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 Ecology (1977) 58: pp. 1199-1217

 THE IMPORTANCE OF PREDATION BY CRABS AND FISHES

 ON BENTHIC INFAUNA IN CHESAPEAKE BAY1 2

 ROBERT W. VIRNSTEIN3
 Virginia Institute of Marine Science, Gloucester Point, Virginia 23062 USA

 Abstract. The significance of large motile predators in controlling the distribution and abundance
 of the macrobenthic invertebrates within the sediments (the infauna) in a shallow subtidal sand com-
 munity was tested using manipulative field experiments. The blue crab (Callinectes sapidus) and 2
 species of bottom-feeding fishes, spot (Leiostomus xanthurus) and hogchoker (Trinectes maculatus),
 were either excluded from or confined to small areas using wire mesh cages. Callinectes and Leios-
 tomus effectively reduced infaunal densities; Trinectes did not.

 The infauna responded to decreased predation with a large increase in density and diversity within
 2 mo. The largest population increases were exhibited by opportunistic species, which are considered
 to be most subject to predation. Species whose populations were least affected by predation were
 those species which either live deep in or quickly retract into the sediment. These species thus avoid
 predation and were generally the dominant species in the natural community. For species whose
 density increased greatly in exclosures, recruitment was by planktonic larvae and growth was very
 rapid, individuals growing to maturity in only a few months.

 Densities of all infaunal species increased in exclosures, suggesting that their population densities
 under natural conditions are not controlled by competitive interactions. In this community, infaunal
 population sizes are limited by predation and not by food or space. Severe predation pressure and
 physical disturbances, particularly sediment instability, keep population levels far below the carrying
 capacity of the environment. Severe predation, and the rapid growth, short generation times, and rapid
 turnover rates of constituent populations suggest that such infaunal communities, despite a low stand-
 ing crop, are an important food source for predator species important to man.

 Key words: Benthic, caging experiments; Crustacea; Chesapeake Bay; community; competition;
 diversity; estuarine; fishes; infauna; Mulinia lateralis; predation.

 INTRODUCTION

 Theories of the origin and maintenance of soft-

 bottom community structure and organization have

 grown from studies dependent primarily on sampling

 approaches stressing static, descriptive aspects of the

 community (e.g., Thorson 1957, Sanders 1960, Boesch

 1971, 1973, Lie 1974). Although this descriptive work

 is a necessary first step, the important parameters con-

 trolling the community structure and observed distri-

 butional patterns and abundances of species in the

 community can be tested by experimental manipula-

 tions in the field. This latter approach has proved par-

 ticularly rewarding on marine rocky intertidal sur-

 faces, where the importance of both physical and

 biological factors in determining vertical distribution

 and abundance of organisms has been demonstrated

 by Connell (1961a, b, 1970), Dayton (1971), Paine

 (1974), and Menge (1976).
 In contrast to the advantages of manipulative exper-

 iments in rocky intertidal areas (Connell 1972, 1975),

 subtidal soft-bottom areas are less accessible; species
 cannot be removed easily or selectively; and, most

 importantly, the infauna of most soft bottoms cannot

 1 Manuscript received 3 June 1976; accepted 21 January
 1977.

 2 Contribution No. 843 from the Virginia Institute of Marine
 Science and No. 85 from the Harbor Branch Foundation.
 Based on a Ph.D. thesis submitted to the College of William
 and Mary.

 I Present address: Harbor Branch Foundation, RFD 1, Box
 196, Fort Pierce, Florida 33450 USA.

 be enumerated without permanently removing the
 animals and substrate, thus disturbing and partly de-
 stroying that which was to be measured. Due to these
 inherent difficulties, ecologists working on soft-bottom
 infauna have only recently progressed past the stage of
 community descriptions to assess the role of physical
 and biotic interactions in community structure. One
 such potentially important biotic interaction is preda-
 tion by epibenthic crabs and fishes.

 Although the assumption is often made that a large
 proportion of infaunal mortality is due to predation
 (e.g., Muus 1973, Arntz and Brunswig 1975), few
 studies have examined the effect of predation on in-
 faunal communities, particularly subtidally. Blegvad
 (1928) was the first to use wire-mesh exclosures to
 protect infauna from predators and found that infaunal
 densities of some species increased up to 60x that of
 uncaged areas in the Baltic Sea. Woodin (1974) inad-
 vertently found that crabs could reduce the abundance
 of tube-building polychaetes in a North Pacific inter-
 tidal soft-sediment environment. Naqvi (1968) used
 6-mm mesh cages to protect intertidal infauna from
 predation at Alligator Harbor, Florida, and found 4x

 as many animals inside as outside the cages. No preda-
 tors, however, were noted, and it was not demon-
 strated that these results were due to lack of predation.

 In the Chesapeake Bay, shallow-water subtidal
 communities have low infaunal densities in unvege-
 tated areas compared to similar but vegetated sedi-
 ments only a metre away (Orth 1977), where crabs
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 ... .... ... ... .

 FIG. 1. Photograph of cage. When set out, the lower
 horizontal rod was pushed below the sediment-water inter-
 face.

 would have difficulty digging through the rhizome mat
 of submerged grasses in search of food. Also, these
 densities are lowest in summer and fall (when crabs
 and fish have been feeding on the infauna) and highest
 in winter and spring (when these predators are absent
 or inactive), suggesting that crab and fish predation
 plays a significant role in determining infaunal abun-
 dances in this system. Because of their bottom-feeding
 habits and their abundance, attention was focused
 on the hogchoker (Trinectes maculatus), spot (Leio-
 stomus xanthurus), and the blue crab (Callinectes
 sapidus), an especially voracious feeder on the in-
 fauna. I report here the results of manipulative field
 experiments to test the significance of large motile
 predators in controlling the abundance of infauna in a
 shallow subtidal community.

 METHODS AND MATERIALS

 The area investigated was a shallow (1.4 m at mean
 low water [MLW]) sandy bottom 70 m from the MLW
 line in the lower York River near the Virginia Institute
 of Marine Science (37'15'N lat., 76'30'W long.).
 Wire-mesh cages were used either to exclude preda-
 tors from, or to confine certain predators to, a small
 area.

 The experimental design consisted of randomly as-
 signing various treatments to plots consisting of
 50 x 50-cm areas of the bottom. These 0.25-in plots
 were spaced 3 m apart in a grid pattern within an area
 n12 x 20 in (long axis parallel to shore). Treatments
 included various caging combinations and no cage,

 i.e., caged plots and uncaged plots. In each separate
 experiment (1973 and 1974), there were sufficient
 numbers of each treatment for sampling after various
 predetermined periods of time (see below). There were
 two replicates of most treatments. A replicate was the
 same treatment applied to two separate plots. Each
 plot (whatever the treatment applied) was sampled
 only once. A sample from each plot consisted of five
 cores 8.1 cm in diameter.

 To sample the infauna in a cage, the cage was care-
 fully pulled out of the sediment and set aside. A grid
 was visually placed over the caged plot and the 5 cores
 taken at positions determined by randomly selected
 two-digit numbers. No cores were taken within 5 cm of
 the edge of the cage. Cores were taken with an 8.1-
 cm inside diameter (0.005 M2) hand-held polyvinyl-
 chloride (PVC) pipe corer to a depth of 10 cm. In 1973,
 samples were sieved through a 0.5-mm mesh screen
 and then fixed in Formalin with the vital stain,
 phloxine B added. In 1974, samples were fixed in For-
 malin first and then sieved. This latter procedure
 most likely increased the number of animals retained,
 because many thread-like worms (especially oligo-
 chaetes) would crawl through the screen if sieved
 alive. Therefore, absolute densities are not necessarily
 comparable between 1973 and 1974, except for larger
 animals. The retained animals were sorted from the
 sediment under a dissecting microscope, identified and
 counted. Many were measured, and all preserved in
 ethanol. Excluded from counts and analyses were
 those animals which are strictly epifaunal (e.g., barna-
 cles and caprellid amphipods) or are generally classed
 as meiofauna and inadequately sampled (e.g., nema-
 todes and copepods). Samples were taken in the
 same manner from randomly assigned uncaged plots
 whenever cages were set out or sampled, as well as
 during most other months.

 Cages measuring 50 x 50 x 15 cm high were con-
 structed of 12-mm mesh wire hardware cloth over a
 frame of 9-mm-diameter steel rods (Fig. 1). All cages
 were this size unless otherwise noted. A trapdoor in
 the top of each cage provided access inside the cages.
 The 30-cm legs and 5 cm of the bottom edge of the
 sides were pushed into the sediment to keep the cage
 in place and to prevent predators from digging under
 the cage. Fouling organisms were removed by scrub-
 bing the cages frequently (weekly after the first 3 wk)
 with a wire brush.

 Predators tested for effects on infauna were blue
 crabs Callinectes sapidus Rathbun, a portunid; hog-
 chokers Trinectes maculatus (Bloch and Schneider),
 a soleid flatfish; and spot Leiostomus xanthurus
 Lacepede, a sciaenid. The crabs were 9- to 11-cm
 carapace width; the hogchokers and spot were 12- to
 13-cm total length. The fish were measured before
 being put in the cages and then again at the end of the
 experiment (if they could be recaptured). All fish sur-
 vived, but no crab survived the full 2 mo of an experi-
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 ment, having an average life expectancy of I mo in the

 cages. When a crab died, it was replaced by another

 within a few days.

 Samples for analysis of sediments were taken with a

 5-cm-diameter corer 5 cm deep, and analyzed for par-

 ticle size according to methods given by Folk (1968).

 The sand fraction was separated from the silts and

 clays by wet sieving through a 62-Am mesh sieve and
 analyzed by dry sieving through a Wentworth sieve

 series. The silt-clay fraction was measured by pipette

 analysis. Orange-painted sand was placed on the sedi-

 ment surface both inside and outside cages so that any

 differences in sediment stability and transport by cur-
 rents and waves could be observed. All servicing of

 cages, sampling and observations were carried out

 using self-contained underwater breathing apparatus

 (SCUBA) gear.

 I examined stomach contents of fishes from the

 lower York River. These fishes were collected in sur-

 vey trawl samples in summer 1973.

 Because faunal abundances in replicate treatments
 were generally quite similar (P > .05), quantitative

 analyses of faunal samples were done using the pooled

 data from both replicates. In the few cases where rep-

 licates were quite different, each replicate was treated

 separately. Comparisons of total density, number of

 species and number of individuals of common species
 (defined as a mean density >I/core) were made for

 each major sampling between the treatments using
 a one-way analysis of variance (Sokal and Rohlf 1969).
 Homogeneity of variance was tested using the Fmax
 test. If a significant departure from homogeneity was

 found, a logarithmic transformation (log[x + 1]) was

 applied, and the transformed data then retested with
 the Fmax test. If the analysis of variance indicated
 significant differences between means, all means were

 compared using the a posteriori Student-Newman-
 Keuls multiple comparison test. A t-test was used
 to test whether a sample mean was significantly greater

 than zero. Significance was chosen to be the a = .05

 level. Any departures from this standard procedure
 are noted.

 To determine which treatments resulted in similar
 infaunal assemblages, a similarity analysis was per-

 formed on the collections using log-transformed abun-

 dance as an importance value and the Czekanowski
 (Bray-Curtis) similarity index, followed by agglomera-
 tive clustering of treatments using flexible (/3 = -0.25)
 sorting strategy (Clifford and Stephenson 1975).

 1973 experimental treatments

 Treatments tested in 1973 were (summarized in Table

 1): cages excluding all larger predators ("empty'"

 cages); cages each containing 1 hogchoker ("hog-
 choker" treatment); and cages each containing 1
 blue crab ("crab" treatment). Some cages were di-

 vided into quadrants of 25 x 25 cm each by wire mesh

 and a crab put in each quadrant (called "4-crabs"

 TABLE 1. The 1973 experiments. The number of samples
 of each replicate treatment at each sampling date. The
 same plot was never resampled. The entry '5 + 5" indi-
 cates 5 cores sampled from each of 2 replicate treatments
 or plots

 At start After 21/2 After 2
 experiment weeks months

 Treatment (31 Jul) (17 Aug) (29 Sep)

 Uncaged area 5 + 5 5 5 + 5
 Empty cage 5 5 + 5
 Empty quadrant
 of cage 5

 Cage with
 hogchoker 5 + 5

 Cage with crab 5 5 + 5
 Cage with crab
 in each quadrant 3 5 + 5

 Cage with 2 sides 5

 treatment, because there were 4 crabs in the same area

 as a cage) to test the effect of increased crab density or

 increased crab predation. Other cages divided into

 quadrants were left empty ('empty 1/4" treatment) to

 test the effect of cage size. A cage control was used

 because it was suspected that cages might affect water

 currents and sedimentation. For this purpose, a cage

 with a top but only 2 sides was used ("2-sided" treat-

 ment) with the 2 sides perpendicular to the direction of

 flow of tidal currents, so as to have maximum effect on

 currents, while the 2 open sides would allow crabs and
 fish access to the infauna under the cage. In the course

 of the experiment, crabs were observed digging within
 this partially open cage. In addition to these treat-

 ments, natural sediments from uncaged plots were

 sampled ("outside cages" or "out").

 All cages were set out at the end of July; some treat-
 ments were sampled after 2.5 wk and others after 2 mo

 to determine the time course of the response of the
 infauna (Table I).

 1974 experimental treatments

 Based on results of 1973 experiments, similar but

 revised experiments were set up in 1974. Experiments

 were started in the spring (May) when more species

 were spawning, and before blue crabs became abun-

 dant. Because the hogchoker apparently had not preyed

 on the infauna, it was replaced by the spot, known

 to prey on infauna (L. N. Chao, personal communica-

 tion? Hildebrand and Schroeder 1928, Stickney et al.

 1975), to be dominant in this area (Pacheco 1962a, b,
 Illowsky and Colvocoresses 1975), and observed to

 feed in the experimental area ("spot" treatment). To
 further test the effect of different crab densities, crabs

 in 3 different sizes of cages were used: a 1-m2 cage
 with a crab, a standard size cage (0.5-m square = 0.25

 mi2) with a crab ("crab" treatment = 4 crabs/M2), and a
 standard size cage divided by wire mesh into quadrants
 with a crab in each quadrant ("4-crabs" treatment =

 16 crabs/M2). To test the effect of confining a crab to a
 small area without the presence of a cage, a crab was
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 TABLE 2. The 1974 experiments. The number of samples of each replicate treatment at each sampling date. The entry
 -5 + 5" indicates 5 cores sampled from each of two replicate treatments or plots. See p. 000 for explanation of treat-
 ment designations

 Date sampled
 (and number
 of months Empty,
 cages were then Tethered
 in place) Uncaged Empty crab Crab Crab/m2 4-crabs crab Spot Hand

 17May(6) 5 + 5 5 + 5
 18 Jul (2) 5 + 5 5 + 5 5 + 5 5 + 5 5 5 + 5 5 + 5 5 + 5
 18 Sep (4) 5 + 5 5 5
 16 Nov (I 1) 5 + 5 5
 16 Nov (6) 5 + 5 5 + 5
 16Nov(12) 5+5 5

 tethered to a buried stake by a cord attached to a wire

 looped around the lateral spines of the crab's carapace

 ("tethered crab" treatment). The 28-cm tether allowed

 the crab to roam over the same area as a cage (0.25

 m2). These crabs fought to escape the tether, appeared

 to be more active than the crabs in cages, and averaged

 either I escape or death per month. Tethered crabs and

 crabs in cages were replaced as soon as they were

 found to be dead or missing (a maximum of 1 wk).

 An attempt was made to differentiate the effects of

 crabs caused by: (I) the actual eating of infaunal ani-

 mals; and (2) physical burying, crushing and tube or

 burrow disruption caused by digging activities as-

 sociated with feeding and protective burrowing. To

 make this distinction, I tried to duplicate the physical

 disturbances caused by a crab. Every 4-5 days, the top

 2-3 cm of sediment was disturbed and fairly well

 mixed by reaching through the trap door opening of a

 cage and walking my fingers heavily through the sedi-

 ment (as in mixing biscuit dough) and by pushing my

 fist into the sediment (to simulate the activities of

 crabs digging for food and burrowing), referred to as

 the "hand" treatment. Enough exclosures were set out

 in May to sample after 2, 4, 6 and 9 mo. A summary

 of 1974 treatments, replicates and sampling dates is
 given in Table 2. Other exclosure cages were set out

 at other times to assess recruitment at other seasons

 of the year.

 Basic Assumptions of the Experimental Design

 One assumption is that the infauna throughout the
 area where the cages were placed was homogeneous,

 i.e., that significant differences did not exist from one

 cage-sized plot to another a few metres away, so that
 when cages were placed over different plots on the

 same date, they all originally enclosed the same in-

 faunal community. This assumption was tested by

 comparing uncaged replicate plots using a one-way
 analysis of variance. Total density and number of

 species showed no significant differences (P > .05) be-

 tween replicate plots from any one month. The as-

 sumption of no preexisting differences was therefore
 valid.

 The second assumption is that if 2 cages were put in

 at the same date (t), and 1 cage sampled at time t1 and
 another at time t2, then both cages contained the same

 infauna at time t,. Because cages could not be nondes-
 tructively sampled, this assumption was unfortunately

 untestable.

 RESULTS AND INTERPRETATION

 The natural community

 The area investigated, a shallow, sandy, unvege-
 tated bottom in the normally polyhaline region of the

 lower York River (salinity 16-23%o during the study

 period), is probably representative of many of the ex-

 tensive shoal areas of the Chesapeake Bay and its sub-

 estuaries. Sediments were poorly sorted (o-I = 1.10 1)

 fine sands (Mdo = 2.52 0 = 0.178 mm) (Folk 1968)
 with a 15% silt-clay content.

 Rank analysis (Fager 1957) was used to determine

 dominant species based on samples from uncaged

 areas in the 10 sample periods of 1974 (Table 3). For

 each month's sample, the top-ranked species was
 given 10 points, second-ranked 9 points, etc., for the

 top 10 species. Maximum possible score (for a species

 top-ranked in every sample) is 100. Of the 13 top-
 ranked species, 11 are annelids (1 oligochaete and 10

 polychaetes). The top 5 species build vertical tubes or

 burrows in the sediment but exhibit diverse feeding

 types: 2 feed on the sediment surface (Spiochaetop-

 terus oculatus and Streblospio benedicti), 2 feed an-

 terior end down at the bottom of their tubes or burrows
 (Peloscolex gabriellae and Heteromastus filiformis),

 and 1 species is a tentaculate suspension feeder
 (Phoronis psammophila = P. architects). Phoronis

 psammophila is the only suspension-feeding species of

 the top 13 species; the other 12 species ingest sedi-

 ments or surface deposits. Of significant note is the

 complete absence of bivalves and crustaceans from
 this list of dominant species.

 The ranking of the dominant species was rather con-

 stant throughout the year. For example, in the 10 sam-
 ples, Peloscolex ranged in rank only from 1-3,

 Spiochaetopterus ranked 2-5, Heteromastus 1-5, and

 Glycinde solitaria 4-9. A relative index of constancy,
 calculated as the ratio of the variance of the monthly

 means to the yearly mean (Table 3), indicates that
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 FIG. 2. Monthly abundance patterns, 1973-1974, of total
 density and number of species. Means (+ s,) are plotted.

 Spiochaetopterus was the species most constant in

 abundance throughout the year, and Streblospio and

 Polydora were the least persistent.

 Although many species spawn most heavily in early

 spring, there is generally a poor success of recruitment

 at this time. Total density did not increase in summer,

 in spite of this spawning effort. Blue crabs and many

 fishes move into the shallow areas of the estuary in

 spring and continue feeding throughout the summer.

 Thus, in spite of favorable temperatures and abundant

 productivity during spring and summer after this major
 recruitment effort, the infauna may have been pre-

 vented from increasing in abundance by the continual

 predation throughout the summer. Total density in

 December 1974 was significantly greater than in No-

 vember, possibly indicating a rapid repopulation of

 infauna when predators leave, or a spawning-

 death-recruitment cycle (Fig. 2).

 Sediments

 The cages did affect sediment size and movement.

 Empty cages, the least disturbed treatment, tended to

 have a higher percentage (up to 35%) of fine sediments

 (silts and clays) than physically disturbed sediments

 (18-19%), or cages with crabs or spot (14-16%), or

 TABLE 4. July to August 1973 experiment, after cages had
 been in place 2.5 wk. Means per 0.005 m2 and standard
 error of total individuals and number of species

 Total Number of
 individuals species

 Treatment (x + SE) (x + SE)

 Empty cage enclosuree) 22.4 ? 5.0 10.0 ? 1.4
 Uncaged at start (31 Jul) 22.3 ? 3.8 8.3 ? 1.0
 Uncaged at end (17 Aug) 20.8 ? 5.8 8.6 ? 2.0
 Cage with I crab 17.6 ? 4.9 7.8 ? 1.1
 Cage with 4 crabs 7.7 ? 2.2 5.3 ? 1.2

 areas outside cages (11-16%). This increase in fine

 sediments in the empty cage could be due either to

 reduction of currents or to increased biodeposition and
 binding of fine particles by animals such as Streblospio

 benedicti or Polydora ligni.

 Orange-painted sand placed outside the cages was

 noticeably dispersed in the direction of tidal currents
 within a few hours, whereas inside the cages this sedi-

 ment did not move for at least 7 days. Part of this effect

 may have been due to increased binding of sediments

 by the greater density of animals in the cages. How-

 ever, on one occasion in November when painted sand
 was put out, within a few hours it was covered over

 and stabilized by diatoms, mainly by Nitzschia clos-

 terium, both inside and outside cages (Holland et al.
 1974).

 1973 caging experiments

 Results after 2.5 wk.-On 17 August 1973, after the

 cages had been in place 2.5 wk, there were few signifi-
 cant differences between any of the treatments sam-
 pled. Although there was less than half the total den-

 sity in the 4-crabs treatment (Tables 4, 5), none of the
 differences was significant (P > .05). The number of
 species per core in the empty cage was significantly
 greater than all other treatments, and was significantly

 less (P < .01) in the 4-crabs treatment than any other
 treatment. Of all the abundant species, only the

 TABLE 3. Rank analysis of dominant species in the natural community based on samples from natural sediments in 1974.
 Maximum possible score is 100. 0 = oligochaete, P = polychaete, Ph = phoronid, G = gastropod

 Variability of density
 Average (variance of monthly
 density means about the

 Species Rank Score (N/m2) yearly mean)

 Peloscolex gabriellae (0) 1 96 3971 7.03
 Spiochaetopterus oculatus (P) 2 80.5 890 0.36
 Heteromastus filiformis (P) 3 79 1424 1.00
 Streblospio benedicti (P) 4 63 1162 10.06
 Phoronis psammophila (Ph) 5 50.8 436 0.68
 Glycinde solitaria (P) 6 45.3 349 0.89
 Polydora ligni (P) 7 27 450 11.90
 Paraprionospio pinnata (P) 8 22.3 167 0.46
 Scolelepis squamata (P) 9 15.5 153 0.51
 Scoloplos robustus (P) 10 15.3 107 0.54
 Eteone heteropoda (P) 11 13 105 1.34
 Nereis succinea (P) 12 9.5 110 0.37
 Acteon punctostriatus (G) 13 9 89 0.64
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 FIG. 3. July to September 1973 experiment, after cages had
 been in place 2 mo. Means and 95% confidence limits of total
 density and number of species. A vertical line extending be-
 tween 2 treatments indicates a nonsignificant difference
 (P > .05) between the means. See p. 1201 for explanation of
 treatment designations.

 chaetopterid polychaete Spiochaetopterus oculatus

 showed any significant differences between treat-

 ments, the 4-crabs treatment having significantly fewer

 individuals per core than any other treatment.

 Results after 2 mo.-On 29 September 1973, after

 the cages had been in place 2 mo, there were many
 more significant differences between treatments than

 after only 2.5 wk (Table 5).

 Densities in the two-sided cage were generally not

 significantly different from uncaged areas or cages
 with crabs, but were significantly less than empty

 cages (Figs. 3, 4), implying that the main effect of the

 cage was exclusion or inclusion of crabs, and that re-
 sults were not due in some way to the physical pres-

 ence of the cage.

 Total density, number of species per core (Fig. 3),

 and number of individuals per core of six species were

 significantly greater (P < .05) in the empty cage than
 in either of the cages with crabs. These 6 species were

 Paraprionospio pinata, Spiochaetopterus oculatus,

 Streblospio benedicti, Scoloplos robustus, Mulinia
 lateralis and Edwardsia elegans.

 Showing few significant differences between treat-

 ments were Peloscolex gabriellae, Heteromastus

 filiformis, Phoronis psammophila and Mya arenaria,

 all of which live or can retract rather deeply into the
 sediment, and could thus avoid predation and surface
 disturbances. Spiochaetopterus oculatus (also with a

 tube extending deep into the sediment) did not follow
 this pattern because it was recruiting heavily at the

 time these cages were set out; 45% of the individuals

 from uncaged areas were juveniles (<4 mm) in June.

 There were no juveniles collected in April or May.

 Both total density and number of species per core

 were significantly greater (P < .001) in 3 treatments-

 empty cages, empty 1/4 cages and cages with a hog-
 choker-than in any other treatment, with an average
 of >3x the total density and 2x as many species

 per core (Fig. 3). These 3 treatments resulted in simi-
 lar increases (although all were not significant) in the
 densities of 7 of the 12 species tested: Paraprionospio
 pinnata, Streblospio benedicti, Spiochaetopterus

 oculatus, Nereis succinea, Mulinia lateralis, Mya
 arenaria and Edwardsia elegans.

 TABLE 5. Densities of infauna (mean number per 0.005
 m2 core) in exclosures set out in July 1973 and sampled
 after 2.5 wk or 2 mo. Each cage was sampled only once.
 An asterisk (*) indicates significantly greater density (P <
 .05) than uncaged area at same sampling date

 At start
 of

 experi- After After
 ment 2.5 wk 2 months

 Taxa (31 Jul) (17 Aug) (21 Sep)

 OLIGOCHAETE

 Peloscolex gabriellae 4.1 3.2 10.1

 POLYCHAETES

 Paraprionospio pinnata 0.1 0.2 8.6*
 Streblospio benedicti 0 0 7.2*
 Spiochaetopterus oculatus 2.8 3.0 5.1*
 Heteromastus filiformis 2.1 4.4 2.2
 Glycinde solitaria 4.6 2.2 4.0*
 Nereis succinea 0.9 0.8 1.3
 Scoloplos robustus 0.2 0 1.1*

 BIVALVE

 Mulinia lateralis 0.3 0.6 1.5*

 ANEMONE

 Edwardsia elegans 0 0 1.7*

 PHORONID

 Phoronis psammophila 1.0 0.8 1.8

 TOTAL INDIVIDUALS 22.2 22.4 51.6*

 NUMBER OF SPECIES 8.1 10.0* 14.8*

 There was a general pattern of greater density of

 most species in empty cages, with the hogchoker

 treatment producing the same results as an empty cage
 (Fig. 4). Thus hogchokers had little controlling influ-

 ence on the infauna. Both hogchokers survived the 2
 mo in the cages, but lost an average of 15% of their

 body weight over this period. They are abundant

 (Dovel et al. 1969) nocturnal feeders (Castagna 1955),

 and may feed also on animals such as mysids and

 cumaceans, which are more epifaunal than infaunal,
 although mainly annelids were found in hogchoker

 stomachs by Castagna (1955) and by Hildebrand and

 Schroeder (1928). Captivity may have inhibited feed-
 ing behavior and caused this discrepancy. Hogchokers

 are more abundant on mud than sand bottoms, al-

 though they were often observed in the study area.
 The cages with crabs had essentially the same in-

 fauna as the two-sided cage and uncaged areas, imply-
 ing that natural areas are as disturbed or as preyed-

 upon as an area in which there was a caged crab.
 The dendrogram (Fig. 4) resulting from similarity

 analysis indicated 2 main groups. Those treatments
 that excluded crabs and most fish (empty, empty 1/4,

 and hogchoker treatments) formed 1 highly similar

 group distinct from those other treatments where crabs
 had access to the sediments and infauna. These 2

 groups had a low similarity to each other.

 1974 caging experiments

 Results after 2 mo.-On 18 July 1974, after cages

 had been in place 2 mo, composite community parame-
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 FIG. 4. Dendrogram resulting from similarity analysis of
 treatments sampled in September 1973, after cages had been in
 place for 2 mo. The Czekanowski index based on log-
 transformed abundance was used with a flexible sorting strat-
 egy.

 ters and most common species showed significant dif-

 ferences between treatments (Table 6). Both total den-

 sity and number of species per core followed the same

 pattern; the empty cage, crab/per square metre and
 hand treatments were not significantly different from

 each other, but were significantly greater than all other

 treatments (Fig. 5). Total density and number of

 species per core were significantly less in the tethered

 crab treatment than in all other treatments except the

 cage with four crabs.

 430. I EMPTY I e
 * 400, CRAB/m2

 HAND

 CRAB

 SPOT

 4-4.' OUT START

 MN OUT END

 4 CRABS

 __________________________ ITETH. CRAB

 0 00 200 300 0 5 1 5 20
 TOTAL INDIVIDUALS NUMBER OF SPECIES

 FIG. 5. May to July 1974 experiment, after cages had been
 in place 2 mo. Means and 95% confidence limits of total density
 and number of species. A vertical line extending between two
 treatments indicates a nonsignificant difference (P > .05) be-
 tween the means. See p. 1201 for explanation of treatment
 designations.

 Abundances of individual species also followed a
 pattern similar to 1973. For 12 of the 14 common

 species, two of the three treatments with greatest den-
 sities were from among the empty, hand, or crab/m2

 treatments. For 12 of the 14 species, the lowest abun-

 dance of all treatments sampled in July was either the

 4-crabs treatment or the tethered crab treatment.
 For all species except the bivalves and the poly-

 chaete Heteromastus filiformis, the hand treat-

 ment was not significantly different than the empty

 cage. Thus, most decreases in abundances due to

 crabs must be due either to physical disturbances more

 severe than the hand treatment, or to actual eating of

 the infaunal animals, or to a combination of both.

 The 3 species of bivalves, Mya arenaria, Mulinia

 lateralis and Lyonsia hyalina, were effectively elimi-
 nated by the hand treatment and by any treatments

 where a crab or fish (spot) was present. Mya was sig-

 TABLE 6. Densities of infauna (mean number per 0.005 m2 core) in exclosures set out in May 1974 and sampled after 2,
 4 or 6 mo. Each cage was sampled only once. An asterisk (*) indicates significantly greater density (P < .05) than un-
 caged area at same sampling date

 At start of
 experiment After 2 mo After 4 mo After 6 mo

 Taxa (17 May) (18 Jul) (18 Sep) (16 Nov)

 OLIGOCHAETE

 Peloscolex gabriellae 11.9 28.8 48.0* 53.3*

 POLYCHAETES

 Heteromastu.s filiformis 2.8 173.4* 15.4* 35.7*
 Streblospio benedicti 24.2 52.4* 0.2 3.5
 Glycinde solitaria 1.3 7.7 1.4 1.9
 Spiochaetopterus oculatus 3.6 3.5 1.0 2.8
 Polydora ligni 0.4 4.1* 12.6* 3.8*
 Nereis succinea 0.2 4.5* 3.8* 5.8*
 Pectinaria gouldii 0 1.7* 5.2* 3.5*
 Pseudeurythoe sp. 0.1 0.1 5.0* 1.2*
 Eteone heteropoda 2.5 0.5 0 1.7*

 BIVALVES

 Mulinia lateralis 0.1 44.1* 41.0* 20.3*
 Mya arenaria 3.3 2.0* 1.2 4.2*
 Lyonsia hyaline 0 1.6* 2.6* 0.1

 PHORONID

 Phoronis psammophila 0.8 4.4 1.6 1.4

 TOTAL INDIVIDUALS 57.4 344:2* 145.8* 150.1*
 NUMBER OF SPECIES 11.6 19.8* 15.4* 18.3*
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 FIG. 6. Dendrogram resulting from similarity analysis of
 treatments sampled in July 1974, after cages had been in place
 for 2 mo. The Czekanowski index based on log-transformed
 abundance was used with a flexible sorting strategy.

 nificantly more abundant in uncaged areas at the start

 of the experiment (May) than in empty cages in July;

 otherwise, the densities of all three bivalves were sig-
 nificantly greater in the empty cages than in any other

 treatment. Mulinia and Lyonsia both live very close to

 the sediment surface and thus are available to preda-

 tors and would be disturbed, buried or crushed by the
 hand treatment.

 Infaunal densities in the crab per square metre

 treatment were greater than the crab treatment (a den-

 sity of 4 crabs/M2) for 9 of the 14 common species (2 of

 these differences were significant). Densities in the

 crab treatment were greater than in the 4-crabs treat-

 ment (16 crabs/m2) for all species except Scoloplos

 robustus (5 of these differences were significant).

 Thus, as blue crab density increases, infaunal densities
 decrease.

 Densities in the tethered crab treatment were less

 than or equal to those in the 4-crabs treatment for 9 of

 the top 14 species, but were never significantly less.

 Apparently the increased activity of the tethered crab

 (noted above) was sufficient to disturb the infauna as
 much as 16 crabs/M2.

 The spot (Leiostomus xanthurus) also effectively
 reduced infaunal densities. Densities of 12 of the 14

 common species were less in the cages with the spot
 than in empty cages (seven of these differences were

 significant). Densities in the spot treatment were in-
 termediate between those in the crab per square metre
 and 4-crabs treatments for 10 of the top 14 species, and
 intermediate between those in the crab and 4-crabs

 treatments for 7 species. Thus, the spot was at least as

 effective as a crab in reducing infaunal densities of
 most species.

 Densities in natural (uncaged) sediments at the time

 of sampling the cages (July) were intermediate be-

 EMPTY

 OUT START

 OUT END

 EMPTY-CRAG -4- t

 0 40 80 120 160
 TOTAL INDIVIDUALS
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 EMPTY-CRAB 8

 , .
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 FIG. 7. May to September 1974 experiment. Means and
 95% confidence limits of total density and number of species.
 A vertical line extending between 2 treatments indicates a
 nonsignificant difference (P > .05) between the means. See
 below for explanation of treatment designations.

 tween those of the crab per square metre and 4-crabs

 treatments for 7 of the t6p 14 species, were less than in

 the crab treatment for 11 of the species (significantly
 less for 4 species), and were greater than in the 4-crabs

 treatment for 7 of the species. Thus, the infauna of the

 natural uncaged sediments is at least as disturbed as a

 caged area with a crab (a density of 4 crabs/m2).

 The dendrogram (Fig. 6) resulting from the similarity

 analysis indicates 2 main groups. The low-predation

 treatments (empty cage, m2 cage with crab and hand

 disturbance treatments) were all highly similar. In-

 explicably, the crab treatment was similar to this group

 of treatments. At the time of sampling, the crabs in
 both replicates were dead, but for a maximum of only 8

 days-perhaps this allowed recruitment by other
 species. Those treatments with supposedly greater

 predation intensity formed another similar group.

 The ranks of treatments averaged over all species

 and composite parameters tested in Table 6 were ar-
 ranged from highest rank (highest density) to lowest

 rank in the following order: empty cage, cage with

 sediment disturbed by hand, m2 cage with crab, cage

 with crab, cage with spot, uncaged area at end of ex-

 periment (July), uncaged at start of experiment (May),
 cage with 4 crabs, and the area with a tethered crab.
 This ordering might be considered as ranking the
 treatments from low to high predator disturbance.

 Results after 4 mo.-On 18 September 1974, after

 cages had been in place 4 mo, the following treatments
 were sampled (Table 2, above): an uncaged area, an

 empty cage, and a cage empty for 2 mo, but then with a

 crab in it for the next 2 mo ("empty--crab" treat-
 ment).

 Results were very similar to those of July 1974. The
 empty cage had significantly greater total density,
 more species and more individuals per core of most

 species than any other treatment (Table 6, above; Fig.
 7). Species not significantly more abundant in the
 empty treatment were deeper-living Spiochaetopterus
 oculatus, Mya arenaria (mean size = 32.7 mm), and
 Phoronis psammophila. Total density, number of
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 species per core, and densities of half of the species

 tested were lowest in the empty->crab treatment.

 The densities of most species in the uncaged area
 were more nearly equal to and usually not significantly

 different from densities in the empty->crab treatment,

 again indicating that the uncaged natural areas are

 highly preyed upon.

 Results after 6 mo-.When sampled on 16

 November 1974, the empty cages in place since May (6

 mo) had greater total density and species per core

 (P < .01), and greater density (P < .05) of 9 of the 14
 species tested than the uncaged areas (Table 6).

 Species with especially high densities in the empty

 cages were: the oligochaete Peloscolex gabriellae; the
 polychaetes Heteromastus filiformis, Pectinaria goul-

 dii, Polydora ligni and Nereis succinea; and the
 bivalves Mulinia lateralis and Mya arenaria. All of the

 above species had also been abundant in empty cages

 in July (after 2 mo) and September (after 4 mo), with

 the exception of Mya in September (Table 6).

 The empty cage: General results

 The general pattern of results from the empty cage

 treatments enclosuress) is given here; individual
 species patterns will be presented in a forthcoming pa-

 per. The empty cage resulted in increased densities of
 most species, but the specific results depended on a

 number of factors.

 The length of time a cage had been in place deter-
 mined whether there were any significant differences
 in density between the infauna in an empty cage and in

 an uncaged area. After 2.5 wk in 1973, there were no
 significant differences for any of the species. After 2

 mo, densities of 7 species were significantly greater in
 empty cages than in uncaged areas (Table 5). In 1974,
 after I mo there were only 2 species with significantly
 greater densities in the empty cages; after 2, 4, 6 and 12

 mo, there were 8, 8, 9 and 9 species, respectively, that
 had significantly greater densities in the empty cage

 than in an uncaged area. Thus, few significant differ-
 ences occur in I mo or less, but many significant dif-
 ferences occur after 2 mo. Leaving the cage in longer
 than 2 mo did not, however, appreciably change the
 results. Essentially the same species were more abun-

 dant in exclosures set out at the same time and then

 sampled after 2, 4, or 6 mo.

 It is possible that density-dependent regulation of
 these populations prevented further increases after 2
 mo. Number of species per core, total density, diver-

 sity and species composition did not change much
 from 2 to 6 mo, indicating that succession was not

 taking place after 2 mo (Fig. 8). I do not know how
 long, if ever, it would take for this caged community to
 approach the "natural" community. I suspect that a
 higher-density community could be maintained indefi-
 nitely in enclosures. Species composition would prob-

 ably change with time but opportunistic species would
 probably continue to play a large role in such ex-

 closure-maintained communities. Such communities
 (sensu Iatu) may correspond to Sutherland's (1974)

 "multiple stable points."

 The season when a cage was set out determined

 which species increased in abundance in the empty

 cage. Recruitment into empty cages was predomi-
 nantly by larvae rather than by adults, as indicated by

 the small size of new recruits. Thus, if, during the time

 the cage was in place, the larvae of species A were in
 the plankton and ready to set, but those of species B

 were not, species A would increase in abundance in

 the empty cage and species B would not. In general,

 any empty cage left for 2 mo or longer had significantly
 greater total density, more species per core, and more

 individuals per core of most species than there were

 outside the cage in natural uncaged sediment. Those

 species that increased most in abundance were the

 ones that were recruiting at the time the cages were

 first set out.

 Individual species patterns

 In general, the species least affected by increased

 predation were those which live deep in the sediment
 or can retract quickly into the sediment, thus avoid-

 ing predators: the annelids Peloscolex gabriellae,
 Heteromastus filiformis, Spiochaetopterus oculatus,

 Paraprionospio pinnata, the phoronid Phoronis psam-
 mophila and large individuals of the bivalve Mya
 arenaria. This list includes four of the top 5 ranked

 species in the natural community (Table 3), suggesting

 that avoidance of predators allows their success.

 Those species which live very close to the sediment
 surface and are thus available to predators showed

 large responses to decreased intensity of predation:

 the polychaetes Streblospio benedicti, Polydora ligni,
 Pectinaria gouldii, and the bivalves Lyonsia hyalina,

 Mulinia lateralis and small Mya arenaria. The combi-

 nation of fish predation on juveniles, crab predation on

 small individuals and cow-nosed ray predation on the
 largest individuals (Orth 1975) may be responsible for

 the relative lack of bivalve dominance in Chesapeake

 Bay.

 Opportunistic eurytopic species play a large role in
 response to disturbances, and are abundant in most

 Chesapeake Bay habitats (Copeland 1970, Boesch
 1973, 1977), indicating stressed or unpredictable envi-
 ronments, characteristic of most estuaries. These
 r-strategists are able to react rapidly to changing envi-

 ronments, stresses, temporarily open space and re-

 laxed predation pressures (Levinton 1970, Grassle and
 Grassle 1974, Boesch et al. 1976a, Boesch 1977). Pol-
 lution may also exclude predators in a manner similar
 to experimental enclosures, allowing densities of these

 eurytolerant opportunistic species to increase (Young

 and Young 1977).

 Opportunistic species played a large role in the com-
 munity studied. Two of the most abundant species,
 Heteromastus filiformis and Streblospio benedicti,
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 both reputed opportunists, were among the most

 abundant species in natural sediments and in cages

 with predators. Together with the opportunistic
 Mulinia lateralis, these species dominated most exclo-

 sures, with densities I to 2 orders of magnitude greater

 than outside enclosures.

 The high degree of dominance by these opportunists

 was as effective as a predator in keeping informational

 diversity (Shannon-Weaver H') in exclosures at about

 the same level as in the natural community (Fig. 8C).

 Although the number of species was much higher in all

 enclosures, the low level of species evenness produced

This content downloaded from 139.70.105.160 on Thu, 26 Sep 2019 14:45:07 UTC
All use subject to https://about.jstor.org/terms



 Autumn 1977 PREDATION ON BENTHIC INFAUNA 1209

 E

 E 2
 20J

 - 15-

 -c -

 "s 105- , - -' A Mu/inia Size vs. Age C 5 '

 0.5 CY I I

 0 2 4 6 8 10 E
 E

 o 80, B Mu//nia Density vs. Age 16,000
 / 20- ,' - > -12 ,000 U

 40 - 8 ,000 6
 CL 75

 20 ,/4,000
 V~~~~~~~~~~~~~~~~~~~~~

 0. 200 C

 0 2 4 6 8 10
 MAY '74 JUL SEP NOV FE B 75

 Months After Setting Out Cages

 FIG. 9. Mulinia lateralis size versus age and density versus age in exclosures set out in May 1974. Means (log scale) and 95%
 confidence limits.

 by the dominance of these opportunists caused the

 lowered diversity. The diversity of the natural com-

 munity is apparently not limited entirely by physical
 environmental factors, but also by biological factors:

 predation at low infaunal densities in the natural com-

 munity, and competition only at high infaunal popula-

 tion densities in exclosures.

 Mulinia lateralis (Say).-Of all species collected, the

 mactrid bivalve Mulinia lateralis best exemplified the

 characteristics of an opportunistic species and a desir-

 able prey. This account is presented as an example of

 such.

 Periodic eruptions of very dense populations of

 Mulinia occur in Chesapeake Bay, particularly in

 deeper muddy sediments in winter or early spring

 (Boesch 1973, 1974, Huggett et al. 1975, Boesch et al.
 1976h). These dense populations then experience very
 high mortalities in early summer, probably due to both

 predation and high turbidity. Mulinia maintains low-

 density reservoir populations in shallow sandy areas

 (Wass et al. 1972). Summer densities averaged 20/m2

 during this study and 37/m2 at three 3-m-deep stations
 in the lower York River from 1972 to 1974 (Virnstein
 1975).

 Juveniles were found in February, May, June, July,
 August, September and November. Additional sam-

 pling would be likely to show that Mulinia juveniles

 are present year-round; Chanley and Andrews (1971)
 found Mulinia larvae in the plankton from May to
 November.

 Young Mulinia grow very rapidly. At temperatures

 >20'C, they grew to sexual maturity in 6 wk in Long

 Island Sound (Calabrese 1970). In my cages, they grew

 to an average length of 18.2 mm in only 4 mo (Fig. 9A).

 In those exclosures which remained densely populated

 with Mulinia, it was probably the increase in size of

 individual Mulinia which caused overcrowding and a

 subsequent decline in density (Fig. 9B). The density of
 the clams was so great that to bury itself, a clam would

 have to dig through a layer of clams (Figs. 10, I1). By

 lying on their sides and thrusting their feet out rapidly,

 clams were observed to "hop" along the sediment sur-

 face and thus move laterally. Presumably in response
 to overcrowding, some clams moved out of the cage in

 this way. If they moved out during the seasons when

 crabs were present, these clams were eaten within a

 few days, as evidenced by the broken Mulinia shells

 outside the cages.

 Every enclosure, no matter when set out or sampled,
 had a greater density of Mulinia than outside cages;

 most of these differences were significant. Mulinia

 densities were significantly greater (P < .01) in empty
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 FIG. 10. Photograph of undisturbed core taken from an
 exciosure in September 1974, in place since May, showing
 Mulinia lateralis and Pectinaria gouldii on the surface, and the
 numerous siphons of Mulinia. Inside diameter of the core is 10
 cm. The Mulinia from this core are pictured in Fig. 1.

 cages than in any other treatment set out and sampled
 on the following dates: November 1973 to May 1974,
 May to September 1974, May to November 1974, and
 May 1974 to February 1975.

 From the experiments of 1973 (Fig. 12), it can be
 seen that Mulinia density is not affected by hogchok-
 ers, but is effectively controlled by crab predation. In
 1974, crabs and spot were also effective in reducing
 Mulinia density (Fig. 13). As had happened with many
 other species, the greater the density of crabs, the less
 the density of Mulinia (Fig. 14).

 The actual mechanism by which Mulinia popula-
 tions were kept low may have varied from treatment to
 treatment. The hand treatments had significantly fewer
 Mulinia than the empty cages, but significantly more
 individuals than outside the cages (Fig. 13). This man-
 ual disturbance of the sediments may eliminate many
 Mulinia by crushing, burying, or dislodging the newly
 settled clams from the sediment so that they may be
 carried away by tidal currents. This hand treatment
 was less effective than the crabs or spot in eliminating
 Mulinia.

 Spot may have eliminated many Mulinia both by
 actually eating them, and by physical disruption of sed-
 iments. Spot feed mainly in the top few millimetres of
 sediment (Stickney et al. 1975). Mulinia are one of the
 most common and abundant species in the stomachs of

 FIG. 1 1. Photograph of the Mulinia lateralis removed from
 the core pictured in Fig. 10. Diameter of the core is 10 cm; thus
 the clams are pictured in the actual density from the field.

 spot collected from the lower York River in summer
 1973. There was a mean of 11.2 Mulinia per spot
 stomach of the 10 fish examined. Some of these
 Mulinia were adult size (5-10 mm), but most were
 juveniles 1-3 mm long, in spite of the fact that juvenile
 Mulinia are rarely ever taken in benthic samples in
 summer. However, Mulinia do spawn and set during
 summer, as evidenced by their recruitment into exclo-
 sures during summer 1973 (Fig. 12). They do not sur-
 vive in nature due to such heavy predation by spot and
 probably other species.

 Blue crabs may also eliminate many Mulinia by their
 digging and burrowing activities. In addition, they
 were observed to have eliminated a cage full of large
 Mulinia by eating them.

 To verify that blue crabs could actually dig up and
 eat Mulinia, several large (- 18 mm) Mulinia were put
 into an aquarium containing sediment from the study
 area and allowed to burrow into the sediment. A blue
 crab was then put into the aquarium and observed.
 Two different crabs were used on 2 different occa-
 sions. In both cases, the crabs found the Mulinia, as if
 stumbling on them while walking about, dug them up
 and ate them. Usually the crab crushed the clams with
 its chelae, often near the clam's siphons, then pro-
 ceeded to use its mouthparts to scrape the tissue out of
 the valves. With 2 clams, however, the crab was able
 to insert the dactyl of one chela between the valves of
 the clam, then inserted the dactyl of the other chela,
 and pried open the valves, all in 15 s. The crab then
 ate the whole clam, even scraping the abductor mus-
 cles off both valves without breaking either valve.
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 FIG. 12. Density of Mulinia lateralis after cages had been
 in place 2 mo in 1973 (July to September). Means and 95%
 confidence limits. A vertical line between two treatments indi-
 cates a nonsignificant difference (P > .05) between the means.

 There is other evidence that blue crabs eliminated the

 Mulinia by actually eating them, not just by physically

 disturbing the sediment. The unplanned but fortuitous

 empty--crab treatment was a cage that had been empty
 for 2 mo (May to July 1974); then 2 small crabs (6-8 cm)

 somehow got into the cage. One was allowed to remain

 for the next 2 mo (July to September). In mid-July, I

 observed that this cage contained a dense population of

 large Mulinia (the density of Mulinia was 14,700/m2

 with a mean length of 13.4 mm in another empty cage set

 out in May and sampled in July). Four days later, I

 observed the 2 crabs and hundreds of empty and broken
 Mulinia shells in the cage. The crab that was allowed to

 remain grew considerably in the next 2 mo (to 13 cm

 carapace width). No Mulinia were found in samples

 from this cage in September 1974 (Fig. 15). In contrast,

 Mulinia lateralis
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 FIG. 13. Density of Mulinia lateralis after cages had been
 in place 2 mo in 1974 (May to July). Means and 95% confidence
 limits. A vertical line between 2 treatments indicates a nonsig-
 nificant difference (P > .05) between the means.

 the empty cage sampled at this time was so densely

 packed with Mulinia (7,950/M2, 18.2-mm mean length)
 that some of the clams were lying on top of one another

 (Figs. 10, 1). Four days after this cage had been re-
 moved, exposing -2,000 clams to crab predation, the

 sediment surface was littered with empty and broken

 shells, and not one live Mulinia could be found.

 In November 1974 and February 1975, empty cages

 also full of Mulinia were sampled. After the cage was
 removed and the samples taken, the cage was put back

 so that approximately half of the Mulinia were within

 the cage and half were outside the cage. At both of these

 times, crabs were not feeding in shallow parts of the

 estuary and nearly all clams survived both inside and

 outside the cages. In late April 1975, when crabs first
 started to appear, a few broken Mulinia shells were
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 FIG. 14. Mulinia lateralis density versus blue crab density in cages. Means (log scale) and 95% confidence limits of July
 1974 data.
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 FIG. 15. Density of Mulinia lateralis after cages had
 been in place 4 mo in 1974 (May to September). Means and
 95% confidence limits. A vertical line between 2 treatments
 indicates a nonsignificant difference (P > .05) between the
 means.

 found outside these cages and I crab was observed

 carrying off a large Mulinia. By the middle of May, no

 live Mulinia could be found outside the cages, whereas

 most of the Mulinia inside the cages survived until

 August and some until September 1975, when the mesh

 of the cages corroded, holes appeared, and crabs were

 seen inside the cages.

 At this time, the Mulinia were 16 mo old. Most were

 22-23 mm; the largest was 26.3 mm, much larger than is

 ever found in natural habitats. J. Kraeuter (personal

 communication) has grown Mulinia in the laboratory to
 > 30 mm in less than a year. Thus it appears that Mulinia

 is a favored food of blue crabs and that predation is

 probably the major factor controlling adult population

 size during warmer months. Peterson (1975) found a

 similar situation with respect to blue crab predation on
 intertidal Mytilus edulis in Barnegat Bay, New Jersey.

 DISCUSSION

 The effect of predation on a community depends

 partly on the intensity of the predation. Low-level pre-

 dation pressure may increase species diversity by (1)

 reducing the density of dominant species, which allows

 the density of competitively inferior species to increase

 (Brooks and Dodson 1965, Paine 1966, 1969, Porter
 1972); (2) reducing most species densities to a level

 below that regulated by competitive exclusion of
 species (Dayton and Hessler 1972, Roughgarden and

 Feldman 1975); or (3) creating patches with lowered

 densities at different stages of succession to a hypothet-
 ical "climax community" (Hutchinson 1961, Horn and

 MacArthur 1972, Levin and Paine 1974). Sufficiently

 severe predation pressure may decrease species diver-

 sity by reducing population densities of all species

 (Sammarco et al. 1974). Effects of predation may be
 most drastic in physically controlled environments, be-

 cause the prey organisms must give adaptive priority to
 the physical regime, rather than to refinement of biolog-

 ical interactions (Sanders 1969, Slobodkin and Sanders

 1969).

 In the community studied here, and over the time

 spans examined (1-12 mo), increasing predation pres-

 sure caused a slight decrease in species diversity
 (number of species), and decreasing predation pressure

 below natural levels allowed a large increase in diver-
 sity, indicating that natural predation pressures are se-
 vere.

 Although the physical stresses of the estuarine envi-

 ronment may be severe, they are not major factors

 limiting natural population densities of this community;

 predation does play a major role. In such a trophically

 simple community (detritus-based), Menge and Suther-

 land (1976) would have predicted competition, not pre-
 dation, to be the dominant organizing interaction.

 Density-dependent interactions

 The theory of competitive exclusion (Gause 1934)

 predicts the elimination of one species by another if

 both compete for the same limited resource. However,

 predation can alter the outcome of competition between

 two competing species, allowing both species to coexist
 in a space in which only one could exist without preda-

 tion (Slobodkin 1961, Brooks and Dodson 1965, Paine

 1966, Cramer and May 1972, Porter 1972, Levin and

 Paine 1974, Roughgarden and Feldman 1975).

 In the York River community studied here, densities

 of most species increased when protected from preda-

 tors; no species decreased in density, suggesting a lack

 of competitive exclusion. It appears that competitive
 pressures are not very important in the regulation of

 population densities in this community. Resources are
 not limiting in these shallow sand communities in

 Chesapeake Bay.

 In contrast to this situation, limitation by, and com-

 petition for, space and food has been demonstrated in
 intertidal marine benthic environments between barna-

 cles (Connell 1961a, b), between deposit-feeding mud

 snails (Fenchel 1975), between tube-building and bur-
 rowing polychaetes (Woodin 1974), between a phoronid

 and a bivalve (Ronan 1975), and between infaunal
 bivalves (C. H. Peterson, personal communication). J.

 Committo (personal communication) found that inter-
 tidal infaunal population densities increased only

 slightly in response to decreased predation in exclosure

 cages in the Newport River estuary, North Carolina.
 These infaunal densities decreased later in the summer,

 both inside and outside exclosures.

 The reason for such a discrepancy between these

 other studies and mine is unclear. The greatest differ-
 ence is that all of the above studies are intertidal as

 opposed to my subtidal study. Although not always

 true, the higher in the rocky intertidal zone, the less

 important is predation as a factor regulating population

 densities (Connell 1972). Such is also the case with blue

 crab predation on littorinid snails in a Florida salt marsh

 (Hamilton 1976). Perhaps this same gradient exists for

 soft-sediment communities. In the York River, all the
 major predators are restricted to water at least a few

 centimetres deep. Perhaps this limitation causes a dis-
 continuity in the importance of predation between
 intertidal areas (where predators are infrequent) and

 subtidal areas (where predators are continually abun-

 dant during summer months).

 Only at the extremely high population densities found
 in some exclosures did competitive exclusion appar-
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 TABLE 7. A comparison of densities (x per 0.005 m2) from
 replicates of exclosure cages, with and without dense
 concentrations of large Mulinia lateralis (t shell length
 = 13.4 mm). Data are from July 1974, when cages had
 been in place 2 mo

 With 76.0 With only 12.2
 Mulinia Mulinia

 Parameters and taxa per core per core

 Total density 242.6 445.8
 Number of species 17.0 21.6
 Heteromastus filiformis 83.0 263.8
 Streblospio benedicti 10.4 94.4
 Glycinde solitaria 3.4 12.0
 Spiochaetopterus oculatus 1.2 5.8
 Scoloplos robustus 0.6 2.4
 Acteon punctostriatus 1.2 6.4
 Lyonsia hyalina 2.4 0.8
 Mya arenaria 4.0 0
 Tellina versicolor 0.2 1.8
 Phoronis psammophila 2.2 6.6

 ently occur. For example, at a density of 140,000/m2 in
 one exclosure, individuals of Streblospio benedicti
 were an average of only 3 mm apart and had almost

 totally overlapping feeding radii (the tentacular palps
 extend 10-20 mm along the sediment surface). In some

 exclosures, Mulinia lateralis were so dense that they

 could not all fit in a single layer (Figs. 10, 11), and

 apparently competed with one another for space as they

 grew (Fig. 9). In such great density, Mulinia apparently

 successfully competed with other species; densities of
 most other species except bivalves were much lower in

 exclosures with dense Mulinia than in exclosures with

 fewer Mulinia (Table 7). This exclusion of other species

 by Mulinia may have been due to (1) removal of settling

 larvae while filter feeding (predation) (Woodin 1976);
 (2) sediment instability caused by Mulinia's active

 movements (amensalism) (Rhoads and Young 1970); or

 (3) occupying most of the available habitat space (com-
 petition). Such competitive success of the opportunistic

 Mulinia is contrary to the popularly held opinion that

 opportunistic species are poor competitors. Rather, it
 seems that they are poor avoiders of predation.

 Some problems of interpretation

 Effect of an empty cage.-It is difficult to distinguish

 the extent to which the increase of infaunal density and

 diversity in exclosures is caused by (1) exclusion of
 predators, (2) changes in currents and sediment stabil-

 ity, or (3) "trapping" of larvae. The exclusion of preda-
 tors has been stressed above, but other factors may also
 be important.

 The cages did affect sediment stability as shown by

 the increased silt-clay content and decreased move-

 ment of orange-painted sediment in the exclosures.

 However, some of this enhanced sediment stability
 may have been due to increased binding and stabiliza-
 tion of sediments by the dense populations of infaunal
 tube-building species (e.g., by Streblospio benedicti)

 TABLE 8. A comparison of infaunal densities in eelgrass,
 Zostera marina, beds with caged areas in the eelgrass
 (data mainly provided by R. J. Orth) and caged areas in
 bare sand from this study. Numbers from eelgrass are
 rarefied so that all data are reported as mean number
 per 0.005 m2. All data are from 1974

 Mean density per 0.005 m2

 Caged
 bare sand
 Jul-Sep-

 Caged Uncaged Nov
 Parameter and taxa eelgrass eelgrass mean

 Total density 264.8 201.6 213.4
 Number of species 20.1 19.0 17.7
 Peloscolex gabriellae 41.4 41.1 53.0
 Heteromastus filiformis 27.9 21.6 37.3
 Streblospio benedicti 26.7 12.5 18.7
 Spiochaetopterus oculatus 52.3 28.3 2.4
 Nereis succinea 7.8 7.9 4.7
 Polydora ligni 130.7 5.1 6.8
 Glycinde solitaria 1.9 1.0 3.7

 forming a turfr" (Buchanan 1963, Young and Rhoads

 1971).

 Orth ( 1977) has shown that eelgrass, Zostera marina,
 increases sediment stability, which is associated with

 an increase in infaunal density and species richness.
 Part of this increase in the infauna may be due to the

 partial exclusion of predators by the rhizome mat 1-2
 cm below the sediment surface which would prevent
 digging by most predators. Infaunal density and species
 richness increased in eelgrass when predators were

 excluded; however, this increase was less than when

 predators were excluded from bare sand. Both eelgrass

 and exclosures in bare sand produced similar high-
 density, diverse infaunal communities (Table 8); both
 stabilize sediments and offer protection from predators.

 Planktonic larvae may have preferentially set in

 cages in response to decreased current velocity, or to

 contact with the wire mesh, or to sediment changes.

 However, while cages may increase setting of larvae,
 their survival is not ensured-a predator would negate

 this effect. Results from the 2-sided control cage indi-

 cated that the main effect of the cage was the exclusion

 of predators; direct physical effects were minor.
 Effect of a predator.-It is also difficult to determine

 the reasons for the decrease of infauna due to a preda-

 tor: (1) predation on adults (implicitly stressed above),
 (2) predation on newly set larvae, (3) decreased sedi-

 ment stability caused by the foraging activities of the
 predators, or (4) physical disruption of tubes and bur-
 rows.

 The cage probably alters currents or sediment prop-

 erties in such a way that induces planktonic larvae to set
 preferentially within the cage. However, the sub-

 sequent survival of these recently set juveniles is de-

 termined by the presence or absence of predators. The

 unanswered question is whether the cage increases sed-

 iment stability which in turn allows an increase of in-
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 fauna, or whether the cage excludes predators which
 allows an increase of infauna which stabilizes sediment.
 To better differentiate the biological and physical as-

 pects, more careful analyses of sedimentary parameters

 and predators' feeding activities are necessary.

 Effect of cage size.-Differences in the infauna in

 different-sized cages with crabs were probably due to

 the different crab densities rather than to different cage
 sizes. The size of cages was varied in order to vary crab

 densities, rather than directly varying the number of

 crabs in the standard size cage; otherwise cannibalism

 would have been a problem. Thus both the size of the

 cage and the area over which a crab could roam were

 different for each crab density. Therefore, part of the

 effect of the different crab densities may have been due
 to cage size. However, the results can be explained by

 mechanisms involving increased crab density, and
 empty cages of 2 different sizes were not different from

 one another for number of species, total density or
 individuals of most species (Figs. 3, 4).

 Effect of cage mesh size.-Although cages excluded

 most large predators, many smaller individuals of many

 predatory species undoubtedly had free passage

 through the 12-mm mesh of the cages. Naqvi (1968)
 concluded that 6-mm mesh cages offered more protec-

 tion from predators in Alligator Harbor, Florida, than
 12-mm or 24-mm mesh cages. In the York River area I

 studied, small blue crabs of the new year class are very

 abundant throughout the summer (P. Haefner, personal

 communication). Young et al. (1976) postulated that
 smaller decapod crustaceans which could move in and

 out of cages through the mesh may be more important
 predators on the infauna in the Indian River, Florida,
 than the larger mobile predators studied here. My pre-

 liminary data from the Indian River show that Cal-

 linectes sapidus, xanthids, alpheids, penaeids, and
 palaemonids did increase in abundance in exclosures.
 However, in the area of the York River studied here,
 the larger individuals of blue crab, spot and hogchoker
 were effectively caged in or out, and these larger indi-
 viduals of blue crabs and spot are apparently the major

 predators on the infauna.

 IMPLICATIONS

 Species populations in the community studied are not
 resource limited as has been found in other marine
 communities, both on hard substrates (Dayton 1971,

 Connell 1972) and in soft sediments (Woodin 1974, C.
 H. Peterson, personal communication). Predation
 pressures and physical disturbances are severe in this
 community and keep population levels far below the
 carrying capacity of the environment. Dayton and Hes-
 sler (1972) proposed a similar role for predation in the
 deep sea. At these lowered densities, competitive in-
 teractions, both inter- and intraspecific, are relatively
 unimportant. Physical factors, such as sediment insta-
 bility (Aller and Dodge 1974, Orth 1977), changes in
 salinity and temperature (Boesch et al. 1976b), and high

 turbidity, together with severe predation pressures

 stress the community. The community structure is not

 controlled by processes operating exclusively within

 the benthos; rather, this infaunal community is con-

 trolled by factors external to the infauna. In this com-

 munity, the patterns of species occurrence and density

 are disproportionately affected by the activities of at

 least 2 species of high trophic status. The blue crab C.

 sapidus and the spot L. xanthurus together fit this defi-

 nition of "foundation species" (Paine 1969, Dayton

 1975).

 A corollary of the conclusion that predators are im-

 portant to the benthic community studied is that this

 community is important to the predators. Secondary

 productivity is probably very high with 2 or 3 genera-

 tions per year for many species and an average biomass

 of 7 g/m2 (wet weight) (Virnstein 1975). Large individu-
 als of many species are cropped by predators and never

 grow to their maximum attainable size. For example, in

 exclosures Mulinia lateralis, Lyonsia hyalina and Pec-

 tinaria gouldii grew to a much larger size in only a few

 months than is ever found in natural sediments outside

 cages. These very rapid growth rates combined with

 absence of large individuals implies that, for many

 species, there is >1 generation per year. The annual

 turnover rate of the macrobenthos of Kiel Bight in the

 Baltic Sea is I to several times the mean biomass, most
 of which is consumed by commercially fished species

 (Arntz and Brunswig 1975).

 A similar relationship probably exists in Chesapeake
 Bay, except that growth and production rates in
 Chesapeake Bay are greater than in the Baltic and other
 northern areas. Growth rates for bivalves in the Baltic
 (Muus 1973) are much slower than found in this study.
 For example, 2-yr-old Mya arenaria are only 28 mm

 long in the southern Baltic (Munch-Petersen 1973), 20

 mm in the Bay of Fundy (Newcombe 1935), but 68 mm
 in Chesapeake Bay (J. Lucy, personal communica-

 tion). Mature Mulinia lateralis (10-15 mm) are 1-2 yr

 old in Long Island Sound (Calabrese 1969); this size is
 attained in only 2 mo in Chesapeake Bay (Fig. 9A).
 Cephalic plate width (a standard measure of overall
 size) of Pectinaria hyperborea in St. Margaret's Bay,

 Nova Scotia, 1 yr after setting was 4 mm (Peer 1970), 3

 mm for Pectinaria californiensis in Puget Sound
 (Nichols 1975), :5 mm for Pectinaria gouldii after 4 mo
 in Barnegat Bay, New Jersey (Busch and Loveland

 1975), but >7 mm in Chesapeake Bay in 4 mo (this
 study). Although growth rates of these 3 species are not
 necessarily comparable, all attain a similar maximum
 size. Both Nichols (1975) and Peer (1970) reported an
 annual production to mean biomass ratio of 4.3 for
 Pectinaria. Turnover ratios would be greater in
 Chesapeake Bay due to faster growth and low popula-
 tion densities, thus providing a potentially larger food
 supply for bottom-feeding fishes and crabs.

 Hayne and Ball (1956) found that, although the stand-
 ing crop of bottom fauna in ponds decreased in the
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 presence of bottom-feeding fishes, the rate of produc-

 tion of the bottom fauna increased. They reported the

 average production of bottom fauna during a growing

 season to be :17x the standing crop, when fish were
 present. In the absence of fish, the production de-

 creased to zero at a higher level of standing crop. Arntz
 (1971) also found that the production of benthic fauna in

 the Kiel Bight (Baltic Sea) was greater in areas of low
 standing crop. Thus, the heavily preyed-upon infauna

 of shallow sandy areas studied here may be more impor-
 tant in terms of crab and fish food production than the

 higher density, but less preyed-upon, infauna of grass
 beds. In grass beds, predators may prey more heavily
 on epifauna than infauna (Orth 1977, Young and Young
 1977).

 Because food and space are not limiting, resources

 are underutilized and a much greater biomass could be

 maintained. If protected from predators, much larger

 crops of infaunal bivalves could be reared as food for

 man, as is done for epifaunal oysters.

 In summary, such shallow water infaunal com-

 munities are highly stressed; species populations are

 not resource limited, but rather are predator controlled,
 and these communities are an important food source for

 predatory species important to man.
 The degree of importance attributed to predators as

 determined by this study could not have been deter-

 mined by other than experimental methods. Any
 merely correlative, nonmanipulative studies could not

 have determined the effects of increasing or decreasing
 predation pressure; proper controls are simply not
 available.
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