Chesapeake Bay Baseline Data Acquisition Appendix X: Effects of Boating and Shipping on Water Quality

Chesapeake Research Consortium, Incorporated
University of Maryland, Center for Environmental and Estuarine Studies
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports
Part of the Environmental Indicators and Impact Assessment Commons

Recommended Citation

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
APPENDIX X

EFFECTS OF BOATING AND SHIPPING ON WATER QUALITY

A Report
under EPA Contract No. 68-01-3994

October 1978

Chesapeake Research Consortium, Incorporated

prepared by

University of Maryland,
Center for Environmental and Estuarine Studies

and

Virginia Institute of Marine Science

Chesapeake Research Consortium, Incorporated
1419 Forest Drive, Suite 207
Annapolis, Maryland 21403
(301) 263-0884

The Johns Hopkins University
University of Maryland
Smithsonian Institution
Virginia Institute of Marine Science

EPA Report Collection
Information Resource Center
US EPA Region 3
Philadelphia, PA 19107
CHESAPEAKE BAY BASELINE DATA ACQUISITION

EFFECTS OF BOATING AND SHIPPING
ON WATER QUALITY

Contract No. 68-01-3994

between

U. S. Environmental Protection Agency

and

Chesapeake Research Consortium, Incorporated

October 1978
CONTENTS

Introduction .. 4
Annex I. Directory of Researchers 6p
Annex II. Data Files ... 132p
 Part A. Data Files .. 126p
 Introduction ... 3
 EDBD Files ... 6
 Part B. Data File Index - Listed by Word 127
Annex III. Monitoring Programs 19p
INTRODUCTION

This report forms one of several appendices which are the body of the Chesapeake Bay Baseline Data Acquisition Final Report. These appendices are as follows:

Appendix I. A Chesapeake Bay Directory
Appendix II. Submerged Aquatic Vegetation
Appendix III. Toxics in the Chesapeake Bay
Appendix IV. Eutrophication
Appendix V. Shellfish Bed Closures
Appendix VI. Dredging and Spoil Disposal
Appendix VII. Modification of Fisheries
Appendix VIII. Hydrologic Modifications
Appendix IX. Wetlands Alteration
Appendix X. Effects of Boating and Shipping on Water Quality
Appendix XI. Shoreline Erosion

This report comprises three sections as follows:

Annex I. contains scientists presently engaged in research in this field.
Annex II. is an indexed listing of data files pertinent to the Chesapeake Bay and adjacent coastal states.

Annex III. summarizes the monitoring efforts as derived from Annex II.

The source material for appendices IV-XI includes minimal material based on interviews, field work and verification. Efforts were directed to determining researchers and their activities from "A Chesapeake Bay Directory" only. For each of the eight subject areas, a key word list was also formulated and the respective pertinent data files compiled from the Environmental Data Base Directory. These files served as the primary source for the monitoring programs section.
ANNEX I

Directory of Researchers

Effects of Boating and Shipping on Water Quality
This "Directory of Researchers" contains a listing of scientists who are presently working in this field, their affiliations and their specific research activities. The information was compiled from "A Chesapeake Bay Directory" by A. McErlean et al. which was published as a partial fulfillment of this contract.

For researchers and research activities in other national and international areas the reader is referred to the "International Directory of Marine Scientists," issued by the Food and Agriculture Organization of the United Nations in 1977. Copies of this directory are available at the following locations:

EPA Region III
Chesapeake Bay Program Office
Curtis Building
6th and Walnut Streets
Philadelphia, PA 19106

Chesapeake Research Consortium
1419 Forest Drive
Suite 207
Annapolis, MD 21403

University of Maryland, Center for Environmental and Estuarine Studies
ATTN: Karen Rutledge
P. O. Box 775
Horn Point Rd.
Cambridge, MD 21613

Virginia Institute of Marine Science
ATTN: Thomas Lochen
Gloucester Point, VA 23062

-2-
ANNEX I

Directory of Researchers

Effects of Boating and Shipping on Water Quality

Alden, R. W.
University of Maryland
Pollution, ecology, zooplankton.

Ayars, J.
University of Maryland
Non-point source pollution.

Bender, M. E.
Virginia Institute of Marine Science
Water quality criteria for aquatic life.

Bieri, R. H.
Virginia Institute of Marine Science
Oil pollution, oceanography.

Boesch, D. F.
Virginia Institute of Marine Science
Benthic ecology, pollution ecology, community ecology.

Bradford, R. H., Jr.
Chesapeake Biological Laboratory, University of Maryland
Pollution ecology.

Buikema, A. L., Jr.
Virginia Polytechnic Institute and State University
Petroleum toxicity in invertebrates.

Byrne, R. J.
Virginia Institute of Marine Science
Beach erosion studies, sediment processes, barrier islands.

Champ, M.
American University
Water pollution.

Chen, H. S.
Virginia Institute of Marine Science
Water wave mechanics.

-3-
Cockey, R. R.
Marine Products Laboratory,
University of Maryland

Marine microbiological processes,
public health aspects of pollution-
Chesapeake Bay.

Cole, M. A.
Chesapeake Biological Laboratory,
University of Maryland

Aquatic microbiology.

Colwell, R. R.
University of Maryland

Microbial ecology, pollution
degradation by microorganisms-
Chesapeake Bay.

Cooney, J. J.
Chesapeake Biological Laboratory,
University of Maryland

Microbial physiology and
ecology, metabolism of
hydrocarbons, photokilling of
bacteria, microbial transforma-
tions of metals.

Correll, D. L.
Chesapeake Bay Center for
Environmental Studies,
Smithsonian Institution

Herbicides and non-point
source pollution -
Chesapeake Bay.

Day, G. E.
Virginia Polytechnic Institute
and State University

Land use policy and non-point
discharges.

Drobeck, K. G.
Chesapeake Biological Laboratory,
University of Maryland

Aquatic microbiology.

Erkenbrecher, C. W.
Old Dominion University

Estuarine and marine micro-
biology.

Gross, M. G.
Chesapeake Bay Institute,
The Johns Hopkins University

Sediments and wastes in
coastal environments, urban
effects in ocean - Chesapeake Bay.

Gucinski, H.
Anne Arundel Community College

Oceanography, ocean dumping.

Hershner, C.
Virginia Institute of Marine
Science

Oil in salt marshes.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hetrick, F. M.</td>
<td>University of Maryland</td>
<td>Human enteroviruses in Bay and Bay biota – Chesapeake Bay.</td>
</tr>
<tr>
<td>Howard, L. V.</td>
<td>University of Maryland</td>
<td>Human pathogens in aquatic environments.</td>
</tr>
<tr>
<td>Huggett, R. J.</td>
<td>Virginia Institute of Marine Science</td>
<td>Oil pollution, heavy metals, pesticides, water quality criteria.</td>
</tr>
<tr>
<td>Ingling, A. L.</td>
<td>University of Maryland</td>
<td>Microbiology and pathobiology of soft-shelled clams.</td>
</tr>
<tr>
<td>Kator, H. I.</td>
<td>Virginia Institute of Marine Science</td>
<td>Microbiology of hydrocarbon degradation.</td>
</tr>
<tr>
<td>Kirk, D. W.</td>
<td>Old Dominion University</td>
<td>Marine microbial ecology.</td>
</tr>
<tr>
<td>Lomax, K. M.</td>
<td>Horn Point Environmental Laboratories, University of Maryland</td>
<td>Diffuse sources of pollution – Chesapeake Bay.</td>
</tr>
<tr>
<td>Lomax, N.</td>
<td>Horn Point Environmental Laboratories, University of Maryland</td>
<td>Microbiology.</td>
</tr>
<tr>
<td>Lucy, J.</td>
<td>Virginia Institute of Marine Science</td>
<td>Marine biology, commercial and sport bivalve fisheries, marine recreation.</td>
</tr>
<tr>
<td>Marks, C. H.</td>
<td>University of Maryland</td>
<td>Oil spill contamination.</td>
</tr>
<tr>
<td>Mihursky, J. A.</td>
<td>Chesapeake Biological Laboratory, University of Maryland</td>
<td>Pollutin ecology, discharges, impacts of regional planning decisions, estuarine community dynamics.</td>
</tr>
<tr>
<td>Orth, R.</td>
<td>Virginia Institute of Marine Science</td>
<td>Submerged aquatic vegetation.</td>
</tr>
</tbody>
</table>

-5-
Osborne, C. G.
Chesapeake Biological Laboratory,
University of Maryland

Benthic and water column metabolism, pollution biology.

Price, D.
Horn Point Environmental Laboratories,
University of Maryland

Diffuse sources of pollution.

Rhodes, M. W.
Virginia Institute of Marine Science

Bacteriology.

Roberts, M. H.
Virginia Institute of Marine Science

Pollution effects on vertebrates and invertebrates in all life stages.

Ruddell, C. L.
Virginia Institute of Marine Science

Histopathology, histochemistry, cell biology of marine metazoa.

Shelton, D. G.
Chesapeake Biological Laboratory,
University of Maryland

Pollution ecology.

Smith, C. L.
Virginia Institute of Marine Science

Chemistry of oil pollution, organic geochemistry.

Southwick, C.
The Johns Hopkins University

Fish and water quality in the Baltimore Harbor - Chesapeake Bay.

Spoon, D. M.
Georgetown University

Protozoans and pollutants in the Potomac River - Chesapeake Bay.

Stevenson, J. C.
Horn Point Environmental Laboratories,
University of Maryland

Diffuse source nutrient and pollution loading by terrestrial and aquatic systems - Chesapeake Bay.

Su, C. W.
Virginia Institute of Marine Science

Oil pollution, hydrocarbon chemistry.

Weiner, R. M.
University of Maryland

Microbial ecology, pathogen input, microbial degradative processes.
ANNEX II

Data Files

Effects of Boating and Shipping on Water Quality
ANNEX II

Data Files

Part A

Data Files

Effects of Boating and Shipping on Water Quality
The data files included in this section are arranged by EDBD accession number. This number should be used in inquiries to EDBD or in specific citations of files. However, for the purposes of this report, these files were assigned unique page numbers.

Files of areas adjacent to the Chesapeake Bay such as North Carolina, Delaware, New Jersey and Pennsylvania have been included when encountered.
ENVIRONMENTAL DATA INDEX

THE ENCLOSED LISTING IS A SELECTION OF FILE DESCRIPTIONS FROM THE ENDEX SYSTEM. ITS PURPOSE IS TO GUIDE USERS WITH REQUIREMENTS FOR HISTORICAL ENVIRONMENTAL DATA TO HOLDERS OF THESE DATA. THIS OUTPUT WAS SELECTED FROM THE ENTIRE FILE BASED ON CERTAIN CRITERIA SPECIFIED BY THE USER. THESE CRITERIA ARE REPEATED BELOW:

EDBD

THE OUTPUT IS IN TWO PARTS. FIRST IS A LISTING OF ALL THE EDBD'S SELECTED, PRINTED IN ID NUMBER ORDER. AT THE BACK OF EACH OUTPUT MAY BE A CROSS-INDEX, LISTING SUCH THINGS AS WHICH FILE DESCRIPTIONS DESCRIBE DATA COLLECTED ON EACH PLATFORM TYPE, OR WHICH FILE DESCRIPTIONS HAVE DATA IN EACH GRID LOCATOR. THIS SECTION WILL VARY DEPENDING ON THE REQUIREMENTS OF THE USER. THE ID NUMBER IS IN THE UPPER LEFT CORNER OF EACH FILE DESCRIPTION. THE FOLLOWING IS AN EXPLANATION OF FIELDS ON EACH PAGE.

FILE NAME -- TOP CENTER OF PAGE, IDENTIFIED BY DATA HOLDER. ALSO, TIME RANGE OF DATA COLLECTION.
PROJECTS -- LIST OF PROJECTS UNDER WHICH DATA CONTAINED IN FILES MAY HAVE BEEN COLLECTED.
GENERAL GEOGRAPHIC AREA -- BEGINS WITH CONTINENT OR OCEAN IN WHICH DATA WERE COLLECTED AND DESCRIBES SMALLER AND SMALLER AREAS TO GIVE USER A GENERAL AREA OF DATA COLLECTION.
ABSTRACT -- CONTAINS GENERAL INFORMATION ABOUT WHY THE DATA WERE COLLECTED AND WHERE, METHODS OF ANALYSIS AND PERTINENT CONCLUSIONS.
DATA AVAILABILITY -- CONTAINS RESTRICTIONS ON DATA USE, IF BLANK IT MEANS THERE ARE NO KNOWN RESTRICTIONS.
PLATFORM TYPES -- LIST OF TYPES OF PLATFORMS (IF ANY) USED TO COLLECT DATA.
ARCHIVE MEDIA -- MEDIA ON WHICH DATA ARE STORED AND A ROUGH ESTIMATE OF THE SIZE OF THE FILE.
FUNDING -- ORGANIZATION FUNDING THE DATA COLLECTION (IF KNOWN).
INVENTORY -- WHEN DETAILED INFORMATION ON STATION LOCATIONS, COUNTS OF OBSERVATIONS/SAMPLES, ETC. ARE AVAILABLE, IT WILL BE DENOTED F:RE.
PUBLICATIONS -- PUBLICATIONS RESULTING FROM THIS DATA SET (LIST IS SOMETIMES CONDENSED).
CONTACT -- NAME, ADDRESS AND PHONE NUMBER OF PERSON TO CONTACT TO OBTAIN FURTHER INFORMATION OR ACTUAL COPIES OF DATA.
GRID LOCATOR -- A SERIES OF NUMBERS USED TO MAKE GEOGRAPHIC RETRIEVAL POSSIBLE ON A COMPUTER. LATITUDE AND LONGITUDE ARE COMBINED INTO A SINGLE NUMBER. THE WORLD METEOROLOGICAL ORGANIZATION (WMO) CODE IS USED TO IDENTIFY AREAS WHERE DATA WERE COLLECTED. THIS MAY BE A 4, 6, 8, OR 10 DIGIT NUMBER DEPENDING ON WHETHER THE DATA HOLDER CHOSE TO IDENTIFY AREAS DOWN TO 10-DEGREE SQUARES OF LATITUDE AND LONGITUDE OR TO 1-DEGREE, 10-MINUTE, OR 1-MINUTE SQUARES.
FOR A 4-DIGIT GRID LOCATOR THE NUMBERS ARE AS FOLLOWS:
DIGIT 1 -- QUADRANT OF WORLD: 1 = NE, 3 = SE, 5 = SW, 7 = NW.
DIGIT 2 -- TENS DIGIT OF LATITUDE.
DIGITS 3/4 -- HUNDREDS AND TENS DIGITS OF LONGITUDE.
THUS 7408 WOULD BE THE 10-DEGREE SQUARE OF WHICH THE POINT 40N AND 085W IS THE LOWER RIGHT HAND CORNER.
FOR A SIX DIGIT NUMBER, DIGITS 5 AND 6 REPRESENT THE UNITS DIGITS OF LATITUDE AND LONGITUDE. THUS 740825 WOULD IDENTIFY THE 1-DEGREE SQUARE OF 42N AND 085W.
WITH AN 8-DIGIT NUMBER, 74082534 REPRESENTS THE SQUARE AT 42-DEGREES, 30-MINUTES NORTH AND 085-DEGREES, 40-MINUTES WEST, OR 10-MINUTE SQUARE.

QUESTIONS CONCERNING THIS OUTPUT SHOULD BE RELAYED TO THE NOOC OCEANOGRAPHIC SERVICES BRANCH (202) 634-7500 OR TO THE DATA INDEX BRANCH (202) 634-7298.
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, POTOMAC RIVER, PIVEN RIVER

ABSTRACT:
MISSION W119, FLT. 3 ACCOMPLISHED WITH WALTOPS STATION C-S AIRCRAFT WITH TI-11 AERIAL CAMERAS ON APRIL 18, 1972. IN COOPERATION WITH TRI-COUNTY COUNCIL FOR SOUTHERN MARYLAND TO SOUTH WATER SOLUTION. FLIGHT MADE IN CLEAR WEATHER, AIR TEMP. 0 DEG. C AT 10,500 FT., MSL WITH WIND OF 30 KNOTS FROM 290 DEG.
(MISSION NO W119, FLT. 3)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
80 9" X 9" FRAMES.

FUNDING:
INVENTORY:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALTOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730785 730787

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>00</td>
<td>032</td>
<td>10500 FT</td>
<td>6 INCH FOCAL</td>
</tr>
</tbody>
</table>

FLIGHT LINES
6
INCH FOCAL
LENGTH
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, ANNE ARUNDEL COUNTY

ABSTRACT:
COUNTS OF FECAL COLIFORM BACTERIA HAVE BEEN MADE SINCE 1962 ON WATER SAMPLES TAKEN DURING A TEN WEEK PERIOD EACH SUMMER. SAMPLING STATIONS ARE NEAR PUBLIC RECREATION AREAS AT BODKIN CREEK, MAGOTHY RIVER, SEVERN RIVER, SOUTH RIVER, WEST RIVER AND HERRING BAY, ANNE ARUNDEL COUNTY, MARYLAND.
DATA WILL EVENTUALLY BE TRANSFRED TO MAGNETIC TAPES; ALSO EVENTUALLY TO STORE.

DATA AVAILABILITY:

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
DATA SHEETS
ONE FILE DRAWER OF DATA SHEETS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
B SPENCER FRANKLIN 301-267-8151
ANNE ARUNDEL COUNTY HEALTH DEPARTMENT
3 BROAD CREEK PARKWAY
ANNAPOLIS MARYLAND USA 21401

GRAD UCTION (LAT):
73° 07' 96

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>47 STATIONS</td>
<td></td>
<td></td>
<td>FROM 1962 TO 1972 THERE WERE 75 TO 100 STATIONS</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMW</td>
<td>8000 STATIONS</td>
<td>ONCE A WEEK FOR TEN WEEKS EACH SUMMER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FROM 1962 TO 1972 50 STATIONS WERE SAMPLED ONCE A WEEK FOR 10 WEEKS AND 25 TO 50 STATIONS WERE SAMPLED BIWEEKLY FOR
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT OF</td>
<td>WATER</td>
<td>VISUAL</td>
<td>CULTURE GROWTH</td>
<td>2010 OBS</td>
<td>1962-1972</td>
<td></td>
<td>10 WEEKS</td>
</tr>
<tr>
<td>MICROBIOTA</td>
<td></td>
<td></td>
<td>(MPN)</td>
<td></td>
<td>PER STATION</td>
<td></td>
<td>FECAL COLIFORM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFTER 1972</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AMBERLY STORM DRAINAGE PROJECT
DATA COLLECTED: AUGUST 1973 TO PRESENT
RECEIVED: NOVEMBER 07, 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, RIDEOUT AND WHITEHALL CREEKS, ANNAPOLIS MARYLAND

ABSTRACT:
STUDY WILL MONITOR TOTAL AND FECAL COLIFORMS IN TWO CREEKS BEFORE, DURING AND AFTER THE AMBERLY STORM DRAINAGE PROJECT, ANNAPOLIS MD.

DATA AVAILABILITY:

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
DATA SHEETS
ONE FOLDER OF DATA SHEETS.

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
NANCY G. OIMSDALE 301-268-8816
CHESAPEAKE BAY FOUNDATION
PRINCE GEORGE AND EAST STREETS
ANNAPOLIS MARYLAND USA 21404

GRID LOCATOR (LAT):
730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERF</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>YMD</td>
<td>3 STATIONS</td>
<td></td>
<td>SURFACE</td>
<td>STATIONS ARE ALONG THE SHORE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDH</td>
<td>12 OBS</td>
<td>ONCE A WEEK</td>
<td>SURFACE</td>
<td>Fecal Coliform, Total Coliform</td>
</tr>
<tr>
<td>COUNT OF</td>
<td>WATER</td>
<td>VISUAL</td>
<td>CULTURE GROWTH (MPN)</td>
<td>12 OBS</td>
<td>ONCE A WEEK</td>
<td>SURFACE</td>
<td></td>
</tr>
<tr>
<td>MICROBIOTA</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PH UNITS</td>
<td>12 OBS</td>
<td>ONCE A WEEK</td>
<td>SURFACE</td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>NON-REVERSING THERMOMETER</td>
<td>DEG C</td>
<td>12 OBS</td>
<td>ONCE A WEEK</td>
<td>SURFACE</td>
<td></td>
</tr>
</tbody>
</table>
SPACREEK WATERR QUALITY STUDY
DATA COLLECTED: APRIL 1972 TO NOVEMBER 1972

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, SPA CREEK, ANNAPOLIS, MARYLAND

ABSTRACT:
WATER QUALITY PARAMETERS WERE MEASURED IN SPA CREEK DURING 1972. AN ATTEMPT WAS MADE TO IDENTIFY THE TYPES AND SOURCES OF POLLUTANTS AND TO QUANTIFY THE CONTRIBUTION FROM EACH SOURCE.
(DATA SUMMARIZED IN FINAL REPORT JULY 1973)

DATA AVAILABILITY:

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
DATA SHEETS
ONE FILE OF DATA SHEETS: ALSO FINAL REPORT.

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
NANCY G DIMSDALE 301-266-8816
CHESAPEAKE BAY FOUNDATION
PRINCE GEORGE AND EAST STREETS
ANNAPOLIS MARYLAND USA 21404

GRID LOCATOR (LAT): 790708

PARAMETER IDENTIFICATION:

POSITION EARTH
Spher.

METHOD FIXED POINT VISUAL TITRATION COLORIMETRY

UNITS MAP CULTURE (GROWTH) PARTS PER THOUSAND PH UNITS

DATA AMOUNT IN OBS OBS OBS

FREQUENCY TWICE A WEEK TWICE A WEEK TWICE A WEEK

HEIGHT/DEPTH SURFACE SURFACE SURFACE

REMARKS FIVE STATIONS WERE IN CREEK, FIVE STATIONS AT STORM WATER DRAINAGE PIPES TOTAL COLIFORM, FECAL COLIFORM

TIME EARTH STATION TIME

COUNT OF MICROBIOTA WATER VISUAL

SALINITY WATER TITRATION

PH WATER CULTURE (GROWTH)

DISSOLVED OXYGEN WATER PARTS PER THOUSAND

NITRATE WATER PH UNITS

HACH CHEMICAL
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrite</td>
<td>Water</td>
<td>Colorimetry</td>
<td>Parts per million</td>
<td>230</td>
<td>OBS</td>
<td>Twice a week</td>
<td>Surface</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Water</td>
<td>Colorimetry</td>
<td>Parts per million</td>
<td>230</td>
<td>OBS</td>
<td>Twice a week</td>
<td>Surface</td>
</tr>
<tr>
<td>Unreactive Phosphate</td>
<td>Water</td>
<td>Colorimetry</td>
<td>Parts per million</td>
<td>230</td>
<td>OBS</td>
<td>Twice a week</td>
<td>Surface</td>
</tr>
<tr>
<td>Precipitation Amount</td>
<td>Air</td>
<td>Direct</td>
<td>Inch</td>
<td>51</td>
<td>OBS</td>
<td>Twice a week</td>
<td></td>
</tr>
<tr>
<td>Recreation</td>
<td>Water</td>
<td>Boating</td>
<td>Number</td>
<td>51</td>
<td>OBS</td>
<td>Twice a week</td>
<td></td>
</tr>
</tbody>
</table>

COLORIMETRIC FIELD UNIT; ANALYSES MADE ONLY FROM JULY THROUGH SEPT HACH CHEMICAL COLORIMETRIC FIELD UNIT; ANALYSES MADE ONLY FROM JULY THROUGH SEPT HACH CHEMICAL COLORIMETRIC FIELD UNIT; ANALYSES MADE ONLY FROM JULY THROUGH SEPT
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, VIRGINIA BEACH, LYNNHAVEN

DATA COLLECTED:
DECEMBER 1970 TO DECEMBER 1970

ABSTRACT:
MISSION W37, FLT. 1, DEC. 7, 1970, WITH WALLOPS STATION CHARTERED HELICOPTER EQUIPPED WITH 4 T-11 AERIAL CAMERAS IN COOPERATION WITH VA. BEACH HEALTH DEPT. OBJECTIVE - TO UTILIZE MULTI-CHANNEL PHOTOGRAPHY TO INVESTIGATE EFFECTS OF SEWAGE DISPOSAL IN ESTUARINE SYSTEMS. FLIGHT IN CLEAR WEATHER, SCATTERED CLOUDS, AIR TEMP. 8 DEG. C AT 4000 FT, MSL WITH WIND OF 25 KNOTS FROM 330 DEG.
(MISSION NO W37, FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
152 9" X 9" FRAMES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730766

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td>2 FLIGHT LINES</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>PHYSICAL</td>
<td>2</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>132</td>
<td>OBS</td>
<td>4000 FT</td>
<td>6 INCH FOCAL</td>
</tr>
</tbody>
</table>

PAGE 01
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., DELAWARE BAY, DELAWARE, BRANDYWINE RIVER

ABSTRACT:
MISSION W225, FLT. 1, JULY 5, 1973, WITH WALLOPS STATION HELICOPTER EQUIPPED WITH TWO T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH CHESTER COUNTY HEALTH DEPT. AND THE U.S. GEOLOGICAL SURVEY. OBJECTIVE - TO OBTAIN LARGE SCALE AERIAL PHOTOGRAPHY OF BRANDYWINE RIVER FROM ITS CONFLUENCE WITH THE DELAWARE RIVER AND INTERSECTION OF PENN. RT. 162 WITH ITS EAST AND WEST BRANCHES. IMAGERY TO BE USED FOR LOCATING POLLUTION OUTFALLS ON RIVER AND FOR LOCATING POSSIBLE DUMPING SITES OF ANIMAL OR HUMAN WASTE. FLIGHT IN SCATTERED CLOUDS, VISIBILITY UP TO 5 MILES, AIR TEMP. 18 DEG. C AT 1250 FT., MSL WITH WIND OF 10 KNOTS FROM 360 DEG.

MISSION NO W225, FLT 1

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
490 9" X 9" FRAMES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
FAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOCLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT): 730795

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1 STATIONS</td>
<td>6 STATIONS</td>
<td>6 FLIGHT LINES</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>6 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM AIRCRAFT</td>
<td>PHOTOGRAPHS</td>
<td>490 OBS</td>
<td>152 MM FOCAL</td>
<td>304 OBS AT 600 FT, 186 LENGTH</td>
<td></td>
</tr>
</tbody>
</table>

600 FT, 186 LENGTH
OBS AT 1250 FT
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, POTOWAC RIVER, YORK-PAMUNKEY-CHICKAHOMINY RIVERS, APPOMATTOX RIVER, ROANOKE RIVER, JOHN KERR RESERVOIR

ABSTRACT:
MISSION W233, FLT. 1, ACCOMPLISHED JULY 13, 1973, WITH WALLOPS STATION C-94 AIRCRAFT EQUIPPED WITH 4 HASSELBLAD CAMERAS AND A T-11 AERIAL MAPPING CAMERA, IN COOPERATION WITH NASA'S LANGLEY RES, CTR. OBJECTIVE - TO OBTAIN MULTI-SPECTRAL IMAGERY OF THE KERR RESERVOIR AND POTOMAC, YORK, AND CHICKAHOMINY RIVERS FOR USE IN WATER POLLUTION STUDIES. FLIGHT IN CLEAR WEATHER WITH VISIBILITY UP TO 6 MILES, AIR TEMP. 12 DEG. C AT 9500 FT., MSL WITH WIND OF 15 KNOTS FROM 315 DEG. (MISSION NO W233, FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
560 70 MM AND 9" X 9" FRAMES.

FUNDING:
INVENTORY:
PUBLICATIONS:
CONTACT:

PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730787 730766 730776 730777 730768

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td>14 FLIGHT LINES</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>14</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>560</td>
<td>OBS</td>
<td>9500 FT</td>
<td>40 MM AND 152 MM FOCAL LENGTH, MULTI-SPECTRAL</td>
</tr>
</tbody>
</table>
SURFACE WATER QUALITY CHESAPEAKE BAY-ATLANTIC OCEAN
DATA COLLECTED: JULY 1972 TO PRESENT

PROJECTS:
GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, U.S., COASTAL, CHESAPEAKE BAY OCEANVIEW TO SANDBRIDGE

ABSTRACT:
Fecal coliform bacteria are monitored at monthly intervals from water samples obtained along the south eastern coast of Virginia, from Ocean View to Sandbridge.
(Data obtained by Virginia Beach Health Department and Norfolk City Health Department)

DATA AVAILABILITY:
PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
DATA SHEETS
SEVERAL PAGES OF DATA SHEETS

FUNDING:
INVENTORY:
PUBLICATIONS:

CONTACT:
M J OWENS, SANITARIAN SUPERVISOR 804 427 4261
VIRGINIA BEACH HEALTH DEPARTMENT
POST OFFICE BOX 6185, PRINCESS ANNE STATION
VIRGINIA BEACH VIRGINIA USA 23456

GRID LOCATOR (LAT): 130765 730766

PARAMETER IDENTIFICATION SECTION:
NAME SPHERE METHOD UNITS DATA AMOUNT FREQUENCY HEIGHT/DEPTH REMARKS
POSITION EARTH FIXED POINT MAP LOCATION 68 STATIONS

TIME EARTH STATION TIME YMD 600 OBS SURFACE

APPROXIMATELY 300' TO 400' OFFSHORE AT VARIOUS LOCATIONS FROM OCEAN VIEW TO SANDBRIDGE TWO SAMPLES MONTHLY DURING MAY THROUGH SEPTEMBER, ONE MONTHLY DURING THE REST OF THE YEAR; NOT
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td>FECAL COLIFORM PER 100 ML</td>
<td>600 OBS</td>
<td></td>
<td>SURFACE</td>
<td>ALL STATIONS SAMPLED EACH MONTH TWO SAMPLES MONTHLY DURING MAY THROUGH SEPTEMBER, ONE MONTHLY DURING THE REST OF THE YEAR: NOT ALL STATIONS SAMPLED EACH MONTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, LOWER YORK RIVER

ABSTRACT:
COUNT, LENGTH AND IDENTIFICATION OF FISHES AFTER OIL SPILL AT 4 STATIONS MEASURED WEEKLY FOR 3 MONTHS IN THE LOWER YORK RIVER. A 100 FOOT HAUL SEINE WAS USED TO CAPTURE BOTH DEMERSAL AND PELAGIC FISH

DATA AVAILABILITY:

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
DATA SHEETS
DATA SHEETS FOR 4 STATIONS MEASURED WEEKLY FOR 9 WEEKS - 38 OBS

FUNDING:

INVENTORY:

PUBLICATIONS:
REPORT TO BE SENT TO: NEWPORT NEWS SHIPBUILDING AND DRYDOCK COMPANY

CONTACT:
GEORGE GRANT 703-642-2111
VIRGINIA INSTITUTE OF MARINE SCIENCE
GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):
30776

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>4 STATIONS WEE</td>
<td>WEEKLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDHL</td>
<td>36 OBS WEEKLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>NON-REVERSING</td>
<td>DEG C</td>
<td>36 OBS WEEKLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PARTS PER THOUSAND</td>
<td>36 OBS WEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISSOLVED OXYGEN</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MILLIGRAMS PER LITER</td>
<td>36 OBS WEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF PELAGIC</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER OF INDIVIDUALS PER HAUL</td>
<td>36 OBS WEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF DEMERSAL</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER OF INDIVIDUALS PER HAUL</td>
<td>36 OBS WEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>WATER</td>
<td>KEY</td>
<td>NUMBER OF</td>
<td>36 OBS WEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>DETERMINATION OF PELAGIC FISH</td>
<td></td>
<td></td>
<td>SPECIES PER HAUL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES WATER KEY</td>
<td></td>
<td>KEY</td>
<td>NUMBER OF SPECIES PER HAUL</td>
<td>36</td>
<td>OBS</td>
<td>WEEKLY</td>
<td>VARIOUS 100 FOOT HAUL SEINE</td>
</tr>
<tr>
<td>DETERMINATION OF DEMERSAL FISH LENGTH OF</td>
<td></td>
<td></td>
<td>MILLIMETERS</td>
<td>36</td>
<td>OBS</td>
<td>WEEKLY</td>
<td>VARIOUS 100 FOOT HAUL SEINE</td>
</tr>
<tr>
<td>DEMERSAL FISH LENGTH OF PELAGIC FISH</td>
<td></td>
<td></td>
<td>MILLIMETERS</td>
<td>36</td>
<td>OBS</td>
<td>WEEKLY</td>
<td>VARIOUS 100 FOOT HAUL SEINE</td>
</tr>
</tbody>
</table>
Sea Water Surface Film Data

Data Collected: June 1970 to November 1970

Received: May 16, 1973

Projects:

General Geographic Area:
- U.S. Coastal, Atlantic, Lower Chesapeake Bay, Virginia, Lower York River

Abstract:
- 40 seawater surface film samples were collected in the Lower York River using a drum-skimming device in calm water in a 6-month period. Fatty acids and aliphatic hydrocarbons were each tested by thin layer chromatography and gas chromatography for 2 samples at each station. (Samples collected with drum-skimming device and observations are limited to calm sea conditions.)

Data Availability:
- Cost of reproduction

Platform Types:
- Ship

Archive Media:
- Reports
 - 1 Report of 40 Bottle Stations

Funding:

Inventory:

Publications:
- VIMS Thesis

Contact:
- Librarian 703-642-2111
- Virginia Institute of Marine Science
- Gloucester Point Virginia USA 23062

Grid Locator (Lat):
- 730776

Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>Earth</td>
<td>Fixed Point</td>
<td>DMS</td>
<td>40 stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>Earth</td>
<td>Station Time</td>
<td>YMDHL</td>
<td>40 stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>Water</td>
<td>Non-Reversing Thermometer</td>
<td>Deg C</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty Acids</td>
<td>Water</td>
<td>Thin Layer CHROMATOGRAPHY</td>
<td>MICRO GRAMS PER LITER</td>
<td>80</td>
<td>OBS</td>
<td></td>
<td>Surface to Sub-Surface less than one meter</td>
</tr>
<tr>
<td>Fatty Acids</td>
<td>Water</td>
<td>Gas CHROMATOGRAPHY</td>
<td>MICRO GRAMS PER LITER</td>
<td>80</td>
<td>OBS</td>
<td></td>
<td>Surface to Sub-Surface less than one meter</td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic Hydrocarbons</td>
<td>WATER</td>
<td>Thin Layer Chromatography</td>
<td>Micro Grams per 80</td>
<td>OBS</td>
<td></td>
<td>Surface to Sub-Surface Less Than One Meter</td>
<td></td>
</tr>
<tr>
<td>Aliphatic Hydrocarbons</td>
<td>WATER</td>
<td>Gas Chromatograph</td>
<td>Micro Grams per 80</td>
<td>OBS</td>
<td></td>
<td>Surface to Sub-Surface Less Than One Meter</td>
<td></td>
</tr>
</tbody>
</table>
A CHECKLIST OF THE BIOTA OF LOWER CHESAPEAKE BAY

DATA COLLECTED: 1965 TO PRESENT

RECEIVED: JUNE 04, 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, LOWER CHESAPEAKE BAY, VIRGINIA

ABSTRACT:
A REPORT OF BIOTA DISTRIBUTION IN THE LOWER CHESAPEAKE BAY. TAXONOMIC LISTS OF BENTHIC ANIMALS, BENTHIC PLANTS, PHYTOPLANKTON, PELAGIC FISH, MICROBIOOTA, MAMMALS, BIRDS, REPTILES, AND AMPHIBIANS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

REPORTS
10 PARAMETERS, 3111 OBSERVATIONS.

FUNDING:

INVENTORY:

PUBLICATIONS:
SPECIAL SCIENTIFIC REPORT NO 65 REPORT INCLUDES COMMENTS ON THE DISTRIBUTION OF EACH SPECIES, LITERATURE CITATIONS, COMMON NAMES, INDEX

CONTACT:

LIBRARY 703-642-2111
VIRGINIA INSTITUTE OF MARINE SCIENCE
GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):
730766 730765 730776 730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATIONS</td>
<td>4</td>
<td>STATIONS</td>
<td></td>
<td>LOCATION OCCURRENCE OF EACH SPECIES NOTED FREE LIVING INVERTEBRATES INCLUDED</td>
</tr>
<tr>
<td>TAXONOMIC LIST</td>
<td>BOTTOM-</td>
<td>KEY</td>
<td>NAMED AND</td>
<td>1005 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF BENTHIC ANIMALS</td>
<td></td>
<td></td>
<td>LISTED IN TAXONOMIC ORDER COMMON NAME INCLUDED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NUMBER INCLUDES HIGHER BENTHIC PLANTS AND PHYTOPLANKTON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAXONOMIC LIST</td>
<td>WATER</td>
<td>KEY</td>
<td>NAMED AND</td>
<td>1171 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF PHYTOPLANKTON</td>
<td></td>
<td></td>
<td>LISTED IN TAXONOMIC ORDER COMMON NAME INCLUDED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAXONOMIC LIST</td>
<td>WATER</td>
<td>KEY</td>
<td>NAMED AND</td>
<td>286 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LISTED IN TAXONOMIC ORDER COMMON NAME INCLUDED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of Pelagic Fish</td>
<td>Water</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>286</td>
<td>OBS</td>
<td></td>
<td>Pelagic and Demersal Fish</td>
</tr>
<tr>
<td>Taxonomic List</td>
<td>Water</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>25</td>
<td>1 OBS</td>
<td></td>
<td>Number includes Pelagic and Demersal Fish</td>
</tr>
<tr>
<td>Of Demersal Fish</td>
<td>Water</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>25</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Of Microbiota</td>
<td>Water</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>25</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Of Mammals</td>
<td>Water</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>41</td>
<td>OBS</td>
<td></td>
<td>Mammals of Water Wetlands and Barrier Islands</td>
</tr>
<tr>
<td>Of Birds</td>
<td>Air</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>220</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Of Reptiles</td>
<td>Land</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>59</td>
<td>OBS</td>
<td></td>
<td>Coastal Plain of Va and Md</td>
</tr>
<tr>
<td>Of Amphibians</td>
<td>Water</td>
<td>Key</td>
<td>Listed in Taxonomic Order Common Name Included</td>
<td>43</td>
<td>OBS</td>
<td></td>
<td>Coastal Plain of Va and Md</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, HAMPTON ROADS, ELIZABETH RIVER, JAMES RIVER, LAFAYETTE RIVER

ABSTRACT:
SURVEY OF HYDROGRAPHIC AND WATER QUALITY PARAMETERS IN HAMPTON ROADS, VA. NEAR SEVERAL SEWERAGE TREATMENT PLANTS

DATA AVAILABILITY:
RESTRICTED, PERMISSION OF CONTRACTOR REQUIRED

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
DATA SHEETS
SEVEN SAMPLING AREAS TO BE EXPANDED TO 21 AREAS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DONALD ADAMS 804-489-8000
OLD DOMINION UNIVERSITY
INSTITUTE OF OCEANOGRAPHY
NORFOLK VIRGINIA USA 23508

GRID LOCATOR (LAT):
730776 730766

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>7 STATIONS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDL</td>
<td>7 STATIONS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MICROGRAM ATOMS PER LITER</td>
<td>21 OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>NITRATE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MICROGRAM ATOMS PER LITER</td>
<td>21 OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>NITRITE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MICROGRAM ATOMS PER LITER</td>
<td>21 OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>SPECIFIC ION</td>
<td>PH UNITS</td>
<td>21 OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>DISSOLVED</td>
<td>WATER</td>
<td>ELECTRODE TITRATION</td>
<td>MILLIGRAMS PER LITER</td>
<td>21 OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>OXYGEN GAS</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PARTS PER</td>
<td>21 OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STUDY TO BE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXPANDED TO 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STATIONS</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>NON-REVERSING</td>
<td>THOUSAND DEG C</td>
<td>21</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>BIOCHEMICAL</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MILLIGRAMS PER LITER</td>
<td>21</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>OXYGEN DEMAND</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER PER 100 MILLILITERS</td>
<td>21</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL COLIFORMS</td>
</tr>
</tbody>
</table>
WATER QUALITY SURVEY OF LOWER CHESAPEAKE BAY
DATA COLLECTED: MARCH 1973 TO MARCH 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, LOWER CHESAPEAKE BAY, VIRGINIA

ABSTRACT:
WATER QUALITY AND HYDROGRAPHIC SURVEY OF THE CHESAPEAKE BAY ON TRANSECTS FROM THE BAY MOUTH TO ANNAPOLIS, MD.

DATA AVAILABILITY:

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
DATA SHEETS
20 STATIONS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DONALD ADAMS 804-489-8000
OLD DOMINION UNIVERSITY
INSTITUTE OF OCEANOGRAPHY
NORFOLK VIRGINIA USA 23508

GRID LOCATOR (LAT):
730776 730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>20</td>
<td>STATIONS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDL</td>
<td>1</td>
<td>STATIONS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>NON-REVERSING</td>
<td>DEG C</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PARTS PER THOUSAND</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>SPECIFIC ION</td>
<td>PH UNITS</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td>PERCENT SATURATION COMPUTED</td>
</tr>
<tr>
<td>DISSOLVED</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MILLIGRAMS PER LITER</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>OXYGEN GAS</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MICROGRAM ATOMS PER LITER</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>ONTHOPHOSPHATE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MICROGRAM ATOMS PER LITER</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>NITRATE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MICROGRAM ATOMS PER LITER</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
<tr>
<td>PARTICULATE</td>
<td>WATER</td>
<td>MEMBRANE</td>
<td>MILLIGRAMS PER</td>
<td>66</td>
<td>OBS</td>
<td>SURFACE TO BOTTOM</td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter</td>
<td>Water</td>
<td>Filtration</td>
<td>Liter</td>
<td>66</td>
<td>OBS</td>
<td>Bottom</td>
<td>Depth of sample</td>
</tr>
<tr>
<td>Depth</td>
<td>Water</td>
<td>Wire Length</td>
<td>Feet</td>
<td>66</td>
<td>OBS</td>
<td>Bottom</td>
<td></td>
</tr>
<tr>
<td>Biochemical</td>
<td>Water</td>
<td>Titration</td>
<td>Milligrams/Liter</td>
<td>66</td>
<td>OBS</td>
<td>Surface to</td>
<td></td>
</tr>
<tr>
<td>Oxygen Demand</td>
<td>Water</td>
<td>Titration</td>
<td>Milligrams/Liter</td>
<td>66</td>
<td>OBS</td>
<td>Bottom</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen</td>
<td>Water</td>
<td>Titration</td>
<td>Milligrams/Liter</td>
<td>66</td>
<td>OBS</td>
<td>Surface to</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>Water</td>
<td>Visual</td>
<td>Number/100</td>
<td>66</td>
<td>OBS</td>
<td>Bottom</td>
<td></td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>Water</td>
<td>Visual</td>
<td>Milliliters</td>
<td>66</td>
<td>OBS</td>
<td>Bottom</td>
<td>Fecal Coliform</td>
</tr>
<tr>
<td>Methane in Bio Mater</td>
<td>Water</td>
<td>Gas Chromatograph</td>
<td>ML x 10^-5/Liter</td>
<td>60</td>
<td>OBS</td>
<td>Bottom</td>
<td></td>
</tr>
</tbody>
</table>
WATER POLLUTION STUDIES ON THE POTOMAC, SEVERN, AND SOUTH RIVERS
DATA COLLECTED: MARCH 1973 TO MARCH 1973
RECEIVED: JANUARY 01, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND POTOMAC RIVER, SOUTH RIVER, CAMBRIDGE-SECRETARY, PITTSVILLE-SALISBURY, SEVERN RIVER

ABSTRACT:
MISSION W196, FLT. 1, MARCH 19, 1973, WITH WALLOPS STA. C-54 AIRCRAFT EQUIPPED WITH 3 HASSELBLAD CAMERAS AND AAD-2 IR SCANNER IN COOPERATION WITH NASA'S LANGLEY RES. CTR. FOR THE EPA. OBJECTIVE - IMAGE WATER POLLUTION AND POLLUTION OUTFALLS ON POTOMAC, SEVERN AND SOUTH RIVERS. LAND FILLS WERE IMAGED OVER THE MARYLAND TOWNS OF SALISBURY, PITTSVILLE, SECRETARY, AND BLACKWATER. WEATHER OF BROKEN CLOUDS, VISIBILITY UP TO 7 MILES, AIR TEMP. 1 DEG. C AT 1000 FT., MSL WIND OF 30-40 KNOTS FROM 300 DEG. (MISSION NO W196, FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
ORIGINAL FILM
198 70 MM FRAMES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730796 730786 730785

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td>11 FLIGHT LINES</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>11</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM AIRCRAFT</td>
<td>PHOTOGRAPHS</td>
<td>99</td>
<td>OBS</td>
<td>1000 FT</td>
<td>AAD-2 SCANNER</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM AIRCRAFT</td>
<td>PHOTOGRAPHS</td>
<td>99</td>
<td>OBS</td>
<td>1000 FT</td>
<td>20.1 MM FOCAL LENGTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA

ABSTRACT:
MISSION W-199, FLIGHT 1, MARCH 28, 1973, UTILIZING THE WALLOPS STATION C-54 AIRCRAFT EQUIPPED WITH TWO T-11 AERIAL MAPPING CAMERAS AND A MICROWAVE RADIOMETER IN COOPERATION WITH THE NAVAL RESEARCH LABORATORY. THE OBJECTIVE OF THE FLIGHT WAS TO CORRELATE OIL SLICK DATA ACQUIRED FROM THE MICROWAVE RADIOMETER WITH IMAGERY TAKEN WITH AERIAL CAMERAS CONTAINING COLOR AND FALSE COLOR INFRARED FILM. CLEAR WEATHER VISIBILITY UP TO 5 MILES. AIR TEMPERATURE WAS 7 DEG. C AT 1500 FT. MSL, WIND OF 20 KNOTS FROM 045 DEG.
(MISSION NO W-199, FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
ORIGINAL FILM
68 9 X 9 INCH FRAMES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PÄUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730765

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td>10 FLIGHT LINES</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>68</td>
<td>OBS</td>
<td>54 AT 1500 FT, 14 AT 3000 FT</td>
<td>152 MM FOCAL LENGTH</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>MICROWAVE SENSOR</td>
<td>ELECTRONIC DATA</td>
<td>68</td>
<td>OBS</td>
<td>54 AT 1500 FT, 14 AT 3000 FT</td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA

ABSTRACT:
MISSION W199, FLIGHT 2, MARCH 29, 1973. UTILIZING THE WOLLOPS STATION C-54 AIRCRAFT EQUIPPED WITH TWO T-11 AERIAL MAPPING CAMERAS AND A MICROWAVE RADIOMETER IN COOPERATION WITH THE NAVAL RESEARCH LABORATORY. THE OBJECTIVE OF THE FLIGHT WAS TO CONTINUE THE CORRELATION STARTED ON THE PREVIOUS DAY OF OIL SLICK DATA TAKEN BY THE MICROWAVE RADIOMETER WITH THAT RECORDED ON COLOR AND FALSE COLOR INFRARED AERIAL FILM. GOOD WEATHER, VISIBILITY UP TO 5 MILES. AIR TEMPERATURE WAS 13 DEG. C AT 1500 FT. MSL, WIND OF 12 KNOTS FROM 20 DEG.

MISSION NO W199, FLT 2

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
ORIGINIAL FILM
34.9 X 9 INCH FRAMES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOCLOGICAL PROGRAM OFFICE
WOLLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730765

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td>11 FLIGHT LINES</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>11</td>
<td>STATIONS</td>
<td>1500 FT</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>MICROWAVE SENSOR</td>
<td>ELECTRONIC DATA</td>
<td>34</td>
<td>OBS</td>
<td>1500 FT</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>34</td>
<td>OBS</td>
<td>1500 FT</td>
<td>152 MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:
GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, LOWER CHESAPEAKE BAY, VIRGINIA, LYNNHAVEN BAY, ELIZABETH RIVER

ABSTRACT:
SURVEY OF HYDROGRAPHIC AND BIOLOGICAL PARAMETERS OF LOWER CHESAPEAKE BAY, LYNNHAVEN BAY AND ELIZABETH RIVER, VA. DATA COLLECTED IN CONJUNCTION WITH CONTRACT WORK FOR CONTRACTORS AND LAND DEVELOPERS

DATA AVAILABILITY:
ON APPROVAL FROM CONTRACTOR

PLATFORM TYPES:

ARCHIVE MEDIA:
DATA SHEETS
200 STATIONS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL KIRK 804-489-8000
OLD DOMINION UNIVERSITY
INSTITUTE OF OCEANOGRAPHY
NORFOLK VIRGINIA USA 23508

GRID LOCATOR (LAT):
730776 730775 730766

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDL</td>
<td>200</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF BENTHIC</td>
<td>LAND</td>
<td>KEY</td>
<td>NUMBER OF INDIVIDUALS PER SPECIES</td>
<td>200</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF BENTHIC</td>
<td>BOTTOM</td>
<td>KEY</td>
<td>NUMBER OF INDIVIDUALS PER SPECIES</td>
<td>200</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF BENTHIC PLANTS</td>
<td>LAND</td>
<td>VISUAL</td>
<td>NUMBER PER ACRE</td>
<td>200</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF BENTHIC</td>
<td>BOTTOM</td>
<td>VISUAL</td>
<td>NUMBER PER ACRE</td>
<td>200</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals</td>
<td>Land</td>
<td>Dry Weight</td>
<td>Pounds per acre</td>
<td>200 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass of Benthic Plants</td>
<td>Bottom</td>
<td>Dry Weight</td>
<td>Pounds per acre</td>
<td>200 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td>Water</td>
<td>Hydrometer</td>
<td>Parts per thousand</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Surface and Lynnhaven Area</td>
</tr>
<tr>
<td>Temperature</td>
<td>Water</td>
<td>Non-Reversing Thermometer</td>
<td>Deg C</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Surface and Lynnhaven Area</td>
</tr>
<tr>
<td>Dissolved Oxygen Gas</td>
<td>Water</td>
<td>Titration</td>
<td>Milligrams per liter</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Bottom Lynnhaven Area</td>
</tr>
<tr>
<td>pH</td>
<td>Water</td>
<td>Specific Ion Electrode</td>
<td>pH Units</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Surface and Bottom Lynnhaven Area</td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>Water</td>
<td>Visual</td>
<td>Culture Growth (MPN)</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Surface and Bottom Lynnhaven Area</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligrams per liter</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Surface and Bottom Lynnhaven Area</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligrams per liter</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Surface and Bottom Lynnhaven Area</td>
</tr>
<tr>
<td>Secchi Disc Depth</td>
<td>Water</td>
<td>Average Depth</td>
<td>Feet</td>
<td>14 OBS</td>
<td></td>
<td></td>
<td>Bottom Lynnhaven Area</td>
</tr>
<tr>
<td>Size Analysis</td>
<td>Sediment</td>
<td>Sieve</td>
<td>Percent Composition</td>
<td>7 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, POTOMAC RIVER

ABSTRACT:
MISSION W204, FLIGHT 1, APRIL 13, 1973, UTILIZING THE WALLETS STATION C-54 AIRCRAFT EQUIPPED WITH FOUR HASSELBLAD CAMERAS AND A MULTI-CHANNEL OCEAN COLOR SENSOR (MOCS) IN COOPERATION WITH NASA'S LANGLEY RESEARCH CENTER FOR ENVIRONMENTAL PROTECTION AGENCY. THE OBJECTIVE OF THE FLIGHT WAS TO DIFFERENTIATE POLLUTION FROM NORMAL WATER IN THE POTOMAC RIVERS BY USING FOUR HASSELBLAD CAMERAS EQUIPPED WITH DIFFERING FILM/FILTER COMBINATIONS FOR PRODUCING SPECIFIC SPECTRAL RESPONSES IN CONJUNCTION WITH THE MULTI-CHANNEL OCEAN COLOR SENSOR (MOCS). CLEAR WEATHER, FEW SCATTERED CLOUDS. AIR TEMPERATURE 12 DEG. C AT 10,500 FT. MSL, WIND OF 20 KNOTS FROM 300 DEG.

DATA AVAILABILITY:
MISSION NO W204, FLT 1

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
192 70 MM FRAMES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730787 730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1 STATIONS</td>
<td></td>
<td></td>
<td>8 FLIGHT LINES</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>B STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>192 DBS</td>
<td></td>
<td>10500 FT</td>
<td>40 MM FOCAL LENGTH, MULTICHANNEL OCEAN COLOR SENSOR</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY

ABSTRACT:
MISSION W217, FLI. 1, MAY 8, 1973, WITH WALLOPS STATION C-54 AIRCRAFT EQUIPPED WITH T-11 AERIAL MAPPING CAMERA AND NAVAL RES. LAB MICROWAVE RADIOMETER. OBJECTIVE - TO DETERMINE REMOTE SENSING CAPABILITY OF THE MIC- WAVE RADIOMETER FOR USE IN DETECTING AND LOCATING OIL SPILLS. WEATHER - MODERATELY HAZY EITH THIN OVERCAST, AIR TEMP. 18 DEG. C AT 1500 FT., MSL WITH A WIND OF 7 KNOTS FROM 147 DEG. (MISSION NO W217, FLT 1)

DATA AVAILABILITY:
PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
16 9" X 9" FRAMES

FUNDING:
INVENTORY:
PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730765

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td>1 FLIGHT LINE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>8</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>16</td>
<td>DBS</td>
<td>1500 FT</td>
<td>152 MM FOCAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LENGTH MICROWAVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RADIOMETER</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY

ABSTRACT:
MISSION W217, FLI. 2, MAY 9, 1973, WITH WALLOPS STATION C-54 AIRCRAFT EQUIPPED WITH T-11 AERIAL MAPPING CAMERA IN COOPERATION WITH NAVAL RES. LAB. OBJECTIVE - TO OBTAIN IMAGERY OF ANY REMAINS OF AN OIL SPILL THAT HAD TAKEN PLACE THE PREVIOUS DAY.
WEATHER - MEDIUM OVERCAST, VISIBILITY UP TO 5 MILES, AIR TEMP. 18 DEG. C AT 1500 FT., MSL WITH A WIND OF 15 KNOTS FROM 180 DEG.
(MISSION NO W217, FLT2)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
21 9" X 9" FRAMES.

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730765

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td>1 FLIGHT LINE</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>13</td>
<td>STATIONS</td>
<td>12 OBS AT 152 MM FOCAL</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>21</td>
<td>OBS</td>
<td>1500 FT, 6 LENGTH</td>
<td></td>
</tr>
</tbody>
</table>

OBS AT 2000 MICROWAVE FT, 3 OBS AT RADIOMETER 3000 FT
REMOTE SENSING OF OIL SLICKS
DATA COLLECTED: SEPTEMBER 1969 TO JULY 1972

PROJECTS:
VIMS REMOTE SENSING

GENERAL GEOGRAPHIC AREA:
U.S. COASTAL, NORTH ATLANTIC, CONTINENTAL SHELF OFF VIRGINIA, CHESAPEAKE BAY, YORK RIVER, VA

ABSTRACT:
INTERPRETATION AND ANALYSIS OF REMOTE SENSING BY VARIABLE WAVELENGTH PHOTOGRAPHY OF OIL SPILLS FLOWN BY NASA WALLOPS STATION.
REPORT INCLUDES TYPE OF OIL SPILLED, OIL TEMP, ESTIMATED THICKNESS OF OIL AND RATE OF OIL SLICK SPREADING.
(MISSION NO W19; W20; W30 FLT 1; W34; W35; W40; W55; W58; W77; W78 FLT 7; W91 FLT 1 AND 2; W148; W156;

DATA AVAILABILITY:
PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
REPORTS
33 PAGES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
HAYDEN GORDON 804-642-2111 X97
VIRGINIA INSTITUTE OF MARINE SCIENCE
GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):
730775 730776

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>4</td>
<td>STATIONS</td>
<td></td>
<td>PHOTOGRAPHS AT WAVE-LENGTH BANDS: NEAR UV, BLUE, GREEN-YELLOW, RED, INFRARED, VIS COLOR, INFRARED COLOR</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDL</td>
<td>16</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM</td>
<td>PHOTOGRAPHS</td>
<td>1800</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, CHESAPEAKE LIGHT TOWER

ABSTRACT:
MISSION W148, FLT. 1, WITH WALLOPS STATION C-54 AIRCRAFT EQUIPPED WITH ONE T-11 AERIAL CAMERA AND TEXAS INSTRUMENT RS-7 THERMAL SCANNER ON JULY 11, 1972, IN COOPERATION WITH VA. INSTITUTE OF MARINE SCI. AT A LOCATION NEAR CHESAPEAKE LIGHT TOWER. OBJECTIVE - TO USE PASSIVE INFRARED AND FALSE COLOR IMAGERY TO STUDY DISPERSION OF A CONTROLLED OIL RELEASE. FLIGHT IN GOOD WEATHER WITH NO OVERCAST, SLIGHT HAZE, AIR TEMP. 21 DEG C AT 1000 FT., MSL WITH LIGHT AND VARIABLE WINDS. FIVE FRAMES INADVERTANT BETWEEN LINE/RUN 1/8 AND 1/9.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
114 9" X 9" FRAMES.

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td>1 FLIGHT LINE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>23</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM</td>
<td>PHOTOGRAPHS</td>
<td>114</td>
<td>OBS</td>
<td></td>
<td>29 OBS AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td>1000 FT, 20</td>
<td>6 INCH FOCAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OBS AT 1500</td>
<td>LENGTH WITH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FT, 65 OBS</td>
<td>FALSE COLOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AT 2000 FT</td>
<td>IMAGERY</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, CHESAPEAKE LIGHT TOWER

ABSTRACT:
MISSION W158, FLT. 1, WITH WALLOPS STATION C-54 AIRCRAFT EQUIPPED WITH ONE T-11 AERIAL CAMERA AND H.R.B. SINGER AAD-2 THERMAL MAPPER ON AEG. 15, 1972. IN COOPERATION WITH VA. INSTITUTE OF MARINE SCI. NEAR CHESAPEAKE LIGHT TOWER. OBJECTIVE - TO USE PASSIVE INFRARED, FALSE COLOR, AND NATURAL COLOR TO INVESTIGATE SURFACE OIL FILM THICKNESS AND DISPERSION FEATURES INFLUENCED BY WINDS AND CURRENTS. FLIGHT IN CLOUDY WEATHER WITH SLIGHT OVERCAST AND VERY HAZY, AIR TEMP. 25 DEG. C AT 1500 FT., MSL WITH WIND OF 15 KNOTS FROM 220 DEG.

MISSION NO W158, FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
51 9" X 9" FRAMES.

FUNDING:
INVENTORY:
PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>1</td>
<td>STATIONS</td>
<td></td>
<td></td>
<td>1 FLIGHT LINE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDhML</td>
<td>9 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOG</td>
<td>51 OBS</td>
<td></td>
<td>1500 FT</td>
<td>6 INCH FOCAL</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM</td>
<td>PHOTOG</td>
<td>51 OBS</td>
<td></td>
<td>1500 FT</td>
<td>20.1 MM LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
U.S., COASTAL, NORTH ATLANTIC, DELAWARE BAY, DELAWARE, BRANDYWINE RIVER

ABSTRACT:
MISSION W224, FLT. 1, JUNE 12, 1973, WALLOPS STATION C-54 AIRCRAFT WITH TWO T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE U.S. GEOLOGICAL SURVEY AND CHESTER COUNTY, PENN, HEALTH DEPT. OBJECTIVE - TO PROVIDE SUPPORT TO CHESTER COUNTY HEALTH DEPT. IN LOCATING POSSIBLE SOURCES OF ANIMAL AND/OR HUMAN WASTE MATERIALS IN CHAOS FORD AREA OF BRANDYWINE RIVER.
(MISSION NO W224, FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
72 9" X 9" FRAMES.

FUNDING:
INVENTORY:

PUBLICATIONS:

CONTACT:
PAUL ALFONSI 804-824-3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730795

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>1 STATIONS</td>
<td></td>
<td></td>
<td>1 FLIGHT LINE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>1 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PHOTOGRAPHS</td>
<td>72 OBS</td>
<td></td>
<td>5500 FT</td>
<td>152 MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
MICROBIOTA SURVEY OF ELIZABETH RIVER-WESTERN BRANCH
DATA COLLECTED: JANUARY 1969 TO PRESENT

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, U.S., COASTAL, VIRGINIA, ELIZABETH RIVER

ABSTRACT:
SHORELINE SAMPLING STATIONS ARE MONITORED AT BIWEEKLY INTERVALS AND WATER SAMPLES ARE ANALYSED FOR TOTAL FECAL COLIFORM BACTERIA

DATA AVAILABILITY:

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
DATA SHEETS; REPORTS
SEVERAL NOTEBOOKS OF RECORDING FORMS; SEVERAL ANNUAL SUMMARY REPORTS

FUNDING:
VIRGINIA STATE DEPARTMENT OF HEALTH

INVENTORY:

PUBLICATIONS:

CONTACT:
M G PENDLETON JR; DIRECTOR OF ENVIRONMENTAL HEALTH 804 393 8649
DEPARTMENT OF PUBLIC HEALTH
800 CRAWFORD PARKWAY, P O BOX 250
PORTSMOUTH VIRGINIA USA 23705

GRID LOCATOR (LAT):
730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>6 STATIONS</td>
<td>BIWEEKLY, 72</td>
<td>MAY THROUGH NOVEMBER</td>
<td>TOTAL FECAL COLIFORM</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>6 STATIONS</td>
<td>BIWEEKLY, 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>FILTRATION</td>
<td>DIRECT COLONY</td>
<td>6 STATIONS</td>
<td>BIWEEKLY, 72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
North Atlantic, U.S., Coastal, Chesapeake Bay, Hampton Roads, Back River

ABSTRACT:
Beach water samples are routinely collected at weekly or monthly intervals and analyzed for total or fecal coliform bacteria. (Data collected from shore stations)

DATA AVAILABILITY:

PLATFORM TYPES:
Fixed Station

ARCHIVE MEDIA:
Data Sheets
One 100 page notebook of data sheets

FUNDING:
Hampton Health Department

INVENTORY:

CONTACT:
H C Ashton, Supervisory Sanitarian
804 722 7411 X58
Hampton Health Department
3130 Victoria Boulevard
Hampton Virginia USA 23661

GRID LOCATOR (LAT):
730766 730776

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED</td>
<td>MAP LOCATION</td>
<td>14 STATIONS</td>
<td>20 TIMES PER YEAR PER STATION BEFORE 1972, 27 TIMES PER YEAR PER STATION, 1972 AND AFTER</td>
<td>SAMPLING WEEKLY FROM MAY TO SEPTEMBER AND MONTHLY OCTOBER THROUGH APRIL</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>14 STATIONS</td>
<td>280 PER YEAR BEFORE 1972, 380 PER YEAR 1972 AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td>MOST PROBABLE NUMBER</td>
<td>14 STATIONS</td>
<td>AFTER 280 PER YEAR BEFORE 1972, 380 PER YEAR 1972 AND AFTER</td>
<td>SURFACE</td>
<td>TOTAL COLIFORM MEASURED FROM MAY 1960 THROUGH JUNE 1972; FECAL COLIFORM MEASURED FROM JULY 1972 TO PRESENT TIDAL STAGE ALSO NOTED</td>
</tr>
<tr>
<td>WEATHER</td>
<td>AIR</td>
<td>VISUAL</td>
<td>TYPE</td>
<td>14 STATIONS</td>
<td>280 PER YEAR BEFORE 1972, 380 PER YEAR 1972 AND AFTER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:
A BIOLOGICAL STUDY OF BALTIMORE HARBOR

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, U.S., CHESAPEAKE BAY, PATAPSCO RIVER, BALTIMORE HARBOR, MARYLAND

ABSTRACT:
SURVEY OF FISH EGGS AND LARVAE IN THE PATAPSCO RIVER AND BALTIMORE HARBOR DURING 1970 AND 1971. PLANKTON NET AND BEACH SEINE GEAR USED AT A TOTAL OF 26 STATIONS. SPECIES LISTS AND ABUNDANCE PRESENTED AS AN ASSESSMENT OF ECOLOGY AND UTILIZATION OF HABITAT BY FISHES.
(NRI REFERENCE NUMBER 71-76 FINAL REPORT)

DATA AVAILABILITY:
WRITTEN REQUEST

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
REPORTS
PART 1 OF 120 PAGE REPORT

FUNDING:
MARYLAND DEPARTMENT NATURAL RESOURCES

INVENTORY:

PUBLICATIONS:

CONTACT:
LIBRARIAN 301 326 4281
CHESAPEAKE BIOLOGICAL LABORATORY
SOLOMONS MARYLAND USA 20688

GRID LOCATOR (LAT):
730796

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>26 STATIONS</td>
<td></td>
<td></td>
<td>1 SITE VISIT</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>26 STATIONS</td>
<td></td>
<td></td>
<td>EGG, LARVAE, AND JUVENILE FISHES TAKEN IN 5 MINUTE OBLIQUE TOW OF PLANKTON NET AND 50 FOOT BEACH SEINE</td>
</tr>
<tr>
<td>SPECIES</td>
<td>WATER</td>
<td>KEY</td>
<td>SPECIES PER STATION</td>
<td>26 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EGG, LARVAE,</td>
</tr>
<tr>
<td>OF PELAGIC FISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SPECIES | WATER | KEY | SPECIES PER | 26 OBS | | |
| | | | | | | |
PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETERMINATION OF DEMERSAL FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER PER SPECIES IN EACH SAMPLE</td>
<td>26</td>
<td>OBS</td>
<td></td>
<td>AND JUVENILE FISHES TAKEN IN 5 MINUTE OBLIQUE TOW OF PLANKTON NET AND 50 FOOT BEACH SEINE EGG, LARVAE, AND JUVENILE FISHES TAKEN IN 5 MINUTE OBLIQUE TOW OF PLANKTON NET AND 50 FOOT BEACH SEINE EGG, LARVAE, AND JUVENILE FISHES TAKEN IN 5 MINUTE OBLIQUE TOW OF PLANKTON NET AND 50 FOOT BEACH SEINE</td>
</tr>
<tr>
<td>COUNT OF PELAGIC FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER PER SPECIES IN EACH SAMPLE</td>
<td>26</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF DEMERSAL FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER PER SPECIES IN EACH SAMPLE</td>
<td>26</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:
A BIOLOGICAL STUDY OF BALTIMORE HARBOR

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC. U.S., CHESAPEAKE BAY, PATAPSCO RIVER, CHESTER RIVER, BALTIMORE HARBOR, MARYLAND

ABSTRACT:
BENTHIC COMMUNITY SURVEY OF THE BALTIMORE HARBOR CONDUCTED ON A QUARTERLY SCHEDULE. 28 REPLICAED STATIONS IN PATAPSCO RIVER AND 8 IN THE CHESTER RIVER. DATA FILE INCLUDES HYDROGRAPHIC, SEDIMENT, SPECIES, ABUNDANCE, BIOMASS, AND COMMUNITY ANALYSIS. PROJECT ASSESSED ECOLOGICAL ASPECTS OF HARBOR AND RELATED THEM TO CONTROL HABITAT IN CHESTER RIVER.
(NRI REFERENCE NUMBER 71-76 FINAL REPORT; DATA SHEETS H.T. PFITZENMEYER OF CBL HOLDS)

DATA AVAILABILITY:
WRITTEN REQUEST

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
REPORTS
PART 2 OF A 120 PAGE REPORT

FUNDING:
MARYLAND DEPARTMENT OF NATURAL RESOURCES

INVENTORY:

PUBLICATIONS:

CONTACT:
LIBRARIAN 301 326 4281
CHESAPEKE BIOLOGICAL LABORATORY
SOLOMONS MARYLAND USA 20688

GRID LOCATOR (LAT):
730796

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>140</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>140</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG C</td>
<td>140</td>
<td>OBS</td>
<td>QUARTERLY</td>
<td>BOTTOM RS 5-3</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PARTS PER</td>
<td>140</td>
<td>OBS</td>
<td>QUARTERLY</td>
<td>BOTTOM RS 5-3</td>
</tr>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>SPECIFIC ION ELECTRODE</td>
<td>PART PER MILLION</td>
<td>140</td>
<td>OBS</td>
<td>QUARTERLY</td>
<td>BOTTOM YSI MODEL 51A</td>
</tr>
<tr>
<td>DEPTH</td>
<td>WATER</td>
<td>WIRE LENGTH</td>
<td>FEET</td>
<td>140</td>
<td>OBS</td>
<td>QUARTERLY</td>
<td>BOTTOM U.S. STANDARD</td>
</tr>
<tr>
<td>SIZE ANALYSIS</td>
<td>SEDIMENT</td>
<td>SIEVE</td>
<td>PERCENT SAND, CLAY, SILT</td>
<td>35</td>
<td>OBS</td>
<td>QUARTERLY</td>
<td>0.1 SQ METER</td>
</tr>
<tr>
<td>SPECIES</td>
<td>BOTTOM</td>
<td>KEY</td>
<td>SPECIES PER</td>
<td>140</td>
<td>OBS</td>
<td>QUARTERLY</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>DETERMINATION</td>
<td>BOTTOM</td>
<td>VISUAL</td>
<td>STATION, PER RIVER, PER QUARTER</td>
<td>345 OBS</td>
<td>QUARTERLY</td>
<td></td>
<td>VAN VEEN GRAB, REPLICATE</td>
</tr>
<tr>
<td>OF BENTHIC</td>
<td></td>
<td></td>
<td>COUNT OF BENTHIC ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td>SAMPLES PER STATION</td>
</tr>
<tr>
<td>ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT OF</td>
<td>BOTTOM</td>
<td>DRY WEIGHT</td>
<td>WEIGHT PER SPECIES PER SQ METER</td>
<td>315 OBS</td>
<td>QUARTERLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENTHIC</td>
<td></td>
<td></td>
<td>ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANIMALS</td>
<td></td>
<td></td>
<td>BIOMASS OF BENTHIC ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>BOTTOM</td>
<td>DRY WEIGHT</td>
<td>GRAMS PER SQ METER</td>
<td>315 OBS</td>
<td>QUARTERLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOMASS</td>
<td></td>
<td></td>
<td>ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNITY STRUCTURE</td>
<td>BOTTOM</td>
<td>CALCULATED</td>
<td>DIVERSITY, REDUNDANCY</td>
<td>315 OBS</td>
<td>QUARTERLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:
A BIOLOGICAL STUDY OF BALTIMORE HARBOR

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, U.S., CHESAPEAKE BAY, PATAPSCO RIVER, BALTIMORE HARBOR, MARYLAND

ABSTRACT:
LENGTH FREQUENCY MEASUREMENTS OF FISHES CAPTURED BY TRAWL IN THE VICINITY OF BALTIMORE HARBOR. DISTRIBUTION AND ABUNDANCE OF FISHES RELATIVE TO INDUSTRIAL DEVELOPMENT OF SHORE LINE. COMMENTS ON APPARENT STRESS REACTIONS FOR MORONE AMERICANA. HARBOR DATA COMPARED TO CHESTER RIVER DATA.
(NRI REFERENCE NUMBER 71-76 FINAL REPORT)

DATA AVAILABILITY:
WRITTEN REQUEST

PLATFORM TYPES:
SHIP

ARCHIVAL MEDIA:
REPORTS
PART 3 OF 120 PAGE REPORT

FUNDING:
MARYLAND DEPARTMENT OF NATURAL RESOURCES

INVENTORY:

PUBLICATIONS:

CONTACT:
LIBRARIAN 301 326 4281
CHESAPEAKE BIOLOGICAL LABORATORY
SOLOMONS MARYLAND USA 20688

GRID LOCATOR (LAT):
730796

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>137 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>137 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG C</td>
<td>137 OBS</td>
<td></td>
<td></td>
<td>BOTTOM</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PARTS PER</td>
<td>137 OBS</td>
<td></td>
<td></td>
<td>BOTTOM</td>
</tr>
<tr>
<td>DEPTH</td>
<td>WATER</td>
<td>WIRE LENGTH</td>
<td>FEET</td>
<td>137 OBS</td>
<td></td>
<td></td>
<td>BOTTOM</td>
</tr>
<tr>
<td>COUNT OF PELAGIC FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER PER SPECIES PER SAMPLE</td>
<td>137 OBS</td>
<td></td>
<td></td>
<td>25 FOOT SEMI-BALLOON TRAWL, 5 MINUTE TOW, 1/2 INCH COD LINER</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>COUNT OF DEMERSAL FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER PER SPECIES PER SAMPLE</td>
<td>137 OBS</td>
<td></td>
<td>BOTTOM</td>
<td>25 FOOT SEMI-BALLOON TRAWL, 5 MINUTE TOW, 1/2 INCH COD LINER</td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF PELAGIC FISH</td>
<td>WATER</td>
<td>KEY</td>
<td>SPECIES PER SAMPLE</td>
<td>137 OBS</td>
<td></td>
<td>BOTTOM</td>
<td>25 FOOT SEMI-BALLOON TRAWL, 5 MINUTE TOW, 1/2 INCH COD LINER</td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF DIMERSAL FISH</td>
<td>WATER</td>
<td>KEY</td>
<td>SPECIES PER SAMPLE</td>
<td>137 OBS</td>
<td></td>
<td>BOTTOM</td>
<td>25 FOOT SEMI-BALLOON TRAWL, 5 MINUTE TOW, 1/2 INCH COD LINER</td>
</tr>
<tr>
<td>LENGTH OF PELAGIC FISH</td>
<td>WATER</td>
<td>TOTAL LENGTH</td>
<td>MM</td>
<td>137 OBS</td>
<td></td>
<td>BOTTOM</td>
<td>FREQUENCY, MEAN, UP TO 50 FISH PER SPECIES</td>
</tr>
<tr>
<td>LENGTH OF DEMERSAL FISH</td>
<td>WATER</td>
<td>TOTAL LENGTH</td>
<td>MM</td>
<td>137 OBS</td>
<td></td>
<td>BOTTOM</td>
<td>FREQUENCY, MEAN, UP TO 50 FISH PER SPECIES</td>
</tr>
</tbody>
</table>
PROJECTS:
A BIOLICAL STUDY OF BALTIMORE HARBOR

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, U.S., CHESAPEAKE BAY, PATAPSCO RIVER, CHESTER RIVER, BALTIMORE HARBOR, MARYLAND

ABSTRACT:
ANALYSIS OF BLUE CRABS FOUND IN THE VICINITY OF BALTIMORE HARBOR. DATA COMPARED TO PARALLEL INFORMATION FROM CHESTER RIVER. FILE INCLUDES ABUNDANCE, SIZE AND SEX RATIO. TRAWL AND MODIFIED OYSTER DREDGE USED AS SAMPLING GEAR.

(NRI REFERENCE NUMBER 71-76 FINAL REPORT)

DATA AVAILABILITY:
WRITTEN REQUEST

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
REPORTS
PART 4 OF A 120 PAGE REPORT

FUNDING:
MARYLAND DEPARTMENT OF NATURAL RESOURCES

INVENTORY:
PUBLICATIONS:

CONTACT:
LIBRARIAN 301 326 4281
CHESAPEAKE BIOLOGICAL LABORATORY
OLOMONS MARYLAND USA 20688

GRID LOCATOR (LAT):
730796

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>144 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>144 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG C</td>
<td>288 OBS</td>
<td></td>
<td></td>
<td>SURFACE AND BOTTOM RS 5-3</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PART PER THOUSAND</td>
<td>288 OBS</td>
<td></td>
<td>SURFACE AND BOTTOM RS 5-3</td>
<td></td>
</tr>
<tr>
<td>COUNT OF</td>
<td>BOTTOM</td>
<td>VISUAL</td>
<td>NUMBER PER SAMPLE</td>
<td>288 OBS</td>
<td></td>
<td>25 FOOT TRAWL AND MODIFIED 42 INCH OYSTER DREDGE ALL CRABS LENGTH</td>
<td></td>
</tr>
<tr>
<td>BENTHIC ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LENGTH OF</td>
<td>BOTTOM</td>
<td>DIRECT</td>
<td>0 PT 5 MM CARAPACE WIDTH</td>
<td>288 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENTHIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIMALS</td>
<td>WATERS</td>
<td>VISUAL</td>
<td>NUMBER MALE AND FEMALE, ADULT AND JUVENILE FEET</td>
<td>288 OBS</td>
<td>OBS</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>SEX DETERMINATION</td>
<td></td>
<td></td>
<td>UNCORRECTED SOUNDING DEPTH BASED ON 4800 FT/SEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTTOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N OF BENTHIC ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLUE CRABS - BALTIMORE HARBOR (CONT.)

REMARKS:

FREQUENCY:

BACTERIAL COUNTS TAKEN AT CBL PIER, SHELLFISH HATCHERY AND HORN POINT, 31 JULY - 5 SEPT 1973

DATA COLLECTED: JULY 1973 TO SEPTEMBER 1973

RECEIVED: APRIL 29, 1974

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:
BACTERIAL COUNTS WERE MADE ON WATER SAMPLES OBTAINED WEEKLY FROM THREE LOCATIONS NEAR SOLOMONS MARYLAND FOR FIVE WEEKS DURING SUMMER OF 1973 (DATA REPORT CBL REF NO. 73-104)

DATA AVAILABILITY:
WRITTEN REQUEST

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
ONE 12 PAGE UNPUBLISHED DATA REPORT

FUNDING:
STATE OF MARYLAND

INVENTORY:

PUBLICATIONS:

CONTACT:
LIBRARIAN 301 326 4281 X66
CHESAPEAKE BIOLOGICAL LABORATORY
SOLOMONS MARYLAND USA 20688

GRID LOCATOR (LAT):
730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>3</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>5</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td>MPN/100 ML</td>
<td>100</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOTTOM</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
- NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, EASTERN SHORE, VIRGINIA TIDAL TRIBUTARIES

ABSTRACT:
- BIOLOGICAL DATA INCLUDING VARIOUS BACTERIOLOGICAL ANALYSES AND HYDROGRAPHIC DATA ARE OBTAINED FROM SELECTED STATIONS ALONG THE TIDAL COASTLINE OF VIRGINIA AT MONTHLY INTERVALS. HISTORIC DATA GOES BACK TO 1925 FOR SOME STATIONS AT INTERVALS RANGING FROM MONTHS TO YEARS. THE INFORMATION IS OBTAINED AS PART OF THE SANITARY SURVEY WHICH MONITORS THE FITNESS OF VIRGINIA TIDAL AREAS FOR OBTAINING SHELLFISH FOR DIRECT MARKETING.

DATA AVAILABILITY:
- GENERALLY AVAILABLE TO ANY CITIZEN OR AGENCY IN THE COMMONWEALTH UPON DECISION OF THE DIRECTOR

PLATFORM TYPES:
- FIXED STATION

ARCHIVE MEDIA:
- DATA SHEETS
- 6 FILE CABINET DRAWERS OF DATA SHEETS

FUNDING:
- VIRGINIA DEPARTMENT OF HEALTH

INVENTORY:

CONTACT:
- CLOYDE W. WILEY, DIRECTOR 804 770 7937
- BUREAU OF SHELLFISH SANITATION
- JAMES MADISON BLDG., 109 GOVERNOR STREET
- RICHMOND VIRGINIA USA 23219

GRID LOCATOR (LAT): 730776 730766 730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>4000</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>75000</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE SHORELINE OF VIRGINIA HAS BEEN DIVIDED INTO 107 AREAS AND EACH OF THESE AREAS CONTAIN A NUMBER OF STATIONS MONTHLY SINCE 1972; QUARTERLY
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td>MPN</td>
<td>75000 OBS</td>
<td>1 TO 5 IN</td>
<td>SURFACE</td>
<td>SINCE 1969; VARIOUS INTERVALS FROM MONTHS TO YEARS DEPENDING ON AREA AND STATION BEFORE 1969; 1 OBS PER STATION FOR TOTAL COLIFORM DATING BACK TO 1925; FECAL COLIFORM DATING BACK TO APPROXIMATELY 1964; FECAL STREPTOCOCCI MEASURED SINCE 1972 IN ONLY THOSE AREAS WHICH SHOWED HIGH COLIFORM COUNTS</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>VARIOUS</td>
<td>DEG F</td>
<td>20000 OBS</td>
<td>1 TO 5 IN</td>
<td>SURFACE</td>
<td>MONTHLY SINCE 1972; QUARTERLY SINCE 1969; VARIOUS INTERVALS FROM MONTHS TO YEARS DEPENDING ON AREA AND STATION BEFORE 1969</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PPT</td>
<td>20000 OBS</td>
<td>1 TO 5 IN</td>
<td>SURFACE</td>
<td>MONTHLY SINCE 1972; QUARTERLY SINCE 1969; VARIOUS INTERVALS FROM MONTHS TO YEARS DEPENDING ON AREA AND STATION BEFORE 1969</td>
</tr>
<tr>
<td>WEATHER</td>
<td>AIR</td>
<td>VISUAL</td>
<td>TYPE</td>
<td>10000 OBS</td>
<td>1 TO 5 IN</td>
<td>EACH AREA</td>
<td>ALSO INCLUDED ARE WIND SPEED AND DIRECTION ESTIMATES AND TIDAL DIRECTION AND STAGE ESTIMATES</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, EASTERN SHORE, VIRGINIA TIDAL TRIBUTARIES

ABSTRACT:
THE TIDAL SHORELINE OF VIRGINIA HAS BEEN DIVIDED INTO 107 AREAS AND EVERY PROPERTY WITHIN THE WATERSHED OF EACH AREA IS VISITED BY INSPECTORS TO DETERMINE SOURCES OF WASTE WHICH MIGHT CONTRIBUTE TO SURFACE WATER POLLUTION. EACH AREA WILL BE SURVEYED AT SIX YEAR INTERVALS. HISTORICALLY THE SURVEY WORK WAS LESS FREQUENT, AND THE ENTIRE WATERSHED WAS NOT SURVEYED.

DATA AVAILABILITY:
GENERALLY AVAILABLE TO ANY CITIZEN OR AGENCY IN THE COMMONWEALTH UPON DECISION OF THE DIRECTOR

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
DATA SHEETS
6 FILE CABINET DRAWERS OF DATA SHEETS

FUNDING:
VIRGINIA DEPARTMENT OF HEALTH

INVENTORY:

PUBLICATIONS:

CONTACT:
CLOYDE W. WILEY, DIRECTOR 804 770 7937
BUREAU OF SHELLFISH SANITATION
JAMES MADISON BLDG., 109 GOVERNOR STREET
RICHMOND VIRGINIA USA 23219

GRID LOCATOR (LAT):
730776 730766 730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>107 STATIONS</td>
<td></td>
<td></td>
<td>THE TIDAL SHORELINE OF VIRGINIA HAS BEEN DIVIDED INTO 107 SECTIONS WITH EACH SECTION BEING A STATION HISTORICALLY, EACH SECTION OF SHORELINE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>300 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND USE LAND VISUAL POLLUTION SOURCE CATEGORY</td>
<td>100000 OBS</td>
<td>INFREQUENTLY, FROM 1973 ON EACH AREA WILL BE SURVEYED AT SIX YEAR INTERVALS EACH PROPERTY WITHIN THE WATERSHED OF EACH SECTION OF SHORELINE IS VISITED BY INSPECTORS AND EACH SOURCE OF WASTE WHICH MIGHT CONTRIBUTE TO SURFACE WATER POLLUTION IS NOTED AND EVALUATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EFFECTS OF POWER PLANTS IN THE LOWER DELAWARE RIVER ESTUARY
DATA COLLECTED: JULY 1968 TO OCTOBER 1970

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., DELAWARE RIVER

ABSTRACT:
To determine the effects of thermal discharges by three power plants located on the Delaware River between Trenton N.J. and the PA. - DEL. LINE, twelve sampling stations were used to obtain water samples for zooplankton, phytoplankton and bacterial counts and measurement of certain nutrients.

DATA AVAILABILITY:
REPORTS AVAILABLE ONLY FROM CONTRACT AGENCY

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
TWO REPORTS: ONE 25 PAGES AND ONE 50 PAGES

FUNDING:
INSTITUTE FOR THE DEVELOPMENT OF RIVERINE AND ESTUARINE SYSTEMS

CONTACT:
DR. CLYDE E. GOULDEN 215 667 3700
THE ACADEMY OF NATURAL SCIENCES
NINETEENTH AND THE PARKWAY
PHILADELPHIA PENNSYLVANIA USA 19103

GRID LOCATOR (LAT):
730795

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>12</td>
<td>STATIONS</td>
<td></td>
<td>4 SAMPLING STATIONS LOCATED NEAR EACH OF 3 POWER PLANTS</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMO</td>
<td>266</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>23 MONTHLY SAMPLINGS AT 12 STATIONS</td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF PHYTOPLANKTON</td>
<td>WATER</td>
<td>KEY</td>
<td>PRESENCE OR ABSENCE BY SPECIES</td>
<td>266</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE AND BOTTOM 20 LITERS OF WATER PUMPED THROUGH A NO.</td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>WATER</td>
<td>KEY</td>
<td>PRESENCE OR ABSENCE BY SPECIES</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td>SURFACE AND BOTTOM</td>
<td>20 MESH NET THEN FILTERED AND COUNTED 20 LITERS OF WATER PUMPED THROUGH A NO. 20 MESH NET THEN FILTERED AND COUNTED TOTAL BACTERIA AND COLIFORM BACTERIA</td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>WATER</td>
<td>VISUAL</td>
<td>PLATE COUNT</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td>TOTAL BACTERIA AND COLIFORM BACTERIA</td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>PPM</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>PPM</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>PPM</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen Gas</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical Oxygen Demand</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG C</td>
<td>266 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHEMICAL, BACTERIOLOGICAL AND PHYSICAL STUDY ON THE CHESAPEAKE BAY IN THE VICINITY OF CALVERT CLIFFS, MARYLAND

DATA COLLECTED: JANUARY 1969 TO PRESENT

RECEIVED: AUGUST 09, 1974

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:
WATER SAMPLES OBTAINED MONTHLY FROM STATIONS IN THE VICINITY OF THE PROPOSED NUCLEAR GENERATING STATION AT CALVERT CLIFFS, MARYLAND ARE ANALYSED FOR A NUMBER OF CHEMICAL, BACTERIOLOGICAL AND PHYSICAL PARAMETERS. THE RESULTS OF THESE ANALYSES ARE AVAILABLE FROM THE BALTIMORE GAS AND ELECTRIC COMPANY IN THE FORM OF YEARLY CONTRACT REPORTS BY THE PHILA. ACADEMY. (CONTRACT WORK DONE FOR THE BALTIMORE GAS AND ELECTRIC COMPANY)

DATA AVAILABILITY:
REPORTS AVAILABLE ONLY FROM CONTRACT AGENCY

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
YEARLY REPORTS EACH APPROXIMATELY 100 PAGES

FUNDING:
BALTIMORE GAS AND ELECTRIC COMPANY

INVENTORY:

PUBLICATIONS:

CONTACT:
IR. CLYDE E. GOULDEN 215 567 3700
THE ACADEMY OF NATURAL SCIENCES
NINETEENTH AND THE PARKWAY
PHILADELPHIA PENNSYLVANIA USA 19103

GRID LOCATOR (LAT):
730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>5 STATIONS</td>
<td></td>
<td></td>
<td>LOCATED ALONG 30 FT DEPTH CONTOUR NEAR SHORE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG C</td>
<td>700 OBS</td>
<td>MONTHLY</td>
<td></td>
<td>SURFACE AND BOTTOM</td>
</tr>
<tr>
<td>CHLORIDE</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700 OBS</td>
<td>MONTHLY</td>
<td></td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>SPECIFIC ION ELECTRODE</td>
<td>PH UNITS</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BECKMAN ZERO-MATIC METER</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PPT</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>SILICATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>Sulfate</td>
<td>WATER</td>
<td>GRAVIMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>PHOSPHATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>NITRATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>NITRITE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>STANDARD METHODS PROCEDURE</td>
</tr>
<tr>
<td>HARDNESS</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>TOTAL, CALCIUM, MANGNEISUM</td>
</tr>
<tr>
<td>PHENOLPHALEIN</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>CO3 ALKALINITY</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>TOTAL ALKALIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TION</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>BIOCHEMICAL</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>OXYGEN DEMAND</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>DISSOLVED</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>OXYGEN GAS</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>LIGHT ATTENUAT</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>TION N</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>CARBONATE</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>ALKALINITY</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
<tr>
<td>BICARBONATE</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>700</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>MANGNEISUM METHODS PROCEDURE</td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>WATER</td>
<td>Visual</td>
<td>Number per 100 ML</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>Methyl purple Alkalinity</td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>WATER</td>
<td>Visual</td>
<td>Number per 100 ML</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>Total Coliform and presumptive Coliform</td>
</tr>
<tr>
<td>Iron</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Manganese</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Potassium</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Strontium</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Cobalt</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Copper</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Nickel</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Lead</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Zinc</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Calcium</td>
<td>WATER</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Cadmium</td>
<td>WATER</td>
<td>Colorimetry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
<tr>
<td>Boron</td>
<td>WATER</td>
<td>Colorimetry</td>
<td>PPM</td>
<td>350 OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
<td>BAUSCH AND LOMB SPECTRONIC 100</td>
</tr>
</tbody>
</table>
BENTHIC SURVEY FOR SOFT-SHELL CLAM POPULATIONS NEAR CALVERT CLIFFS MARYLAND
DATA COLLECTED: AUGUST 1973 TO AUGUST 1973
RECEIVED: SEPTEMBER 04, 1974

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:
OFFSHORE AREAS IN THE CHESAPEAKE BAY NEAR THE SITE OF THE PROPOSED CALVERT CLIFFS NUCLEAR GENERATING STATION WERE SURVEYED BY HYDRAULIC DREDGE TO LOCATE CLAM BEDS WHICH MIGHT POSSIBLY BE AFFECTED BY OPERATIONS OF THE POWER PLANT. RESULTS ARE AVAILABLE IN A 10 PAGE REPORT. DATA FROM THIS STUDY IS COMPARED TO A 1971 STUDY OF THE SAME AREA, WHICH IS ALSO AVAILABLE BUT CONTAINS NO DATA, AND AN INCREASE IN THE NUMBER OF SOFT SHELL CLAMS IS EVIDENT.
(CONTRACT WORK DONE FOR THE BALTIMORE GAS AND ELECTRIC COMPANY)

DATA AVAILABILITY:
REPORTS AVAILABLE ONLY FROM CONTRACT AGENCY

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
ONE 10 PAGE REPORT

FUNDING:
THE BALTIMORE GAS AND ELECTRIC COMPANY

INVENTORY:

PUBLICATIONS:

CONTACT:
CR. CLYDE E. GOULDEN 215 567 3700
THE ACADEMY OF NATURAL SCIENCES
KINTEENTH AND THE PARKWAY
PHILADELPHIA PENNSYLVANIA USA 19103

GRID LOCATOR (LAT):
730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP</td>
<td>18</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>18</td>
<td>OBS</td>
<td>ONCE</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>COUNT OF</td>
<td>BOTTOM</td>
<td>VISUAL</td>
<td>NUMBER INDIVIDUALS</td>
<td>18</td>
<td>OBS</td>
<td>ONCE</td>
<td></td>
</tr>
<tr>
<td>BENTHIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOFT SHELL CLAMS ONLY: OBTAINED WITH 32 FT COMMERCIAL DREDGE WITH 3 FT HEAD; 5 MIN DREDGE, 4 TIMES AT EACH
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphometric Measure of Benthic Animals</td>
<td>Bottom</td>
<td>Direct</td>
<td>Size Range</td>
<td>18</td>
<td>OBS</td>
<td>Once</td>
<td>Station greater than 57 mm, less than 57 mm; soft shell clams only</td>
</tr>
<tr>
<td>Dissolved Oxygen Gas</td>
<td>Water</td>
<td>Titration</td>
<td>PPM</td>
<td>18</td>
<td>OBS</td>
<td>Once</td>
<td>Bottom</td>
</tr>
<tr>
<td>Salinity</td>
<td>Water</td>
<td>Titration</td>
<td>PPT</td>
<td>18</td>
<td>OBS</td>
<td>Once</td>
<td>Bottom</td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>Water</td>
<td>Visual</td>
<td>Various</td>
<td>18</td>
<td>OBS</td>
<td>Once</td>
<td>Bottom</td>
</tr>
</tbody>
</table>

Fecal Coliform, number per 100 g; total coliform, number per g
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:
TO DETERMINE THE ECOSYSTEM STRUCTURE AND ITS ECOLOGICAL CHARACTERISTICS, PARTICULARLY DIVERSITY, IN CERTAIN SELECTED, SHALLOW-WATER AREAS IN THE VICINITY OF THE CALVERT CLIFFS NUCLEAR GENERATING STATION A BAY SURVEY IS BEING CARRIED OUT INCLUDING BIOLOGICAL, CHEMICAL, PHYSICAL, AND BACTERIOLOGICAL STUDIES OF THE WATER. THE STUDY IS TO DETERMINE A BASELINE PICTURE OF CHESAPEAKE BAY CONDITIONS BEFORE PLANT OPERATIONS BEGIN.

DATA AVAILABILITY:
REPORTS AVAILABLE ONLY FROM CONTRACT AGENCY

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS FIVE 50 PAGE YEARLY REPORTS

FUNDING:
Baltimore Gas and Electric Company

INVENTORY:

CONTACT:
DR. CLYDE E. GOULDEN 215 567 3700
THE ACADEMY OF NATURAL SCIENCES
NINETEENTH AND THE PARKWAY
PHILADELPHIA PENNSYLVANIA USA 19103

GRID LOCATOR (LAT):
730786

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT TIME</td>
<td>MAP</td>
<td>40 OBS</td>
<td>TWO TIMES PER YEAR</td>
<td></td>
<td>SHORE ZONE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td></td>
<td></td>
<td></td>
<td>ALGAE OBTAINED BY VARIED TECHNIQUES</td>
</tr>
<tr>
<td>SPECIES DETERMINATION</td>
<td>BOTTOM</td>
<td>KEY</td>
<td>NUMBER OF SPECIES PER CLASS</td>
<td>40 OBS</td>
<td>TWO TIMES PER YEAR</td>
<td></td>
<td>SHORE ZONE</td>
</tr>
<tr>
<td>OF BENTHIC PLANTS</td>
<td>WATER</td>
<td>KEY</td>
<td>SPECIES, CLASS, TYPE</td>
<td>40 OBS</td>
<td>TWO TIMES PER YEAR</td>
<td></td>
<td>PROTOZOA OBTAINED BY</td>
</tr>
</tbody>
</table>

RECEIVED: SEPTEMBER 04, 1974
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF MICROBIOTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION</td>
<td>BOTTOM</td>
<td>KEY</td>
<td>NUMBER OF SPECIES PER STATION</td>
<td>40 OBS</td>
<td>TWICE PER YEAR</td>
<td>SHORE ZONE</td>
<td>COLLECTING VARIOUS SUBSTRATES THAT WOULD PROVIDE MICROHABITATS; PLANKTON TOWS ALSO USED VARIOUS COLLECTING MECHANISMS USED TO SAMPLE ALL BOTTOM TYPES 50 FT BAG SEINE WITH ONE-HALF INCH MESH USED; DENDROGRAMS OF SPECIES ASSOCIATIONS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER A ONE WEEK PERIOD TWICE A YEAR; MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER A ONE WEEK PERIOD TWICE A YEAR; MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED</td>
</tr>
<tr>
<td>OF BENTHIC ANIMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION</td>
<td>WATER</td>
<td>KEY</td>
<td>NUMBER OF SPECIES PER STATION</td>
<td>40 OBS</td>
<td>TWICE PER YEAR</td>
<td>SHORE ZONE</td>
<td></td>
</tr>
<tr>
<td>OF DEMERSAL FISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ALKALINITY WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td>SURFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT ATTENUATION WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td>SURFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORIDE WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td>SURFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>400 obs</td>
<td>DAILY FOR ONE</td>
<td>SURFACE WEEK</td>
<td>A ONE WEEK PERIOD TWICE A YEAR: MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER A ONE WEEK PERIOD TWICE A YEAR: MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED</td>
</tr>
<tr>
<td>BIOCHEMICAL OXYGEN DEMAND</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>400 obs</td>
<td>DAILY FOR ONE</td>
<td>SURFACE WEEK</td>
<td>A ONE WEEK PERIOD TWICE A YEAR: MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED</td>
</tr>
<tr>
<td>SULFATE</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>400 obs</td>
<td>DAILY FOR ONE</td>
<td>SURFACE WEEK</td>
<td>A ONE WEEK PERIOD TWICE A YEAR: MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED</td>
</tr>
<tr>
<td>SILICATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PPM</td>
<td>400 obs</td>
<td>DAILY FOR ONE</td>
<td>SURFACE WEEK</td>
<td>A ONE WEEK PERIOD TWICE A YEAR: MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>BICARBONATE</td>
<td>WATER</td>
<td>CALCULATED</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td></td>
<td>A ONE WEEK PERIOD TWICE A YEAR; MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER A ONE WEEK PERIOD TWICE A YEAR; MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER A ONE WEEK PERIOD TWICE A YEAR; MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER A ONE WEEK PERIOD TWICE A YEAR; MEAN STD ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED SAMPLES OBTAINED AT 5 HIGH AND 5 LOW TIDES AT 4 STATIONS OVER</td>
</tr>
<tr>
<td>ALKALINITY</td>
<td>WATER</td>
<td>CALCULATED</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBONATE</td>
<td>WATER</td>
<td>CALCULATED</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALKALINITY</td>
<td>WATER</td>
<td>CALCULATED</td>
<td>PPM</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PH UNITS</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td>WATER</td>
<td>IN SITU</td>
<td>MICROMHOS</td>
<td>400 OBS</td>
<td>DAILY FOR ONE WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDUCTIVITY</td>
<td></td>
<td>CONDUCTIVITY CELL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>Water</td>
<td>Atomic Absorption PPM</td>
<td>400</td>
<td>OBS</td>
<td>Daily for one surface week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>Water</td>
<td>Atomic Absorption PPM</td>
<td>400</td>
<td>OBS</td>
<td>Daily for one surface week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Water</td>
<td>Atomic Absorption PPM</td>
<td>400</td>
<td>OBS</td>
<td>Daily for one surface week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Water</td>
<td>Atomic Absorption PPM</td>
<td>400</td>
<td>OBS</td>
<td>Daily for one surface week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Sodium: Obtained at 5 high and 5 low tides at 4 stations over a one week period twice a year; mean std error of mean for high and low tide samplings presented.
- Potassium: Obtained at 5 high and 5 low tides at 4 stations over a one week period twice a year; mean std error of mean for high and low tide samplings presented.
- Iron: Obtained at 5 high and 5 low tides at 4 stations over a one week period twice a year; mean std error of mean for high and low tide samplings presented.
- Manganese: Obtained at 5 high and 5 low tides at 4 stations over a one week period twice a year; mean std error of mean for high and low tide samplings presented.
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>WATER</td>
<td>Non-Reversing</td>
<td>PPM</td>
<td>400 OBS</td>
<td>Daily for one week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>WATER</td>
<td>Visual</td>
<td>Colonies per volume sample</td>
<td>400 OBS</td>
<td>Daily for one week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>WATER</td>
<td>Colorimetry</td>
<td>PPM</td>
<td>400 OBS</td>
<td>Daily for one week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>WATER</td>
<td>Colorimetry</td>
<td>PPM</td>
<td>400 OBS</td>
<td>Daily for one week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>WATER</td>
<td>Colorimetry</td>
<td>PPM</td>
<td>400 OBS</td>
<td>Daily for one week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>Water</td>
<td>Colorimetry</td>
<td>PPM</td>
<td>400</td>
<td>Obs.</td>
<td>DAILY FOR ONE</td>
<td>SURFACE WEEKS</td>
</tr>
<tr>
<td>Total Solids</td>
<td>Water</td>
<td>Dry Weight</td>
<td>PPM</td>
<td>400</td>
<td>Obs.</td>
<td>DAILY FOR ONE</td>
<td>SURFACE WEEKS</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERROR OF MEAN FOR HIGH AND LOW TIDE SAMPLINGS PRESENTED
00352E

MICROBIOLOGICAL ANALYSIS OF ESTUARINE ENVIRONMENTS
DATA COLLECTED: JANUARY 1964 TO PRESENT

PAGE 01

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., MARYLAND, CHESAPEAKE BAY

ABSTRACT:
ANALYSIS OF CHESAPEAKE BAY SEDIMENTS FOR BACTERIA AND VIRAL COMPONENTS WITH ANCILLARY DATA ON WATER TEMPERATURE, D.O., SALINITY, AND NUTRIENTS.

DATA AVAILABILITY:
COST OF REPRODUCTION IF SPECIFIC REPRINTS ARE NOT AVAILABLE, OR FOR TRANSFER OF RAW DATA

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
MAGNETIC TAPE DIGITAL; PUNCHED CARDS
10,000 PUNCHED CARDS; 1 MAGNETIC TAPE

FUNDING:
UNIVERSITY OF MARYLAND

INVENTORY:

PUBLICATIONS:
APPROXIMATELY 160 PAPERS HAVE BEEN PUBLISHED AND REPRINTS OF MOST ARE AVAILABLE, WRITE DR. COLWELL

CONTACT:
DR. R.R. COLWELL 301 454 5376
UNIVERSITY OF MARYLAND
DEPARTMENT OF MICROBIOLOGY
COLLEGE PARK MARYLAND USA 20742

GRID LOCATOR (LAT):
730796 730796

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND LONGITUDE</td>
<td>20</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMDH</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>SPECIES COUNT OF MICROBIOTA</td>
<td>SEDIMENT</td>
<td>KEY</td>
<td>NUMBER PER ML</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>SPECIES COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>KEY</td>
<td>NUMBER PER ML</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>MICROBIOTA</td>
<td>WATER</td>
<td>REVERSING</td>
<td>DEG C</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMOMETER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>CONDUCTIVITY</td>
<td>PPT</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>NITROGEN</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>GRAMS PER LITER</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>PHOSPHORUS</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>GRAMS PER LITER</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>DISSOLVED</td>
<td>WATER</td>
<td>TITRATION</td>
<td>GRAMS PER LITER</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>DISSOLVED</td>
<td>WATER</td>
<td>WET COMBUSTION/GAS DISPLACEMENT</td>
<td>GRAMS PER LITER</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>OXYGEN GAS</td>
<td>WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON</td>
<td>WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>AIR</td>
<td></td>
<td>DEG C</td>
<td>20</td>
<td>OBS</td>
<td>MONTHLY</td>
<td></td>
</tr>
</tbody>
</table>
OIL SPILL STUDY
DATA COLLECTED: OCTOBER 1973 TO OCTOBER 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE BAY

ABSTRACT:
MISSION W255, FLIGHT 01 WAS ACCOMPLISHED ON 16 OCTOBER, 1973. THE OBJECTIVE OF THE FLIGHT WAS TO OBTAIN PHOTOGRAPHIC IMAGERY OF AN OIL SPILL FOR USE IN LOCATING THE POSITION OF THE AIRCRAFT IN RESPECT TO THE DATA TAKEN FROM THE MICROWAVE RADIOMETER. (MISSION NUMBER W255 FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
12 PHOTOPRINTS

FUNDING:
NASA

INVENTORY:

PUBLICATIONS:

CONTACT:
J. HOLLINGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND</td>
<td>12</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>12</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>MICROWAVE SENSOR</td>
<td>FROM AIRCRAFT</td>
<td>12</td>
<td>STATIONS</td>
<td>1500 FEET</td>
<td>152 AND FOUR-TENTHS MM</td>
</tr>
<tr>
<td>FOCAL LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FOCAL LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE BAY

ABSTRACT:
MISSION W259, FLIGHT 01 WAS ACCOMPLISHED ON 12 DECEMBER 1973. THE OBJECTIVE OF THE FLIGHT WAS TO OBTAIN AERIAL IMAGERY IN THE DARK GREEN, RED, AND NEAR INFRARED WAVE LENGTHS FOR USE IN STUDYING WATER POLLUTION IN THE YORK RIVER AND CHESAPEAKE BAY BRIDGE TUNNEL AREAS OF VIRGINIA.
(MISSION NUMBER W259 FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
33 PHOTOPRINTS

FUNDING:
NASA

INVENTORY:

PUBLICATIONS:

CONTACT:
G. CREW 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730776

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND</td>
<td>2</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LONGITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>2</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>FROM AIRCRAFT</td>
<td>2</td>
<td>STATIONS</td>
<td>17,500 FEET</td>
<td>40 MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
GIL DISPERSION STUDY I
DATA COLLECTED: FEBRUARY 1974 TO FEBRUARY 1974
RECEIVED: DECEMBER 01, 1975

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA

ABSTRACT:
MISSION 263, FLIGHT 01 WAS ACCOMPLISHED ON 4 FEBRUARY, 1974. THE OBJECTIVE OF THE FLIGHT WAS TO STUDY OIL DISPERSION PATTERNS AND SPILL THICKNESS USING AERIAL PHOTOGRAPHY.
(MISSION 263 FLT 1)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
12 PHOTOPRINTS

FUNDING:
NASA

INVENTORY:

PUBLICATIONS:

CONTACT:
G. CREW 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730765

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND LONGITUDE</td>
<td>4 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>4 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM AIRCRAFT</td>
<td>YMDHM</td>
<td>4 STATIONS</td>
<td></td>
<td>1,500 FEET AND 2,500 FEET</td>
<td>152 AND FOUR-TENTHS MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
OIL DISPERSION STUDY II
DATA COLLECTED: FEBRUARY 1974 TO FEBRUARY 1974

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA

ABSTRACT:
MISSION W263, FLIGHT 02 WAS ACCOMPLISHED ON 5 FEBRUARY 1974. THE OBJECTIVE OF THE FLIGHT WAS TO ACT AS A FOLLOW UP TO MISSION W263, FLIGHT 01'S OIL SPILL PHOTOGRAPHS.
(MISSION W263 FLT 2)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS

FUNDING:
NASA

INVENTORY:

PUBLICATIONS:

CONTACT:
J. HOLLINGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730765

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND</td>
<td>19</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LONGITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>19</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>FROM AIRCRAFT</td>
<td>19</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,500 AND</td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000 FEET</td>
<td>TENTHS MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
WATER POLLUTION STUDY
DATA COLLECTED: JULY 1974 TO JULY 1974

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE BAY

ABSTRACT:
MISSION W257, FLIGHT 1 WAS ACCOMPLISHED ON 17 JULY, 1974. THE OBJECTIVE OF THE FLIGHT WAS TO STUDY WATER POLLUTION DETECTION TECHNIQUES WHICH INCORPORATE ANALYSIS OF MULTISPECTRAL AERIAL PHOTOGRAPHY.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
555 PHOTOPRINTS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
G. GREW 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730766 730775 730776

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHER.</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND</td>
<td>5</td>
<td>STATIONS</td>
<td></td>
<td>17,500 AND 40 MM AND 152</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>LONGITUDE</td>
<td>5</td>
<td>STATIONS</td>
<td></td>
<td>AND FOUR-TENTHS MM</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM</td>
<td>LATITUDE AND YMDHM</td>
<td>5</td>
<td>STATIONS</td>
<td>1,000 FEET</td>
<td>FOCAL LENGTHS</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., PENNSYLVANIA

ABSTRACT:
THIS IS AN ONGOING STUDY OF THE QUALITY OF SURFACE WATERS OF PENNSYLVANIA. THERE ARE APPROXIMATELY 250 STATIONS FROM WHICH DATA ARE COLLECTED, MOST OF WHICH MONITOR STREAM DISCHARGE, TEMPERATURE, SPECIFIC CONDUCTIVITY AND DISSOLVED OXYGEN. IN ADDITION, ABOUT 200 STATIONS REPORT BIOCHEMICAL OXYGEN DEMAND, DISSOLVED CA, Mg, NA, K, CL, F, SULFATE, NITRATE, ORTHOPHOSPHATE, CARBON DIOXIDE, BICARBONATE, AND CARBONATE, AS WELL AS PH, ALKALINITY, HARDNESS, NONCARBONATE HARDNESS AND COLOR. ABOUT 50 STATIONS ADDITIONALLY MONITOR DISSOLVED SILICA, Fe AND Mn, CALIFORNIA AND STREPTOCI. SPOT CHECKS ARE MADE FOR SURFACTANTS, TURBIDITY, AND DISSOLVED AMMONIA, AL, AS, CO, CR, CU, PB, Hg, Ni, Zn AND A VARIETY OF PESTICIDES IN WATER AND SEDIMENTS. THE DATA ARE PRINTED ANNUALLY IN SUMMARY REPORTS. DETAILED DATA FROM MANY INDIVIDUAL STATIONS ARE AVAILABLE. (AVAILABLE AS ANNUAL REPORTS FOR ALL STATEWIDE MONITORS OR AS REPORTS FROM EACH STATION)

DATA AVAILABILITY:
ALSO IN ALL USGS OFFICIAL REPOSITORY LIBRARIES

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
300 PAGE INHOUSE REPORT

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
P. DEMARTE 717 782 4514
UNITED STATES GEOLOGICAL SURVEY
228 WALNUT STREET
HARRISBURG PENNSYLVANIA USA 17108

GRID LOCATOR (LAT):
730794 730795 730796 730797 730798 730799 740704 740705 740706 740707 740708 740709 740714 740715 740716 740717 740718 740719 740724 740725 740726 740727 740728 740729

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td></td>
<td>250 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>DEG C</td>
<td>250 STATIONS</td>
<td></td>
<td></td>
<td>MAP, VERBAL DESCRIPTION AND LATITUDE AND LONGITUDE GIVEN</td>
</tr>
<tr>
<td>DISSOLVED</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER</td>
<td>250 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>OXYGEN GAS ELECTRICAL</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>LITER</td>
<td>250</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDUCTIVITY</td>
<td></td>
<td></td>
<td>MICROMHOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOCHEMICAL OXYGEN DEMAND</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALCIUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SODIUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLUORIDE</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITRATE</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISSOLVED CARBON DIOXIDE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BICARBONATE ION</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ALKALINITY</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAC03 PER LITER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SULFATE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORIDE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARDNESS</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS CA AND MG PER LITER</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td>ALSO NONCARBONATE HARDNESS</td>
</tr>
<tr>
<td>COLOR</td>
<td>WATER</td>
<td>PLATINUM-COBALT</td>
<td>PH UNITS</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PH UNITS</td>
<td>200</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILICATE</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>50</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRON</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>50</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANGANESE</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>50</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBONATE ION</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>50</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>NUMBER PER 100 ML</td>
<td>50</td>
<td>STATIONS</td>
<td></td>
<td>IMMEDIATE COLIFORM, FECAL COLIFORM, AND STREPTOCOC CI</td>
</tr>
<tr>
<td>ORGANIC CARBON</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>50</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT ATTENUATION</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>JUTU</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>SURFACTANTS</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td>METHYLENE BLUE</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td>ACTIVE SUBSTANCE</td>
</tr>
<tr>
<td>ARSENIC</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADMIUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPPER</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAD</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERCURY</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICKEL</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINC</td>
<td>DISSOLVED</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMMONIA</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MILLIGRAMS AS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLOROPHYLL A</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>250</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDRIN</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORDANE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDD</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIELDREN</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDREN</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPTACHLOR</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINDANE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXAPHENE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILVEA</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>MICROGRAMS PER LITER</td>
<td>10</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIPID GEOCHEMISTRY OF DELAWARE SALT MARSH ENVIRONMENTS
DATA COLLECTED: DECEMBER 1972 TO NOVEMBER 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., DELAWARE TIDAL MARSH REGION

ABSTRACT:
DATA FROM THE EXAMINATION OF FREE FATTY ACIDS AND ALIPHATIC HYDROCARBONS IN A 4-METER CORE FROM THE GREAT SALT MARSH NEAR LEWES, DELAWARE AND IN ESTUARINE, TIDAL CREEK AND SURFACE MARSH SEDIMENTS ARE PRESENTED AND DISCUSSED IN REPORT FORM. THE SEDIMENT CORES ARE DIVIDED FOR ANALYSIS INTO 20 CM INTERVALS.

DATA AVAILABILITY:

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
97 PAGES

FUNDING:

INVENTORY:

PUBLICATIONS:
SWETLAND, P.J., 1975. LIPID GEOCHEMISTRY OF DELAWARE SALT MARSH ENVIRONMENTS. MASTER'S THESIS, UNIVERSITY OF DELAWARE, 97 P.

CONTACT:
PAUL J. SWETLAND 302 645 2869
GEOLOGY DEPARTMENT, UNIVERSITY OF DELAWARE
NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):
730785

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>8 STATIONS</td>
<td></td>
<td></td>
<td>3 DELAWARE BAY STATIONS, 2 BROADKILL RIVER STATIONS, 2 MARSH SURFACE STATIONS, 1 MARSH SEDIMENT CORE</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>8 OBS</td>
<td></td>
<td></td>
<td>DELAWARE BAY SAMPLES NOT ANALYZED</td>
</tr>
<tr>
<td>SAND FRACTION</td>
<td>SEDIMENT</td>
<td>SETTLING/WEIGHING</td>
<td>PERCENT BY WEIGHT</td>
<td>16 OBS</td>
<td></td>
<td></td>
<td>DELAWARE BAY</td>
</tr>
<tr>
<td>CLAY FRACTION</td>
<td>SEDIMENT</td>
<td>SETTLING/</td>
<td>PERCENT BY</td>
<td>16 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Sphere</td>
<td>Method</td>
<td>Units</td>
<td>Data Amount</td>
<td>Frequency</td>
<td>Height/Depth</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------------</td>
<td>------------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Silicate</td>
<td>Sediment</td>
<td>Weighing</td>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td>Samples not analyzed</td>
</tr>
<tr>
<td>Aliphatic Hydrocarbons</td>
<td>Sediment</td>
<td>Settling/Weighing</td>
<td>Percent by weight</td>
<td>16</td>
<td>OBS</td>
<td></td>
<td>Delaware Bay samples not analyzed</td>
</tr>
<tr>
<td>Fatty Acids</td>
<td>Sediment</td>
<td>Column Chromatography</td>
<td>Micrograms per gm</td>
<td>27</td>
<td>OBS</td>
<td></td>
<td>Marsh Core sample not included</td>
</tr>
<tr>
<td>Aliphatic Hydrocarbons</td>
<td>Sediment</td>
<td>Gas Chromatography</td>
<td>Percent by volume of carbon number species per total species</td>
<td>270</td>
<td>OBS</td>
<td></td>
<td>Marsh Core sample not included</td>
</tr>
<tr>
<td>Fatty Acids</td>
<td>Sediment</td>
<td>Gas Chromatography</td>
<td>Percent by volume of carbon number species per total species</td>
<td>176</td>
<td>OBS</td>
<td></td>
<td>Marsh Core sample not included</td>
</tr>
<tr>
<td>Sediment Structure</td>
<td>Sediment</td>
<td>Visual</td>
<td>Descriptive word ranges</td>
<td>1</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA COLLECTED: JULY 1962 TO PRESENT

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, DELAWARE BAY, LOWER BAY ESTUARINE REGION, MARCUS HOOK PENNSYLVANIA TO TRENTON, NEW JERSEY

ABSTRACT:

DATA AVAILABILITY:
WITH PERMISSION OF WATER COMMISSIONER, OR ON IBM CARDS AT COST OF REPRODUCTION

PLATFORM TYPES:
SHIP

ARCHIVE MEDIA:
REPORTS; DATA SHEETS
500 PAGE REPORT OR 9 PAGE SUMMARY

FUNDING:
PHILADELPHIA WATER DEPT

INVENTORY:
PUBLIC

CONTACT:
DENNIS D. BLAIR 215 606 1776
PHILADELPHIA WATER DEPT., RESEARCH AND DEVELOPMENT DIV.
1270 MSB 15TH AND JFK BLVD
PHILADELPHIA PENNSYLVANIA USA 19107

GRID LOCATOR (LAT):
7307954285 7307950058 7307950078 7307950084 7307950085 7307950086 7307950093 7307951005 7307950120 7307950200 7407040478 7407040465 7407040528 7407040523 7407040544 7407040546 7407040551 7407041415 7407041436 7407050002 7407050003 7407050011

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>DMS</td>
<td>23</td>
<td>STATIONS</td>
<td>1 STATION/WK</td>
<td>ACCURACY WITHIN</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td></td>
<td>23</td>
<td>STATIONS</td>
<td>1 STATION/WK</td>
<td></td>
</tr>
<tr>
<td>TIDAL PHASE</td>
<td>WATER</td>
<td>TABLES</td>
<td></td>
<td>23</td>
<td>STATIONS</td>
<td>1 STATION/WK</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG C</td>
<td>23</td>
<td>STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>PH METER</td>
<td>STANDARD PH UNITS</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>TOTAL ALKALINITY</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L AS CACO3</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>LIGHT SCATTERING</td>
<td>WATER</td>
<td>MULTISPECTRAL SCANNER</td>
<td>JACKSON TURBIDITY UNITS</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>ELECTRICAL CONDUCTIVITY</td>
<td>WATER</td>
<td>IN SITU CONDUCTIVITY CELL/TEMPERATURE CORRECTED</td>
<td>COLORIMETRY</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>SURFACTANTS</td>
<td>WATER</td>
<td>FILTRATION</td>
<td>COLONIES PER 100 MG</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>REPORTED AS TOTAL COLIFORMS Fecal Coliforms, and Fecal Streptococci</td>
</tr>
<tr>
<td>CHEMICAL OXYGEN</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>BIOCHEMICAL OXYGEN</td>
<td>WATER</td>
<td>SPECIFIC ION ELECTRODE</td>
<td>MG/L</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>FILTERATION</td>
<td>COLONIES</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>REPORTED AS TOTAL COLIFORMS Fecal Coliforms, and Fecal Streptococci</td>
</tr>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>MERCURY</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L AS N</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>CHLORIDE</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>MG/L</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>MG/L AS PO4</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>UNREACTIVE PHOSPHATE</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>MG/L AS PO4</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>WATER</td>
<td>SPECIFIC ION ELECTRODE</td>
<td>MG/L AS N</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>NITRATE</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>MG/L AS N</td>
<td>23</td>
<td>STATIONS</td>
<td>SURFACE</td>
<td>SLIGHTLY BELOW</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>NITRITE</td>
<td>WATER</td>
<td>AUTOANALYZER</td>
<td>MG/L AS N</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>PHENOLS</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>ARSENIC</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>BERYLLIUM</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>COPPER</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>IRON</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>LEAD</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>NICKEL</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>ZINC</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CYANIDE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>MG/L</td>
<td>23 STATIONS</td>
<td>1 STATION/WK</td>
<td>SLIGHTLY BELOW</td>
<td>SURFACE</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL IMPACT STATEMENT ON THE CONSTRUCTION AND OPERATION OF A DREDGED SPOIL DISPOSAL AREA IN LOGAN TOWNSHIP, GLOUCESTER CO., N.J.

DATA COLLECTED: 1971 TO 1971

RECEIVED: MARCH 27, 1975

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., NEW JERSEY, GLOUCESTER COUNTY, LOGAN TOWNSHIP, COASTAL

ABSTRACT:
THIS REPORT IS AN ASSESSMENT OF ENVIRONMENTAL CHANGE THAT WOULD BE LIKELY TO RESULT FROM THE USE OF THE SITE FOR DISPOSAL OF DREDGE SPOILS. THE DATA ARE ALL EITHER FAUNAL INVENTORY OR WATER QUALITY DATA.

(REPORT FILED TO N.J. E.P.A., JOHN FITCH PLAZA, TRENTON, N.J. ON BEHALF OF AMERICAN DREDGING CO., 12 S. 12TH ST. PHILA, PA. 19107)

DATA AVAILABILITY:
AT COST OF REPRODUCTION

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
110 PAGES

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
CR. JAMES A. SCHMID 215 647 3110
JACK MCCORMICK AND ASSOCIATES
660 WATERLOO RD.
DEVON PENNSYLVANIA USA 19333

GRID LOCATOR (LAT):
73079541 73079542

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHML</td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>3</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF AMPHIBIANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>3</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF REPTILES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>LAND</td>
<td>KEY</td>
<td></td>
<td>3</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF REPTILES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>LAND</td>
<td>KEY</td>
<td></td>
<td>3</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Identification Section:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Sphere</td>
<td>Method</td>
<td>Units</td>
<td>Data Amount</td>
<td>Frequency</td>
<td>Height/Depth</td>
<td>Remarks</td>
</tr>
<tr>
<td>DETERMINATION OF MAMMALS SPECIES</td>
<td>AIR</td>
<td>KEY</td>
<td></td>
<td>3</td>
<td>STATIONS</td>
<td></td>
<td>LISTED FOR EACH OF 6 ENVIRONMENTS</td>
</tr>
<tr>
<td>DETERMINATION OF BIRDS</td>
<td>WATER</td>
<td>TABLES</td>
<td></td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>3 SITES, EACH CHECKED ONCE AT HIGHTIDE, ONCE AT LOW TIDE</td>
</tr>
<tr>
<td>TIDAL PHASE</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
</tr>
<tr>
<td>PERSISTENT FLOATING MATERIALS</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>3 SITES, EACH CHECKED ONCE AT HIGHTIDE, ONCE AT LOW TIDE</td>
</tr>
<tr>
<td>OIL SLICK OCCURRENCE</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>ON SURFACE</td>
</tr>
<tr>
<td>PARTICULATE MATTER</td>
<td>WATER</td>
<td>GRAVIMETRY</td>
<td>MG/L</td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>STD</td>
<td>PPT</td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>PH METER</td>
<td>PH UNITS</td>
<td>6</td>
<td>STATIONS</td>
<td></td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
</tr>
<tr>
<td>ELECTRICAL CONDUCTIVITY</td>
<td>WATER</td>
<td>IN SITU CONDUCTIVITY</td>
<td>MICROMHOS PER SQUARE CM</td>
<td>6</td>
<td>STATIONS</td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
<td></td>
</tr>
<tr>
<td>LIGHT ATTENUATION</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>JACKSON TURBIDITY UNITS</td>
<td>6</td>
<td>STATIONS</td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
<td></td>
</tr>
<tr>
<td>COLOR</td>
<td>WATER</td>
<td>VISUAL</td>
<td>ADHA UNITS</td>
<td>6</td>
<td>STATIONS</td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
<td></td>
</tr>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td></td>
<td>6</td>
<td>STATIONS</td>
<td>SHALLOW WATER (CEDAR SWAMP)</td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
- NORTH AMERICA, U.S., NEW JERSEY, GLOUCESTER COUNTY, COASTAL

ABSTRACT:
- This report is an Environmental Impact Statement discussing the site for a potential housing development. It includes a complete report on soil characteristics and suitability for various purposes, climatic, water quality, hydrologic, geologic, faunal and floral data. It has in addition an extensive bibliography. Water analyses were done by an independent lab and methods were not reported.

DATA AVAILABILITY:
- AT COST OF REPRODUCTION

PLATFORM TYPES:
- FIXED STATION

ARCHIVE MEDIA:
- REPORTS
- APPROX 400 PAGE REPORT

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
- DR. JAMES A. SCHMID 215 647 3110
- MACK MCCORMICK AND ASSOCIATES
- E60 WATERLOO RD.
- EGGON PENNSYLVANIA USA 19333

GRID LOCATOR (LAT):
- 730795

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL TYPE</td>
<td>LAND</td>
<td>VISUAL</td>
<td>PER CENT</td>
<td>69 OBS</td>
<td>CONTINUOUS</td>
<td>NEAR SURFACE</td>
<td>MAP INCLUDED</td>
</tr>
<tr>
<td>SLOPE</td>
<td>LAND</td>
<td>DIRECT</td>
<td>CM</td>
<td>69 OBS</td>
<td>ONE PER SOIL UNIT</td>
<td>NEAR SURFACE</td>
<td></td>
</tr>
<tr>
<td>DEPTH</td>
<td>LAND</td>
<td>DIRECT</td>
<td>CM</td>
<td>69 OBS</td>
<td>ONE PER SOIL UNIT</td>
<td>NEAR SURFACE</td>
<td></td>
</tr>
<tr>
<td>SIZE ANALYSIS</td>
<td>LAND</td>
<td>VISUAL</td>
<td>CM</td>
<td>69 OBS</td>
<td>ONE PER SOIL UNIT</td>
<td>NEAR SURFACE</td>
<td></td>
</tr>
<tr>
<td>ORGANIC CARBON</td>
<td>LAND</td>
<td>UNKNOWN</td>
<td>PER CENT</td>
<td>69 OBS</td>
<td>ONE PER SOIL UNIT</td>
<td>NEAR SURFACE</td>
<td></td>
</tr>
<tr>
<td>WATER CONTENT</td>
<td>LAND</td>
<td>GRAVIMETRY</td>
<td>INCHES WATER/ INCH SOIL</td>
<td>69 OBS</td>
<td>ONE PER SOIL UNIT</td>
<td>NEAR SURFACE</td>
<td></td>
</tr>
<tr>
<td>COMPRESSIBILITY</td>
<td>LAND</td>
<td>UNKNOWN</td>
<td>CM</td>
<td>69 OBS</td>
<td>ONE PER SOIL UNIT</td>
<td>NEAR SURFACE</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>PERMEABILITY</td>
<td>LAND</td>
<td>VISUAL</td>
<td>INCHES WATER/HOUR</td>
<td>69</td>
<td>OBS</td>
<td></td>
<td>UNIT ONE PER SOIL UNIT NEAR SURFACE</td>
</tr>
<tr>
<td>DEPOSITION</td>
<td>LAND</td>
<td>VISUAL</td>
<td></td>
<td>69</td>
<td>OBS</td>
<td></td>
<td>UNIT ONE PER SOIL UNIT NEAR SURFACE</td>
</tr>
<tr>
<td>SPECIES DEPOSITION OF BIRDS</td>
<td>AIR</td>
<td>KEY</td>
<td></td>
<td>18</td>
<td>OBS</td>
<td></td>
<td>3 OBS IN EACH OF 6 ENVIRONMENTS</td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF MAMMALS</td>
<td>LAND</td>
<td>KEY</td>
<td></td>
<td>1</td>
<td>OBS</td>
<td></td>
<td>42 SPECIES, INCLUDES BATS</td>
</tr>
<tr>
<td>SPECIES DEPOSITION OF AMPHIBIANS</td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>1</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF REPTILES</td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>1</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF REPTILES</td>
<td>LAND</td>
<td>KEY</td>
<td></td>
<td>1</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF LAND PLANTS</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>CHLORINE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>PH</td>
<td>INTERSTITIAL</td>
<td>UNKNOWN</td>
<td>PH UNITS</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>IRON</td>
<td>INTERSTITIAL</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>FLUORINE</td>
<td>SEDIMENT</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>NITRATE</td>
<td>SEDIMENT</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>SEDIMENT</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>HARDNESS</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>TOTAL SOLIDS</td>
<td>SEDIMENT</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>504</td>
<td>STATIONS 18 STA TWICE/YEAR</td>
<td></td>
<td>GROUNDWATER</td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>90</td>
<td>STATIONS ONCE ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARDNESS</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>90</td>
<td>STATIONS ONCE ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORINE</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>90</td>
<td>STATIONS ONCE ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>PPM</td>
<td>90</td>
<td>STATIONS ONCE ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ALKALINITY COUNT OF</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPM</td>
<td>90</td>
<td>STATIONS ONCE ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROBIOTA</td>
<td>WATER</td>
<td>UNKNOWN</td>
<td>APPROXIMATE NUMBER PER VOLUME</td>
<td>90</td>
<td>STATIONS ONCE ONLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Earth</td>
<td>Fixed Point</td>
<td>Longitude and Latitude</td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Earth</td>
<td>Sampling Time</td>
<td>YMDHM</td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Air</td>
<td>Mercury</td>
<td>Deg C</td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Water</td>
<td>Thermistor</td>
<td>Deg C</td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td>Water</td>
<td>Conductivity</td>
<td>PPT</td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>Air</td>
<td>Visual</td>
<td></td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secchi Disc depth</td>
<td>Water</td>
<td>Average Depth</td>
<td></td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species determination</td>
<td>Bottom</td>
<td>Key</td>
<td></td>
<td>3</td>
<td>Stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptont and benthic animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT OF BENTHIC ANIMALS</td>
<td>BOTTOM</td>
<td>VISUAL</td>
<td></td>
<td>3</td>
<td>STATIONS MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF MICROBIOTA</td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>3</td>
<td>STATIONS MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td>3</td>
<td>STATIONS MONTHLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRELIMINARY ECOLOGICAL EVALUATION AND RECEPCATIONAL CENSUS LITTLE TINICUM ISLAND AND VICINITY
DATA COLLECTED: JANUARY 1970 TO JULY 1971
RECEIVED: JUNE 21, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S. COASTAL, DELAWARE RIVER, PENNSYLVANIA, DELAWARE COUNTY, LITTLE TINICUM ISLAND

ABSTRACT:
THIS STUDY WAS A BASIC ECOLOGICAL INVENTORY OF LITTLE TINICUM ISLAND AND VICINITY INCLUDING WATER CHEMISTRY AND BIOLOGICAL SURVEY INFORMATION FROM THE ISLAND AND DELAWARE RIVER NEARBY. THE DATA, TAKEN IN 1970 AND 1971, INCLUDES WATER TEMPERATURE, PH, BOD, CHLORIDE, ORTHOPHOSPHATE, ORGANIC PHOSPHATE.

DATA AVAILABILITY:
AVAILABLE AT THE OFFICES OF JACK MCCORMICK AND ASSOCIATES IN BERWYN, PENNSYLVANIA

PLATFORM TYPES:
FIXED STATION; AIRCRAFT

ARCHIVE MEDIA:
REPORTS; CHARTS
1 MAP AND 78 PAGES

FUNDING:
US DEPARTMENT OF DEFENSE, US ARMY NO. DACW61-71-C-0287

INVENTORY:

PUBLICATIONS:

CONTACT:
JACK MC CORMICK 215 647 9000
JACK MC CORMICK AND ASSOCIATES
511 OLD LANCASTER ROAD BERWYN PENNSYLVANIA USA 19312

GRID LOCATOR (LAT):
7307952500

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED STATION</td>
<td>MAP LOCATIONS</td>
<td>1 STATIONS</td>
<td>1/SEASON</td>
<td></td>
<td>WATER CHEMISTRY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOCATED IN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DELAWARE RIVER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NEAR LITTLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TIMICUM ISLAND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 SEASONS WORTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>4 OBS</td>
<td>1/SEASON</td>
<td></td>
<td>TOP OF WATER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COLUMN</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>NON-REVERSING</td>
<td>DEG C</td>
<td>4 OBS</td>
<td>1/SEASON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>Water</td>
<td>PH Meter</td>
<td>PH Units</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Chloride</td>
<td>Water</td>
<td>Titration</td>
<td>PPM</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand</td>
<td>Water</td>
<td>Titration</td>
<td>PPM</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Water</td>
<td>Titration</td>
<td>PPM</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Nitrite</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Organic Phosphorus</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>PPM</td>
<td>4</td>
<td>OBS</td>
<td>1/Season</td>
<td>Top of Water Column</td>
</tr>
<tr>
<td>Count of Microbiota</td>
<td>Water</td>
<td>Visual</td>
<td>Colonies/100 ml</td>
<td>8</td>
<td>OBS</td>
<td>2/Station/Season</td>
<td>Top of Water Column, Fecal and Total Coliform Counted for Each Sampling</td>
</tr>
<tr>
<td>Land Use</td>
<td>Land</td>
<td>Aerial Photograph</td>
<td>Acres/vegetation type</td>
<td>1</td>
<td>Stations</td>
<td>Land Surface</td>
<td></td>
</tr>
<tr>
<td>Taxonomic List of Land Plants</td>
<td>Land</td>
<td>Key</td>
<td>Qualitative Terms</td>
<td>1</td>
<td>Stations</td>
<td>Land Surface</td>
<td>Sightings of Birds Indicated by Listing of Species Observed</td>
</tr>
<tr>
<td>Taxonomic List of Birds</td>
<td>Air</td>
<td>Key</td>
<td>Qualitative Terms</td>
<td>1</td>
<td>Stations</td>
<td>Land to Air</td>
<td></td>
</tr>
<tr>
<td>Count of Pelagic Fish</td>
<td>Water</td>
<td>Visual</td>
<td>Number/species</td>
<td>1</td>
<td>OBS</td>
<td>Water Column</td>
<td>Fish Sampling at Single Delaware River Station Near Little Tincicum Island</td>
</tr>
<tr>
<td>Species Determination of Pelagic Fish</td>
<td>Water</td>
<td>Key</td>
<td>Number/species</td>
<td>1</td>
<td>OBS</td>
<td>Water Column</td>
<td>Fish Sampling at Single Delaware River Station Near Little Tincicum Island</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA

ABSTRACT:
MISSION W082, FLIGHT01, WAS ACCOMPLISHED ON AUGUST 30, 1971, UTILIZING A WALLOPS FLIGHT CENTER LEASED HELICOPTER EQUIPPED WITH FOUR T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO INVESTIGATE THE USE OF REMOTE SENSING TECHNIQUES IN STUDYING FUEL OIL DISPERSION.
(MISSION W082, FLIGHT01)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
138 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73076555

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>108 OBS</td>
<td>4 FLIGHTS PER LINE</td>
<td>700, 750, 1500, 1700 TENTHS MM</td>
<td>152 AND FOUR-Line</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>109 OBS</td>
<td>4 FLIGHTS PER LINE</td>
<td>2000 FEET</td>
<td>FOCAL LENGTH</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>108 OBS</td>
<td>4 FLIGHTS PER LINE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECEIVED: AUGUST 30, 1976
SURFACE OIL DETECTION STUDY
DATA COLLECTED: SEPTEMBER 1971 TO SEPTEMBER 1971

PROJECTS:
GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA

ABSTRACT:
MISSION W085, FLIGHT01, WAS ACCOMPLISHED ON SEPTEMBER 14, 1971. UTILIZING A WALLOPS FLIGHT CENTER LEASED HELICOPTER EQUIPPED WITH THREE T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO COMPARE THE USE OF FALSE COLOR INFRARED FILM AGAINST BLACK AND WHITE PANCHROMATIC FILM FOR RECORDING THE DISPERSION OF A MANMADE OIL Slick.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
54 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73077555

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>54 OBS</td>
<td>3 FLIGHTS</td>
<td>1000, 2500, 4000, 4200, TENTHS MM</td>
<td>5000 FEET, FOCAL LENGTH</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>54 OBS</td>
<td>3 FLIGHTS</td>
<td>1000, 2500, 152 AND FOUR-4000, 4200, TENTHS MM</td>
<td>5000 FEET, FOCAL LENGTH</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>54 OBS</td>
<td>3 FLIGHTS</td>
<td>1000, 2500, 152 AND FOUR-4000, 4200, TENTHS MM</td>
<td>5000 FEET, FOCAL LENGTH</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>BLACK AND WHITE CAMERA FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>54 OBS</td>
<td>3 FLIGHTS</td>
<td>1000, 2500, 152 AND FOUR-4000, 4200, TENTHS MM</td>
<td>5000 FEET, FOCAL LENGTH</td>
</tr>
</tbody>
</table>
OIL SPILL DISPERSION STUDY: VIRGINIA
DATA COLLECTED: OCTOBER 1971 TO OCTOBER 1971

PROJECTS:
GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA

ABSTRACT:
MISSION W091, FLIGHT02, WAS ACCOMPLISHED ON OCTOBER 14, 1971, UTILIZING A WALLOPS FLIGHT CENTER C-54 AIRCRAFT EQUIPPED WITH A T-11 AERIAL MAPPING CAMERA IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO RECORD THE DISPERSION OF A CONTROLLED OIL SPILL TWENTY-FOUR HOURS AFTER THE SPILL OCCURRED. (MISSION W091, FLIGHT02)

DATA AVAILABILITY:
PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
57 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73076555

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>57 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>57 OBS</td>
<td>30 FLIGHTS</td>
<td>500 FEET</td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td>PHOTOGRAHP</td>
<td>EARTH</td>
<td>COLOR CAMERA PRINT</td>
<td>FROM AIRCRAFT</td>
<td>57 OBS</td>
<td>30 FLIGHTS</td>
<td>500 FEET</td>
<td>TENTHS MM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FOCAL LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA

ABSTRACT:
MISSION W091, FLIGHT01, WAS ACCOMPLISHED ON OCTOBER 13, 1971, UTILIZING A WALLOPS FLIGHT CENTER C-54 AIRCRAFT EQUIPPED WITH A T-11 AERIAL MAPPING CAMERA IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO STUDY THE DISPERSION OF A CONTROLLED OIL SPILL OFF THE CHESAPEAKE LIGHT AT THE ENTRANCE TO THE CHESAPEAKE BAY.
(MISSION W091, FLIGHT01)

DATA /VAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
7) 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
7307655

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>70</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>70</td>
<td>OBS</td>
<td>14 Flights</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>70</td>
<td>OBS</td>
<td>14 Flights</td>
<td>2000 FEET 152 AND FOUR-TENTHS MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
OIL SPILL STUDY
DATA COLLECTED: AUGUST 1971 TO AUGUST 1971

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE LIGHT TOWER

ABSTRACT:
MISSION W075, FLIGHT06, WAS ACCOMPLISHED ON AUGUST 3, 1971, EQUIPPED WITH AN AAC 2 THERMAL INFRARED SCANNER IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO DETECT AN OIL SPILL OFF THE CHESAPEAKE LIGHT TOWER IN THE ATLANTIC OCEAN.

(MISSION W075, FLIGHT06)

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
8 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT): 7307655

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>8 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>8 OBS</td>
<td>3 FLIGHTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>8 OBS</td>
<td>3 FLIGHTS</td>
<td>500 AND 1000 FEET</td>
<td>20 AND ONE-TENTH MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
OIL SPILL DISPERSION STUDY
DATA COLLECTED: SEPTEMBER 1971 TO SEPTEMBER 1971
RECEIVED: SEPTEMBER 14, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA CHESAPEAKE BAY LIGHT

ABSTRACT:
MISSION W075, FLIGHT09, WAS ACCOMPLISHED ON SEPTEMBER 2, 1971, UTILIZING THE WALLOPS FLIGHT CENTER LEASED C-54 AIRCRAFT EQUIPPED WITH A T-11 AERIAL MAPPING CAMERA IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO IMAGE AN OIL SPILL IN THE ATLANTIC OCEAN OFF THE CHESAPEAKE LIGHT TOWER.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
40 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
79076555

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>40</td>
<td>OBS5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>40</td>
<td>OBS5</td>
<td>20 FLIGHTS</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>40</td>
<td>OBS5</td>
<td>20 FLIGHTS</td>
<td>1500 FEET</td>
</tr>
</tbody>
</table>

152 AND FOUR-TENTHS MM FOCAL LENGTH
MISSION W077, FLIGHT01, WAS ACCOMPLISHED ON AUGUST 3, 1971, UTILIZING A WALLOPS FLIGHT CENTER LEASED HELICOPTER EQUIPPED WITH FOUR T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO DOCUMENT THE SPREAD OF A MAN MADE OIL SPILL ON BLACK AND WHITE, COLOR, AND FALSE COLOR INFRARED FILM AT ONE HOUR INTERVALS FROM 0900 TO 1500 DURING THE DAY.

MISSION W077, FLIGHT01

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
112 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 821 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73076555

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>7</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>LATITUDE YMD</td>
<td>7</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>BLACK AND WHITE</td>
<td>PRINTS</td>
<td>7</td>
<td>OBS</td>
<td>4 FLIGHTS PER</td>
<td>2000, 3000,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAMERA FROM</td>
<td>AIRCRAFT</td>
<td></td>
<td></td>
<td>4000 FEET</td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>7</td>
<td>OBS</td>
<td></td>
<td>FOCAL LENGTH</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>7</td>
<td>OBS</td>
<td>4 FLIGHTS PER</td>
<td>2000, 3000,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td>PRINTS</td>
<td></td>
<td></td>
<td>4000 FEET</td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA</td>
<td>PRINTS</td>
<td>7</td>
<td>OBS</td>
<td>4 FLIGHTS PER</td>
<td>2000, 3000,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td>PRINTS</td>
<td></td>
<td></td>
<td>152 AND FOUR-</td>
<td>FOCAL LENGTH</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LINE</td>
<td>4000 FEET</td>
<td>TENTHS MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE BAY LIGHT

ABSTRACT:
MISSION W078, FLIGHT01, WAS ACCOMPLISHED ON AUGUST 4, 1971, UTILIZING A WALLOPS FLIGHT CENTER LEASED HELICOPTER EQUIPPED WITH FOUR T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO OBTAIN PHOTOGRAPHY OF A MAN MADE OIL SPILL FOR USE IN STUDYING THE SPREADING AND THINNING CHARACTERISTICS OF THE OIL OVER AN EXTENDED PERIOD OF TIME.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
100 9" X 9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
7307655

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>100 OBS</td>
<td>4 FLIGHTS PER LINE</td>
<td>4000 AND 5000 FEET</td>
<td>152 AND FOUR-TENTHS MM FOCAL LENGTH</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>100 OBS</td>
<td>4 FLIGHTS PER LINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>100 OBS</td>
<td>4 FLIGHTS PER LINE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MISSION W081, FLIGHT01, WAS ACCOMPLISHED ON AUGUST 25, 1971, UTILIZING A WOLLOPS FLIGHT CENTER CHARTERED HELICOPTER EQUIPPED WITH FOUR T-11 AERIAL MAPPING CAMERAS. THE OBJECTIVE OF THE FLIGHT WAS TO OBTAIN BASE LINE DATA FOR THE CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE OF THE BALTIMORE HARBOR AND ITS INDUSTRIAL, COMMERCIAL, AND RESIDENTIAL BORDER AREAS.

DATA AVAILABILITY:

PLATFORM TYPES: AIRCRAFT

ARCHIVE MEDIA:
- PHOTOPRINTS
- 97 9" X 9" PRINTS

FUNDING:
- NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73079625

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>90</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LATITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>90</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>90</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

152 AND FOURTENTHS MM FOCAL LENGTH
MISSION W106, FLIGHT 03, WAS ACCOMPLISHED ON FEBRUARY 1, 1972, UTILIZING THE WALEOPS FLIGHT CENTER C-54 AIRCRAFT EQUIPPED WITH TWO T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE ACCOMACK-NORTHAMPTON PLANNING DISTRICT COMMISSION. THE OBJECTIVE OF THE FLIGHT WAS TO OBTAIN LARGE SCALE COLOR IR IMAGERY OF THE QUINBY HARBOR AREA FOR USE IN FORMULATING LOCAL PLANNING POLICIES.

MISSION W106, FLIGHT 03

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
3 9"X9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73077555

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>B</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LATITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>B</td>
<td>OBS</td>
<td>2 FLIGHTS</td>
<td>750 FEET</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM</td>
<td>PRINTS</td>
<td>B</td>
<td>OBS</td>
<td>2 FLIGHTS</td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td>TENTHS MM</td>
<td>FOCAL LENGTH</td>
</tr>
</tbody>
</table>
SOUTH RIVER AND SEVERN RIVER SEWAGE OUTFALL DETECTION AND EUTROPHICATION
STUDIES—MARYLAND

DATA COLLECTED: FEBRUARY 1973 TO FEBRUARY 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., MARYLAND, SOUTH RIVER AND SEVERN RIVER

ABSTRACT:
MISSION W189, FLIGHT 01, WAS ACCOMPLISHED ON FEBRUARY 22, 1973. UTILIZING THE WALLOPS FLIGHT CENTER C-54 AIRCRAFT EQUIPPED
WITH A T-11 AERIAL MAPPING CAMERA IN COOPERATION WITH THE NASA LANGLEY RESEARCH CENTER FOR THE ENVIRONMENTAL PROTECTION
AGENCY. THE OBJECTIVE OF THE FLIGHT WAS TO OBTAIN LARGE SCALE INFRARED PHOTOGRAPHIC IMAGERY OF THE CHESAPEAKE BAY AT THE
JUNCTION OF THE BAY AND THE MOUTH OF THE SOUTH AND SEVERN RIVERS FOR SEWAGE OUTFALL DETECTION AND EUTROPHICATION STUDIES.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:
PHOTOPRINTS
230, 9"X9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73078634 730786 730796

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>7</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>7</td>
<td>OBS</td>
<td>1 FLIGHT PER</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM</td>
<td>PRINTS</td>
<td>7</td>
<td>OBS</td>
<td>1 FLIGHT PER</td>
<td>700, 800,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000, 3960,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TENTHS MM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000 FEET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FOCAL LENGTH</td>
</tr>
</tbody>
</table>
MISSION W129, FLIGHT 02, WAS ACCOMPLISHED ON MAY 17, 1972, UTILIZING THE WOLLOPS FLIGHT CENTER LEASED HELICOPTER EQUIPPED WITH AN AAD-2 THERMAL INFRARED SCANNER IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO ASSESS THE CAPABILITIES OF A THERMAL INFRARED SCANNER TO DETECT OIL SPILLS.

DATA AVAILABLE:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
35, 70MM PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
23076554

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LATITUDE AND LONGITUDE</td>
<td>3</td>
<td>STATIONS</td>
<td>300 FEET</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>3</td>
<td>OBS</td>
<td>3 FLIGHTS</td>
<td>500 FEET</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR Camera FROM AIRCRAFT</td>
<td>PRINTS</td>
<td>3</td>
<td>OBS</td>
<td>3 FLIGHTS</td>
<td>20 AND ONE-TENTH MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE BAY LIGHT TOWER

ABSTRACT:
MISSION W129, FLIGHT 01, WAS ACCOMPLISHED ON MAY 17, 1972, UTILIZING A WALLOPS FLIGHT CENTER LEASED HELICOPTER EQUIPPED WITH FOUR T-11 AERIAL MAPPING CAMERAS IN COOPERATION WITH THE VIRGINIA INSTITUTE OF MARINE SCIENCE. THE OBJECTIVE OF THE FLIGHT WAS TO PROVIDE MULTISPECTRAL PHOTOGRAPHY OF A MAN-MADE OIL SPILL FOR USE IN STUDING THE DISPERSION CHARACTERISTICS OF THE OIL OVER AN EXTENDED PERIOD OF TIME.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS
96, 9"X9" PRINTS

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73076554

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>16 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>16 OBS</td>
<td>16 FLIGHTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>16 OBS</td>
<td>16 FLIGHTS</td>
<td>1000, 1500, 2000 FEET</td>
<td>152 AND FOUR-TENTHS MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL ASSESSMENT OF WOODBURY CREEK MARSHES
DATA COLLECTED: MAY 1974 TO NOVEMBER 1974
PROJECTS:
GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., COASTAL, NEW JERSEY, GLOUCESTER COUNTY, WOODBURY CREEK, HESSIAN RUN

ABSTRACT:
THIS STUDY DONE TO EVALUATE WOODBURY CREEK MARSHES AS THEY EXIST TO DETERMINE POTENTIAL IMPACTS DUE TO A PROPOSED ROUTE 1-295 INTERSECTION. INCLUDED IN THIS EXISTING CONDITIONS STUDY WERE DATA ON BASIC VEGETATION, ANIMAL COMMUNITIES, PRODUCTIVITY, AND WATER QUALITY CHEMISTRY.
(This Report was Prepared for New Jersey Transportation Department)

DATA AVAILABILITY:
AVAILABLE THROUGH RUTGERS MARINE SCIENCE CENTER NEW BRUNSWICK, NEW JERSEY AS TECHNICAL REPORT 75-2

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
105 PAGES

FUNDING:
STATE OF NEW JERSEY, DEPARTMENT OF TRANSPORTATION

INVENTORY:

PUBLICATIONS:

CONTACT:
RALPH GOOD 609 757 6146
RUTGERS UNIVERSITY
ECOLOGY DEPARTMENT
CAMDEN NEW JERSEY USA 08102

GRID LOCATOR (LAT):
7307955100

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP POSITIONS</td>
<td>8</td>
<td>STATIONS</td>
<td>LAND SURFACE TO WATER COLUMN</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>8</td>
<td>MONTHLY OR BIMONTHLY</td>
<td>LAND SURFACE TO WATER COLUMN</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>NON-REVERSING THERMOMETER</td>
<td>DEG C</td>
<td>48</td>
<td>OBS</td>
<td>MONTHLY</td>
<td></td>
</tr>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L</td>
<td>48</td>
<td>OBS</td>
<td>MONTHLY</td>
<td></td>
</tr>
<tr>
<td>TOTAL SOLIDS</td>
<td>SUSPENDED</td>
<td>DRY WEIGHT</td>
<td>MG/L</td>
<td>48</td>
<td>OBS</td>
<td>MONTHLY</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>DISSOLVED</td>
<td>DRY WEIGHT</td>
<td>MG/L</td>
<td>48 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOSPHATE</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>48 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KJELDAHL NITROGEN</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>MG/L</td>
<td>48 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF PHYTOPLANKTON SPECIES DETERMINATION OF PHYTOPLANKTON</td>
<td>WATER</td>
<td>COUNTING CHAMBER</td>
<td>NUMBER/SPECIES</td>
<td>48 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBICOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td>COLONIES/100 ML</td>
<td>48 OBS</td>
<td>MONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF BIRDS SPECIES DETERMINATION OF BIRDS</td>
<td>AIR</td>
<td>VISUAL</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIR</td>
<td>KEY</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF PELAGIC FISH SPECIES DETERMINATION OF PELAGIC FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF MAMMALS</td>
<td>LAND</td>
<td>VISUAL</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF REPTILES</td>
<td>LAND</td>
<td>VISUAL</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF AMPHIBIANS SPECIES DETERMINATION OF AMPHIBIANS</td>
<td>WATER</td>
<td>VISUAL</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAND</td>
<td>KEY</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WATER</td>
<td>KEY</td>
<td></td>
<td>24 OBS</td>
<td>BIMONTHLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., MARYLAND, VIRGINIA

ABSTRACT:
MISSION W273, FLIGHT 01, WAS ACCOMPLISHED ON MAY 22, 1974, UTILIZING THE WALLOPS FLIGHT CENTER C-54 AIRCRAFT EQUIPPED WITH A T-11 AERIAL MAPPING CAMERA AND A MULTICHANNEL OCEAN COLOR SENSOR IN COOPERATION WITH NASA'S LANGLEY RESEARCH CENTER. THE OBJECTIVE OF THE FLIGHT WAS TO STUDY WATER POLLUTION IN THE AREA OF THE MOUTH OF THE CHESAPEAKE BAY. (MISSION W273, FLIGHT 01)

DATA AVAILABILITY:

PLATFORM TYPES: AIRCRAFT

ARCHIVE MEDIA: PHOTOPRINTS 7J, 9"X9" PRINTS

FUNDING: NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT: MICHAEL CONGER 804 824 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73077543 73077555 73077650 73076650

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND</td>
<td>78</td>
<td>OBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LATITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>78</td>
<td>OBS</td>
<td>1 FLIGHT PER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LINE</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>78</td>
<td>OBS</td>
<td>1 FLIGHT PER</td>
<td>3000, 6000, 17,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td>LINE</td>
<td>FEET 152 AND FOUR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TENTHS MM FOCAL LENGTH</td>
</tr>
</tbody>
</table>
AN ENVIRONMENTAL INVENTORY OF THE QUEEN ANNE'S HARBOR TRACT
DATA COLLECTED: SEPTEMBER 1973 TO DECEMBER 1973
RECEIVED: JULY 26, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., MARYLAND, ANNE ARUNDELL COUNTY, BROOKIN NECK AREA

ABSTRACT:
BIOLOGICAL, PHYSICAL, AND CHEMICAL PARAMETERS WERE COLLECTED FROM SEPTEMBER THROUGH DECEMBER, 1973 TO PRODUCE A DATA BASELINE FOR THE QUEEN ANNE'S HARBOR, BROOKIN NECK AREA, MARYLAND. PARAMETERS INCLUDE SPECIES COUNT OF PLANTS, ANIMALS, AND FISH, NUTRIENTS, TEMPERATURE, SALINITY, METALS, TURBIDITY, AND DISSOLVED SOLIDS AND GASES. (PROJECT CARRIED OUT BY JACK MCCORMICK AND ASSOCIATES FOR STATE OF MARYLAND)

DATA AVAILABILITY:
AVAILABLE UPON REQUEST FROM JACK MCCORMICK AND ASSOCIATES OFFICE IN BERWYN, PENNSYLVANIA

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
85 PAGES

FUNDING:
STATE OF MARYLAND, DEPARTMENT OF NATURAL RESOURCES

INVENTORY:

PUBLICATIONS:

CONTACT:
JACK MCCORMICK 215 647 9000
JACK MCCORMICK AND ASSOCIATES
511 OLD LANCASTER ROAD
BERWYN PENNSYLVANIA USA 19312

GRID LOCATOR (LAT):
7307963100

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATIONS</td>
<td>13 STATIONS</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>13 STATIONS</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAXONOMIC LIST</td>
<td>LAND</td>
<td>KEY</td>
<td>QUALITATIVE</td>
<td>1 STATION</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF LAND PLANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF BIRDS</td>
<td>AIR</td>
<td>VISUAL</td>
<td>QUALITATIVE</td>
<td>6 STATIONS</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>AIR</td>
<td>KEY</td>
<td>QUALITATIVE</td>
<td>6 STATIONS</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF BIRDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF AMPHIBIANS</td>
<td>WATER</td>
<td>VISUAL</td>
<td>QUALITATIVE</td>
<td>6 STATIONS</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>WATER</td>
<td>KEY</td>
<td>QUALITATIVE</td>
<td>6 STATIONS</td>
<td>1 SURVEY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Amphibians Species</td>
<td>Land</td>
<td>Key</td>
<td>Qualitative</td>
<td>6</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Count of Mammals</td>
<td>Land</td>
<td>Visual</td>
<td>Qualitative</td>
<td>6</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Water</td>
<td>Resistance</td>
<td>Degrees Celsius</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td>Water</td>
<td>Conductivity</td>
<td>Parts/Thousand</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>Water</td>
<td>Lab Conductivity</td>
<td>Mhos/Centimeter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Water</td>
<td>pH Meter</td>
<td>pH Units</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>Water</td>
<td>Titrations</td>
<td>Milligram/Liter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Organic Carbon</td>
<td>Water</td>
<td>Autoanalyzer</td>
<td>Milligram/Liter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Kjeldahl Nitrogen</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Sulfide</td>
<td>Water</td>
<td>Titrations</td>
<td>Milligram/Liter</td>
<td>13</td>
<td>Stations 1 Survey</td>
<td></td>
</tr>
<tr>
<td>Light Attenuation</td>
<td>Water</td>
<td>Colorimetry</td>
<td>Platinum-Cobalt Units</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Water</td>
<td>Atomic Absorption</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Water</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Kjeldahl Nitrogen</td>
<td>Sediment</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Sulfide</td>
<td>Sediment</td>
<td>Titrations</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>Sediment</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>Sediment</td>
<td>Spectrophotometry</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>Sediment</td>
<td>Extraction/Weight</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Sediment</td>
<td>Atomic Absorption</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Sediment</td>
<td>Atomic Absorption</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Sediment</td>
<td>Atomic Absorption</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Sediment</td>
<td>Atomic Absorption</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Sediment</td>
<td>Atomic Absorption</td>
<td>Milligram/Liter</td>
<td>39</td>
<td>OBS 3 OBS/Station</td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT OF PELAGIC FISH</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER/1000</td>
<td>20</td>
<td>OBS</td>
<td>5 OBS/SURVEY</td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF PELAGIC FISH</td>
<td>WATER</td>
<td>KEY</td>
<td>NUMBER/1000</td>
<td>20</td>
<td>OBS</td>
<td>5 OBS/SURVEY</td>
<td></td>
</tr>
<tr>
<td>COUNT OF BENTHIC ANIMALS</td>
<td>BOTTOM</td>
<td>VISUAL</td>
<td>NUMBER/SQUARE FOOT</td>
<td>13</td>
<td>STATIONS</td>
<td>1 SURVEY</td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF BENTHIC ANIMALS</td>
<td>BOTTOM</td>
<td>KEY</td>
<td>NUMBER/SQUARE FOOT</td>
<td>13</td>
<td>STATIONS</td>
<td>1 SURVEY</td>
<td></td>
</tr>
<tr>
<td>COUNT OF ZOOPLANKTON SPECIES</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER/CUBIC METER</td>
<td>3</td>
<td>OBS</td>
<td>1 SURVEY</td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF ZOOPLANKTON</td>
<td>WATER</td>
<td>KEY</td>
<td>NUMBER/CUBIC METER</td>
<td>3</td>
<td>OBS</td>
<td>1 SURVEY</td>
<td></td>
</tr>
<tr>
<td>COUNT OF PHYTOPLANKTON SPECIES</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER/CUBIC METER</td>
<td>3</td>
<td>OBS</td>
<td>1 SURVEY</td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF PHYTOPLANKTON</td>
<td>WATER</td>
<td>KEY</td>
<td>NUMBER/CUBIC METER</td>
<td>3</td>
<td>OBS</td>
<td>1 SURVEY</td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBIOTA</td>
<td>WATER</td>
<td>VISUAL</td>
<td>NUMBER/100 MILLILITER</td>
<td>39</td>
<td>OBS</td>
<td>3 OBS/STATION</td>
<td></td>
</tr>
<tr>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>DISSOLVED</td>
<td>DESICCATION</td>
<td>MILLIGRAM/LITER</td>
<td>39</td>
<td>OBS</td>
<td>3 OBS/STATION</td>
<td></td>
</tr>
<tr>
<td>PARTICULATE MATTER</td>
<td>WATER</td>
<td>WEIGHT</td>
<td>MILLIGRAM/LITER</td>
<td>39</td>
<td>OBS</td>
<td>3 OBS/STATION</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- TOTAL BACTERIA;
- FECAL BACTERIA;
- TOTAL COLIFORM;
- TOTAL STREPTOCOCCI.
SIMULIUM VITTATUM ZETTERSTEDT (DIPTERA: SIMULIIDAE) A POTENTIAL WATER QUALITY INDICATOR

DATA COLLECTED: FEBRUARY 1973 TO APRIL 1973

RECEIVED: AUGUST 12, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH AMERICA, U.S., NORTHWESTERN DELAWARE, RED CLAY CREEK

ABSTRACT:
PRESENTED IN REPORT FORM ARE DATA COLLECTED DURING A STUDY CONDUCTED IN 1973 ON THE RED CLAY CREEK, DELAWARE TO DETERMINE IF THE LARVAE OF A COMMON INSECT SPECIES, THE BLACKFLY SIMULIUM VITTATUM, COULD BE USED AS AN INDICATOR ORGANISM OF WATER QUALITY.

DATA AVAILABILITY:

PLATFORM TYPES:
FIXED STATION

ARCHIVE MEDIA:
REPORTS
40 PAGES

FUNDING:

INVENTORY:

PUBLICATIONS:
ALI, S.H., 1974. SIMULIUM VITTATUM ZETTERSTEDT (DIPTERA: SIMULIIDAE) A POTENTIAL WATER QUALITY INDICATOR. MASTER'S THESIS, UNIVERSITY OF DELAWARE, 40 P.

CONTACT:
MORRIS LIBRARY 302 738 2455
UNIVERSITY OF DELAWARE
NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):
7307954481

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>6 STATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>36 OBS</td>
<td>1 OBS PER 1-2 Weeks</td>
<td>ADClAY CREEK</td>
<td></td>
</tr>
<tr>
<td>COUNT OF INSECTS</td>
<td>LAND</td>
<td>VISUAL</td>
<td>MEAN NUMBER OF LARVAE PER BRICK PER OBS PER STATION</td>
<td>36 OBS</td>
<td>1 OBS PER 1-2 Weeks</td>
<td>AQUATIC INSECTS</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>RESISTANCE</td>
<td>DEG C</td>
<td>36 OBS</td>
<td>1 OBS PER 1-2 Weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT ATTENUATION</td>
<td>WATER</td>
<td>SPECTROPHOTOMETRY</td>
<td>JACKSON TURBIDITY UNITS</td>
<td>36 OBS</td>
<td>1 OBS PER 1-2 Weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>SPECIFIC ION</td>
<td>MILLION</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>AMMONIA</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PARTS PER</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td>MEASURABLE</td>
</tr>
<tr>
<td>NITRATE</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MILLION</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>ORTHOPHOSPHATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>MILLION</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>BIOCHEMICAL OXYGEN DEMAND</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MILLION</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>COUNT OF MICROBIOA</td>
<td>WATER</td>
<td>FILTRATION</td>
<td>MILLION</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>IRON</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>SPECTROMETRY</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>ZINC</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>SPECTROMETRY</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>COPPER</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>SPECTROMETRY</td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td></td>
</tr>
<tr>
<td>SPECIES DETERMINATION OF</td>
<td>LAND</td>
<td></td>
<td></td>
<td>36</td>
<td>OBS</td>
<td>WEEKS</td>
<td>AQUATIC INSECTS</td>
</tr>
<tr>
<td>INSECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIES LAND KEY

- OBS: Observations
- MILLION: Million
- WEEKS: Weeks
- AQUATIC INSECTS: Aquatic Insects
DELMARVA ECOLOGICAL SURVEY PLANKTONIC AND BENTHIC ORGANISMS
DATA COLLECTED: JANUARY 1974 TO DECEMBER 1974

PROJECTS:
ENLARGEMENT OF THE CHESAPEAKE AND DELAWARE CANAL

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., DELMARVA PENINSULA, CHESAPEAKE AND DELAWARE CANAL

ABSTRACT:
DATA COLLECTED ON THE PLANKTONIC AND BENTHIC ORGANISMS FOUND IN THE CHESAPEAKE AND DELAWARE CANAL AND ADJACENT WATERS DURING THE 1974 ECOLOGICAL STUDY OF THE AQUATIC ENVIRONMENT IN THE VICINITY OF THE PROPOSED SUMMIT POWER STATION ARE PRESENTED IN REPORT FORM. SPECIES DETERMINATIONS AND DISTRIBUTIONS OF PHYTOPLANKTON, ZOOPLANKTON AND BENTHIC ORGANISMS ARE GIVEN IN ORDER TO OBTAIN INFORMATION ABOUT DAILY AND SEASONAL CHANGES IN POPULATION STRUCTURE. VITALITY STUDIES ON THE ZOOPLANKTON ARE INCLUDED. THE RESULTS OF A COMPREHENSIVE ANALYSIS OF THE PHYSICAL/CHEMICAL ENVIRONMENT IN THE CANAL WATERS DURING THE BIOLOGICAL SAMPLING PROGRAM ARE ALSO AVAILABLE. MEASURED PARAMETERS INCLUDE COLIFORM COUNTS, NUTRIENTS, PIGMENTS, HEAVY METALS, OIL AND GREASE, TEMPERATURE, SALINITY, DISSOLVED OXYGEN, GAS, PH, TURBIDITY AND TRANSPARENCY, HARDNESS, TOTAL ALKALINITY, CARBONATE ALKALINITY, SULFATE, TOTAL DISSOLVED SOLIDS, SUSPENDED SOLIDS, TOTAL PHOSPHORUS, DISSOLVED PHOSPHORUS, NITRATE-NITROGEN, NITRITE-NITROGEN, AMMONIA, ORGANIC NITROGEN, MAGNESIUM, CALCIUM AND TOTAL SILICA.

DATA AVAILABILITY:
UPON PERMISSION FROM DELMARVA POWER AND LIGHT COMPANY

PLATFORM TYPES:
SHIP; FIXED STATION

ARCHIVE MEDIA:
REPORTS
103 PAGES

FUNDING:
DELMARVA POWER AND LIGHT COMPANY

INVENTORY:
PUBLICATIONS:
INTERPRETIVE REPORT 1974 BY RAYTHEON COMPANY FOR UNITED ENGINEERS AND CONSTRUCTORS INC., CLIENT: DELMARVA POWER AND LIGHT COMPANY; COMPLETE REPORT OF RAW DATA IN ANNUAL DATA REPORT

CONTACT:
HUDSON HOEN 302 479 3205
DELMARVA POWER AND LIGHT COMPANY
800 KING STREET
WILMINGTON DELAWARE USA 19899

GRID LOCATOR (LAT):
73079233
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>MAP LOCATION</td>
<td>7</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>7</td>
<td>STATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>WATER</td>
<td>THERMISTOR</td>
<td>DEG F</td>
<td>686</td>
<td>OBS</td>
<td>BI WEEKLY TO MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>SALINITY</td>
<td>WATER</td>
<td>TITRATION</td>
<td>PPT</td>
<td>686</td>
<td>OBS</td>
<td>BI WEEKLY TO MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>DISSOLVED OXYGEN GAS</td>
<td>WATER</td>
<td>SPECIFIC ION ELECTRODE</td>
<td>MG/L</td>
<td>686</td>
<td>OBS</td>
<td>BI WEEKLY TO MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>PH</td>
<td>WATER</td>
<td>PH METER</td>
<td>PH UNITS</td>
<td>686</td>
<td>OBS</td>
<td>BI WEEKLY TO MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>LIGHT ATTENUATION</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>PERCENT TRANSMITTANCE, JTU</td>
<td>686</td>
<td>OBS</td>
<td>BI WEEKLY TO MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>HARDNESS</td>
<td>WATER</td>
<td>EDTA TITRATION</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BI WEEKLY - MARCH - OCTOBER - MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>TOTAL ALKALINITY</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BI WEEKLY - MARCH - OCTOBER - MONTHLY</td>
<td>SURFACE, BOTTOM</td>
</tr>
</tbody>
</table>
Parameter Identification Section:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sphere</th>
<th>Method</th>
<th>Units</th>
<th>Data Amount</th>
<th>Frequency</th>
<th>Height/Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate Alkalinity</td>
<td>Water</td>
<td>Titration</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Water</td>
<td>Nephelometry</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - January, February, November, December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>Dissolved</td>
<td>Desiccation</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - January, February, November, December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>Total Solids</td>
<td>Water</td>
<td>Dry Weight</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - January, February, November, December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Water</td>
<td>Colorimetry</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - January, February, November, December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Dissolved</td>
<td>Colorimetry</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - January, February, November, December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Water</td>
<td>Titration</td>
<td>mg/l</td>
<td>80</td>
<td>Monthly - January, February, November, December, Biweekly - March - October</td>
<td>Surface, Bottom</td>
<td>1 Sample per OBS: 2 Stations</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ORGANIC NITROGEN</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>BOTTOM</td>
<td>OBS: 2 STATIONS</td>
</tr>
<tr>
<td>NITRATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>SURFACE</td>
<td>1 SAMPLE PER</td>
</tr>
<tr>
<td>NITRITE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>BOTTOM</td>
<td>OBS: 2 STATIONS</td>
</tr>
<tr>
<td>OILS</td>
<td>WATER</td>
<td>EXTRATION/WEIGHT</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>SURFACE</td>
<td>1 SAMPLE PER</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>WATER</td>
<td>ATOMIC ABSorption</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>BOTTOM</td>
<td>OBS: 2 STATIONS</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>WATER</td>
<td>ATOMIC ABSorption</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>SURFACE</td>
<td>1 SAMPLE PER</td>
</tr>
</tbody>
</table>
PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>UG/L</td>
<td>80</td>
<td>OBS</td>
<td>MARCH-OCTOBER</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>SILICON</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>MG/L</td>
<td>80</td>
<td>OBS</td>
<td>MARCH-OCTOBER</td>
<td>SURFACE, BOTTOM</td>
</tr>
<tr>
<td>OILS</td>
<td>SEDIMENT</td>
<td>EXTRACTION/WEIGHT</td>
<td>UG/KG</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>BIOCHEMICAL</td>
<td>WATER</td>
<td>TITRATION</td>
<td>MG/L</td>
<td>16</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>NICKEL</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>LEAD</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>ZINC</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>IRON</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>MERCURY</td>
<td>WATER</td>
<td>ATOMIC ABSORPTION</td>
<td>MG/L</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>SURFACE</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>SEDIMENT</td>
<td>ATOMIC ABSORPTION</td>
<td>UG/KG</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>NICKEL</td>
<td>SEDIMENT</td>
<td>ATOMIC ABSORPTION</td>
<td>UG/KG</td>
<td>5</td>
<td>OBS</td>
<td>MONTHLY</td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>LEAD</td>
<td>SEDIMENT</td>
<td>ATOMIC ABSORPTION UG/KJ</td>
<td></td>
<td>5 OBS</td>
<td>MONTHLY</td>
<td></td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>ZINC</td>
<td>SEDIMENT</td>
<td>ATOMIC ABSORPTION UG/KJ</td>
<td></td>
<td>5 OBS</td>
<td>MONTHLY</td>
<td></td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>IRON</td>
<td>SEDIMENT</td>
<td>ATOMIC ABSORPTION UG/KJ</td>
<td></td>
<td>5 OBS</td>
<td>MONTHLY</td>
<td></td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>MERCURY</td>
<td>SEDIMENT</td>
<td>ATOMIC ABSORPTION UG/KJ</td>
<td></td>
<td>5 OBS</td>
<td>MONTHLY</td>
<td></td>
<td>5 STATIONS; JULY: 1 SAMPLE PER OBS</td>
</tr>
<tr>
<td>COUNT OF</td>
<td>WATER</td>
<td>VISUAL</td>
<td>COLONIES PER</td>
<td>64 OBS</td>
<td>MONTHLY</td>
<td>SURFACE,</td>
<td>TOTAL AND FECAL COLIFORM COUNT; 4 STATIONS;</td>
</tr>
<tr>
<td>MICROBIOTA</td>
<td></td>
<td></td>
<td>100 ML</td>
<td></td>
<td></td>
<td>BOTTOM</td>
<td>JANUARY, FEBRUARY, OCTOBER; 2 SAMPLES PER OBS</td>
</tr>
<tr>
<td>CHLOROPHYLL A</td>
<td>WATER</td>
<td>FLUOROMETRY</td>
<td>MG/M3</td>
<td>4 STATIONS</td>
<td>MONTHLY</td>
<td>SURFACE,</td>
<td>4 STATIONS; JANUARY, MARCH-OCTOBER; 2 SAMPLES PER OBS</td>
</tr>
<tr>
<td>TOTAL PHAEOPHYTI</td>
<td>WATER</td>
<td>FLUOROMETRY</td>
<td>MG/M3</td>
<td>4 STATIONS</td>
<td>MONTHLY</td>
<td>SURFACE,</td>
<td>4 STATIONS; JANUARY, MARCH-OCTOBER; 2 SAMPLES PER OBS</td>
</tr>
<tr>
<td>COUNT OF</td>
<td>WATER</td>
<td>FILTRATION</td>
<td>NUMBER PER</td>
<td>560 OBS</td>
<td>MONTHLY -</td>
<td>SURFACE,</td>
<td>7 STATIONS; 2 SAMPLES PER OBS</td>
</tr>
<tr>
<td>PHYTOPLANKTON</td>
<td></td>
<td></td>
<td>SPECIES PER ML</td>
<td></td>
<td>JANUARY,</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td></td>
<td>KEY</td>
<td>SPECIES PER ML</td>
<td></td>
<td>FEBRUARY,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETEERMINATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOVEMBER,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYTOPLANKTON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DECEMBER,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT OF</td>
<td>WATER</td>
<td>FIXED, STAINED,</td>
<td>NUMBER PER</td>
<td>560 OBS</td>
<td>MONTHLY -</td>
<td>SURFACE,</td>
<td>7 STATIONS; 2 SAMPLES PER OBS</td>
</tr>
<tr>
<td>ZOOPLANKTON</td>
<td></td>
<td>ALIQUOT</td>
<td>SPECIES PER M3</td>
<td></td>
<td>JANUARY,</td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FEBRUARY,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOVEMBER,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DECEMBER,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIWEEKLY-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MARCH-OCTOBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SURFACE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BOTTOM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SPHERE</td>
<td>METHOD</td>
<td>UNITS</td>
<td>DATA AMOUNT</td>
<td>FREQUENCY</td>
<td>HEIGHT/DEPTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SPECIES DETERMINATION</td>
<td>WATER</td>
<td>KEY</td>
<td>SPECIES PER M³</td>
<td>560 OBS</td>
<td>MARCH-OCTOBER MONTHLY</td>
<td>SURFACE, BOTTOM</td>
<td>DAY SAMPLING</td>
</tr>
<tr>
<td>WATER</td>
<td>KEY</td>
<td>SPECIES PER SAMPLE</td>
<td>16 OBS</td>
<td>SURFACE, BOTTOM</td>
<td></td>
<td></td>
<td>CLOTT OF ZOOPLANKTON</td>
</tr>
<tr>
<td>MORTALITY OF ZOOPLANKTON</td>
<td>WATER</td>
<td>VISUAL</td>
<td>PERCENT OF TOTAL INDIVIDUALS PER SPECIES DEAD AT TIME OF SAMPLING PER SAMPLE</td>
<td>135 OBS</td>
<td>SURFACE, BOTTOM</td>
<td></td>
<td>2 STATIONS; 1 SAMPLE PER OBS; MARCH, JULY, SEPTEMBER, NOVEMBER</td>
</tr>
<tr>
<td>SPECIES DETERMINATION</td>
<td>BOTTOM</td>
<td>KEY</td>
<td>SPECIES PER SAMPLE</td>
<td>135 OBS</td>
<td>MARCH-OCTOBER MONTHLY</td>
<td>SURFACE, BOTTOM</td>
<td></td>
</tr>
<tr>
<td>BENTHIC ANIMALS</td>
<td>BOTTOM</td>
<td>MICROSCOPE</td>
<td>NUMBERS PER SPECIES PER SAMPLE</td>
<td>135 OBS</td>
<td>MARCH-OCTOBER MONTHLY</td>
<td>SURFACE, BOTTOM</td>
<td></td>
</tr>
<tr>
<td>COUNT OF BENTHIC ANIMALS</td>
<td>BOTTOM</td>
<td>MICROSCOPE</td>
<td>NUMBERS PER SPECIES PER SAMPLE</td>
<td>135 OBS</td>
<td>MARCH-OCTOBER MONTHLY</td>
<td>SURFACE, BOTTOM</td>
<td></td>
</tr>
<tr>
<td>REACTIVE PHOSPHATE</td>
<td>WATER</td>
<td>COLORIMETRY</td>
<td>UG/L</td>
<td>72 OBS</td>
<td>MARCH-OCTOBER MONTHLY</td>
<td>SURFACE, BOTTOM</td>
<td></td>
</tr>
</tbody>
</table>

DELMARVA ECOLOGICAL SURVEY PLANKTONIC AND BENTHIC ORGANISMS (CONT.)
PROJECTS:

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., VIRGINIA, CHESAPEAKE BAY MOUTH

ABSTRACT:
MISSION W276, FLIGHT 01, WAS ACCOMPLISHED ON DECEMBER 11, 1977, UTILIZING THE WALLOPS FLIGHT CENTER C-54 AIRCRAFT EQUIPPED WITH A T-11 AERIAL MAPPING CAMERA, A THERMAL IR SCANNER, A PR-6 PRECISION RADIATION THERMOMETER, AND THE MOCS (MULTICHANNEL OCEAN COLOR SENSOR) IN COOPERATION WITH NASA'S LANGLEY RESEARCH CENTER. THE OBJECTIVE OF THE FLIGHT WAS TO STUDY WATER POLLUTION AT THE MOUTH OF THE CHESAPEAKE BAY.

DATA AVAILABILITY:

PLATFORM TYPES:
AIRCRAFT

ARCHIVE MEDIA:
PHOTOPRINTS; STRIP CHARTS
304 9"X9" PRINTS; 1 STRIP CHART

FUNDING:
NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

CONTACT:
MICHAEL CONGER 804 822 3411
NATIONAL AERONAUTICS AND SPACE ADM
CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
730776 730775

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE</td>
<td>304 OBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>SAMPLING TIME</td>
<td>YMDHM</td>
<td>304 OBS</td>
<td>2 FLIGHTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA</td>
<td>PRINTS</td>
<td>304 OBS</td>
<td>2 FLIGHTS</td>
<td>500, 17,500</td>
<td>152 AND FOUR-</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA</td>
<td>PRINTS</td>
<td>304 OBS</td>
<td>2 FLIGHTS</td>
<td>500, 17,500</td>
<td>TENTHS MM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td>FOCAL LENGTH</td>
<td>FOCAL LENGTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FROM AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MISSION W276, FLIGHT 01, WAS ACCOMPLISHED ON MAY 28, 1974, UTILIZING THE WALLOPS FLIGHT CENTER C-5 AIRCRAFT EQUIPPED WITH FOUR HASELBLAD CAMERAS, A T-11 AERIAL MAPPING CAMERA, AND A MULTICHANNEL OCEAN COLOR SENSOR IN COOPERATION WITH NASA'S LANGLEY RESEARCH CENTER. THE OBJECTIVE OF THE FLIGHT WAS TO STUDY WATER POLLUTION AS RELATED TO EUTROPHICATION LEVELS IN THE JAMES RIVER FROM HOPEWELL TO THE HAMPTON ROADS/CRANEY ISLAND INDUSTRIAL WATERFRONT.

DATA AVAILABILITY:

PLATFORM TYPES:
- AIRCRAFT

ARCHIVE MEDIA:
- PHOTOPRINTS
 284 70MM PRINTS; 71 9"X9" PRINTS

FUNDING:
- NATIONAL AERONAUTICS AND SPACE ADM

INVENTORY:

PUBLICATIONS:

CONTACT:
- MICHAEL CONGER 804 824 3411
 NATIONAL AERONAUTICS AND SPACE ADM
 CHESAPEAKE BAY ECOLOGICAL PROGRAM OFFICE
 WALLOPS ISLAND VIRGINIA USA 23337

GRID LOCATOR (LAT):
73077733 73077625 73076653 73076643

PARAMETER IDENTIFICATION SECTION:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPHERE</th>
<th>METHOD</th>
<th>UNITS</th>
<th>DATA AMOUNT</th>
<th>FREQUENCY</th>
<th>HEIGHT/DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>EARTH</td>
<td>FIXED POINT</td>
<td>LONGITUDE AND LATITUDE</td>
<td>355 OBS</td>
<td>5 FLIGHTS PER LINE</td>
<td>3000 AND 17,500 FEET</td>
<td>152 AND FOUR-TENTHS MM FOCAL LENGTH</td>
</tr>
<tr>
<td>TIME</td>
<td>EARTH</td>
<td>STATION TIME</td>
<td>YMD</td>
<td>355 OBS</td>
<td>5 FLIGHTS PER LINE</td>
<td>17,500 FEET</td>
<td>40MM FOCAL LENGTH</td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>COLOR CAMERA FROM AIRCRAFT</td>
<td>PRINT</td>
<td>284 OBS</td>
<td>5 FLIGHTS PER LINE</td>
<td>3000 AND 17,500 FEET</td>
<td></td>
</tr>
<tr>
<td>PHOTOGRAPH</td>
<td>EARTH</td>
<td>IR CAMERA FROM AIRCRAFT</td>
<td>PRINT</td>
<td>71 OBS</td>
<td>5 FLIGHTS PER LINE</td>
<td>3000 AND 17,500 FEET</td>
<td></td>
</tr>
</tbody>
</table>
ANNEX II

Data Files

Part B

Data File Index - Listed by Key Word

Effects of Boating and Shipping on Water Quality
This index contains an alphabetical listing by key word of the data files in this annex. After some key words is a number or series of numbers which reference the page numbers of the particular file(s) within this report. Most of the files are referenced by more than one key word. Underlined numbers indicate files generated after January 1, 1973.

The key words which do not reference any relevant files are included to indicate the extent of the file search.
Annex II

Part B
Data File Index—Listed by Key Word

Effects of Boating and Shipping on Water Quality

ABS
 use surfactants

aliphatic hydrocarbons (dissolved)
 none

aliphatic hydrocarbons (sediment)
 83

aliphatic hydrocarbons (water)
 21

aromatic hydrocarbons (dissolved)
 none

aromatic hydrocarbons (suspended)
 none

aromatic hydrocarbons (water)
 none

benthic animals
 use count

benzopyrene (water)
 none

biomass of microbiota (sediment)
 none

biomass of microbiota (water)
 none

coliform
 use microbiota

-129-
coliform index
 use count of microbiota

count of benthic animals (bottom)
 32, 46, 50, 63, 92, 113, 118

count of microbiota (sediment)
 73

count of microbiota (water)
 9, 11, 12, 17, 25, 27, 32, 41, 42, 52, 54, 58, 60, 63, 65, 73, 80, 85, 90, 92, 94, 110, 113, 116, 118

count of pelagic fish (water)
 19, 44, 48, 94, 110, 113

detergents (water)
 none

fecal coliform
 use microbiota

fuel oil (water)
 none

gasoline (water)
 none

grease
 use oils

growth studies of microbiota (water)
 none

hydrocarbons (dissolved)
 none

hydrocarbons (sediment)
 none

hydrocarbons (suspended)
 none

hydrocarbons (water)
 none
kerosene (water)
none

land use (land)
56, 94

lubricating oil (water)
none

MBAS
use surfacants

microbiota
use biomass, count, growth studies, species determination, taxonomic list, volume determination, weight

oil degradation (sediment)
none

oil degradation (water)
none

oil slick coverage (water)
none

oil slick occurrence (sediment)
none

oil slick occurrence (water)
88

oils (sediment)
113, 118

oils (water)
118

pelagic fish
use count

photograph (aerial) (earth)

population
use count

-131-
saturated hydrocarbons (suspended)
 none

soap
 use detergents

species determination of microbiota (sediment)
 73

species determination of microbiota (water)
 65, 73, 92

surfactants (water)
 80, 85

tar balls (water)
 none

taxonomic list of microbiota (sediment)
 23

taxonomic list of microbiota (water)
 23

total hydrocarbons
 use hydrocarbons

volume determination of microbiota (sediment)
 none

volume determination of microbiota (water)
 none

weight of microbiota (sediment)
 none

weight of microbiota (water)
 none
ANNEX III

Monitoring Programs

Effects of Boating and Shipping on Water Quality
The monitoring programs identified for this report form three categories, as follows:

Continuous monitoring programs presently active in the Chesapeake Bay - 16 files.

Continuous monitoring programs initiated after January 1967 that have operated five (5) years or longer, but are presently not operational - 0 files.

Continuous monitoring programs initiated prior to January 1967 that have operated ten (10) years or longer and are presently not operational - 1 file.

The programs are arranged by date of initiation, earliest first.
DATA COLLECTED: JANUARY 1925 TO PRESENT

MONITORING PROJECTS:
BACTERIOLOGICAL AND HYDROGRAPHIC SEAWATER DATA

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, TIDAL TRIBUTARIES

ABSTRACT:
BIOLGICAL DATA INCLUDING VARIOUS BACTERIOLOGICAL ANALYSES AND HYDROGRAPHIC DATA ARE OBTAINED FROM SELECTED STATIONS ALONG THE TIDAL COASTLINE OF VIRGINIA AT MONTHLY INTERVALS. HISTORICAL DATA GOES BACK TO 1925 FOR SOME STATIONS AT INTERVALS RANGING FROM MONTHS TO YEARS. THE INFORMATION IS OBTAINED AS PART OF THE SANITARY SURVEY WHICH MONITORS THE FITNESS OF VIRGINIA TIDAL AREAS FOR OBTAINING SHELLFISH FOR DIRECT MARKETING.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
CLOYDE W. WILEY, DIRECTOR 804-786-7937
BUREAU OF SHELLFISH SANITATION
109 GOVERNOR STREET
RICHMOND, VIRGINIA, USA 23219

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 54.
DATA COLLECTED: JANUARY 1940 TO PRESENT

MONITORING PROJECTS:
SHORELINE SURVEY DATA

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, TIDAL TRIBUTARIES

ABSTRACT:
THE TIDAL SHORELINE OF VIRGINIA HAS BEEN DIVIDED INTO 107 AREAS AND EVERY PROPERTY WITHIN THE WATERSHED OF EACH AREA IS VISITED BY INSPECTORS TO DETERMINE SOURCES OF WASTE WHICH MIGHT CONTRIBUTE TO SURFACE WATER POLLUTION. EACH AREA WILL BE SURVEYED AT SIX YEAR INTERVALS. HISTORICALLY THE SURVEY WORK IS LESS FREQUENT, AND THE ENTIRE WATERSHED WAS NOT SURVEYED.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
CLOYDE W. WILEY, DIRECTOR 804-786-7937
BUREAU OF SHELLFISH SANITATION
109 GOVERNOR STREET
RICHMOND, VIRGINIA, USA 23219

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 56.
DATA COLLECTED: 1957 TO 1972

MONITORING PROJECTS:
BECKETT NEWTOWN, GLOUCESTER COUNTY, NEW JERSEY REPORT FOR LANDTECT CORPORATION

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., NEW JERSEY, GLOUCESTER COUNTY

ABSTRACT:
THIS REPORT IS AN ENVIRONMENTAL IMPACT STATEMENT DISCUSSING THE SITE FOR A POTENTIAL HOUSING DEVELOPMENT. IT INCLUDES A COMPLETE REPORT ON SOIL CHARACTERISTICS AND SUITABILITY FOR VARIOUS PURPOSES, CLIMATIC, WATER QUALITY, HYDROLOGIC, GEOLOGIC, FAUNAL AND FLORAL DATA. IT HAS IN ADDITION AN EXTENSIVE BIBLIOGRAPHY. WATER ANALYSES WERE DONE BY AN INDEPENDENT LAB AND METHODS WERE NOT REPORTED.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DR. JAMES A. SCHMID 215-647-3110
JACK MCCORMICK AND ASSOCIATES
860 WATERLOO ROAD
DEVON, PENNSYLVANIA, USA 19333

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 90.
DATA COLLECTED: MAY 1960 TO PRESENT

MONITORING PROJECTS:
BEACH WATER SAMPLE REPORTS

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, HAMPTON ROADS,
BACK RIVER

ABSTRACT:
BEACH WATER SAMPLES ARE ROUTINELY COLLECTED AT WEEKLY OR MONTHLY INTERVALS AND
ANALYZED FOR TOTAL OR FECAL COLIFORM BACTERIA. (DATA COLLECTED FROM SHORE STATIONS.)

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
H. C. ASHTON, SUPERVISORY SANITARIAN 804-722-7411
HAMPTON HEALTH DEPARTMENT
3130 VICTORIA BOULEVARD
HAMPTON, VIRGINIA, USA 23661

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 42.
DATA COLLECTED: JUNE 1962 TO PRESENT

MONITORING PROJECTS:
WATER QUALITY PROGRAM

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, ANNE ARUNDEL COUNTY

ABSTRACT:
COUNTS OF FECAL COLIFORM BACTERIA HAVE BEEN MADE SINCE 1962 ON WATER SAMPLES TAKEN DURING A TEN WEEK PERIOD EACH SUMMER. SAMPLING STATIONS ARE NEAR PUBLIC RECREATION AREAS AT BODKIN CREEK, MAGOTHY RIVER, SEVERN RIVER, SOUTH RIVER, WEST RIVER AND HERRING BAY, ANNE ARUNDEL COUNTY, MARYLAND.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
B. SPENCER FRANKLIN 301-267-8151
ANNE ARUNDEL COUNTY HEALTH DEPARTMENT
3 BROAD CREEK PARKWAY
ANNAPOLIS, MARYLAND, USA 21401

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 9.
DATA COLLECTED: JULY 1962 TO PRESENT

MONITORING PROJECTS:
DELAWARE ESTUARY WATER QUALITY SURVEILLANCE PROGRAM

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., LOWER DELAWARE BAY, MARCUS HOOK, PENNSYLVANIA TO TRENTON, NEW JERSEY

ABSTRACT:

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DENNIS D. BLAIR 215-686-1776
RESEARCH AND DEVELOPMENT DIVISION
PHILADELPHIA WATER DEPARTMENT
1270 MSB 15th AND JFK BOULEVARD
PHILADELPHIA, PENNSYLVANIA, USA 19107

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 85.
DATA COLLECTED: 1964 TO PRESENT

MONITORING PROJECTS:
WATER RESOURCES DATA FOR PENNSYLVANIA; PART TWO, WATER QUALITY RECORDS

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., PENNSYLVANIA

ABSTRACT:
THIS IS AN ONGOING STUDY OF THE QUALITY OF SURFACE WATERS OF PENNSYLVANIA. THERE ARE APPROXIMATELY 250 STATIONS FROM WHICH DATA ARE COLLECTED, MOST OF WHICH MONITOR STREAM DISCHARGE, TEMPERATURE, SPECIFIC CONDUCTIVITY AND DISSOLVED OXYGEN. IN ADDITION, ABOUT 200 STATIONS REPORT BIOCHEMICAL OXYGEN DEMAND, DISSOLVED CA, Mg, Na, K, Cl, F, SULFATE, NITRATE, ORTHOPHOSPHATE, CARBON DIOXIDE, BICARBONATE, AND CARBONATE, AS WELL AS PH, ALKALINITY, HARDNESS, NONCARBONATE HARDNESS AND COLOR. ABOUT 50 STATIONS ADDITIONALLY MONITOR DISSOLVED SILICA, FE AND Mn, COLIFORM AND STREPTOCCI. SPOT CHECKS ARE MADE FOR SURFACTANTS, TURBIDITY, AND DISSOLVED AMMONIA, Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn AND A VARIETY OF PESTICIDES IN WATER AND SEDIMENTS. THE DATA ARE PRINTED ANNUALLY IN SUMMARY REPORTS; DETAILED DATA FROM MANY INDIVIDUAL STATIONS ARE AVAILABLE.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
P. DEMARTE 717-782-4514
U.S. GEOLOGICAL SURVEY
228 WALNUT STREET
HARRISBURG, PENNSYLVANIA 17108

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 80.
DATA COLLECTED: JANUARY 1964 TO PRESENT

MONITORING PROJECTS:
MICROBIOLOGICAL ANALYSIS OF ESTUARINE ENVIRONMENTS

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND

ABSTRACT:
ANALYSIS OF CHESAPEAKE BAY SEDIMENTS FOR BACTERIA AND VIRAL COMPONENTS WITH ANCILLARY DATA ON WATER TEMPERATURE, D.O., SALINITY AND NUTRIENTS.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DR. R. R. COLWELL 301-454-5376
DEPARTMENT OF MICROBIOLOGY
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND, USA 20742

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 73.
DATA COLLECTED: 1965 TO PRESENT

MONITORING PROJECTS:
A CHECKLIST OF BIOTA OF LOWER CHESAPEAKE BAY

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA

ABSTRACT:
A REPORT OF BIOTA DISTRIBUTION IN THE LOWER CHESAPEAKE BAY. TAXONOMIC LISTS OF
BENTHIC ANIMALS, BENTHIC PLANTS, PHYTOPLANKTON, PELAGIC FISH, MICROBIOITA, MAMMALS,
BIRDS, REPTILES AND AMPHIBIANS.

DATA AVAILABILITY:
PLATFORM TYPE:
ARCHIVE MEDIA:
FUNDING:
INVENTORY:
PUBLICATIONS:
CONTACT:
LIBRARIAN 804-642-2111
VIRGINIA INSTITUTE OF MARINE SCIENCE
GLOUCESTER POINT, VIRGINIA, USA 23062

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 23.
DATA COLLECTED: JUNE 1968 TO PRESENT

MONITORING PROJECTS:
CALVERT CLIFFS SURVEY REPORTS FOR THE BALTIMORE GAS AND ELECTRIC COMPANY

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, CALVERT CLIFFS

ABSTRACT:
TO DETERMINE THE ECOSYSTEM STRUCTURE AND ITS ECOLOGICAL CHARACTERISTICS, PARTICULARLY DIVERSITY, IN CERTAIN SELECTED, SHALLOW-WATER AREAS IN THE VICINITY OF THE CALVERT CLIFFS NUCLEAR GENERATING STATION, A SURVEY IS BEING CARRIED OUT INCLUDING BIOLOGICAL, CHEMICAL, PHYSICAL, AND BACTERIOLOGICAL STUDIES OF THE WATER. THE STUDY IS TO DETERMINE A BASE LINE PICTURE OF CHESAPEAKE BAY CONDITIONS BEFORE PLANT OPERATIONS BEGIN.

DATA AVAILABILITY:
PLATFORM TYPE:
ARCHIVE MEDIA:
FUNDING:
INVENTORY:
PUBLICATIONS:

CONTACT:
DR. CLYDE E. GOULDEN 215-567-3700
THE ACADEMY OF NATURAL SCIENCES
NINETEENTH AND THE PARKWAY
PHILADELPHIA, PENNSYLVANIA, USA 19103

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 65.
DATA COLLECTED: JANUARY 1969 to PRESENT

MONITORING PROJECTS:
MICROBIOTA SURVEY OF ELIZABETH RIVER - WESTERN BRANCH

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, ELIZABETH RIVER

ABSTRACT:
SHORELINE SAMPLING STATIONS ARE MONITORED AT BIWEEKLY INTERVALS AND WATER SAMPLES ARE ANALYSED FOR TOTAL FECAL COLIFORM BACTERIA.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
M. G. PENDLETON JR., DIRECTOR OF ENVIRONMENTAL HEALTH 804-393-8649
DEPARTMENT OF PUBLIC HEALTH
800 CRAWFORD PARKWAY, P. O. BOX 250
PORTSMOUTH, VIRGINIA, USA 23705

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 41.
DATA COLLECTED: JANUARY 1969 TO PRESENT

MONITORING PROJECTS:
CHEMICAL, BACTERIOLOGICAL AND PHYSIOLOGICAL STUDY ON THE CHESAPEAKE BAY IN THE VICINITY OF CALVERT CLIFFS, MARYLAND

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, CALVERT CLIFFS

ABSTRACT:
WATER SAMPLES OBTAINED MONTHLY FROM STATIONS IN THE VICINITY OF THE PROPOSED NUCLEAR GENERATING STATION AT CALVERT CLIFFS ARE ANALYSED FOR A NUMBER OF CHEMICAL, BACTERIOLOGICAL AND PHYSICAL PARAMETERS. THE RESULTS OF THESE ANALYSES ARE AVAILABLE FROM THE BALTIMORE GAS AND ELECTRIC COMPANY IN THE FORM OF YEARLY CONTRACT REPORTS BY THE PHILADELPHIA ACADEMY.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DR. CLYDE E. GOULDEN 215-567-3700
THE ACADEMY OF NATURAL SCIENCES
NINETEENTH AND THE PARKWAY
PHILADELPHIA, PENNSYLVANIA, USA 19103

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 60.
DATA COLLECTED: JUNE 1972 TO PRESENT

MONITORING PROJECTS:
 ENVIRONMENTAL CONSULTATION - WETLANDS LYNNHAVEN AREA OF LOWER CHESAPEAKE BAY AND ELIZABETH RIVER

GENERAL GEOGRAPHIC AREA:
 NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, LYNNHAVEN BAY, ELIZABETH RIVER

ABSTRACT:
 SURVEY OF HYDROGRAPHIC AND BIOLOGICAL PARAMETERS OF LOWER CHESAPEAKE BAY - LYNNHAVEN BAY AND ELIZABETH RIVER. DATA COLLECTED IN CONJUNCTION WITH CONTRACT WORK FOR CONTRACTORS AND LAND DEVELOPERS.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
 PAUL KIRK 804-489-6000
 INSTITUTE OF OCEANOGRAPHY
 OLD DOMINION UNIVERSITY
 NORFOLK, VIRGINIA, USA 23508

GRID LOCATOR:
 COMPLETE FILE DESCRIPTION LOCATED IN ANNEX, PAGE 32.
DATA COLLECTED: JUNE 1972 TO PRESENT

MONITORING PROJECTS:
NEKTON AND BENTHIC SURVEY

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, HACKETTS POINT, TOLLY POINT, MATAPEAKE

ABSTRACT:
THIS IS A CONTINUING SURVEY OF THE NEKTON AND BENTHIC ORGANISMS IN THE AREA AROUND THE CHESAPEAKE BAY BRIDGE. PARAMETERS INCLUDE TEMPERATURE, SALINITY, SPECIES DETERMINATIONS AND COUNTS, WEATHER AND SECCHI DISC DEPTH.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
HUGO G. GEMIGNAMI 301-647-7100
ANNE ARUNDEL COMMUNITY COLLEGE
101 COLLEGE PARKWAY
ARNOLD, MARYLAND, USA 21012

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 92.
DATA COLLECTED: JULY 1972 TO PRESENT

MONITORING PROJECTS:
SURFACE WATER QUALITY - CHESAPEAKE BAY

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, OCEANVIEW TO SANDBRIDGE

ABSTRACT:
FECAL COLIFORM BACTERIA ARE MONITORED AT MONTHLY INTERVALS FROM WATER SAMPLES OBTAINED ALONG THE SOUTH EASTERN COAST OF VIRGINIA.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
M. J. OWENS, SANITARIAN SUPERVISOR 804-427-4261
VIRGINIA BEACH HEALTH DEPARTMENT
P. O. BOX 6185, PRINCESS ANNE STATION
VIRGINIA BEACH, VIRGINIA, USA 23456

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 17.
DATA COLLECTED: MAY 1973 TO PRESENT

MONITORING PROJECTS:
HAMPTON ROADS SEWAGE OUTFALL SURVEY

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, OCASTAL, U.S., CHESAPEAKE BAY, VIRGINIA, HAMPTON ROADS, ELIZABETH, JAMES AND LAFAYETTE RIVERS

ABSTRACT:
SURVEY OF HYDROGRAPHIC AND WATER QUALITY PARAMETERS IN HAMPTON ROADS NEAR SEWAGE TREATMENT PLANTS.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
DONALD ADAMS 804-489-6000
INSTITUTE OF OCEANOGRAPHY
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA, USA 23508

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 25.
DATA COLLECTED: AUGUST 1973 TO PRESENT

MONITORING PROJECTS:
AMBERLY STORM DRAINAGE PROJECT

GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, ANNAPOLIS, RIDEOUT AND WHITEHALL CREEKS

ABSTRACT:
THIS STUDY HAS MONITOURED TOTAL AND FECAL COLIFORMS IN TWO CREEKS BEFORE, DURING AND AFTER THE AMBERLY STORM DRAINAGE PROJECT.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:
NANCY G. DIMSDALE 301-268-8816
CHESAPEAKE BAY FOUNDATION
PRINCE GEORGE AND EAST STREETS
ANNAPOLIS, MARYLAND, USA 21404

GRID LOCATOR:
COMPLETE FILE DESCRIPTION LOCATED IN ANNEX II, PAGE 11.