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Abstract. Organic carbon is important in regulating ecosystem function, and its source
and abundance may be altered by urbanization. We investigated shifts in organic carbon
quantity and quality associated with urbanization and ecosystem restoration, and its potential
effects on denitrification at the riparian–stream interface. Field measurements of streamwater
chemistry, organic carbon characterization, and laboratory-based denitrification experiments
were completed at two forested, two restored, and two unrestored urban streams at the
Baltimore Long-Term Ecological Research site, Maryland, USA. Dissolved organic carbon
(DOC) and nitrate loads increased with runoff according to a power-law function that varied
across sites. Stable isotopes and molar C:N ratios suggested that stream particulate organic
matter (POM) was a mixture of periphyton, leaves, and grass that varied across site types.
Stable-isotope signatures and lipid biomarker analyses of sediments showed that terrestrial
organic carbon sources in streams varied as a result of riparian vegetation. Laboratory
experiments indicated that organic carbon amendments significantly increased rates of
denitrification (35.1 6 9.4 ng N�[g dry sediment]�1�h�1; mean 6 SE) more than nitrate
amendments (10.4 6 4.0 ng N�[g dry sediment]�1�h�1) across streamflow conditions and sites.
Denitrification experiments with naturally occurring carbon sources showed that denitrifica-
tion was significantly higher with grass clippings from home lawns (1244 6 331 ng N�g dry
sediment�1�h�1), and overall unrestored urban sites showed significantly higher denitrification
rates than restored and forest sites. We found that urbanization influences organic carbon
sources and quality in streams, which can have substantial downstream impacts on ecosystem
services such as denitrification.

Key words: Baltimore County, Maryland, USA; C:N ratio; denitrification; dissolved organic carbon;
grass clippings; lipid biomarkers; nitrogen; organic carbon; stable isotopes; stream restoration; urbanization;
urban stream.

INTRODUCTION

Organic carbon plays a key role in regulating

ecosystem functions (Fisher and Likens 1973, Vannote

et al. 1980). In streams and rivers, dissolved organic

carbon (DOC) serves as an energy source for microor-

ganisms and influences nutrient cycling (Edwards and

Meyer 1987, McDowell and Likens 1988, Bernhardt et

al. 2002), forms complexes with metals (Perdue et al.

1976), absorbs ultraviolet light (Frost et al. 2005), and

can stimulate production of disinfection by-products in

drinking water during chlorination (Krasner et al. 1989,

Kraus et al. 2008). Availability of dissolved and

particulate organic carbon can limit denitrification, a

microbial process critical to maintaining water quality

(Sobczak et al. 2003, Mayer et al. 2010).

Many streams and rivers in the United States have

elevated concentrations of nitrogen (Carpenter et al.

1998, Howarth et al. 2006). The Chesapeake Bay

watershed has elevated NO3
� concentrations in many

streams and rivers because of agricultural and urban

land use and fossil fuel combustion (Boesch et al. 2001,

Kemp et al. 2005, Kaushal et al. 2008a). We need to

enhance N management within watersheds to reduce

downstream delivery to sensitive coastal waters (Boesch

et al. 2001, Kemp et al. 2005, Kaushal et al. 2008b). A

key ecosystem service that naturally removes reactive N

is denitrification. Denitrification is an anaerobic micro-
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bial process that typically requires organic carbon as an

electron donor (Davidson and Schimel 1995, Groffman

et al. 2005, Boyer et al. 2006). The riparian–stream

interface, an area where streamwater and groundwater

mix, is a ‘‘hot spot’’ for denitrification because it has low

levels of dissolved oxygen and high levels of dissolved

organic carbon (DOC; e.g., Hedin et al. 1998, Kaushal

et al. 2008b, Mayer et al. 2010).

Dissolved organic carbon in streams is a mixture of

both recalcitrant and labile fractions, with the labile

fraction being important to biogeochemical processes

(Findlay and Sinsabaugh 1999, Kaushal and Lewis

2003). Therefore, it is critical to understand which

watershed organic carbon sources enter streams and the

role that various terrestrial vs. aquatic sources play in

influencing denitrification, metabolism, and organic

carbon export. In forest ecosystems, riparian vegetation

surrounding streams can influence DOC and comprise a

substantial proportion of stream organic carbon budgets

(Fisher and Likens 1973, McDowell and Likens 1988).

The effects of organic carbon sources on ecosystem

functions have been quantified for forested streams

(McDowell and Likens 1988, McCutchan and Lewis

2002) and agricultural streams (Schaller et al. 2004,

Royer and David 2005, Griffiths et al. 2009, Warrner et

al. 2009). However, there has been little assessment of

the relative importance of sources of natural and

anthropogenic organic carbon sources on denitrification

in urban streams (Paul and Meyer 2001, Ulseth and

Hershey 2005, Paul et al. 2006, Petrone et al. 2011).

Variations in organic carbon from autochthonous (in-

stream) and allochthonous (watershed) sources can be

pronounced in urban streams due to flashy hydrology,

wastewater inputs, and anthropogenically enhanced

sources (Hook and Yeakley 2005, Kaushal et al. 2010,

Petrone 2010). Urban watersheds and riparian zones

may also have extensively modified vegetation such as

home lawns, and this vegetation can have a strong effect

on the supply of organic carbon to streams (Ryder and

Miller 2005, Pouyat et al. 2009, Kaushal and Belt 2012).

Therefore, we need to elucidate how denitrification in

sediments may vary in response to stormflow vs.

baseflow conditions and in response to changes in the

relative importance of terrestrial vs. aquatic sources in

urban watersheds.

We investigated the relative importance of different

organic carbon sources to denitrification at the riparian–

stream interface of forested, restored, and unrestored

urban streams. During urbanization, large areas that

were once forest or agricultural fields are often

converted to lawns. In addition, urban stream restora-

tion can influence carbon sources through tree removal

and riparian reforestation. Our overall objective was to

investigate how urbanization and restoration affect C

and N delivery to and cycling within streams. Our

secondary objective was to explore how uniquely urban

organic matter sources such as lawn clippings vs. more

natural organic matter sources affect denitrification. Our

study objectives were to: (1) determine the influence of

land use and restoration status on amounts and sources

of organic carbon reaching streams, (2) measure

denitrification potential rates associated with baseflow

and stormflow conditions, (3) evaluate whether nitrate

or carbon amendments stimulated larger denitrification

potential rates, and (4) characterize the relative impor-

tance of naturally occurring organic carbon sources

(leaves, grass, and periphyton) for fostering denitrifica-

tion across land use and restoration status.

METHODS

Our project design included six Baltimore County,

Maryland, USA, streams (two forested, two urban

restored, and two unrestored urban). At each site, we

monitored discharge and concentrations of nitrate and

dissolved organic carbon for two years. We conducted a

field survey on how particulate organic matter (POM)

and organic carbon sources varied across land use and

restoration status by analyzing stable-isotope ratios and

molar C:N ratios. We also used laboratory experiments

to measure microbial responses to three organic carbon

sources typical of the study systems: grass clippings from

home lawns, decomposed leaves taken from debris

dams, and periphyton (which was a mixture of

filamentous algae and terrestrial detritus). Our labora-

tory experiments examined changes in denitrification

potential rates in sediments from the riparian–stream

interface with water taken at baseflow vs. stormflow

conditions and in response to different organic carbon

sources.

Site description: forest, unrestored urban,

and restored streams

Study sites included six low-order streams (two

forested, two restored, and two unrestored urban) in

the Baltimore metropolitan area, which is situated in the

Piedmont region of Maryland, in the Chesapeake Bay

Watershed (Figs. 1 and 2; Appendix B). These sites have

been studied as part of the Baltimore Ecosystem Study

(BES), one of two urban study sites in the U.S. National

Science Foundation Long-Term Ecological Research

network (Pickett et al. 2011).

Pond Branch (3982804900 N, 7684101600 W; 32.3 ha) is a

forested, first-order stream with no impervious surfaces

in its watershed. Pond Branch is a tributary of Baisman

Run (3982804500 N, 7684004200 W; 381 ha), which is a

third-order stream within a watershed that was 66%
forested, 1% agriculture, 34% residential with septic

systems, and 1% total impervious surface coverage

(Groffman et al. 2004). Discharge in both streams was

monitored continuously by the U.S. Geological Survey

(USGS) gaging stations.

The two restored streams, Spring Branch (39826043.900

N, 76837012.900 W) and Minebank Run (3982403600 N,

7683302300 W), are low-order streams in close proximity

to the Loch Raven drinking-water reservoir. Both

restorations incorporated a combination of standard

TAMARA A. NEWCOMER ET AL.450 Ecological Monographs
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natural channel design techniques (Rosgen 1994) and

integrated stormwater management such as hydrologi-

cally connected floodplains (Minebank Run; Kaushal et

al. 2008b, Klocker et al. 2009) or stormwater manage-

ment areas including wetlands and ponds below a storm

drain outfall (Spring Branch; DEPRM 2008a, b, U.S.

EPA 2011). Spring Branch (407 ha) was the first

restoration site in Baltimore County, and 3.2 km of

stream length were restored during 1994–1997. Spring

Branch was restored by removal of concrete channels,

creation of a series of step-pools, tree and shrub

plantings for bank stabilization, and creation of

multiple-cell stormwater management areas in the

headwaters (DEPRM 2008a, b, U.S. EPA 2011). The

Spring Branch watershed has a total impervious surface

coverage of 18.6%, and land use composition is 91.5%
residential with varying degrees of density (33% low,

54.8% medium, and 3.7% high), 1.7% institutional (a

school), and 6.7% forest (DEPRM 2008a, b). At

Minebank Run (207 ha), 2.4 km of stream length were

restored during 1998–1999 and 2.9 km were restored

from 2004 to 2005 (U.S. EPA 2006). Land use in

FIG. 1. Land cover map of study sites (outlined with black lines) at the Baltimore Ecosystem Study Long-Term Ecological
Research Site, Maryland, USA. Coloration is from the 2001 National Land Cover Database (red indicates urban areas, and green
indicates forested areas). Green circles with stars indicate USGS gage locations.
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Minebank Run is 17% forest, 2% agriculture, and 81%

urban/suburban, including 30–35% total impervious

surface coverage (Doheny et al. 2006, 2012). Discharge

is continuously monitored at Minebank Run by the

USGS.

The two unrestored urban streams are Scotts Levels

Branch (39821041.800 N, 76845042.300 W) and Dead Run

(39817045.200 N, 76844038.700 W) on the boundary of

urban Baltimore City and suburban Baltimore County.

In contrast to the forested streams, Scotts Level Branch

FIG. 2. Photographs showing the (A) forested Pond Branch, (B) forested Baisman Run, (C) restored Minebrook Run, (D)
restored Spring Branch, (E) unrestored urban Dead Run, and (F) Scotts Level Branch streams.

TAMARA A. NEWCOMER ET AL.452 Ecological Monographs
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(836.5 ha) and Dead Run (204.6 ha) have sections where

the riparian zone is forested and reaches where lawns are

managed to the edge of the stream. Total impervious

coverage is 29% at Scotts Level Branch and 40% at Dead

Run (Ryan et al. 2010). Dead Run is part of the lower

Gywnns Falls watershed, which has a land use

composition of 2% agriculture, 14% forested, 75%
urban, 8% suburban, and 1% other (Klocker et al.

2009). Discharge at both streams is monitored contin-

uously by USGS gaging stations.

Temporal changes in NO3
� and DOC concentrations

and daily fluxes

From April 2008 to April 2010, we collected monthly

surface water samples to characterize temporal changes

in nitrate (NO3
�) and DOC concentrations at all six

streams over a range of hydrologic conditions. Surface

water samples were collected in high-density polyethyl-

ene (HDPE) Nalgene bottles that were rinsed five times

with sample water prior to sample collection. Samples

were filtered within 24 h using pre-combusted Whatman

0.45-lm glass fiber filters (GF/F) and kept frozen until

analysis at the University of Maryland Center for

Environmental Science, Chesapeake Biological Labora-

tory, Solomons, Maryland, USA. Analysis of NO3
� was

performed with a Dionex ion chromatography system

(ICS-1500; Dionex, Sunnyvale, California, USA), and

analysis of DOC was performed with a Shimadzu total

organic carbon analyzer (TOC-272 V CPH/CPN;

Shimadzu, Columbia, Maryland, USA; Kaushal and

Lewis 2003, 2005). Daily fluxes were calculated by

multiplying concentration (mg/L) by stream flow (L/d)

to get mass transport per day. We used mean daily

stream flow recorded at five sites with USGS gages

(forested Pond Branch is gage 01583570, forested

Baisman Run is 01583580, unrestored urban Scotts

Level Branch is 01589290, unrestored urban Dead Run

is 01589312, and restored Minebank Run is 0158397967)

and measured instantaneous stream flow at the restored

Spring Branch site with a Marsh McBirney 2000 (Hach

Company, Loveland, Colorado, USA) velocity meter.

Organic matter sources: C:N ratios, d15N and d13C
isotopic analysis, lipid biomarkers

We analyzed d15N and d13C isotopic ratios and molar

C:N ratios on triplicate samples of sediment, grass,

periphyton, leaves, and POM that we collected at two

locations at five streams: forested Pond Branch and

Baisman Run, restored Spring Branch and Minebank

Run, and unrestored urban Dead Run (unrestored urban

Scotts Level Branch was omitted because of time and cost

constraints). Particulate organic carbon (POC) and

particulate nitrogen (PN) samples were collected by

filtering 750–1000 mL of streamwater (collected at the

surface using 2-L amber HDPE bottles) through a 125-

lm sieve followed by filtering onto a pre-combusted

Whatman GF/F filter (0.8 lm; 25 mm diameter; 5008C

for 2 h). The POM filters were rinsed with 10% HCl to

remove carbonates, and then rinsed with deionized water.

The filters were placed in combusted foil and frozen at

�808C until subsequent analysis. Sediments were collect-

ed at the riparian–stream interface from a depth of ;0.5

m below the baseflow water surface elevation using a soil

auger at each stream. Samples were placed in washed,

combusted (4508C, 4.5 h) 0.12-L (4-oz) Qorpak jars and

put on dry ice in the field until returned to the laboratory

and stored at �808C. Organic carbon sources (grass,

leaves, and periphyton) were collected at each site and

were placed into the Alconox-washed, combusted (4508C,

4.5 hours) 4-oz Qorpak jars and put on dry ice in the field

until returned to the laboratory and stored at �808C.

Grass samples were typically cut from as near the stream

as possible, leaves were collected from debris dams within

the stream channel, and periphyton samples were

collected from within the stream. Before final analysis,

filters, sediment, and vegetation samples were rinsed,

dried, milled, and acidified according to protocols of the

Stable Isotope Facility, University of California, Davis,

California, USA (UC Davis; details available online).8

Samples were shipped to UCDavis for analysis on a PDZ

Europa ANCA-GSL elemental analyzer interfaced to a

PDZ Europa 20-20 isotope ratio mass spectrometer

(Sercon, Cheshire, UK). The stable-isotope ratios
13C:12C and 15N:14N are reported in delta (d) units as

per-mil difference between the ratio of the sample to the

standard (Pee Dee belemnite [PDB] and air, respectively).

Lipid biomarker analyses were conducted to further

investigate the sources of organic carbon in stream

sediments. We used lipid biomarkers to examine

contributions from terrestrial (percentage of long-chain

fatty acids, percentage of long-chain alcohols, and

percentage of plant sterols) and aquatic-source indica-

tors (percentage of short-chain alcohols and percentage

of diatom sterols). Two sediment samples were collected

from each of three sites: forested Pond Branch, restored

Spring Branch, and restored Minebank Run during May

and June 2008. We were unable to conduct lipid

biomarker analyses at all sites due to cost restraints.

Sediment samples were extracted in a 2:1 solution of

CH2Cl2:CH3OH (DCM:MeOH) using an accelerated

solvent extraction-200 (ASE; Dionex) at 808C and 12.4

MPa (1800 psi; 2 3 10 min cycles) following a

modification of the Bligh and Dyer (1959) method

(Waterson and Canuel 2008). Frozen sediments were

thawed, homogenized, and dried with hydromatrix prior

to extraction. Surrogate standards including a fatty acid

methyl ester (FAME), methyl nonadecanoate (C19

FAME), nonadecanol, a wax ester (myristyl arachidate)

that yielded a C14 alcohol and a C20 FAME following

saponification, and androstanol were added to each

sample prior to extraction. Extracts were partitioned

into two phases, and the lower organic phase collected.

The aqueous phase was back-extracted into hexane and

8 http://stableisotopefacility.ucdavis.edu
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the combined organic phases placed over anhydrous

Na2SO4 overnight to reduce traces of H2O. The samples

were concentrated to 1 mL using turbo-evaporation

(Zymark Turbo Vap 500; Caliper Technologies, Hop-

kinton, Maryland, USA). The mass of each total lipid

extract (TLE) was determined gravimetrically using

aliquots representing ;10% of the TLE. A portion of

the extract was saponified using 1 mol/L KOH in

aqueous methanol (1108C for 2 h). Neutral and acidic

lipids were extracted into hexane from the saponified

sample following Canuel and Martens (1993). Fatty

acids were converted to methyl esters using BF3-MeOH.

Both fatty acids (as methyl esters) and neutral lipids

were separated from other lipid classes by silica gel

chromatography following Canuel and Martens (1993).

Sterols were derivatized to trimethylsilyl (TMS) ethers

using BSTFA and acetonitrile and heating at 708C for 30

min. Fatty acids (as methyl esters) and alcohols/sterols

(as TMS ethers) were analyzed using gas chromatogra-

phy (GC; Hewlett Packard 5890 Series II Plus, Palo

Alto, California, USA) with flame ionization detection

using a 40 m 3 0.18 mm DB5 column (J&W Scientific;

Agilent Technologies, Santa Clara, California, USA).

Peak areas were quantified relative to internal standards:

C21 FAME was used for fatty acids and 5(a)-H-

cholestane for alcohols/sterols. A GC interfaced to a

mass selective detector (Hewlett Packard 6890 GC-

MSD) operated in electron impact mode was used to

verify the identification of individual compounds using

similar conditions as for GC analysis.

Experimental design for denitrification experiments

Denitrification experiments were related to three of

our four overall study objectives: (1) evaluate whether

nitrate or carbon availability produced a greater

denitrification potential response, (2) measure the

denitrification potential rates associated with baseflow

and stormflow, and (3) characterize the relative impor-

tance of naturally occurring organic carbon sources to

denitrification across land use and restoration status.

We conducted two types of denitrification experi-

ments. The first involved amending sediment and

streamwater with glucose or nitrate to determine how

denitrification potential rates were affected by N and C

availability, hydrologic conditions (stormflow vs. base-

flow), and restoration status. The second experiment

involved incubating sediment and streamwater with

naturally occurring organic carbon sources (grass,

periphyton, or leaves) to assess their differential impacts

on denitrification. The first experiment had a factorial

design with three factors: (1) site type (forested, restored,

and unrestored urban), (2) streamwater type (collected

during baseflow and stormflow conditions), and (3)

amendment type (glucose and nitrate). The second

experiment had a factorial design with two factors: (1)

site type (forested, restored, and unrestored urban) and

(2) naturally occurring organic carbon source type

(control, periphyton, grass, and leaves).

Sample collection for denitrification experiments

Sediments were collected from each stream at the

riparian–stream interface using a gas-powered auger.
Sediment samples were taken at two locations at each
stream at a distance ;1 m from the wetted channel

perimeter and at a depth of ;0.5 m below the baseflow
water surface elevation. All samples were refrigerated

,2 weeks before analysis. Organic carbon sources
(grass, periphyton, and leaves) were collected from the

riparian zone at each site and refrigerated in re-sealable
plastic bags for ,2 weeks before the experiments. Grass

samples were typically cut from as near the stream as
possible, leaves were collected from debris dams within

the stream channel, and periphyton samples were
collected from within the stream. Leaves, periphyton,

and grass clippings were rinsed in the laboratory with
deionized water to remove possible silt or debris. In a

few cases, periphyton or grass were not available from a
particular study site, and were used from a nearby site or

location. Samples were collected during June 2006. We
collected stormflow streamwater during a storm on 25

June 2006 and baseflow streamwater four days later.
Organic carbon sources change over time, so these
experiments should be considered a snapshot of field

conditions at the time of collection.

Denitrification potential rate methodology

Denitrification enzyme activity assays are widely used

to compare sites and treatments (Smith and Tiedje 1979,
Groffman et al. 1999, 2005, 2006, Roach and Grimm

2011). Briefly, we amended 5.0 g of sediment and 10 mL
of streamwater with a media made of organic carbon

(glucose), nitrate (KNO3
�), and chloramphenicol

(Groffman et al. 1999). We added enough organic

carbon and nitrate to ensure denitrification was not
limited and added chloramphenicol to block the

production of new enzymes during incubation. This
mixture was sealed in 125-mL Erlenmeyer flasks using

rubber stoppers, and the headspace was evacuated and
replaced with N2 gas. Acetylene was added to each flask

to block the final step of denitrification, the transfor-
mation of N2O to N2. Gas samples were taken at 30 min

and 90 min. Samples were stored in evacuated glass
vials, and N2O concentrations were analyzed by gas
chromatography using a Shimadzu GC 14 gas chro-

matograph outfitted with an electron capture detector at
the Cary Institute for Ecosystem Studies, Millbrook,

New York, USA.

Denitrification experiment 1:

glucose vs. nitrate amendment

In this first experiment, we conducted denitrification
enzyme assays where we amended sediments with either

glucose or nitrate. For glucose amendments, glucose
concentrations were increased by 500 mg/L so that we

could measure denitrification potential rates associated
with ambient nitrate in streamwater samples collected

under different hydrologic conditions (baseflow or

TAMARA A. NEWCOMER ET AL.454 Ecological Monographs
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stormflow) across study sites. For the nitrate amend-

ment experiment, we increased the KNO3 concentration

by 720 mg/L so that we could measure denitrification

potential rates associated with ambient organic carbon.

Our experimental design for comparing glucose, nitrate,

and stormwater included 96 samples (6 stream sites 3 2

locations per stream 3 2 amendment types [organic

carbon and nitrate] 3 2 hydrologic conditions [baseflow

and stormflow] 3 2 duplicates).

Denitrification experiment 2: effects of naturally

occurring carbon sources on denitrification

A second denitrification enzyme activity experiment

was conducted to investigate how different naturally

occurring organic carbon sources affected denitrification

potential rates. This experiment used media that

included nitrate but omitted glucose to induce carbon

limitation. The dry mass equivalent of 0.2 g of local

organic carbon (grass, periphyton, or leaves) was made

into a slurry in a blender and added to the incubations in

place of glucose as an organic carbon source. Slurries

were incubated with sediment, streamwater, and media

in ;200-mL (half-pint) Mason jars. Controls contained

only sediment, streamwater, and media. Our experimen-

tal design for comparing the effects of naturally

occurring organic carbon sources on denitrification rates

across streams included 96 samples (6 streams 3 2

locations per stream 3 4 organic carbon sources

[control, grass, periphyton, or leaves] 3 2 duplicates).

Statistical analysis

Statistical analyses were performed using SAS Analyst

(SAS Institute 2003). Differences in streamwater chem-

istry, denitrification potential rates, and C:N ratios, and

lipid biomarkers were evaluated using an analysis of

variance (ANOVA) followed by Tukey’s test with a

significance level (a) of 0.05. We evaluated differences in

denitrification potential rates across site type (forest,

restored, and unrestored urban), organic carbon source

(periphyton, leaves, and grass), and flow conditions

(baseflow streamwater and stormflow streamwater).

RESULTS

Concentrations and fluxes of NO3
� and DOC

Pond Branch (forested) had significantly lower and

Spring Branch (restored) had significantly higher mean

nitrate-N concentrations than other sites (F5, 150¼ 94.33,

N ¼ 159, P , 0.01; Fig. 3, Table 1). The low-density

residential forested site, Baisman Run, had significantly

lower and Dead Run (unrestored urban) had signifi-

FIG. 3. Monthly dissolved organic carbon (DOC) and nitrate concentrations from (A) forested, (B) restored, and (C)
unrestored urban watersheds.
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cantly higher mean DOC concentrations than other sites

(F5, 198 ¼ 14.14, N ¼ 204, P , 0.01; Fig. 3, Table 1).

At all six streams, the daily loads of DOC and nitrate

(mg/d) increased according to a power function with

runoff (Fig. 4). There were substantial differences in

mean daily runoff normalized by watershed area

between the different stream types during the 25 June

2006 storm when denitrification was measured (Fig. 5).

The forested sites, Pond Branch and Baisman Run,

displayed peak flows that were an order of magnitude

lower than the flashy peak flows at the unrestored urban

sites, Dead Run and Scotts Level Branch. Minebank

Run (restored) had a flashy peak (230 L�sec�1�km�2) that
was intermediate between forested and unrestored urban

streams.

Organic carbon source characterization

Overall, there was a significant difference in molar

C:N ratios among site types (F2, 240¼ 23.14, N¼ 245, P

, 0. 01) and organic carbon sources (F4, 240¼ 21.89, P ,

0.01), and there was a significant interaction between site

type and organic carbon source (F8, 240¼ 3.25, P , 0.01;

Fig. 6). The forested sites had a significantly higher

mean C:N ratio, 22.9 6 1.1, than the restored sites, 16.4

6 0.8 (t ¼ 5.99, P , 0.01), and the unrestored urban

sites, 16.6 6 0.9 (t ¼ 5.44, P , 0.01). Mean molar C:N

ratios associated with leaves, 26.5 6 1.7, were signifi-

cantly higher than for periphyton, 19.3 6 1.5 (t¼4.67, P

, 0.01), or grass, 18.3 6 0.8 (t ¼ 4.90, P , 0.01), and

stream POM, 11.9 6 0.4 (t ¼ 9.32, P , 0.01). Mean

molar C:N ratios associated with stream POM were

significantly lower than for grass (t ¼ 4.41, P , 0.01),

periphyton (t¼4.64, P , 0.01), and sediment (t¼5.26, P

, 0.01).

Isotopic C and N signatures of grass clippings, leaf

litter, and periphyton typically showed distinct separa-

tion with no overlap among sources in all five streams;

But POM and sediment overlapped at Baisman Run

(forested) and POM and leaves overlapped at Minebank

Run (restored; Fig. 7). Across sites, mean d13C
signatures for grass clippings ranged from �32.01% at

Baisman Run (forested) to �28.76% at Dead Run

(unrestored urban); mean d15N for grass clippings

ranged from �1.69% at Pond Branch (forested) to

4.96% at Minebank Run (restored). Mean d13C of leaf

litter ranged from�29.47% at Pond Branch (forested) to

�25.10% at Spring Branch (restored); mean d15N of leaf

litter ranged from�0.86% at Pond Branch (forested) to

2.69% at Spring Branch (restored). Mean d13C of

periphyton ranged from �29.75% at Pond Branch

(forested) to �23.68% at Minebank Run (restored);

mean d15N of periphyton ranged from�2.63% at Pond

Branch (forested) to 7.87% at Dead Run (unrestored

urban). The isotopic signatures for POM and sediment

were intermediate between the grass, leaf, and periph-

yton sources indicating a mixture of sources. Isotope

biplots showed that at the forested sites, Pond Branch

and Baisman Run, the POM and sediment were closest

to the d15N and d13C values of the leaf litter. This

suggested that decayed leaves were an important source

for POM and sediment among all site types, but

especially at the forested sites (Fig. 7). At Minebank

Run (restored), the isotopic signature for POM was

similar to the leaf source. Isotopic signatures at Spring

Branch (restored) and Dead Run (unrestored urban)

also suggested that POM appeared to be a mixture of

grass, periphyton, and decayed-leaf isotope signatures.

At most sites, the POM signature was similar to the

sediment signature except at Minebank Run (restored).

TABLE 1. Dissolved organic carbon (DOC) and nitrate concentration (mg/L) in forested, restored,
and unrestored urban Baltimore, Maryland, USA, streams from April 2008 to April 2010.

Restoration status
and stream Analysis

Tukey
comparison Mean 6 SE Range

Sample
size (N )

Forested

Pond Branch DOC a 2.13 6 0.14 0.62–5.07 47
NO3

� A 0.045 6 0.010 0.001–0.188 31
Baisman Run DOC b 1.23 6 0.13 0.20–2.87 28

NO3
� B 1.374 6 0.089 0.323–2.215 28

Restored

Spring Branch DOC a, b, c 1.50 6 0.16 0.71–3.74 25
NO3

� C 2.898 6 0.222 0.704–4.218 22
Minebank Run DOC b, c 1.38 6 0.12 0.40–5.72 48

NO3
� B, D 1.083 6 0.060 0.470–1.532 22

Unrestored urban

Dead Run DOC d 3.42 6 0.43 1.33–12.42 27
NO3

� E 0.568 6 0.076 0.007–1.469 27
Scotts Level Branch DOC a, c 2.14 6 0.20 0.80–5.50 29

NO3
� D 0.982 6 0.062 0.316–1.717 29

Notes: Values are means 6 SE. Letters represent comparisons that are significant (a ¼ 0.05)
according to Tukey’s studentized range (HSD) test; lowercase letters correspond to DOC
concentration, and uppercase letters correspond to nitrate concentration.
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Lipid biomarker results showed that the source and

quality of organic matter varied across sites (Table 2).

Long-chain alcohols and plant sterols serve as proxies

for vascular plant (terrigenous) sources (Canuel and

Martens 1993, Waterson and Canuel 2008). The

percentages of long-chain alcohols were higher at Pond

Branch (forested) than at Minebank Run (restored; t ¼
2.23, P¼ 0.03), while the percentage of plant sterols was

higher at Spring Branch (restored) than at Pond Branch

(forested; t ¼ 2.68, P . 0.01) and Minebank Run

(restored; t¼ 3.89, P¼ 0.02). The percentages of diatom

sterols were lower at Pond Branch (forested) than at

Minebank Run (restored; t¼ 2.09, P ¼ 0.04).

Denitrification experiment 1:

glucose vs. nitrate amendment

Denitrification potential was significantly higher when

sediments were amended with glucose (35.1 6 9.4 ng

N�[g dry sediment]�1�h�1) than when amended with

nitrate (10.4 6 4.0 ng N�[g dry sediment]�1�h�1; F1,46 ¼
94.33, N¼ 48, P¼ 0.02; Fig. 8). Denitrification potential

was too low to detect in the nitrate amendment

FIG. 4. Daily loads of DOC and nitrate (log-transformed; originally measured in g�ha�1�d�1) vs. daily runoff (log-transformed;
originally measured in mm/d) from (A) forested, (B) restored, and (C) unrestored urban watersheds. Daily loads of DOC and
nitrate increased with daily runoff according to a power-law function at all sites, except for nitrate at the forested Pond Branch,
which increased linearly.
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experiment at the forested site. Denitrification potential

rates at forested streams (2.2 6 1.0 ng N�[g dry

sediment]�1�h�1) were significantly lower than at re-

stored streams (36.0 6 12.3 ng N�[g dry sediment]�1�h�1)
and urban streams (30.1 6 8.8 ng N�[g dry sed-

iment]�1�h�1), but the rates measured at the restored

and the unrestored urban sites were not significantly

different (F2,45 ¼ 4.29, N ¼ 48, P ¼ 0.02; Fig. 8).

Denitrification potential rates associated with incubat-

ing sediments with stormflow streamwater (29.6 6 9.4

ng N�[g dry sediment]�1�h�1) were consistently higher

than with baseflow streamwater (15.9 6 5.1 ng N�[g dry

sediment]�1�h�1), but the difference was not statistically

significant (F2,45 ¼ 1.67, N ¼ 48, P ¼ 0.20; Fig. 8).

Denitrification experiment 2: effects of naturally

occurring carbon sources on denitrification

Denitrification potential rates from the experiment

comparing the effects of naturally occurring organic

carbon sources (control, periphyton, leaves, and grass),

differed across site type (F2,81 ¼ 3.79, N ¼ 86, P ¼ 0.01;

Fig. 9B) and organic carbon source (F3,60¼8.78, N¼ 86,

P , 0.01; Fig. 9A). There was also a significant

interaction between site type and organic carbon source

(F6,70 ¼ 2.33, N ¼ 86, P ¼ 0.02; Fig. 9).

Denitrification potential rates (ng N�[g dry sed-

iment]�1�h�1) were greatest when grass clippings were

added as the naturally occurring organic carbon source

(1200 6 300) compared to periphyton (410 6 110; t ¼
2.9, P , 0.01), leaves (170 6 30; t¼ 4.21, P , 0.01), and

control treatments (3.1 6 1.7; t ¼ 4.63, P , 0.01; Fig.

9A). The highest denitrification potential rates were

observed when sediments from Scotts Level Branch

(unrestored urban) were incubated with the grass extract

(7200 ng N�[g dry sediment]�1�h�1). In addition, mean

denitrification potential rates at the urban sites (1000 6

470 ng N�[g dry sediment]�1�h�1) were significantly

higher than denitrification potential rates from the

forested sites (92 6 36 ng N�[g dry sediment]�1�h�1; t ¼
3.20, P , 0.01) and the restored sites (290 6 90 ng N�[g
dry sediment]�1�h�1; t ¼ 2.51, P ¼ 0.01; Fig. 9B). Mean

denitrification potential rates across naturally occurring

organic carbon sources were not significantly different

between the forested and restored sites.

DISCUSSION

Variations in organic carbon amounts and sources

across land use

Our results demonstrate that urbanization causes

shifts in organic carbon quantity, sources, and quality.

We observed higher organic carbon concentrations and

daily fluxes in urbanized streams than in forest streams.

Urban streams can receive inputs from natural and/or

anthropogenically enhanced organic carbon sources

including leaf litter, autochthonous production, materi-

als deposited on impervious surfaces, human and animal

waste, and grass clippings from home lawns (Lofton et

al. 2007, Sickman et al. 2007, Kaushal et al. 2011).

Furthermore, urbanization can decrease canopy cover

(Paul and Meyer 2001), and canopy coverage of riparian

flow paths can influence the quantity and character of

DOC delivered to streams and alter DOC bioavailability

(Findlay et al. 2001, Pernet-Coudrier et al. 2010).

FIG. 5. Hydrograph of mean daily runoff of the storm that was sampled as part of the denitrification experiments (mm/d).
Unrestored urban and restored sites have higher peak flows than forested sites. Data are lacking for Spring Branch because it does
not have a real-time USGS flow monitoring station.
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Molar C:N ratios served as a second organic carbon

source tracking method; higher values indicate potential

terrestrial sources (Kaushal and Binford 1999). Both

stable-isotope signatures and molar C:N ratios suggest-

ed that POC sources and quality varied with watershed

land use. Mean molar C:N ratios of organic carbon

samples at the forested site were significantly higher than

at the restored and the unrestored urban sites, indicating

that organic matter at the forested sites may be lower in

quality and more recalcitrant. The molar C:N ratios

suggest that the forested site receives terrestrial organic

matter such as leaves, while the restored and the

unrestored urban sites receive a mixture of higher

quality organic matter sources such as grass clippings,

periphyton, and wastewater. Ratios of C:N in streams

influence N cycling (Dodds et al. 2004), and increasing

the quantity of available DOC can enhance whole-

stream N uptake (Johnson et al. 2009) when N is not

limiting heterotrophic production (e.g., Bernhardt and

Likens 2002). Furthermore, these differential C:N ratios

may affect denitrification and respiration rates in

streams. Isotopic signatures suggested that terrestrial

leaf sources contributed to POM in forested streams. In

contrast, the POM in restored and unrestored urban

streams was a mixture of periphyton, leaves, and grass.

The d15N of the sediment in Minebank Run was

considerably higher than other sites, and these high

values may indicate denitrification or contamination

from previous d15N tracer studies (Kaushal et al. 2008b).

We used stable-isotope signatures of POM and sediment

to indicate organic matter sources.

Lipid biomarker data provided another line of

evidence that the source and amount of organic matter

varied across land use and restoration status. Forested

Pond Branch and Spring Branch (the older restoration)

showed higher contributions from terrestrial sources

than Minebank Run (the newer restoration). We

speculate that Minebank Run showed lower contribu-

tions from terrestrial sources because trees planted in the

restored riparian zone have not yet matured to full

canopy coverage. The Minebank Run study reach that

was restored between 2004 and 2005 had a significantly

higher relative abundance of diatom carbon, indicating

higher aquatic source contributions. Though lipid

biomarker data were only available for a limited number

of sites, these data provide further evidence that

urbanization influences the source and quality of

organic carbon in streams and the proportion of

terrestrial vs. aquatic contributions.

Residential landscaping decisions like replacing for-

ested areas with mowed lawns can also lead to

considerable variability in riparian vegetation (Larson

et al. 2009). For example, some riparian zones at our

study sites consisted of managed lawns near streams

with little or no tree canopy. Previous work analyzing

stable isotopes from streams draining non-forested sites

at the BES LTER site suggested an organic carbon

contribution from lawns (Kaushal et al. 2011). There is

evidence of organic carbon inputs to streams shifting

from C3 plants (trees) to C4 plants (grasses) and changes

in carbon quality with increasing urbanization (Kaushal

et al. 2011). Our results from stable isotopes and C:N

ratios are consistent with grass clippings contributing as

a carbon source in urban streams. The total estimated

area of urban lawns for the contiguous United States is

163 800 6 35 850 km2, which is three times greater than

the area covered by irrigated corn (Milesi et al. 2005).

Home lawns may have unique organic carbon dynamics

when compared to native ecosystems (Kaye et al. 2005,

Golubiewski 2006, Yesilonis et al. 2008, Groffman and

Pouyat 2009). For example, lawn clippings are more

labile than leaves from trees. Organic carbon from lawns

may quickly turnover and enter food webs or may be

rapidly decomposed by microbes and bypass higher

trophic levels in food webs completely. Grassy riparian

areas may alter biogeochemical cycling, food webs, and

ecosystem functions like decomposition in ways that

FIG. 6. Comparison of C:N molar ratios for leaves,
periphyton, grass, sediment, and particulate organic matter
(POM) across forested (N ¼ 20), restored (N ¼ 14), and
unrestored urban sites (N¼13). Values are means 6 SE. Letters
represent comparisons (lowercase is inter-site type, and
uppercase is intra-site type) that are significant (a ¼ 0.05)
according to Tukey’s studentized range (HSD) test.
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FIG. 7. Comparison of d13C and d15N isotopic ratios in periphyton, leaves, grass, and particulate organic matter (POM) from
(A) forested (N¼ 20), (B) restored (N¼ 14), and (C) unrestored urban sites (N¼ 13). Values are means 6 SE. Scotts Level Branch
was omitted because of cost and time constraints.
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diverge from the river continuum model, which high-

lights the importance of leaf litter from trees (Vannote et

al. 1980, Wiley et al. 1990, Kaushal and Belt 2012).

Relative importance of organic carbon sources to

denitrification in urban streams

Urbanized streams are more likely to have flashy

hydrology (Striz and Mayer 2008), and storms that carry

nutrient- and DOC-rich water to the stream (Paul and

Meyer 2001, Allan 2004). We did not observe a

significant difference in denitrification rates between

stormflow vs. baseflow. Our laboratory experiments

showed that labile organic carbon availability can be

more important in limiting denitrification than nitrate

availability in our urban streams during baseflow and

stormflow conditions. Previous studies suggest that

nitrate concentrations are an important regulator of

differences in denitrification potential; however, once

levels of nitrate are sufficient (which occurs at fairly low

suburban densities) organic carbon availability becomes

important (Arango et al. 2007, Inwood et al. 2007).

Our results also suggest that shifts in natural organic

matter may influence denitrification in urbanized and

restored streams (Dosskey et al. 2010). The question of

how different organic carbon sources can differentially

influence denitrification rates extends broadly to fields as

varied as prairie ecosystems, agriculture, and wastewater

treatment (see Appendix A). We found that grass

clippings from urban areas stimulated the highest

denitrification rates. Periphyton produced intermediate

rates across sites. Clipping and blending the grass may

have led to larger changes in DOM availability than

harvesting and blending of leaves or periphyton. While

it might have been preferable to compare fresh leaves

with the clippings, we note that clippings are produced

and transported to the stream throughout the growing

season, while leaves are only produced once per year

during autumn. Therefore, comparing fresh clippings

and leaves and periphyton resident in the stream channel

may actually be more realistic of in situ conditions.

Although decaying leaves collected from the stream had

diminished DOM availability because rapid loss of

FIG. 8. Carbon amendments produced higher denitrifica-
tion potential rates than nitrogen amendments to sediments
incubated with streamwater collected during baseflow and
stormflow conditions. Comparison of denitrification potential
rates associated with sediments amended with (A) glucose and
(B) nitrate. Values are means 6 SE; N ¼ 4 denitrification rate
measurements for each bar. Letters above the bars represent
comparisons between site types that are significant (a ¼ 0.05)
according to Tukey’s studentized range (HSD) test.

FIG. 9. Comparison of denitrification potential rates
associated with different naturally occurring organic carbon
sources at two forested (Pond Branch and Baisman Run), two
restored (Spring Branch and Minebank), and two unrestored
urban (Dead Run and Scotts Level Branch) streams. Values are
means 6 SE. Letters above the bars represent comparisons
(lowercase is carbon source, and uppercase is stream type) that
are significant (a¼0.05) according to Tukey’s studentized range
(HSD) test. (A) Results from all six sites are averaged and
divided into categories of organic carbon sources, and (B) data
are divided by site type and organic carbon source. Some data
bars appear to be missing because the potential rates were
comparatively low in (A) control and (B) leaves at the forested
site.
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soluble leaf constituents occurs after immersion, decay-

ing leaves are still an important source of DOM because,

as they sit in streams, they are colonized by fungi and

other microorganisms that continue to break down the

leaf matrix and release DOC while building an organic

carbon-rich biofilm (Gessner et al. 1999). Thus, our

results show that fresh lawn clippings may have

substantial short-term effects on N removal via denitri-

fication, while leaves and periphyton may have more

sustained N removal over time at a lower instantaneous

denitrification rate. Overall, higher denitrification rates

occurred in the urban sites, intermediate denitrification

in the restored sites, and relatively lower denitrification

in the forested sites. Possible reasons for higher

denitrification potential rates in urban areas are elevated

nitrate concentrations and organic carbon quality

(Groffman et al. 2005, Harrison et al. 2011).

In order to understand how changes in organic carbon

sources might influence the mass balance of nitrate in a

stream, we multiplied measured DOC loads by pub-

lished bioavailability values to estimate the amount of

denitrification that could be potentially supported at

each site.

Reported ranges for DOC bioavailability in forested

streams included 0–40% in the Rocky Mountains of

Colorado, USA (Kaushal and Lewis 2005), and 21 6

7% in New Jersey, USA (Wiegner and Seitzinger 2004),

and ;2% in Swan-Canning catchments in Australia

(Petrone et al. 2009).

In urban streams, DOC bioavailability ranged from

16% to 17% with a mode of 16% (Petrone et al. 2009).

We used a value of 16% DOC bioavailability for the

urban streams, as well as for the restored streams

because we could not find literature values of DOC

bioavailability in restored streams. Bioavailability of

organic carbon varies across geography and studies, so

we opted to use values from a common study that

examined both urban and forested land uses (Petrone et

al. 2009). We estimated the percentage of daily nitrate

load reduction (kg/d) that may be possible with

bioavailable DOC from each stream using the following

formula:

NO �
3 load reduction ¼ 100 3

bioavailability 3 DOC load

NO �
3 load 3 4

where bioavailability is the percentage of DOC that is

assumed to be bioavailable, DOC load is the mean daily

DOC load (kg/d), and NO3
� load is the mean daily

nitrate load (kg/d). The equation is divided by 4 because

4 mg of CBOD are needed for each mg of nitrate

TABLE 2. Lipid biomarker data from two locations at forested Pond Branch, two locations at restored Spring Branch, and three
locations at restored Minebank Run streams (Canuel and Martens 1993, Waterson and Canuel 2008).

Site

Lipid biomarkers

Terrestrial : aquatic
fatty acid ratio

Terrestrial-source indicators

Long-chain
fatty acids (%)

Long-chain alcohols Plant sterols

Percentage
Tukey

comparison Percentage
Tukey

comparison

Pond Branch A A

Forested site 1 0.17 6 0.11 3.99 6 2.34 29.40 6 11.88 47.68 6 11.29
Forested site 2 0.36 6 0.07 7.10 6 0.29 37.56 6 8.45 56.44 6 16.23

Spring Branch AB B

Restored 1994–1997 site 1 0.56 6 0.27 11.67 6 3.90 45.68 6 2.62 76.49 6 0.85
Restored 1994–1997 site 2 0.05 6 0.01 1.36 6 0.37 16.06 6 2.24 68.36 6 1.63

Minebank Run B A

Restored 1998–1999 site 1 0.04 6 0.02 0.83 6 0.46 28.98 6 4.31 38.93 6 8.22
Restored 1998–1999 site 2 0.05 6 0.05 1.16 6 1.16 19.00 6 3.23 66.02 6 3.07
Restored 2004–2005 site 3 0.01 6 0.01 0.29 6 0.29 5.978 6 0.54 31.27 6 0.16

Notes: Values are means 6 SE. Letters represent comparisons between the three streams that are significant (a¼ 0.05) according
to Tukey’s studentized range (HSD) test.

TABLE 3. Estimation of potential nitrate load reduction through denitrification based upon available DOC and literature ranges
for DOC bioavailability (from Petrone et al. 2009).

Stream
Discharge

(L/d)

Mean
DOC
(kg/d)

Estimated
bioavailability

(%)
Bioavailable
DOC (kg/d)

Bioavailable
DOC

(kg/d) 4 4

Mean
nitrate
(kg/d)

Potential
nitrate load
removal (%)

Pond Branch (forested) 345 279 108 2 2.16 0.54 1 54
Baisman Run (forested) 4 653 736 874 2 17.48 4.37 747 1
Spring Branch (restored) 23 608 5 16 0.80 0.22 9 2
Minebank Run (restored) 5 261 577 1 319 16 211.04 52.76 859 6
Dead Run (unrestored urban) 18 192 911 7 430 16 1 188.80 297.19 2 497 12
Scotts Level Branch (unrestored urban) 8 103 227 3 415 16 546.40 136.60 1 029 13

TAMARA A. NEWCOMER ET AL.462 Ecological Monographs
Vol. 82, No. 4



removed (U.S. EPA 1993). Results show that Pond

Branch (forested) has ample carbon for 54% removal of

nitrate by denitrification, while Baisman Run (forested)

is more limited because it has high nitrate loading from

septic systems and less bioavailable DOC. At the urban

sites, bioavailable DOC load is highly limiting to

denitrification despite higher bioavailability (Table 3).

Even if the DOC load were 100% bioavailable, there

would not be enough for complete denitrification at

Spring Branch (restored); instead, it would only be

enough for denitrification of 14% of the nitrate load.

Thus, according to this estimate, bioavailable DOC

limits N removal through denitrification at all sites

besides Pond Branch (forested), where nitrate concen-

trations are relatively low.

Implications for riparian management and restoration

Studies of stream restoration effects on ecosystem

functions such as N cycling are limited but growing

(Bukaveckas 2007, Roberts et al. 2007, Kaushal et al.

2008b, Klocker et al. 2009, Sivirichi et al. 2011).

Previous work has shown linkages between DOC and

nitrate (Munn and Meyer 1990, Mayer et al. 2010,

Sivirichi et al. 2011) and indicate that management

efforts to increase groundwater residence time and

increase DOC availability may improve N removal

capacity (Striz and Mayer 2008, Mayer et al. 2010).

Integrated stormwater management and stream restora-

tion may be a means to foster N removal capacity by

enhancing denitrification in some cases by increasing

availability of organic carbon, stream–floodplain inter-

action, and increasing residence time (Collins et al. 2010,

Mayer et al. 2010, Sivirichi et al. 2011). Denitrification

rate potentials in restored streams have been shown to

increase with increasing amounts of organic carbon in

riparian-zone sediments (Gift et al. 2010) and debris

dams (Groffman et al. 2005, Harrison et al. 2012).

Surprisingly, organic carbon from residential lawns was

shown to impact the N cycle of streams more than

background sources. Given that C:N stoichiometry can

be an important influence on denitrification, manage-

ment strategies that increase organic carbon relative to

N may increase N removal (Park et al. 2008, Taylor and

Townsend 2010). Therefore, an improved understanding

of coupled carbon and nitrogen biogeochemical cycles in

urban watersheds is critical for enhancing denitrification

and N removal along larger managed stream networks

(Sivirichi et al. 2011, Kaushal and Belt 2012).

CONCLUSIONS

We found that concentrations and loads of nitrate and

DOC varied with runoff and there were elevated loads of

organic carbon at urban sites. Stable-isotope and lipid

biomarker data demonstrate that urbanization alters the

amount and source of organic carbon delivered to

streams. Management of riparian vegetation influences

denitrification rates at the riparian–stream interface.

Managing amounts, sources, and quality of organic

carbon is critical for managing nitrogen flux in storm-

water management systems and urban restoration

stream projects. Future work should investigate how

specific restoration and stormwater management strat-

egies impact the coupling of carbon and nitrogen cycles,

and assess the implications for managing denitrification

in human-dominated watersheds.
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SUPPLEMENTAL MATERIAL

Appendix A

Table of studies from a broad range of land uses and contexts that examine how different organic carbon sources affect
denitrification rates (Ecological Archives M082-016-A1).

Appendix B

Aerial photographs of sampling locations at the forested Pond Branch and Baisman Run, the restored Minebank Run and
Spring Branch, and the unrestored urban Scotts Level Branch and Dead Run streams (Ecological Archives M082-016-A2).
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