bay generally follows that of a partially mixed coastal

plain estuary, with low salinity water flowing seaward overriding a

lower layer of higher salinity water coming into the bay.

Details on the study area are presented in Schaffner (1987) and

Wright et al. (1987). Briefly, the study site characteristics are as
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follows. The study sites are in a section of the bay described as bay- 

stem plains or basin. These plains experience near bottom currents of

over 20 cm sec * at an elevation 20 cm above the bed and 40 cm sec * one

sediments and exhibit small-scale biologically induced roughness. On 

both the mesoscale and large scales, the plains are relatively smooth in 

texture. The surface is characterized by high densities of tube 

dwelling organisms (Wright et al. 1987). There is an east-west gradient 

in sediment size for both study sites, with a higher sand content on the 

eastern side of the bay, agreeing with the cross bay gradient described 

by Byrne et al. (1982).

In association with the Baltimore Channel Aquatic Benthos 

Investigation, samples were taken at the WTP and WAP disposal areas five 

times;

meter above the bed. The plains are flat and composed of fine-grained

SAMPLING SCHEDULE

Fall November, 1983

Winter

Spring

February, 1984 

May, 1984

Summer August, 1984

Fall November, 1984

Six sampling stations were used at the WTP site and eight at the 

WAP site. Station coordinates are listed in Table 1.



TABLE 1. Station longitude and latitude coordinantes for stations 
used for secondary production estimations.

STATION LATITUDE LONGITUDE

WTP 01 37°2 3 .56 * 76° 7 .9 7*

WTP 02 37°2 3.4 4* 76° 6 .6 3*

WTP 08 37°2 1 .75 * 76° 6.93'

WTP 09 37°2 1.7 5' 76° 5 .7 1*

WTP 17 37°19.6 2* 76° 8.11'

WTP 18 37°19.4 6' 76° 6 .8 2*

WAP 01 37°2 1.02' 76°10.9 9'

WAP 04 37°18.77 * 76°11.0 1'

WAP 05 370 18.8 4' 76° 9 .5 6'

WAP 06 370 18.8 9* 76° 8.02'

WAP 09 37°17.7 3' 7 6° 8.9 1'

WAP 11 37°16.6 4' 760 9 .8 6'

WAP 13 37°15.4 5' 76°11.8 9*
A  * A  *



METHODS

SAMPLING TECHNIQUES

All samples were collected from the 28 meter research vessel Tern 

using a U.S. Naval Electronics Laboratory spade box-corer. The box-

2corer samples a surface area of 0.06m . Three cores per station were 

taken and used in this study. Two cores were sieved shipboard on a 0.5 

mm mesh sieve, transferred to cloth bags and fixed in 10% buffered 

formalin. In the laboratory the nonpartitioned cores were sorted to 

major taxonomic levels (polychaetes, gastropods, bivalves, crustaceans, 

nemerteans, echinoderas, anemones, phoronids, flatworms and others). 

Taxa were biomassed to the nearest 0.01 gram and then identified to the 

lowest possible taxonomic level. The third core was partitioned into 

four depths (0-2 cm, 2-5 cm, 5-10 cm and 10-15 cm), each sieved and 

preserved separately. After sorting the partitioned core, each 

taxonomic group from each depth interval was washed through a nested 

sieve series (6.3 mm, 3.3 mm, 2.0 mm, 1.0 mm and 0.5 mm) and the 

formalin fixed biomass values of all organisms of each size interval 

determined. All organisms were then stored in 70% ethanol for later 

secondary production estimation. Dissolved oxygen concentrations were 

measured from bottom water samples using standard titration methods.

14
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The depth of the Redox Potential Discontinuity, a measure of the depth 

at which the $ediment approaches anaerobic conditions, was estimated 

from photographs taken with a sediment profiling camera system. Small 

sediment core samples were taken and analyzed in the laboratory.

Organic content samples were taken and frozen for laboratory analysis to 

determine total organic carbon.

DETERMINATION OF TROPHICALLY IMPORTANT SPECIES

Trophic resource analysis necessitates the identification of 

species which are trophically important to primary predators. In this 

region of the Chesapeake Bay fish predators are primarily the demersal 

feeding spot Leiostomus xanthurus Lacepede and Atlantic croaker 

Micropogonias undulatus (Linnaeus) (Kendall et al., 1985). Trawl 

surveys and stomach content analysis of these species collected in the 

study area by Kendall et al. indicated that the polychaete species 

Euclymene zonalis (Verrill) was a primary prey item. The polychaete 

species Nephtys picta (Ehlers; cf. crvptomma). a species identified in 

Chesapeake Bay as Nephtys picta. but which may be Nfiphtya cryptomma 

(Harper, 1986), Glycera americana Leidy and EarapriQIIQBPiP pinnata 

(Ehlers), and siphons of the tellinid bivalve Macoma tenta Say also 

appeared to be utilized by the spot and croaker (Kendall et al., 1985). 

The large polychaete Chaetopterus y,ac.iPP-fldafciU? (Renier) did not appear 

to be an important fish prey item. While not directly available to 

higher trophic levels, £*. variopedatus is an important structuring agent 

in the region, increasing habitat complexity and possibly adding 

biogenic refuges for infauna (Schaffner, 1987). Biogenic refuges have
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been shown to elevate infaiinal densities (Orth, 1975, Dauer et al., 

1982). Thus this species was included in the study because of its 

structural importance. The production estimates of C. variopedatus 

should not bias the estimates for available production to higher trophic 

leyels because this species is rarely found in the upper two centimeters 

(L. Schaffner, pers. comm.). These five species accounted for 51% of 

the total community macrofaunal abundance, and an even higher percentage 

of the community biomass (>90%). The abundance of the polychaete G. 

americana later proved to be too low for use with the various secondary 

production estimation techniques, and was subsequently removed from 

consideration.

The Bray-Curtis index measured the similarity of species 

composition among stations. Overall, there was compositional similarity 

of species between stations in both study sites (Diaz et al., 1985). 

Because of this similarity, it was assumed that the different stations 

from each study area were all part of a single benthic community. 

Therefore, individuals of each of the important prey species from the 

fixed stations were pooled and assumed to be representative of their 

respective study sites.

SECONDARY PRODUCTION ESTIMATION METHODS<

Weight Determinations

Length-weight equations and secondary production estimates were 

calculated for the. individual species based on alcohol preserved wet 

weights (WW). Dry weights (DW) were determined by drying samples for 24
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hours at 60°C. Ash-free dry weights (AFDW) were determined by ashing

dried samples at 500°C until a constant yeight was obtained. Biomass or 

production values expressed in AFDW are more reliable because variations 

in moisture and inorganic content are taken into account (Leuven et al., 

1985). AFDW also gives a more reliable measurement of organic matter 

for organisms with calcareous skeletons or shells. Ratios of DW/WW, 

AFDW/DW and AFDW/WW were calculated for each species.

Correction Due To Preservation

In this study, the preservation techniques employed of preserving 

the sample first in formalin then alcohol causes a great deal of weight 

loss from the initial live weights (Howmiller, 1972; Leuven et al., 

1985). Since production measurements were made long after preservation 

of the organisms, this weight loss must be corrected for. Few studies 

have looked at weight loss of unpreserved tissue upon preservation in 

formalin. Howe and Leathern (1984) applied a conversion factor of 1.15 

to convert benthic macrofaunal preserved tissue weights to unpreserved 

tissue values. Howmiller (1972) reported that formalin preserved 

oligochaete weights were 76 percent (conversion factor of 1.3) of live 

weights after 44 days. Ethanol preservation (70%) will cause a much 

greater weight loss relative to the original live weights. Howmiller 

reported over a 50% wet weight loss after 57 days of ethanol 

preservation. Leuven et al. (1985) showed a significant effect of 

alcohol preservation on AFDW (organic weight), demonstrating that 

factors other than just water loss produce preservation artifacts. If 

water loss was the sole cause of weight loss after preservation, the
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ashing procedure would not detect this loss because ashing dries out all 

moisture. The weight loss due to preservation will result in a greatly 

reduced biomass measure, leading directly to a large production 

underestimation. Corrections for this weight loss therefore had to be 

determined and applied to the biomass values in order to provide more 

reliable production values.

Because biomass measurements were not made until after formalin 

preservation, no precise live weight to formalin preserved weight 

conversion factor could be determined. Therefore, a factor of 1.15 

(Howe end Leathern, 1984) was employed. Conversion factors between 

biomass of ethanol preserved tissue and initial formalin preserved 

tissue biomass could not be determined for individual species. Rather, 

a determination was made for major taxa, polychaetes and bivalves, by 

comparing long term post-preservation biomass to the initial formalin 

preserved biomass. Because most biomass loss due to preservation occurs 

during the first 30 days post-preservation, the long-term post- 

preservation samples used (preserved > 1 yr) should yield an accurate 

conversion factor.

Error terms associated with the species production estimates were 

calculated by summing the standard deviations of the biomass data used 

to determine size class or time interval biomasses.

Byclypfioe zonalis
The size-frequency method for productivity estimation is the most 

ideally suited for this type of study. Severe fragmentation of 

Euclvmene zonalis during shipboard sieving and preservation prohibited 

placing this species into size classes and made it impossible to use the
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size frequency method. Therefore the instantaneous growth method was 

the best available method of estimating production for E*. zonalis. The 

instantaneous growth method claims that production is proportional to 

the biomass of a steady state population and may be calculated by:

P = Bg

where Pa production, Ba mean biomass over a time interval, and g~ 

instantaneous growth constant over the time interval, where growth is 

defined as:

g * ln(m2- m^)

where m^ and m2 are the average mean weight per individual values of

dates 1 and 2, respectively (Rigler and Downing, 1984). Mean weight per 

individual for each sampling date was determined by dividing the total 

biomass of all apparent E. zonalis fragments from a sample by the number 

of individuals determined to be in the sample, based on the number of 

head sections found.

Chaetopterus variopedafcULS

Chaetopterus variopedatus also severely fragmented during 

collection. The removal—summation method, which is calculated as the 

sum of weight losses from one sampling time to the next, was the most 

appropriate production estimation method for use with (Ll variopedatus 

data. Mean weight per individual was again determined by dividing total 

fragment biomass by numbers of individuals, as indicated by the number 

of head segments found. This method involves multiplying the numbers 

lost over a time interval by the average weight of the individual at the
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time of loss* The weight at loss was determined by using a exponential 

curve function based on the mean weight per organism at the different 

cruise dates* The production estimates for each time interval were 

summed to get an annual production estimate.

gafifisiA tenta
The annual production of the bivalve Macoma tenta was estimated by 

the size-frequency method. This method involves placing each individual 

into a size class, and multiplying the numbers lost between each size 

class by the mean weight per individual at the time of the loss, 

determined by length-weight regression equations. The resultant values
. l,

were then summed and multiplied by the number of increments to produce 

an annual production estimate. The individuals were placed into 1 mm 

size groups, based on the cross body length from the top of the umbo 

across to the outer shell boundary (Table 2). A disecting microscope 

fitted with an ocular micrometer was used to make these measurements.

ParagriflaogRie Rianata
■ i ’■

The Size-frequency method was used for Paraprionospio pinnata. 

Individuals were placed into 1 mm size classes based on body width at 

the first setiger, including parapodia (Table 2). Mean weight per
V.

individual was calculated for each size class and these data fitted to 

an exponential curve to derive a length-weight relationship which was 

used to determine weight at loss between successive size groups.



TABLE 2. Length-weight regression equations for major species.
W « weight; L - length.

LENGTH-WEIGHT REGRESSION CURVE EQUATIONS

SPECIES MEASUREMENT WTP WAP
BASED ON

W-0.18L
r2«0.98

3.25 W-0.1QL
r2*1.00

3.55

Hephtys picla J 8
•  m w fJL

W-0.15L
r2*0.96

2.96 W*0.1$L
r2-0.97

2.99

FsgflprionoapiQ
pinnita

W-0.24L
r2-0.95

1.53 W-0.27L
r2-0.98

1.51

/
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Wephtys gicta (cf. cryptgmma)

Individuals from the polychaete species Nephtvs picta (cf. 

crvptomma) were placed into size classes required by the Size-Frequency 

secondary production? estimation method* The individuals were measured 

from tip of the prostomium to the anterior edge of the first setiger 

(Table 2) and a 2 mm size-frequency histogram developed from the data.

Community Production

Total community production was estimated using biomass derived 

from depth distribution cores and converted to mean annual biomass per 

station* The error terms associated with community production estimates 

were determined using the standard deviations of the mean annual biomass 

values per station. Large hard clams, Mercenaria mercenaria (Linnaeus), 

rarely found in the cores, were excluded from the community production 

determination due to the fact that the sampling scheme used did not 

allow for an adequate sampling of this species. Mean biomass values 

were subsequently multiplied by a weighted annual P/B ratio (Tables 3 

and 4) for either polychaetes or bivalves to give the total production 

for all members of that particular taxonomic group. For the bivalves, 

the P/B ratios for Macoma tenta were applied to bivalve biomass values. 

This is a valid use of the the P/B ratio because Hi. tenta was the 

numeric and biomass dominant bivalve species. In the case of the 

polychaetes the weighted P/B ratios were determined by using the P/B 

ratios of Euclymeae zsnaiia, Nflghtya pic.la (cf. gxyp.Lsma) and 

Paraprionospio pinnata. When considering only the trophically important 

polychaete species the majority of the polychaete biomass (75% to 85%)



TABLE 3. Weighted polychaete community P/B ratio determination for
the WTP study site.

SPECIES P/B RATIO x APPROX. % DOMINANT 
SPECIES BIOMASS

Euclymene zonalis 0.39 85% .33

Nephtys picta 
(cf. cryptomma) 4.26 8% .34

Paraprionospio
pinnata 3.59 8% .29

Weighted WTP P/B Ratio = 1.0



TABLE A. Weighted polychaete community P/B ratio determination for
the WAP study site.

SPECIES P/B RATIO x APPROX. % DOMINANT 
SPECIES BIOMASS

Euclymene zonalis 0.40 75% .30

Nephtys picta 
(cf. cryptbmma) 4.39 12% .52

Paraprionospio
pinnata 3.41 12% .41

Weighted WAP P/B Ratio =1.2
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was accounted for by Euclymene zonalis. a species that exhibited a very 

low P/B ratio, the average community P/B ratios were weighted heavily in 

favor Of this species. The approximate percent of biomass represented 

by each species was multiplied by the annual P/B ratio of that species. 

These values were then summed to derive a weighted community P/B ratio 

(Tables 3 and 4). These ratios are extremely general and should be 

treated as such. A student T-test was run on total production from the 

two study sites to determine if the values from the two sites were 

significantly different from each other.

Available Production

Not all biomass of the benthic community appears to be available 

for predation by bottom feeding fish. Virnstein (1977), Holland et al. 

(1980) and Blundon and Kennedy (1982) have shown that prey availability 

is a function of the depth of burial. Kendall et al. (1985) reported 

that demersal feeding fish from the Wolf Trap region of the bay were 

foraging only in the 0-2 centimeter layer of the sediment for most of 

the year, occasionally foraging in the 2-5 centimeter layer at times in 

the summer. Therefore community production data were arranged to 

estimate the amount of production theoretically available to fish.

Based on the data of Kendall et al. (1985), biomass from the 0-2 

centimeter layer was assumed to be available for transfer to higher 

trophic levels. Because bottom feeding fish from the area may at times 

feed below two centimeters, this value is somewhat arbitrary. However, 

because the majority of fish foraging occurred from the upper two 

centimeter layer, the data generated from this layer will give a 

stronger assessment of the resource value of the benthic community to
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demersal feeding fish than data from the top five centimeters. A 

limitation of this method is that it does not take into account crab 

predation on the benthos. Blundon and Kennedy (1982) report that blue 

crabs (Callinectes sapidus Rathburn) may forage on organisms 20 

centimeters deep in the sediment column. Therefore a resource 

assessment of the importance of the benthos to demersal feeding fish 

populations will not assess the importance of the benthic community to 

crab populations.

Available production was determined by multiplying the biomass 

from the upper 0-2 centimeter depth for polychaetes or bivalves by the 

weighted polychaete or bivalve annual P/B ratios* A student T-test was 

run on available production from the two study sites to determine if the 

values from the two sites were significantly different from each other.



RESULTS

BIOMASS DATA

Length-weight regression curve equations are listed in Table 2.

Wet weight/dry weight and dry weight/ash-free dry weight conversion 

ratios for the species are listed in Table 5. An alcohol preserved 

weight to formalin preserved weight conversion factor of 1.6 was 

determined for the polychaetes and 1.2 for bivalves. The bivalve factor 

is lower because of the high degree of inorganics found in the shell, 

which do not change appreciably upon preservation. A formalin preserved 

weight tp live weight conversion factor of 1.15 (Howe and Leathern, 1984) 

was used to estimate live organism biomass from alcohol preserved 

values. By multiplying these two factors together, a alcohol preserved 

biomass to live weight biomass conversion was determined (polychaete 

factor ■ 1.84; bivalve factor * 1.38).

PRODUCTION ESTIMATES

All production estimates were calculated using alcohol preserved
■i\ ■

biomass values. Species production estimates were then converted to 

estimated live weight values. All values of production referred to in



TABLE 5. Biomass conversion ratios for dominant species.

SPECIES DW/WW AFDW/DW AFDW/WW

Euclymene
zonalis 17.352 82.28% 14.28%

Chaetopterus
variopedatus 11.05% 63.75% 7.04%

Macoma tenta 30.58% 19.92% 6.12%

Paraprionospio
pinnata 12.74% 79.60% 10.14%

Nephyts picta
(cf. cryptomma) 13.36% 71.95% 9.83%
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this report will be expressed in units of live weight unless otherwise 

stated. Both alcohol preserved and live weight converted biomass values 

produced the same results.

Rufilxnenfi zonalis

Although abundances remained relatively constant (Figure 2) the 

mean weight per individual Euclymene zonalis increased over the first 

four sampling intervals and then exhibited a sharp drop in mean weight 

per individual over the last sample interval (Tables 6 and 7). This 

decrease in mean weight caused a negative production over the last time 

interval for both sites. Total annual production was WTP- 5.25 +/-1.32

g AFDW/m2/yr; WAP* 2.65 +/-1.07 g AFDW/m2/yr.

The annual production for Euclymene zonalis was much higher at the 

WTP site than at the WAP site, yet the production to biomass ratio 

(P/B), calculated by dividing annual production by the annual mean 

standing crop, were extremely close for the two areas (WTP=0.39; 

WAP=0.40). This closeness indicates that the higher production found at 

the WTP site resulted from a higher species standing stock. Ej. zonalis 

from the WTP site had greater mean weights than those from the WAP site 

at every sampling interval.

Chaetopterus variop.eflalmg
The removal-summation method chosen as the appropriate production 

estimation method for Chaetopterus y,aciP.P,edatPg requires that mean 

weight per individual be multiplied by numbers lost over the same time 

interval. The mean weights at each interval were used to construct a
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Figure 2

Euclymene zonalis abundances
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exponential tirae-weight curve function for each site. The curve 

equations were used to estimate weight at time of loss, assumed to be 

the midpoint between successive dates. The production estimates from 

each date were summed to derive an annual production estimate (Tables 8 

and 9).

The annual production from the WAP site was one third higher than

that of the WTP (WAP» 23.64 +/-10.96 g AFDW/m2/yr; WTP= 18.00 +/- 4.59 g 

2AFDW/m /yr). The abundances from both sites dropped from May 1985 to 

November 1985 (Figure 3). No Chaetopterus variopedatus appeared during 

the last two sampling periods at the WTP site. Over the first three 

sample intervals, the WTP production was actually higher than the WAP 

production, but because of the population crash, there appears to be a 

potential for underestimating production potential from the WTP site.

The WTP P/B ratio wais higher than the WAP ratio (WTP=4.52; WAP=3.08), 

but if the last two intervals of the WTP data are ignored, then the WTP 

ratio is slightly lower than that of the WAP site.

Mflgpma l.epla

Annual secondary production of this tellinid bivalve was estimated 

using the size-frequency method. Individuals of the species were placed 

into 2 mm size classes based on cross body length from the umbo to the 

outer shell boundary. Size-frequency histograms (Figures 4 and 5) show 

a gradual increase in size of these organisms. There was a large drop 

in abundance at both sites during the last sampling period (Figure 6). 

WTP secondary production was estimated to be 1.62 +/- 0.36 g 
2AFDW/m /yr (Table 10). Size class mean weights were used to construct a
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Figure 3

Chaetopterus variopedatus abundances
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Figure 4

Macoma tenta size-frequency 

histogram for WTP site
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Figure 5

Macoma tenta size-frequency
histogram for WAP site
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Figure 6

Macoma tenta abundance
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length-weight regression best fit power curve equation* This equation 

was used to estimate weight at time of loss of an individual between two 

successive size classes* Animal size ranged from 0-2 mm to 16-18 mm. A 

P/B ratio of 3.84 was calculated.

Organisms from the WAP site were placed into 2 mm size classes and 

the length-weight regression calculated. This method produced a

2secondary production estimate of 2.39 +/- 0.37 g AFDW/m /yr and a P/B 

ratio of 4.25 (Table 11).

Both production values are probably minimal estimates because of 

the organisms left in the last size class (Tables 10 and 11). The 

procedure for production estimates for organisms found in the last size 

group is to assume that the mean weight/individual for that interval is 

the maximum obtainable weight for the organism, and the individuals left 

are multiplied by this weight. This assumption is obviously flawed. It 

is unlikely that the organism did not grow in weight after the final 

sample collection date.

Eteghtyg pitta (cf. trygtgmma)

The size-frequency method was used to derive production estimates 

for Nephtvs picta (cf. crvptomma). Individuals were placed into 1 mm 

size classes! based on the length from the tip of the prostomium to the 

start of the first setiger segment. Organism sizes ranged from the 1-2 

ram size group to 9-10 mm (Figures 7 and 8).

WTP annual production of Nephtys pitta (cf. crvptomma) was

2calculated to be 1.13 +/- 0.22 g AFDW/m /yr with a P/B ratio of 4.26.

2WAP ]£*. nicta (cf. cryptomma) production (2.41 +/- 0.58 g AFDW/m /yr) was
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Figure 7

Nephyts picta (cf. cryptomma) size-frequency
histogram for WTP study site
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Figure 8

Nephyts picta (cf. cryptomma) size-frequency
histogram for WAP study site
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twice as high as the WTP site and the P/B ratio was slightly higher 

(4.39) (Tables 12 and 13). Mean weights at loss from each size class 

for the two sites were calculated using the length weight equations.

P-aJCa.pripnQSpio pinnata

Paraprionospio pinnata was one of the most abundant animals found 

in the study area. Animals of this species were divided into 1 mm size 

groups based on cross body length from the tips of the parapodia on the 

first setiger segment, and the sizes ranged from 2-3 mm to 9-1Q mm.

There was an addition of smaller individuals into the population over 

the last two intervals, indicating recruitment (Figures 9 and 10). P. 

pinnata data from both study sites were very similar with respect to

2abundance (Figure 11), production (WTP® 0.43 +/'- 0.30 g AFDW/m /yr; WAP=

0.44 +/- 0.13 g AFDW/m2/yr) and P/B ratios (WTP® 3.59; WAP= 3.41)

(Tables 14 and 15).

Community Production

The WAP five species secondary production estimate from pooled

2station data (31.52 +/-13.11 g AFDW/m /yr) was higher than that of the

WTP site (26.42 +/-6.79 g AFDW/m2/yr) (Table 16). The highest 

production values were generally on the east side of the sites (Figure 

12). Total community production estimates for each station, based on 

polychaete and bivalvje biomass and weighted P/B ratios, are listed in 

Table 17. The values appeared slightly higher than values derived from 

pooled station values for the five species. This discrepancy is likely 

caused by the fact that the total community production was determined
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TABLE 16. Total study site production estimates based on trophically 
important species.

WTP WAP
SPECIES PRODUCTION PRODUCTION

(g AFDW/m2/yr) (g AFDW/m2/yr)

Euclymene zonalis 5.25 +/-1.32 2.65 +/-1.07

Chaetopterus
variopedatus 18.00 +/-4.59 23.64 +/-10.96

Macoma tenta 1.62 +/-0.36 2.39 +/-0.37

Nephtys
picta (cf. cryptomma) 1,13 +/-0.22 2.41 +/-0.58

Paraprionospio
pinnata 0.42 +/-0.30 0.43 +/-0.13

TOTAL PRODUCTION

26.42 +/-6.79 31.52 +/-13.11
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vo O OV OV 00 O st o is st CO© CM st St co o UO 00 o CO rs• . • 9 • • . • • • .o Is vO St CM st St CM Ov CO CM
uo CO CO st VO CO CM CO

O O o o o o © o o o o © O o stO © o o © o CM CM CM CM CM CM CM CM 00 00• • . . • • • • • • • • • • • ■ . •f-4 H rM rM iH H H H rH 1—4 1—4 H 1—31“W CO CO
o rs CM is. CM 00 uo vo uo rs uo UO 1—4 oo ovO uo rs is St © rM 00 Ov © vO VO is 00 St uo• • . . • • . • • • • • • • • •o CO CO oo CM Ov CO H 00 is. 00 © St IS 1—4 o4̂i CM1 1 1 uo1 rM1 1 Hi rM1 rM1 1—4

i
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Figure 9

Paraprionospio pinnata size-frequency
histogram for WTP study site
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Figure 10

Paraprionospio pinnata size-frequency
histogram for WAP study site
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Figure 11

Paraprionospio pinnata abundance
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Figure 12

STATION PRODUCTON 
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using total estimated live biomass of a core, not just the biomass of 

the five dominant species. The five species accounted for approximately 

80 percent of the total biomass.

Available Productivity

Production available for transfer to higher trophic levels was 

estimated by multiplying the weighted P/B ratios by the average annual 

polychaete or bivalve biomass value per station found in the upper two

2centimeters (Table 17). Values ranged from 2.19 +/-1.52 g AFDW/m /yr at

WTP site 2 to 14.92 +/-9.96 g AFDW/m2/yr at WTP site 18 (Figure 12).

The available production values follow the same general spatial trend as 

seen in the total community production values, with higher values 

generally lying on the eastern sides of the study sites, although the 

trend is not as distinct (Figure 12). The high value shown at WTP 

station 09 may be accounted for by a very high bivalve biomass, caused 

by a high number of the mussel Mytilus edulius Linnaeus found in a core 

from the August cruise.



DISCUSSION

Benthic invertebrate macrofauna certainly play an important role 

in the transfer of energy from primary producers to higher trophic levels 

(Steele, 1974; Mills and Fournier, 1979). When disruption or destruction 

of the benthic community may occur due to anthropogenic activities, an 

analysis of the resource value of the community and the potential effects 

on higher trophic levels this energy loss may cause should be estimated. 

This estimation may best be made using a detailed secondary production 

study of the trophically important benthic species.

Secondary production estimation studies are very labor 

intensive, therefore cost-efficient assessments of environmental impacts 

should concentrate on trophically or otherwise important species. In 

this case, after looking at species abundances and biomass data (Diaz et. 

al., 1985) and area demersal feeding fish stomach contents data (Kendall 

et al., 1985), four species were selected as trophically important 

species in the Wolf Trap region of the bay, as well as important with 

respect to community structure: the polychaetes Euclymene zonalis.

Nephtvs picta (cf. cryptomma)« Paraprionospio pinnaLa, and the tellinid 

bivalve Macoma tenta. These four species were assumed to be 

represent itive of the food web link

between the benthic community and organisms of higher trophic levels, in 

this case specifically demersal feeding fish.

68
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Production estimations were also made for the polychaete 

Chaetopterus variopedatus. While this species is apparently not 

important in terms of direct energy transfer to higher trophic levels, it 

was a large contributor to community biomass in the area* The tube of C. 

variopedatus was also the main substrate for attachment of epifaunal 

species. <1,. variopedatus may alter the resource value of a community 

because it provides habitat or refuge for other species (Schaffner,

1987). Because of the high biomass of this species, production 

estimation will allow for a more reliable community production comparison 

with other benthic communities.

Secondary production estimates are best made with frequent 

sampling, weekly or monthly, in order to catch recruitment peaks, rapid 

growth of young individuals, and rapid mortality of short-lived species. 

However, the P/B ratios of the species in this study indicate that they 

all possess life spans of at least one year (Mann, 1967). According to 

Mann, species with more than one cohort per year should have a P/B ratio 

of approximately 10, while species that live for one year should have a 

ratio of around 5. From the P/B ratios of species from this study, it 

appears that none of these species are multivoltipe (possessing more than 

one cohort per year). The sampling scheme employed thus will allow 

adequate sampling of relatively long lived species such as the five 

species used in this study.

The benthic communities found in the two study areas were 

basically similar in' species composition, species percentages and other 

community parameters. The fauna of the region were representative of an 

advanced, mature successional stage community (Sensu Rhoads et al.,

1977). The dominants were large, long-lived species which characterize
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an equilibrium community. There was a general gradual decline in 

abundances for many of the species over the year. The two major tube- 

builders in the area, EuQlymene agnails, and Chaetopterus variopedatus. 

declined in numbers over the year. The drop in numbers of C. 

variopedatus. which builds a "U" shaped tube, was possibly due to intense 

winter crab dredging in the area by Chesapeake Bay watermen (Linda 

Schaffner, per. comm.), the natural decline Of a single age class 

dominated population, or some unknown intense bottom destabilization 

event. The change in these species numbers probably lead to declines in
r : •• ,,

other species associated With its tube. This phenomenon has been shown 

to occur around polychaete tubes (Fager, 1964; Woodin, 1978 and 

Luckenbach, 1986). Macoma tenta declined in numbers over the year while 

showing a small recruitment peak in the winter of 1984, and then 

declining after the recruitment event. Nephtvs picta (cf. crvptoimna) and 

juvenile Nephtydae, which are in all probability juvenile 2L. picta (cf. 

cryptomma) but could not be identified to species level, showed 

recruitment during fall 1983 and winter 1984 sample dates, and tben 

declined. Paraprionospio pinpata exhibited fall recruitment.

The low P/B ratio of Euclymene zonalis over the year indicate 

that the species is long-lived with a life span greater than one year 

(Mann, 1967; Robertson, 1979). The mean weight/individual for E. zonalis 

for the different cruise dates showed the same trend at both areas. Mean 

weight values increased from fall 1983 until fall 1984, then exhibited a 

large drop over the last sample interval, yet the abundance remained 

relatively constant over time (Figure 2). The WTP values were higher 

than the WAP values. The large weight loss, which lead to negative 

production over the last sample interval, may possibly be explained by
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unusually low dissolved oxygen concentrations of the bottom water in the 

area, which decreased to a low point in the fall of 1984 (Seliger et al., 

1985). Low D.O. concentrations may force the animals higher up in the 

sediment, exposing more of the organism to possible predation by bottom- 

feeding predators.

The production estimates for the biva1ve Macoma tenta and the 

polvchaete Euclymene zonalis may be underestimated due to the ability of 

these organisms to regenerate body parts that are lost to predators. 

Siphons of tellinid bivalves are a prime component of the diet of many 

bottom feeding fish (Macer, 1967; Edwards and Steele, 1968; Kuipers,

1977; de Vlas, 1979), as are tail segments of maldanid polychaetes 

(Mangum, 1964) These species are generally able to regenerate the lost 

body parts (Mangum, 1964; Trevallion et al., 1970; De Vlas 1985). De 

Vlas (1985) determined that up to 50% of the Tellinid species Macoma 

balthica ŝ (L.) annual secondary production may be accounted for by 

siphon regeneration. While H*. balthica and Mj. tent a are not the same 

species, the implication is clear. Regeneration of body parts may lead 

to large amounts of biomass production which quarterly sampling may not 

adequately measure.

The total annual secondary production of the dominant species at

2the WAP study site was 31.52 +/-13.11 g AFDW/m /yr and 26.42 +/-6.79 g 
2AFDW/m /yr at the WTP 'Study site. Translated to the entire study area, 

1544.48 + /- 642.39 metric tons of ash-free dry weight were produced over

2the year for the 49 km WAP study site and 924.70 +/- 237.65 metric tons

2over the year for the 35 km WTP study site.



72

The differences in both total and available production per unit

area derived from use of weighted P/B ratios and biomass values for

polychaetes and bivalves between the two study sites is not significant 

(total production: t = 1.23, 2-tailed probability = 0.846; available 

production: t = 3.32, 2-tailed probability = 0.149). These statistics

indicate that the two study sites have similar secondary production

potential per unit area, and that disposal of dredge disposal materials
■f.': - ' . ■■■*''

at either site should effect higher trophic levels in a similar fashion.

The study sites appeared to be as productive or more productive

than other sites where secondary production studies have been conducted.

A dominant species production averaged for the two sites of 28.7 g

2AFDW/m /yr and a total community production value averaged for the two

2sites of 43.7 g AFDW/m /yr will be used as reference points for 

comparisons with various studies in aquatic habitats.

In a Danish stream community, Mortensen and Simonsen (1983)

2estimated a production value of 1.1 g AFDW/m /yr for all species present.

2 2Evans (1983) estimated dry weight values of 26.5 g/m /yr and 20.7 g/m /yr 

for all macrofauna from a Swedish fjord. Wolf Trap community and 

dominant species production estimates are higher than all of these 

estimates. Comparisons with these non-estuarine habitats point out that 

the estuarine benthic environment is one of the most productive habitats 

in the aquatic realm.

Wolf Trap production values are greater than or similar to other 

bays and estuaries. Sanders (1956) in a Nephtys incisa (Malmgren)/Yoldia 

limulata (Say) community from Long Island Sound calculated a production
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2value of 29.6 g AFDW/m /yr. Off the coast of England, Buchanan and
2Warwick (1974) estimated yearly production at 1.43 g AFDW/m /yr for 18 

dominant species. Warwick and Price (1975), in a Macoma intertidal
2community, estimated community production at 13.31 g AFDW/m /yr. In 

Carmarthen Bay, South Wales, using 15 dominant species, Warwick et al.

2(1978) estimated production at 25.8 g AFDW/m /yr. Howe and Leathern

2(1984) derived production estimates as high as 46.5 g AFDW/m /yr for all 

species at the mouth of Delaware Bay. In a Chesapeake Bay submerged 

aquatic vegetation bed, dominant species production was calculated to be 

230.94 g AFDW/m /yr (Diaz and Fredette, 1982). All of these production 

estimates are very similar to the corresponding production estimates 

produced in this study. All of these production estimates point out the 

relative productivity of estuarine habitats compared with other aquatic 

habitats. The values derived from the Chesapeake Bay are equivalent to 

values of most other estuaries.

One purpose of this study was to determine the effects dredge 

disposal could have on organisms in higher trophic levels. Several 

studies have approached this type of problem, but few have tried to 

partition the community production into fractions available and 

unavailable to the higher trophic levels. Averaged available production 

for the two areas were determined using the available station production 

(Figure 12). Available station biomass for bivalves was determined by 

multipling bivalve biomass values from the upper two centimeters by the 

P/B ratio of Mac oma tenta. Available station production for polychaetes 

was determined by multiplying the polychaete biomass value for the upper
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two centimeters of the station by an average P/B ratio weighted heavily 

in favor of the high biomass species Euclvmene zonalis (Tables 3 and 4). 

Because Chaetopterus variopedatus was rarely found in the upper two 

centimeters, this species does not contribute to available productivity 

estimates. The other four species were all found frequently in the upper 

sediment layer. A total available production in the upper two

2centimeters for the dominant species of 6.82 +/- 5.44 g AFDW/m /yr at the

2WTP site and 7.44 +/- 6.45 g AFDW/m /yr at the WAP site was found. These 

values translate to 238.7 +/- 190.4 metric tons of ash-free dry weight 

biomass production per year at the WTP site and 364.5 +/- 316.1 metric 

tons of ash-free dry weight biomass production per year at the WAP site. 

These are the biomass production values from the two study sites that 

appear to be directly available tb the upper trophic levels.

The value of this production to demersal feeding fish stock in 

the Chesapeake Bay may be roughly estimated. Transfer efficiencies give 

the percentage of annual production of a trophic level that is expected 

to be transferred to the next trophic level. A transfer efficiency of 15 

% (Collie, 1987) will be used in this study. Applying this transfer 

efficiency to benthic secondary production values we can estimate that 

benthic invertebrates in these areas may support demersal fish production 

of 35.6 +/- 28.6 metric tons of ash-free dry weight for the WTP study 

area and 54.6 +/- 47.4 metric tons of ash-free dry weight for the WAP 

study area.

Given these estimates that available benthic prey species from 

the two study sites may support an annual fishery production of roughly 

35 to 55 metric tons, dredge disposal activities have the potential to
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cause large declines in fish production, by effecting the benthic food 

base. The degree to which fish production may be effected by disposal 

activities depend on two factors. First, the extent to which the fish 

community is food limited is important. If the fishery is not food 

limited, even after dredge material disposal, then no change in fish 

production would be evident. If, on the other hand, the fish population 

is food limited before the disposal event, then the potential exists for 

large losses of fish production. Second, the rate of recovery of the 

community is important. If the benthic community is able to rebound 

rapidly to its original state, then little or no effect on the fish 

population may be noticed. Yet if the benthic community can not recover 

or recovers slowly from disposal activities, fish productivity may 

decline. Rhoads et al. C1977) reported that three months after dredge 

disposal, a disposal area off the coast of Connecticut was barren of 

macrofauna. Recruitment of new individuals in the study of Rhoads et al. 

(1977) started during the second three months postdisposal, and after a 

year the community appeared to have recovered. These recovery times are 

dependent on the type and volume of the disposal material, physical 

aspects of the overlying water column, rates of benthic settlement and 

survival and the type of organism recruited into the area (Mauer et al., 

1981). All of these factors will act on the actual degree to which fish 

production may decline due to dredge disposal activities.

This study has shown that a large amount of biomass was produced 

by benthic organisms at the two study sites. The potential exists that 

disturbance of the benthic community by dredge material disposal may have 

a negative effect on the bottom-feeding fish population in the area.

What the magnitude of the effect will actually be remains to be seen. An
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ansv/er to this question along with the information generated from this 

study would allow for a much better understanding of how disturbance of 

the benthos affects production and trophic links in an estuarine 

ecosystem.



CONCLUSIONS

1. The dominant benthic macrofauna of the Wolf Trap region of the 
Chesapeake Bay were responsible for an annual production of 26.42

. . .  2+/-6.79 g AFDW/m /yr at the Wolf Trap Primary (WTP) study site and
31.52 +/-13.11 g AFDW/m^/yr at the Wolf Trap Alternate (WAP) study 
site.

2. Translated to the the entire study area, secondary production of 
the dominant benthic species would account for 924.70 +/- 237.65 
metric tons of ash-free dry weight biomass per year at the WTP

study site and 1544.48 +/- 642.39 metric tons of ash-free dry 
weight biomass per year at the WAP study site.

3. Production assumed to be available for transfer to bottom
feeding fish populations was estimated to be 6.82 +/- 5.44 g

2 2 AFDW/m /yr at the WTP site and 7.44 +/- 6.45 g AFDW/m /yr at the
WAP site.

4. Available secondary production of the benthic community would
account for 238.7 +/- 190.4 metric tons of ash-free dry weight 
biomass per year at the WTP study site and 364.5 +/- 316.1 metric

tons of ash-free dry weight biomass per year at the WAP study site.

5. Using a transfer efficiency of 15%, the WTP benthic community
could support fish production of 35.8 +/- 28.6 metric tons of ash-

free biomass over a year and the WAP benthic community could support 
fish production of 54.6 +/-47.4 metric tons of ash-free biomass over 
a year.

6. The secondarŷ ? productivity of the benthic communities of the two
Wolf Trap study sites are of equal or higher magnitude than

estimates of secondary productivity of other aquatic habitates.
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