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The impacts of warming and hypoxia on the
performance of an obligate ram ventilator
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Climate change is causing the warming and deoxygenation of coastal habitats like Chesapeake Bay that serve as important
nursery habitats for many marine fish species. As conditions continue to change, it is important to understand how these
changes impact individual species’ behavioral and metabolic performance. The sandbar shark (Carcharhinus plumbeus) is an
obligate ram-ventilating apex predator whose juveniles use Chesapeake Bay as a nursery ground up to 10 years of age. The
objective of this study was to measure juvenile sandbar shark metabolic and behavioral performance as a proxy for overall
performance (i.e. fitness or success) when exposed to warm and hypoxic water. Juvenile sandbar sharks (79.5-113.5 cm total
length) were collected from an estuary along the eastern shore of Virginia and returned to lab where they were fitted with
an accelerometer, placed in a respirometer and exposed to varying temperatures and oxygen levels. Juvenile sandbar shark
overall performance declined substantially at 32°C or when dissolved oxygen concentration was reduced below 3.5 mg 1!
(51% oxygen saturation between 24-32°C). As the extent of warm hypoxic water increases in Chesapeake Bay, we expect that
the available sandbar shark nursery habitat will be reduced, which may negatively impact the population of sandbar sharks
in the western Atlantic as well as the overall health of the ecosystem within Chesapeake Bay.
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exacerbated (Rabalais ef al., 2009; Najjar et al., 2010; Irby
et al., 2018).

Introduction

Climate change is warming coastal areas and estuaries world-

wide. An increase in anthropogenic nutrient input is likewise
increasing the severity and extent of hypoxic episodes in many
of these areas (Hagy et al., 2004; Preston, 2004; Kemp et al.,
2005; Conley et al., 2007; Rabalais et al., 2009; Najjar et al.,
20105 Irby et al., 2016). These conditions are expected to
worsen over the next 100 years as climate change impacts are

Changing environmental conditions in coastal areas and
estuaries are likely to impact marine fish species that rely on
these habitats as primary nursery grounds (Rijnsdorp et al.,
2009). For example, while in their nursery habitat, juvenile
weakfish (Cynoscion regalis) avoided waters in a tributary
of Indian River Bay, DE, USA with dissolved oxygen below
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2 mg ™! (Tyler and Targett, 2007). The prevalence of juvenile
bull sharks (Carcharbinus leucas) has actually increased in
their nursery ground habitat within Pamlico Sound, NC, USA
over the last decade as a result of increased water temper-
atures (Bangley et al., 2018). Shifts in species distribution,
similar to the examples above, can lead to changes in the
timing of migration of juveniles and adults (Nye ef al., 2009;
Turner et al., 2015), reproductive patterns of adults (Last
et al.,2011) and abundance of all life stages (Last et al., 2011;
Lynch et al.,2014); all of which can influence population level
success and the overall health of ecosystems (Morley e al.,
2018).

To understand these potential changes in fish ecology, it is
important to assess the relationship between environmental
conditions and the performance of individual fish. Perfor-
mance is often assessed through measurement of aerobic
scope [AS, i.e. the difference between maximum and standard
metabolic rates (SMRs); Claireaux and Lefrancois, 2007;
Di Santo, 2016], which quantifies an individual’s metabolic
power (i.e. energy use per unit time) under which all of
life’s processes beyond basic maintenance (e.g. growth, repro-
duction, digestion and movement) must occur (Clark et al.,
2013). Consistent with the theory of oxygen- and capacity-
limited thermal tolerance (OCLTT), AS is a measure of fitness
and performance in ectotherms. According to OCLTT, AS
follows a bell-shaped curve with temperature such that there
is a temperature where AS is optimized (Fry, 1971; Clark
et al.,2013). Therefore, it is expected that long-term warming
will reduce AS and decrease the ability for many individuals
to carry out multiple life processes simultaneously unless
individuals adjust their range and distribution (Pértner and
Knust, 2007). However, the theory of OCLTT does not hold
true for all species, as some demonstrate an increase in AS
with temperature until temperature approaches lethal levels
(Clark et al.,2013; McKenzie et al.,2016). This suggests that,
for some species, the temperature at which AS is optimized is
not equivalent to the temperature at which performance is
maximized (Lefevre, 2016).

Increases in the extent and severity of hypoxic episodes in
coastal areas are affecting the physiology and thus ecology
of coastal species (Diaz and Rosenberg, 1995; Wannamaker
and Rice, 2000; Tyler and Targett, 2007; Ludsin et al., 2009;
Zhang et al., 2009). Hypoxia tolerance is often quantified
by measurement of critical oxygen levels or oxygen level at
which individuals can no longer maintain SMR. The critical
oxygen saturation (Sc;) should increase with temperature
due to increases in SMR and decreases in oxygen solubility
in water. Individuals cannot occupy waters long term with
an oxygen level below S because, under these conditions,
at least some of the power needed to maintain homeostasis
must be met through anaerobic metabolism (Fry and Hart,
1948; Schurmann and Steffensen, 1997; Brill et al., 2015).
Similar to S, the quantities Cei; and P are the concen-
tration and partial pressure of oxygen, respectively, at which
a fish can no longer maintain SMR. All of these measures
of critical oxygen, as well as AS, can be determined through
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intermittent-flow respirometry (Clark ez al., 2011; Lapointe
et al.,2014).

Measuring metabolic performance (i.e. AS) of an obligate
ram ventilator, like a tuna or some shark species, is difficult
because of the necessity of individuals to swim constantly
and, therefore, a need to measure activity simultaneously. This
requires either a swim tunnel respirometer where swimming
speed can be controlled or a respirometer large enough for
fish to swim independently coupled with a method to quantify
activity. Since many species exhibit difficulty swimming in a
swim tunnel, a large circular tank can be used as the respirom-
eter such that fish are able to swim freely (Lear et al., 2017).
Because the swimming behavior and activity of fish cannot be
controlled in the large circular respirometer accelerometers
have been used to measure activity during experimentation
(Lear et al.,2017). Activity measurements (i.e. behavioral per-
formance), obtained through accelerometers (Whitney et al.,
2007; Whitney et al., 2016), can be used as a performance
metric to quantify mechanical work, be used to describe
behavior (Gleiss et al., 2011; Payne ez al., 2018) and be used
as an indicator to understand locomotor performance under
different environmental regimes (Payne et al., 2016; Payne
et al., 2018). Activity is correlated with metabolic perfor-
mance, which suggests that accelerometers can be used to
infer field metabolic rate when applied to free-ranging indi-
viduals (Bouyoucos et al., 2017; Lear et al., 2017). However,
the relationship between accelerometer-derived activity met-
rics and metabolic rate has not been assessed under high levels
of environmental stress.

The sandbar shark (Carcharhinus plumbeus) is an obligate
ram-ventilating species that relies on coastal habitats as nurs-
ery grounds during younger life stages. In late spring, pupping
occurs in Chesapeake Bay and coastal estuaries along the
mid-Atlantic, where young-of-year remain through summer
(Conrath and Musick, 2007; Grubbs and Musick, 2007).
After moving south or offshore during winter, juveniles return
to these nursery areas to forage and avoid larger predators
during summer for the following 4-10 years (Grubbs and
Musick, 2007). As a result of climate change and anthro-
pogenic nutrient input, Chesapeake Bay is becoming warmer
and more hypoxic (Hagy et al., 2004; Preston, 2004; Kemp
et al.,2005; Najjar et al.,2010). Temperature and oxygen lim-
itations are not well understood for juvenile sandbar sharks.
Therefore, the objective of this study was to measure juvenile
sandbar shark metabolic and behavioral performance as a
proxy of overall performance (i.e. fitness or success) when
exposed to warm and hypoxic water.

Materials and methods

A total of 13 juvenile sandbar sharks [79.5-113.5 c¢m total
length (TL); 2.6-7.8 kg] were collected along the eastern
shore of Virginia and brought back to the Virginia Institute of
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Table 1: Size and treatment summary of the juvenile sandbar sharks in
the study

Treatments | Accelerometer

o

Animal
mass
(kg)

Year
tested

Animal
ID

Marine Science Eastern Shore Lab, Wachapreague, VA, USA
during the summers of 2016 and 2017 (Table 1). Individuals
were held in a fiberglass tank (6.1 m diameter, 45 000 L) with
a flow-through seawater system and acclimated to captivity
for at least 2 weeks prior to experimentation. Sharks were fed
frozen menhaden (Brevoortia tyrannus) until satiation every
3-5 days. All protocols for shark sampling, handling and
experimentation were approved by the College of William
and Mary Institutional Animal Care and Use Committee
(protocol no. IACUC-2017-05-26-12 133-kcweng).

Experimental design

Maximum metabolic rate (MMR), minimum routine metabolic
rate (MRMR; a proxy for SMR because sandbar sharks
are obligate ram ventilators), AS and S.; were measured
in 12 sharks at 24°C, 28°C and 32°C using intermittent-
flow respirometry to understand the effects of warming
and hypoxia on sandbar shark physiology (Lapointe et al.,
2014; Brill et al., 2015). Eleven sharks were tested at all
three treatments (24, 28, and 32°C), while data collected
at 24°C and 28°C from one shark was combined with data
collected at 32°C from a different shark to represent one set
of temperature treatments due to a mortality suffered in the
holding tank between experiments. Sharks were acclimated to
treatment temperatures in their holding tank through natural
increases in water temperature throughout the summer
(range: 18.0-33.8°C) because we were unable to control
temperature in our holding tank. However, by using this
approach, we were able to maximize ecological relevance.

Research article

When experimental temperatures exceeded holding tank
temperatures, individuals were transferred to a separate tank
at the experimental temperature for at least 24-48 h prior
to being introduced into the respirometer. The respirometry
system consisted of two fiberglass tanks (2.4 m diameter,
1500 L volume) such that the first served as the respirometer
and the second was a water reservoir used to flush the
respirometer. To reduce the volume of the respirometer and
ensure each experimental shark would swim in a circle, a
negatively buoyant, smaller tank was placed in the center of
the respirometer to create a circular track. A clear plastic
sheet was placed over the respirometer and cinched to
the side of the tank to prevent air—water gas exchange.
Temperature was controlled by a large chiller unit with the
addition of a heater kit (Teco TK 6000 Aquarium Chiller,
Aquatic Solutions), while oxygen levels were controlled by
bubbling air (normoxia) or nitrogen gas (hypoxia) into the
water. The two tanks were connected through a drain on the
bottom and PVC tubing over the top (Fig. 1A and B). Oxygen
levels in the respirometer and reservoir were monitored
every second using a temperature compensated, two-channel
FireSting oxygen meter (Pyroscience) equipped with fiber
optic oxygen probes that were fixed along the side of
the respirometer and reservoir. Output from the oxygen
probe in the respirometer was recorded in the FireStingO;
software and relayed to a program designed in Dasylab
9.02 (National Instruments) specifically for repeatedly
recording metabolic rate measurements in intermittent-flow
respirometry (Lapointe ef al., 2014; Brill ez al., 2015). The
program also controlled the flow of nitrogen through a
solenoid valve to maintain precise oxygen levels using output
from the oxygen probe in the reservoir.

During a trial, the respirometry system cycled between
the flushing and measurement period. During the flushing
period (ranged from 30-45 min), oxygen and temperature-
controlled water was pumped up and out of the reservoir,
into the respirometer, and through a diffuser at the bottom of
the respirometer (Fig. 1B) to ensure thorough mixing. Water
flowed back into the reservoir through the bottom drain
between the two tanks, allowing a continuous exchange of
water between the two tanks during the flushing period.
During the 15-min measurement period, the flush pump was
turned off, and the shark’s oxygen consumption reduced the
oxygen in the respirometer. We assumed the shark’s swimming
motion adequately mixed the water in the respirometer during
trials. The measurement period consisted of a 3-min equilibra-
tion interval (to ensure oxygen mixing in the respirometer)
followed by 12 min of data recording to measure the rate of
oxygen decline. The slope of a linear regression model fitted
to the oxygen measurements was used to calculate metabolic
rate using the equation

MO, =bx Vx W1,

where MO =metabolic rate (mg O, kg 'h™'), b=rate
of change of oxygen content (estimated slope of linear
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Figure 1: (A) The sandbar shark respirometer system with the respirometer in the foreground and the reservoir in the background. A PVC pipe
connects the flush pump to the diffuser in the bottom of the respirometer. (B) An overhead view of the respirometer with a shark present. The
PVC octagon is the diffuser that ensures mixing during the flush cycle. (C) A shark in the respirometer with an accelerometer fitted to its dorsal fin.

regression) over the 12-min recording period (s7'), V=
respirometer volume (1) corrected for the volume of the shark
and W =weight of the shark (kg). Metabolic rate measure-
ments where the regression R* value was below 0.8 were elim-
inated and assumed to be compromised due to either poorly
mixed water in the respirometer or contact between the
shark and oxygen probe (which did occur occasionally).

To account for microbial respiration, oxygen consump-
tion measurements were made in the absence of an experi-
mental shark for at least 3 h prior to, and after, each trial.
Based on those oxygen consumptions, a linear regression was
used to estimate the rate of oxygen decline due to micro-
bial respiration during the trial. The estimated oxygen con-
sumptions were then subtracted from the measured rates of
oxygen decline when the shark was present (Brill ef al., 2015;
Svendsen et al., 2016).

The behavior and activity of eight individuals (sharks
from 2017) were measured while in the respirometer to

understand how activity was affected by temperature and
hypoxia. To quantify activity, individuals were fitted with the
X16-4 mini accelerometer (Gulf Coast Data Concepts)
attached to the first dorsal fin, which recorded triaxial
acceleration at 25 Hz. The accelerometer weighed 27 g, which
represented 0.35-1.1% of the body mass of the experimental
sharks. Accelerometers were removed at the completion of
each trial. We received a full acceleration data set for each
2017 trial except for three trials at 24°C where data were
unreliable.

The static component (effect of gravity) in the x-, y-
and z-axes were extracted from the raw acceleration values
using a 3-s smoothing window, a time frame often used
for the size of sharks in this study and a tailbeat cycle of
approximately 1 Hz (Shepard et al., 2008; Whitney et al.,
2016). The dynamic components in the x-, y- and z-axes
were determined by subtracting the static component from
the raw acceleration values. A wavelet analysis was then
used to extract multiple activity metrics (Whitney et al., 2016;
Bouyoucos et al., 2017): tailbeat frequency (TBE, number of
tailbeats per second extracted from the dynamic component
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Figure 2: An example of a full trial from SB33 tested at 28°C. Each point corresponds to a calculated metabolic rate (MO,) along with the
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time. The red shaded area represents the hypoxia period (0,% < 80%). Scit for this individual at 28°C was 58% oxygen saturation.

of the z-axis), tailbeat acceleration amplitude (TBAA, measure
of amplitude of the acceleration wave also taken from the
dynamic component of the z-axis) and overall dynamic body
acceleration (ODBA, overall activity defined as sum of the
dynamic components of all three axes). TBE, TBAA and
ODBA were then averaged for each corresponding measure-
ment period.

Before the start of each trial, an individual was transferred
out of the holding tank, fitted with an accelerometer (for
some individuals, described above), placed in the respirometer
and allowed 30 min to acclimate. Each experimental shark
was exercised using our chase protocol, which consisted
of 10 min of prodding to induce the animal to reach
MMR (Lapointe et al., 2014; Killen et al., 2017). This time
period was selected because after chasing the first shark of
the experiments for 10 min, it stopped swimming. During
another trial a shark stopped swimming after being chased
for 6.5 min. Further, Marshall et al. (2015) found that in
waters cooler than our experimental treatments (15-21°C)
post-release mortality of sandbar sharks was 29%. Based
on these accounts, to avoid mortalities (for a species that is
considered to be overfished; SEDAR, 2017) and for ethical
reasons, we erred on the side of caution and deemed 10 min
to be a sufficient chase time. It is important to note this may
have led to a slight underestimation of MMR of some indi-
viduals. Immediately following, the respirometer was sealed,
and the first metabolic rate measurement was initiated.

Metabolic rate measurements were then made for approx-
imately 20 h to determine MMR and to allow individuals
to recover (indicated by the metabolic rate leveling out) and
reach mRMR.

Once mRMR had been established following the procedures
described above, the hypoxia part of the trial was initi-
ated, where metabolic rate measurements were taken as oxy-
gen content was decreased in a stepwise fashion until the
shark was no longer able to maintain its mRMR. S was
determined as the oxygen level at which the metabolic rate
declined. After measuring at least three metabolic rates below
Serit, the trial was terminated, and the oxygen was brought
back to 90% saturation before the shark was transferred back
into the holding tank. Figure 2 displays an example of a full
trial.

MMR was calculated by taking the mean of 10% of the
highest metabolic rate measurements (3—4 measurements)
during the entire normoxia period. This method was selected
instead of using the common approach of taking the highest
metabolic rate measurement because we wanted to ensure
that MMR was not represented by an outlier measurement
that may not have been the result of our chase protocol.
In addition, unlike many non-obligate ram ventilators, we
noticed that peak metabolic rate measurements often did



Research article

not occur until further into the trial. This could be due
to serological changes induced through the chase protocol
that limit oxygen delivery mechanisms as further discussed
below (Discussion). We calculated mRMR from the mean
of 10% of the lowest metabolic rate measurements during
the normoxic period to account for the varying number of
measurements among individuals during that period of the
trial (Norin et al., 2014). AS was calculated by computing
the difference between MMR and mRMR. To determine
Scrit, we found the first value where the shark’s metabolic
rate dropped below mRMR and where the remaining
metabolic rates were also below mRMR. Those metabolic
rates were isolated, and a linear regression was applied to
those values and the oxygen content associated with each
value (ranged from 2 to 11 values). The oxygen content where
the regression line and mRMR intersected was defined as Cqj
(Schurmann and Steffensen, 1997). S¢;i; was calculated by
dividing Ci¢ by the oxygen concentration at 100% satura-
tion at the tested temperature. Lastly, C.i; was converted
into critical oxygen partial pressure (Pc) by calculating
the partial pressure of oxygen at 1 atmosphere for the start
day of the trial in Wachapreague, VA, USA and multiplying
bY Scrit-

A multivariate repeated-measures mixed effects model was
developed in SAS 9.4 (SAS Institute) using the MIXED pro-

Conservation Physiology - Volume 72019

cedure to understand the effect of temperature on MMR,
SMR, AS and P (Lapointe et al.,2014). The responses were
MMR, SMR, AS and P;; for each trial, the covariate was
temperature and the random effect was individual fish. To
maintain the assumption of normality, the four responses
were multiplied by a constant so they would be on the same
scale as MMR prior to being put in the model. We modeled
the heterogeneity in responses among temperature treatments
and specified the Kenward-Roger method for calculating the
degrees of freedom (Kenward and Roger, 1997). Compound
Symmetry, AR1 and Toeplitz correlation structures were fitted
to the data, and the Bayesian Information Criterion (BIC)
was used to identify the model with the most supported
correlation structure (Littell et al., 2006). Our model chosen
for inference included a correlation structure of AR1. Lastly,
a priori contrast statements of least-square means were gen-
erated using the LSMestimate statement in SAS to assess the
effects of temperature on the four response variables. At the
completion of the analysis, all model estimates were converted
back to scale. All statistics were evaluated at significance
levels of a =0.03.

To determine how temperature, hypoxia and shark activity
together impacted metabolic rate, linear mixed effects models
were fitted to data from sharks equipped with accelerometers.
Separate models were applied to data obtained from the
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normoxic and hypoxic parts of the trials, with the former cor-
responding to the part of the trial when the oxygen saturation
was 80% or higher and the latter when the oxygen saturation
was below 80%. Potential covariates for the normoxic model
included temperature, TBE, TBAA, ODBA, shark TL and the
time since the start of trial. The full model was used to assess
the need to model heterogeneity and correlation structure.
Based on BIC, modeling the heterogeneity in responses among
temperature treatments and using a correlation structure of
AR1 were supported. A series of models was then developed
using different combinations of the covariates mentioned
above, and the model chosen for inference was selected using
BIC. Potential covariates for the hypoxic model included
temperature, oxygen content, TBE TBAA, ODBA, TL as well
as a calculated binary variable denoted as the crash metric.
Since it was assumed that metabolic rate will differ before
and after C; is reached, the crash metric consisted of a
1 for metabolic rate values during the hypoxic part of the
trial that occurred prior to the shark reaching Cg;; and
a 0 for the metabolic rates that occurred after C.i; was
reached. Similar to the normoxic model, the decision to model
heterogeneity in responses among temperatures with an AR1
correlation structure was based on the full hypoxic model
and ultimately supported through BIC. Multiple models were
developed with various covariate combinations, and BIC was
used for model selection. Predicted metabolic rates for the
selected normoxic and hypoxic models were generated using
estimated marginal means (Searle et al., 1980). Estimates of
uncertainty were generated from 1000 bootstrapped samples
(Efron and Tibshirani, 1993). Predicted P and associated
uncertainty was converted back to Cgc and Scie. All linear
mixed effects models were fitted using the nlme package in R
v.3.4.3 (Pinheiro et al., 2013).

Results

MMR, mRMR, AS and critical oxygen
partial pressure

The multivariate repeated measures mixed effects model was
successfully fitted, and evaluation of diagnostics (e.g. plots
of residuals for each response variable) showed reasonable
goodness-of-fit. Although there was high variability in mea-
sured MMR, mRMR and AS among individuals (Fig. 3),
model results indicated that differences were evident for these
three metrics among temperatures. Statistically significant
differences were detected over the three experimental temper-
atures, primarily between 24°C and 28°C and between 24°C
and 32°C (Fig. 4, Table 2). Specificallyy, MMR increased by
21% and 42% from 24°C to 28°C and 32°C, respectively

Table 2: T statistics from the a priori contrast statements of
least-square means generated from the multivariate repeated
measures mixed effects model to assess the impact of temperature
(24°C, 28°C and 32°C) on MMR, mRMR, AS and Pt

24°C x 28°C 24°C x 32°C 28°C x 32°C

Metric

The degrees of freedom are in parentheses. The (*) signifies a significant differ-
ence between the two temperatures.
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Figure 5: (A) Critical oxygen partial pressure (Pit), (B) critical oxygen concentration (Ccit) and (C) critical oxygen saturation (Scit) of sandbar
sharks at 24°C, 28°C and 32°C. Pt data are model estimates of the mean 4= 95% Cl. C¢it and S¢it were calculated from Pt model estimates.

The lack of a letter indicates no significance.

(Fig. 4A; Table 2), while mRMR increased by 18 % from 24°C
to 28°C and 45% from 24°C to 32°C (Fig. 4B; Table 2).
Similar to MMR, AS increased considerably from 24°C to
28°C (26%) and 24°C to 32°C (39%; Fig. 4C; Table 2).
In contrast to the other metrics analyzed, mean P only
increased by 18% and 19% when comparing 24°C and 28°C
to 32°C, respectively, and no significant differences were
detected (Fig. 5A; Table 2). Plots of the raw data for MMR,
mRMR, AS, S¢;i and Cqi, are presented in the Supplementary
Data.

The normoxic model with the most empirical support
included ODBA, TBAA, time since chase and an interac-
tion between TBF and temperature. We concluded that
each of these covariates was important in explaining
variation in the metabolic rate data (see ABIC table in
Supplementary Table 1). Predicted metabolic rate increased
by 47 £ 6 mg O, kg~'h™" for every 0.1 unit increase in ODBA
(Fig. 6A), whereas metabolic rate only increased by 5 mg O,
kg~'h™' for every unit increase in TBAA (Fig. 6B). For every
hour increase since the animal was chased, the metabolic
rate dropped approximately 3 mg O, kg~'h~'. The estimated
effect in metabolic rate over TBF differed among the levels
of temperature considered. That is, for every unit increase in
TBE metabolic rate increased 63 and 142 mg O, kg~'h™! for
24°C and 28°C, respectively. However, at 32°C, metabolic
rate actually decreased by 20 mg O, kg™'h™! for every unit
increase in TBF (Fig. 6C). Lastly, it is important to note that
during three trials at 32°C during normoxia, we documented
periods of time when sharks intermittently stopped swim-
ming, ranging from a few seconds to over an hour.

The model that provided the most parsimonious descrip-
tion of sandbar shark metabolic rate under hypoxic
conditions included TBF, temperature and an interaction
between ODBA and oxygen content (see ABIC table in
Supplementary Table 2). Predicted metabolic rate increased
by 55 +20 mg O, kg 'h™' for every unit increase in TBE In
hypoxic water, metabolic rate differed among temperatures
such that as temperature increased from 24°C to 28°C to
32°C, metabolic rate increased from 14949 to 18346
to 217+13 mg Oy kg 'h™', respectively. Lastly, as ODBA
and oxygen content increased, particularly at higher oxygen
concentrations (>3.5 mg '), predicted metabolic rate also
increased. However, as oxygen decreased, particularly at
lower oxygen concentrations (<3.5 mg 17') and ODBA
increased, predicted metabolic rate decreased (Fig. 7). Often
during hypoxic conditions (<80% oxygen saturation), sharks
displayed a banking behavior where they would swim along
the edge of the respirometer with its ventral side facing the
side. We also observed during hypoxia, two trials at 24°C,
three trials at 28°C and four trials at 32°C periods of time
when sharks either stopped swimming completely (in this case
the trial was terminated) or intermittently stopped swimming.

Discussion

To the best of our knowledge, this is the first study to measure
AS and P in an obligate ram-ventilating elasmobranch. In
addition, the size of our respirometer allowed us to measure
the metabolic rate and activity of juvenile sandbar sharks
across a wide range of sizes (79.5-113.5 cm TL). We were
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Figure 6: Metabolic rate values by ODBA (A), TBAA (B) and TBF (C) when sandbar sharks are exposed to normoxic waters. The colored circles
represent the observed metabolic rate values for a given temperature. The line and associated shaded region represent the estimated metabolic
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was combined when estimating metabolic rate for those metrics. However, because there was a significant interaction between temperature
and TBF, there are separate estimated metabolic rates for each temperature that are represented by different colored lines and shaded regions

inC.

also able to use the various activity measurements to better
understand environmental thresholds of sandbar sharks. Our
findings lead us to suggest that caution should be exercised
when using activity to estimate field metabolic rate because,
as demonstrated in this study, the correlative relationship
between activity and metabolic rate breaks down at high
temperatures and low oxygen levels.

Referenced model response variables (e.g. mRMR, AS,
metabolic rate, etc.) below represent model predictions,
while raw values are indicated as such. As expected, nRMR
values in the present study were higher than the SMR
measurements reported by Dowd et al. (2006) for immobile
individuals (91 + 4 mg O, kg 'h™! at 24°C; 125 £ 7 mg
0, kg 'h™" at 28°C). When compared to other obligate
ram ventilators, such as the tuna species (Korsmeyer and
Dewar, 2001), sandbar shark AS was substantially lower.
Contributing to this trend may be the significantly smaller gill
surface area observed in sandbar sharks compared to other
obligate ram-ventilating teleosts and elasmobranchs (Emery
and Szczepanski, 1986). In addition, with a diet consisting
of mostly benthic crustaceans and fishes (Ellis and Musick,
2007), juvenile sandbar sharks may not require a high AS.

The variation in raw AS among individual juvenile sandbar
sharks over the experimental temperature regime suggests

that the potential underlying mechanisms describing AS may
differ from individual to individual. For example, some indi-
viduals displayed a bell-shaped curve in AS over temperature
(e.g. SB28, SB31 and SB34), some showed an increase in
AS with temperature (e.g. SB03, SB12 and SB33) and others
displayed very little difference in AS over temperature (e.g.
SB02, SB04 and SB29) (Fig. 3). Due to this high variabil-
ity, particularly at 32°C, it is difficult to broadly determine
if our data support the OCLIT theory (i.e. maximum AS
occurs at the optimal temperature) or if sandbar shark AS
increases until lethal temperature limits. In individuals that
displayed a bell-shaped curve, maximum AS and thus opti-
mal performance occurred at 28°C (24°C < Tqpeas < 32°C).
Whereas for those individuals that maximized AS at 32°C, we
assume AS would decline above 32°C followed by mortality
shortly thereafter. This would suggest that performance or
fitness is not optimized at maximum AS for those individ-
ual sharks. Clark et al. (2013) suggested that some species
display multiple performances—multiple optima, where there
are separate optimal temperatures for different physiological
processes (e.g. growth, reproduction and digestion). However,
it is difficult to determine if our results support this theory
because the optimal temperatures for those processes are
unknown for sandbar sharks. The variability in the data
may be the result of differences in activity, physical fitness,
adaptation and physiological processes among individuals.
Variation in AS may have also resulted from a potential slight
underestimation of MMR in some individuals in an effort
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to avoid mortalities during or following the chase protocol.
Further, because temperature could not be controlled in the
holding tank and all individuals were tested in the same order
of increasing temperature treatments, the relationships of the
measured metrics could potentially be affected. For example,
sharks may be more acclimated to the chase protocol or the
respirometer for subsequent experiments, which could impact
MMR and mRMR (Clark et al., 2013). Lastly, variation in
acclimation time for individuals in particular when exposed
to 32°C could have affected metabolic rate metrics. Although
we were unable to control these aforementioned conditions,
it is possible that they contributed to the individual variation
in these metrics observed here.

Clearer trends were evident when both metabolic rate
and activity were considered. Under normoxic conditions,
the expected correlation between metabolic rate and activity
(Bouyoucos et al., 2017; Lear et al., 2017) broke down at
32°C, where the metabolic rate of sandbar sharks actually
slightly declined as activity increased (Fig. 6). At high temper-
atures, sandbar sharks have to delicately balance the increase
in oxygen received from increasing their TBF to improve ram
ventilation against the energy expenditure needed for locomo-
tion. This is evident when some sharks actually intermittently
stopped swimming for periods of time under normoxic condi-
tions at 32°C. A decline in shark performance at 32°C may be
due to the physiological stress incurred from exercise, acute
stress, increased demand for oxygen and/or decreased oxygen
in the water. These stressors are known to cause acidosis
and hyperkalemia in fishes (Cliff and Thurman, 1984; Brill

et al., 2008; Skomal and Mandelman, 2012). It is well known
that acidosis and hyperkalemia impact muscle performance,
impairing cardiovascular function and potentially reducing
stroke volume at a time when a shark may actually need to

increase stroke volume to increase oxygen delivery (Farrell
et al., 2009; Norin et al., 2014).

Critical oxygen partial pressure
and hypoxia

Based on the P values, juvenile sandbar sharks are not
hypoxia tolerant. Regardless of temperature, P was above
those reported for other teleost and elasmobranch species.
For example, striped bass (Morone saxatilis), a common
fish species in Chesapeake Bay, has an S.;i; of 354+2% and
Cerir of 2.5+0.2 mg 17!, at 28°C (Lapointe et al., 2014),
both substantially lower than the S.;i (51 £2%) and Cgpjc
(3.3£0.2 mg 1™") of juvenile sandbar sharks at the same tem-
perature (Fig. 4B and C). When compared to elasmobranch
fishes where P.;; was measured, such as the epaulette shark
(Hemiscyllium ocellatum, 38 £ 3 mmHg) and shovelnose ray
(Aptychotrema rostrate, 54 + 3 mmHg), the juvenile sandbar
shark’s P, values are likewise substantially higher (Speer-
s-Roesch ez al., 2012). When compared to another obligate
ram-ventilating species, such as the yellowfin tuna at 25°C
(hypoxia tolerance of 3.7 mg 17'; Bushnell and Brill, 1991;
Bernal et al., 2017), sandbar sharks have a similar hypoxia
tolerance. The high P values in juvenile sandbar sharks
are likely the result of this species also being (like many
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carcharhinid species) an obligate ram ventilator (Carlson
et al., 2004; Dowd et al., 2006). In hypoxia, obligate ram
ventilator species rely on increasing their swimming speed or
mouth gape to counteract a decline in oxygen in the water
(Dizon, 1977; Bushnell and Brill, 1991; Carlson and Parsons,
2001); however, once P, is reached, obligate ram-ventilating
fishes will not be able to maintain minimum swimming speeds
to ventilate their gills adequately or to maintain hydrostatic
equilibrium (Carlson and Parsons, 2001). Although, P, did
not differ substantially among temperatures, the mean P at
32°C was the highest when compared to means at 24°C and
28°C, which was expected because as temperature increases,
the demand for oxygen increases and the solubility of oxygen
in seawater decreases (Schurmann and Steffensen, 1997). The
lack of a substantial difference was the result of high amount
variability in P values, particularly at 32°C (Fig. 5A). Sand-
bar shark metabolic rate did increase as temperature increased
in hypoxic waters (<80% oxygen saturation), suggesting that
at warmer temperatures (~32°C), the demand for oxygen
is higher while in less oxygenated water, which can lead to
increased stress and a higher risk of mortality. An alternative
hypothesis is that juvenile sandbar sharks are adapted to large
tidal fluctuations in temperature (4.6°C; Kelley, unpublished
data); therefore, the ability to deliver oxygen to the tissues is
not compromised due to increased temperatures.

In hypoxic waters, sandbar shark metabolic rate was highly
dependent on oxygen level and the shark’s activity. The syn-
ergistic effect of oxygen and activity on metabolic rate led
to different trends above and below ~3.5 mg 1!, which was
similar to the mean (& standard error (SE)) Cg;: of sand-
bar sharks between 24°C and 32°C (3.4+0.1 mg I7!'). The
positive correlation of metabolic rate and activity, as oxygen
concentrations increased from 3.5 mg 1!, followed trends
similar to those when sharks were under normoxic conditions
(>80% oxygen saturation). When oxygen dropped below
3.5 mg 1!, however, an inverse relationship occurred between
metabolic rate and activity, a trend that was also evident
at 32°C under normoxic conditions. The breakdown in the
positive relationship between metabolic rate and activity sug-
gests that at these lower oxygen levels, sandbar sharks employ
anaerobic metabolism to power swimming, which can lead to
acidosis and hyperkalemia. It is clear this behavior cannot be
sustained, based on the many periods of time when sharks
stopped swimming either completely or intermittently during
hypoxia. According to our data the oxygen concentration
threshold for juvenile sandbar sharks is ~3.5 mg 17!, and this
threshold is positively correlated with temperature.

It is critical to understand environmental thresholds for
marine species amid climate change. Although sandbar sharks
are not expected to encounter 32°C waters often, the potential
to encounter these temperatures will increase as climate
change continues to alter marine environments, particularly
within coastal habitats. With an increase in temperature we
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also expect to see an increase in the extent and severity of
hypoxic waters that may have a large impact on the obligate
ram-ventilating sandbar shark. For example, along the eastern
shore of Virginia, where known sandbar shark nursery habitat
exists, water temperatures during the months of July and
August during 2016 and 2017 exceeded 32°C at times (range:
21.3-32.8°C; mean: 27.4°C; Kelley, unpublished data) and
oxygen levels ranged from 2.9 mg I' to 8.2 mg I7'. By
the mid-21st century, Chesapeake Bay, which is the largest
sandbar shark nursery habitat in the USA, is expected to
increase 1.75°C relative to the mid-1990s (Mubhling et al.,
2018). In addition, by the end of the century, heat waves are
also projected to increase by over two standard deviations
along the Mid-Atlantic (Najjar ez al., 2010). Also by 2050,
Chesapeake Bay is predicted to have the largest increase in
cumulative hypoxic volume (72-202 km® days) at oxygen
concentrations between 2-5 mg 17! (Irby ez al., 2018), a range
of oxygen concentrations that include the P of juvenile
sandbar sharks. This volume of hypoxic water is expected to
occur earlier in the summer as well (Irby ez al., 2018). These
environmental changes will likely significantly diminish the
suitability of Chesapeake Bay and adjacent coastal areas to
serve as nursery habitat for sandbar sharks in the western
Atlantic. As climate change impacts worsen, juvenile sandbar
sharks, which can spend up to 10 years in these nursery
habitats, may see available habitat reduced and be forced to
seek out novel nursery habitats or risk increases in juvenile
mortality. This may, in turn, affect the overall abundance of
an already overfished sandbar shark population (SEDAR,
2017). At an ecological level, juvenile sandbar sharks are
top predators within coastal habitats and may control the
populations of other fish species (Ellis and Musick, 2007).
Shifts in juvenile sandbar shark distribution could, therefore,
also have negative effects on the population of lower trophic
species within these habitats.

Conclusions

This study was able to identify the temperature and oxy-
gen thresholds of juvenile sandbar sharks. We found that
their performance substantially declines at 32°C (even in
normoxia) and at oxygen concentrations below 3.5 mg ™!
and that activity becomes inversely correlated with metabolic
rate under high-stress conditions. These impacts suggest that
in the face of climate change, areas of Chesapeake Bay may
become less suitable nursery habitat for sandbar sharks. It is
critical for future studies to use environmental thresholds like
those identified in this study to predict species distribution
under climate change scenarios to understand potential habi-
tat shifts.
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