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ABSTRACT

With Android devices becoming more advanced and gaining more popularity, the
number of cryptographic-API misuses in mobile applications is escalating. Numer-
ous snippets of code in Android are from Stack Overflow and over 90% of them
contain several crypto-issues. Various crypto-misuse detectors come out aiming to
report vulnerabilities of apps and better secure users’ privacy. These detectors can
be broadly classified into two categories based on the analysis strategies employed to
catch misuses — static analysis (i.e., by scanning the code base) and dynamic analysis
(i.e., by executing the code). However, there are not enough research on compar-
ing their underlying differences, making it difficult to explain the pervasiveness of
static crypto-detectors in both academia and industry. The lack of studies poten-
tially limits the improvement of crypto-detection efficiency. In this study, a holistic
evaluation and comparison on static and dynamic analysis’ underlying mechanisms,
robustness, and efficiency are carried out. A systematic empirical experiment is im-
plemented on testing 1003 popular Android applications across 21 categories from
Google Play. We find that 93.3% of the apps make at least one mistake using
cryptographic APIs and closely analyze top four cryptographic rules reported to
be violated most frequently by static crypto detector. Instead of merely comparing
statistics such as false positives (i.e., false alarms), we focus on examining the crypto
rules whose number of violations reported by static and dynamic crypto detectors
diverge greatly. In addition, we firstly posit a new taxonomy schema that classifies
cryptographic rules based on how they are inspected rather than their attack type
or severity level. This schema will be useful to both researchers and practitioners
to decide how to efficiently combine static and dynamic techniques to improve the
reliability and accuracy of crypto-detection.
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Chapter 1

Introduction

Attention on Android security and privacy, with a long history, has further boomed over
the past few decades [1]. One of the essential reasons is the proliferation of Android in
the advent of the Age of Big Data. As the world leading operating system in smartphone
industry, Android takes more than 70% of all mobile devices, both the least and most
expensive ones, running on Google-powered OS and has more than 2 billion monthly active
users [4]. According to the latest data, Android is supported by a series of markets that
boast about 2.79 million applications providing various functionality ranging from social
networking to health and finance [54].

As its popularity strikes, security and privacy issues become more threatening to the
public and attracts tremendous attention from academia. The security research community
has invested significant effort in improving security of Android applications over the last
couple of years [47]. This endeavor has effectively addressed a wide range of problems and
led to creation of tools for application analysis.

Most of the related security problems belong to one of the following three threat models
(i.e., criterion to partition security threats by identifying their objectives and vulnerabili-

ties):

e Ignorance of benign developer: This could happen when developers do not have

sufficient expertise or because of their carelessness. Benign developers may acciden-



tally misuse API in developing stages or introduce more vulnerabilities while trying

to fix the original ones [3].

e Evasion of attacker/developer: This could happen when there are hired attack-
ers by competing companies or by malicious developers within the company. The
attackers may use strategies to break the existing system or steal private information
for later usage; while evasive developers might purposefully leave a vulnerability in

a software and escape their colleagues’ scrutiny [3].

e Threats from high tech — 5G: 5G (i.e., the fifth generation of cellular networks)
leads to the proliferation of end users, expansion of attack surface, and escalation of
availability of personally identifiable data. Although it brings foreseeable benefits to
the world, 5G is making cybersecurity more susceptible and its threat should not be

overlooked.

Aiming at mitigate the damage of these problems, there are many tools emerging in
academia and industry. One of the most popular ones is Bouncer released by Google.
It quietly and automatically scans apps and developer accounts in Google Play with its
reputation engine and cloud infrastructure to keep malicious apps off the official Android
app store. According to Google, Bouncer was responsible for 40% drop of malign apps in
Google Play [36].

We are going to narrow down various Android malware to cryptographic API misuses
specifically in this thesis. A large portion of Android included snippets of code taken
from Stack Overflow and 98% of these snippets contain several crypto issue |23]. Further,
multiple studies have shown that there are a vast majority of Android applications misusing
cryptographic APIs and libraries in the real world and are causing devastating security and

privacy implications |2].



1.1 General development of crypto-detectors

Researchers have been spending too much time and effort in manually searching for those
bugs. Gradually, cryptographic-API misuse detectors (crypto-detectors), which is designed

to automate the process of finding vulnerabilities, gain ground.

1.1.1 Types of crypto-detectors

Generally speaking, there are two major types of crypto-detectors widely used in both
academia and industry — static crypto-detectors and dynamic crypto-detectors. While
having the same purpose — accurately and efficiently catching as many vulnerabilities as
possible in Android applications, their fundamental differences are the underlying mecha-
nisms to achieve this goal.

Static tools use various slicing and searching techniques in order to capture bugs by
thoroughly scanning through the code of applications without actually executing them. In
comparison, dynamic tools execute apps to check if there are misuses along the way. More

details on mechanisms will be discussed in Chapter 2.

1.1.2 Current dilemma of crypto-detectors

Admittedly, although both of these tools have certain strength and weakness, neither of
them are perfect in practice. They could generate multiple false positives, i.e., alarms raised
on licit APT calls, and false negatives, i.e., evasion of misuses, under difference scenarios.
For example, some purposefully injected dead malicious code could easily escape detection
of dynamic tools. Native library is a popularly used source of code to evade static tools’
detection.

Besides their occasional inefficiency, risks of inadvertently injecting malign code while
using crypto-detectors should not be overlooked. The code downloaded automatically

from external platforms during execution could be both hard to discern and harmful to



the machine running it. Although its possibility is relatively low, it would be detrimental

to the base system once it happens.

1.2 Major contribution

To the best of our knowledge, this thesis is the first work focusing on comparing dynamic
and static crypto-detectors from such multifaceted perspectives. One of our major focuses
is finding their discrepant results in checking certain cryptographic rules (i.e., detecting
certain types of vulnerabilities) and analyzing the underlying reasons. This could be further
used to not only improve the efficiency of individual tools but more effectively combine
static and dynamic techniques in building crypto-detectors. In stark contrast, most of the
existing works either focus on discussing the mechanism of their own artifacts or generally
make comparison on dynamic and static tools by looking at their false positives and false
negatives.

During the process of this thesis, We have done systematic analysis and evaluation both
theoretically and pragmatically. Extensive literature review has been conducted covering
most cutting-edge crypto-detectors and benchmark tools and existing evaluation studies.
Additionally, we have carried out empirical experiments on over 1000 popular Android
apps with both remote server and local virtual environment to attest our hypothesis and
get final conclusions.

This thesis tends to address three key Research Challenges (RCs) bellow as well as four

Research Questions (RQs), which will be discussed in depth in Chapter 7 and Chapter 8.



RC1: 1) Comparison between

mechanisms of static and RC2: Comparison on RC3: Extensive empirical tests
dynamic crypto-detectors accessibility, robustness, and with Cryptoguard on classified
2) Choose two tools (static + adaptability mobile apps

dynamic) to focus on

A 4 A 4 A 4

Methodical comparison and

- Tool environment and hardware Nearly automation of tests --
m::’;’:ﬁ;’?:vizzsid org sﬂf:;l:‘gshof setup -- 1) remote headless 1003 Android apps across 21
ProS & cons server; 2) local VirtualBox categories

static and dynamic tools

RQ1: Are the results consistent across 21 categories?

RQ2: Are there any rules which differ greatly in terms of # of violations reported by static and dynamic tools
RQ3: Which taxonomy do these rules belong to?

RQ4: When are static and dynamic tools more efficient regarding the taxonomy

Figure 1.1: Research challenges & approaches

RC1: Conduct in-depth comparison between mechanisms of static and dynamic tools
and select two representative tools to focus on. In addition to understanding the mecha-
nisms’ differences of the two types of crypto-detectors on the surface, deeper analysis on
implication of these disparities on their efficiency is more critical. This requires detailed
review on the structure and functionality of the tools. Besides, we need to read ample
literature to select two most exemplary and advanced tools (i.e., one dynamic tool and one
static tool) to focus on.

RC2: Compare their accessibility, robustness, and adaptability (i.e., how easy to be
used). In order to make the comparison more comprehensive, analysis on robustness of
crypto-detectors should be as essential as that on efficiency. This is also paramount in
practice — how acceptable crypto-detectors are to software developers. Analysis on level of
expertise required and hardware compatibility of dynamic and static tools are key compo-
nents involved.

RC3: Perform extensive empirical tests with one static tool (i.e., Cryptoguard) on

classified apps. Empirical experiment is indispensable to get a persuasive data-driven eval-



uation. This entails large-scale collection and implementation of tests on popular Android

applications.

To address these research challenges, this thesis makes the following contributions:

e Methodical comparison on their mechanisms (pros & cons): We have nar-
rowed down a number of differences of techniques static and dynamic crypto-detectors
used to 2 key aspects for static and dynamic tools, separately — static tools: i) trans-
form DEX bytecode to readable Java bytecode; and ii) detect native code; dynamic
tools: 1) execution trace for analysis; and ii) input generation automation. We final-
ized the tools — Cryptoguard (static ) and Crylogger (dynamic) — that we are going

to conduct more detailed research on. (addresses RC1).

e Tool environment and hardware setup: We contextualize the tools in both
remote server and local virtual environment given the resource available for this
thesis. Dynamic tools have more restrictions on its running conditions — i) ABI
compatibility; ii) parameter tuning; and iii) emulator unstableness, while static tools,
in general, are more adaptive and robust in practices without rigor requirement on

the architecture and released versions (addresses RC2).

e Nearly automation of substantial empirical tests: We carried out tests on
1003 popular Android applications from 21 categories from Google Play Store in
order to make our analysis more cogent and convincing. The automation of down-
loading process failed because given certain restrictions of headless server, we could
only use third-party website, which is inherently unstable, to fulfill the downloading
process. However, we successfully automated the process to perform the tests and
to systematically collect the data with Shell and python packages. According to the
data, there are 4 top rules which have been violated the most by Cryptoguard, which

will be discussed later in Chapter 6. (addresses RC3)



1.3 Overview of the following chapters

In next chapter, we discuss the comparison and evaluation process in more details. In
Chapter 2, we introduce more related information about Android architecture, common
security vulnerabilities, as well as mechanism and high-level evaluation of static and dy-
namic crypto-detectors. In Chapter 3, we discuss the related work. In Chapter 4, 5, and 6,
we address the three research challenges in depth, respectively. In Chapter 7, we analyze
the results from empirical experiment and raise four research questions. In Chapter 8, we
further analyze the results and address the four RQs. In Chapter 9, we discuss limitation

of our work and future works before concluding in Chapter 10.



Chapter 2

Background

2.1 Android OS and Applications

As a pioneer of open source ecosystem, Android operating system has gained a wide fa-
miliarity globally in recent years. It takes up to 72% of all mobile devices, including
smartphones and tablets, and owns 2.8 billion active users by 2021 [4] [14]. Android’s
popularity also comes from its innovative features like customizability, low-cost, and in-
creasingly sensing and powerful computing ability.

Android is a mobile operating system with a Linux-based software stack created for a

wide array of devices and form factors. It has six key components [17]:

e The Linux Kernel is responsible for underlying functionalities such as multi-

threading and low-level memory management.

e Hardware Accelerating Layer (HAL), with multiple library modules, shows
device hardware capabilities (e.g., camera, accelerometer) to the higher-level Java

API-framework by offering standard interfaces.

e Android Runtime (ART) optimizes garbage collection and utilizes different types

of compilation in order to run multiple virtual machine on low-memory devices.



e Native C/C++ Libraries are base library modules that support various core

system components and services (e.g., HAL, ART).

e Java API Framework makes the entire Android feature-set accessible to develop-
ers/users, who can reuse key library modules and certain components and services,
including Content Provider, Activity Manager, View System, Resource Manager, and

Notification Manager.

e System Application consists of all applications running in the system, ranging
from most basic ones (e.g., calendars, contacts) to advanced third-party apps (e.g.,

social media, travelling).

System Applications

ceccssssssssssssssssssssnnns .o Android API

JAVA API Framwork

Native C/C++ Android
Libraries Runtime

Java Native Interface
(JNI)

Hardware Abstraction Layer (HAL)

Linux Kernel

Figure 2.1: Android software stack

Android applications, which run on top of the stack framework, uses the provided APIs
to access facilities without dealing with low level details of the operating system. They are
mainly written in Java with some native code written in C/C++ for high performance. The
four major different types of components in its Manifest.xml file are Activities, Services,
Broadcast Receivers and Intents, and Content Providers. During the building process, Java
source code is first compiled into Java bytecode, then translated into Dalvik bytecode, and
finally stored in .DEX format. Apps are packaged/compressed and distributed in the form
of apk files, which are compressed folders containing DEX files, optional native code, and

other application resources [60].



The increasing prevalence of Android has also led the users of devices with Android
platform to be especially susceptible to an enormous portion of malicious attackers. This
situation is partially due to the simplicity to install any third-party applications to Android
without sufficient scrutiny [41]. Admittedly, the newest version of Android (i.e., Android
11) has been making improvement on this — they use Google Play Protect to scan for
bad apps. Nevertheless, since malware detection is considered as a crucial requirement
to protect the users from personal privacy leakage, it is still an indispensable topic for
Android. This is also one of the major reasons that we focus our research on Android

platform.

2.2 Cryptographic Algorithms

Malware is defined as software that is specifically designed to damage the smartphone or
gain authorized access to steal personal information [41]. With multiple types of malware
present, we are going to focus on detecting cryptographic API misuses, which is one of the
most fundamental and prevalent genres. We found that 93.3% of applications downloading
from Google Play, the most commonly used app store, make at least one mistake using
cryptographic APIs. This result is comparable to that — 88% overall — in another study
[20].

Cryptographic algorithms can be generally classified into three groups — encryption
algorithms, hashing algorithms, and signature algorithms. Altogether, they are aiming to
secure data confidentiality, integrity, and authenticity. [57] The simplified process is shown

in Figure 2.2.

Signature & Hashing

Algorithms

Plaintext: original Ciphertext: encrypted
information (i.e., text Encryption Algorithms text (i.e., unreadable
message) messages)

Figure 2.2: Encryption process
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e Encryption algorithms, including block ciphers (i.e., transfers and encrypts data
as an entire block) and stream ciphers (i.e., executes data as individual units), are
used to encrypt and proffer confidentiality. Common stream ciphers are RC4 and
ISAAC, while common block ciphers include DES, IDEA, and RC5/RC6. Most
Advanced Encryption Standard (i.e., AES, which is used by the US government and
others as standard algorithms for protecting highly sensitive data) candidates are

block ciphers, which are commonly used in Android applications.

e Hashing algorithms (i.e., hash functions) are used to create a unique digital fixed-
sized "fingerprint", which varies once the original message has been modified. There
are several different types of hashing — division-remainder, digit rearranging, and
folding. Standard hashing algorithms consist of MD2, MD4, MD5, and Secure Hash
Algorithm (SHA). Among these, MD2 and SHA1 are considered insecure and strongly

discouraged (more details in Chapter 7).

e Signature algorithms are used to sign the data to authenticate the message sender
is the person he/she claims to be. Digital signatures, which is popularly used recently,

include both signature algorithms and hashing algorithms.

Additionally, as a key property of many encryption algorithms, ciphertext indistin-
guishability is paramount. Based on IND-CPA security (i.e., indistinguishability under
chosen-plaintext attack), an encryption scheme must be either probabilistic or stateful to
be indistinguishable under chosen plaintext attack. If a cryptosystem lacks of ciphertext
indistinguishability, ciphertext, which will render certain amount of information of plain-
text, will easily leak those pieces of information to the attackers. Attackers will then have
a higher probability to narrow down to obtain the actual plaintext than they could by

random guessing.

11



2.3 Mechanism of Crypto-detectors

As cryptographic algorithms has been prevalently used to secure information authenticity,
confidentiality, and integrity, it is indispensable to ensure they have been properly and
safely used. A vast amount of cryptographic API misuses detectors have been created, and
they aim to make this vulnerability-catching task more efficient and effective by automating
the entire process. Crypto-detectors are usually categorized into two groups — static crypto-
detectors and dynamic crypto-detectors — based on separate approaches used.

Static tools need to scan through the entire applications’ source code without actual
execution to check certain cryptographic rules (shown in Figure 2.3). During the process,
they use various slicing strategies, including backward/forward slicing and interprocedu-
ral/introprocedural slicing. These techniques differ mostly on how they slice the program
either with flow graph (i.e., control-flow graph) or dependence graph (i.e., program /system
dependence graph) to search for specific class/method in order to examine rules. These

slicing strategies facilitate the process of searching for key words during misuse detection.

Static

Crypto-detector

A 4

Application Source Code |__Scanning (Slicing
Techniques)

A 4

Results

Figure 2.3: Mechanism of Static Crypto-detectors

Dynamic tools, in contrast, need to execute the applications with emulator to catch
vulnerabilities (shown in Figure 2.4). In this case, it is more demanding on the environment
and hardware (e.g., architecture, memory). Logger and checker are used to facilitate this
process by systematically collecting and inspecting runtime log messages [42]. Logger,

which modifies low level Java libraries, monitors the APIs of the crypto algorithms and

12



stores the value of relevant parameters to a log file during runtime; while checker analyzes
the the log file and reports the violated crypto rules offline. The online-offline combination
effectively optimizes its efficiency and memory space needed.

Besides, automated input generator is another core component, it is used to generate
random screen inputs during the execution time in order to trigger as many API calls
as possible for later examination. These are effective at exposing security vulnerabilities.
The most frequently used tool to test Android is Monkey [59], which is part of Android
developers toolkit and thus does not require any additional installation effort. It is a
program that runs on emulators or devices and generates pseudo-random streams of user
events such as clicks, touches, or gestures, as well as a number of system-level events. It
has an upper limit of number of events users want to generate, once which have been met,

Monkey stops. [60]

Dynamic
Crypto-detector ‘

logger ’ ‘ checker ’ Results

(online) (offline)

Initiate the apps
(generate inputs)

[ Application ’

Figure 2.4: Mechanism of Dynamic Crypto-detectors

collect logs

Moreover, there are crypto-detectors which combine static and dynamic strategies. But
the number of them are limited due to the difficulty in combining these two fundamentally
different approaches.

2.4 High-level evaluation of crypto-detectors

In this section, we evaluate static and dynamic crypto-detectors’ strength and weaknesses

from a high level (more comparisons on low level mechanisms will are in Chapter 4).

13



2.4.1 Static analysis tools

Static strategies have been well studied outside the field of computer science, with multiple
fields having researchers interested in such topics. This is partially because its appealing
ability to scan all of the source code efficiently. Without executing applications, static
crypto-detectors can be used to detect errors in an initial stage of agile software devel-
opment cycle (i.e., with incomplete deliverables), and this can thus allow immediate fix
during implementation. Another advantage of detection without execution is that devel-
opers/researchers do not have to install applications before examining them. This not only
simplify the time-consuming process but could also avoid possible malware attacks. Static
tools, in general, are highly scalable, they can be easily adapted to accommodate different
environment (i.e., architecture, version) and be used with a large code base.

The drawbacks of static tools due to the absence of execution are conspicuous, nonethe-
less. Since they only look at source code, no user experience is involved, which is detrimen-
tal to some industry such as entertainment and consulting firms. They could not collect
any first-hand feedback with static analysis tools. Moreover, consistent usage of static
tools are not very frequent in the industry because of numerous elusive feedback [7] [27].
Even though inspecting the code manually expects more efforts, some developers prefer not
to use those tools to avoid confusion while interpreting the results. Static tools also tend
to generate a high proportion of false positives, which could only be eliminated manually.
Additionally, from the perspective of developers of the applications, static analysis tools
could lead to sensitive information leakage to some degree, since the entire source code has

to be exposed.

2.4.2 Dynamic analysis tools

Contrary to static tools, dynamic analysis tools inspect applications by actual execution.
Besides using automated input generation techniques, developers can choose to interact

with the UI directly. This can tremendously help identify vulnerabilities that don’t ad-

14



here business context or standard from real user experience. During the execution either
automated or manual, developers are capable of monitoring system memory, functional
behavior, response time, and overall performance of the system. Since the dynamic crypto-
detectors will run the application directly, there is no need to look for source code, which
would be helpful in some situations (e.g., working with remote server). In general, dynamic
tools generate less false positives compared to static ones.

Despite the benefit of using dynamic approaches, certain defects could not be over-
looked. To successfully use dynamic tools requires more efforts. Some expertise is required
to setup environment and build the model. Some limitations come from automated gen-
eration of Ul events because they can’t deal with login screen (i.e., they are randomized
input and cannot deal with login information). Once these programs got stuck in one
problem, the whole process has to be reinitiated. Further, higher accuracy rates could be
achieved with more Ul events and API calls triggered. This will make the process more

time-consuming.
Thanks to the distinct characteristics of static and dynamic analysis tools, both re-

searchers in academia and industry practitioners are constantly handling their trade-offs,

and their performance has always been improving.
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Chapter 3

Related Work

This chapter discusses related work from three areas: cryptographic misuses and com-
mon rules, static and dynamic current crypto-detectors, and evaluative studies on current

detectors.

3.1 Cryptography misuses and rules

There are an increasing number of studies focusing on examining android developers’ usage
of cryptographic components. A critical milestone is Egele’s et al. study [20] on whether
developers use the cryptographic APIs in a fashion that provides typical cryptographic
notions of security (e.g., IND-CPA security). They found that 88% applications which
uses cryptographic APIs make at least one mistake. This alarming result is not novel.
Kriiger et al. [30] found 95% of apps have at least one misuses in their cryptographic
libraries. Chatzikonstantinou’s et al. study [10] shows that 87.8% of the applications
present some kind of misuse, while no cryptographic usage was detected for the rest of
them. The study of Lazar et al. [31] claims that 83% of mistakes they found are because
of cryptographic libraries misusing by individual applications. Our own results confirm
these high values of cryptographic misuse by examining 1003 Android applications from
Google Play.

Most of these studies focus on inspecting several key cryptographic rules. A very
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common one is that if a symmetric cipher (e.g., Advanced Encryption Standard, AES) is
configured with Electronic Code Book (ECB) mode, presence of patterns in plaintexts will
be leaked in ciphertexts [9], and this will violate IND-CPA security. Besides, confidentiality
will be compromised if hard coded or reused IVs are used or if constant password for
PBE or other cryptographic keys are used; integrity could not be guaranteed if insecure
hash functions such as SHA1 and MD2 are used; and randomness will be violated if
constant seeds are given to pseudorandom number generators (PRNGs) [10] [45] [20]. There
are many other common cryptographic rules as well, which will be discussed in more
details in Chapter 7. Chatzikonstantinou et al. [10] has classified these misuses into four
categories — use of weak cryptography, weak implementation, use of weak keys, use of weak

cryptographic parameters.

3.2 Current Crypto-detectors

Many crypto-detectors exist to detect cryptographic misuses. Among them, tools using
static analysis have outnumber those with dynamic analysis. As mentioned above, this
is largely because of the static analysis tools could scan the entire body of code acnd is
regarded to be relatively more comprehensive, which, however, does not always lead to a

more accurate detection result.

3.2.1 Static analysis

During the last couple of years, there are several static crypto-detectors emerging. While
trying to improve the detection accuracy, they all possess unique features. MalloDroid [22]
[38] and FlowDroid [6] focus on detecting misuses of SSL/TLS protocol. CryptoLint [20], as
one of the earliest ones, uses static program slicing to identify flows between cryptographic
keys, initialization vectors, and similar cryptographic material and the cryptographic op-
erations. Without getting access to application source code, it checks for typical crypto-

graphic misuses quickly and accurately by dissembling raw Android binaries. CMA [50]
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performs static analysis on Android apps, selects the branches that invoke cryptographic
APIs, and then checks the usage of those API calls by following the target branches. CrySL
[30] is a specialization language which bridges the gap between cryptographic experts and
developers by enabling crypto experts to specify the secure usage of certain crypto libraries
and translating those CrySL specialization into static analysis. CogniCrypt [29] is a more
well-rounded tool supporting developers with the use of cryptographic APIs from two ways.
It generates code that implements the respective tasks in a secure manner and, meanwhile,
continues running static analysis in the background to ensure a secure integration of the
generated code in developers’ workspace. Among all, CryptoGuard [45], to the best of our
knowledge, covers the highest number of cryptographic rules and guarantees the highest
detection efficiency. It is build on specialized forward and backward program slicing tech-
niques, which are implemented by using flow-, context-, field-sensitive data-flow analysis.
One of its outstanding features is a set of refinement algorithms that systematically discard

false positives. This is a huge improvement compared to other static tools.

3.2.2 Dynamic analysis

Other tools employ dynamic analysis in crypto misuses detection process. SMV-Hunter
[52] detects protocol misuses in SSL/TLS certificate validation process which could oth-
erwise make applications vulnerable to SSL/TLS Man-in-the-Middle attacks. Similarly,
AndroSSL [24] also focuses on security issues of SSL/TLS connections established by An-
droid apps. Meanwhile, iCryptoTracer [33]| detects cryptographic misuses in iOS apps
with combined static and dynamic analyses which entails complex implementation with
APIT hooking techniques. K-Hunt [32] is a more recent tool which identifies insecure keys
such as deterministically generated keys, insecurely negotiated keys, and recoverable keys
through analyzing binary executables. TaintDroid [21] operates an efficient and system-
wide dynamic taint tracking and analysis system capable of simultaneously tracking multi-
ple sources of sensitive data. It focuses on reducing leakage of sensitive data by inspecting

how third-party applications collect and share users’ private data. Crylogger [42], among
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all, is the first open-source tool to detect crypto misuses dynamically in a comprehensive
way. It examines 26 crypto rules and and is implemented both during the execution and

offline to optimize the efficiency.

3.3 Evaluation research

Various evaluation research is conducted with thorough literature review and designed
benchmark tools. Reaves et al. [47] performed evaluation on Android security research
which analyzes applications and characterize the work published in top venues. Rahaman
et al. [46] created a comprehensive benchmark — CryptoAPI-Bench — with both basic and
advanced unit test cases in order to compare leading analysis tools. Further, Ami et al. [3]
designed MASC framework which enables a systematic evaluation of crypto-detectors with
data-driven taxonomy and generation of usage-based mutation operators and threat-based
mutation scope.

Braga et al. [9] claims that both tool builders and software developers underestimate
security issues related to public-key cryptographic in general. They used statistics such
as precision, recall, and F-Measure as calculated measurements to compare distinct static
tools directly, uncover their limitations, gaps and overlaps, and to determine the impact of
static analysis tools in positively influencing the correct use of cryptographic in software
development. Johnson et al. [27] also analyzed the reasons for cases of underused static
crypto-detectors. They found false positives of static analysis could potential outweigh
the true positives in volume. Besides, the way in which the warnings are presented are
barriers to use. This would require developers to spend to spend a lot of time trying to
figure out what needs to be done to fix problems. According to Poeplau et al. [44], another
latent drawback of static tools is that the design of android system allows applications to
load additional code from external sources at runtime. Malware can use this capability
to add malicious functionality after being inspected by official application store or anti-

virus engine at installation time, while developers of benign applications can inadvertently

19



introduce vulnerabilities.

Compared to evaluative studies on static analysis tool, those on dynamic crypto-
detectors eclipsed in volume. Most of them focuses on assessing the efficiency of automated
input generations. Choudhary et al. [60] perform a thorough comparison on the effective-
ness and corresponding techniques (i.e., code coverage, ability to detect faults, ability to
work on multiple platforms, and ease of use) of major existing test input generation tools
for Android. Zheng et al. [60] analyze one specific automatic test input generation for
Android — Monkey, which is under spotlight of research and ways to improve on its limita-
tions. According to Chatzikonstantinou et al. [10], one major benefit of dynamic analysis
is that developer are able to monitor system memory, functional behavior, response time,

and overall performance of the system through a dynamic test.
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Chapter 4

RC1: Comparison in mechanisms

In general, the number of studies on static analysis tools is significantly larger than that
of dynamic tools. What is the underlying rationale behind this? Does this lead to the
conclusion that dynamic analysis is inferior to static analysis? In this chapter, we aim to
tackle RC1 — comparison between mechanisms of static and dynamic crypto-detectors and
finalize two representative tools (one static and one dynamic) to focus on. After examining
their working procedures from both empirical experiments and literature, we summarized

some features (pros and cons) of the process below.

4.1 Static tools

The distinct feature that set static analysis tool apart is its capability to thoroughly scan
the source code without execution. This is beneficial since it could cover code more com-
prehensively and does not require any modification on low level code (e.g., native Java
libraries, etc.), which is important since the working environment would not be seriously
changed. However, the potential drawbacks are apparent as well. For example, they have
to figure out how to accurately detect untriggered but malicious native code. Besides, in
order to obtain readable Java source code from DEX files, static crypto-detector has to
properly and efficiently transform DEX bytecode. We will be focusing on these two aspects

in the following sections.
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4.1.1 Our example: Cryptoguard

Among all static crypto-detectors, we decided to choose Cryptoguard [45] on which to
conduct more research. To the best of our knowledge, Cryptoguard is one of the most
advanced static tool and has significantly decreased false positives, which is a major setback
of static tools. In order to achieve high accuracy rate, it has refined strategies for forward
and backward slicing and for discarding false alerts. However, as one of state-of-the-art
static crypto-detectors, Cryptoguard still has certain limitations as disclosed below.

We used Cryptoguard as our example to further inspect static crypto-detectors’ de-
tailed features and performance. Besides assess its mechanism specifically, we utilized it to
systematically conduct tests on 1003 Android applications from Google Play and looked

into its source code to analyze why certain rules that have been violated the most.

4.1.2 Support for the detection of native code

One major limitation of static analysis tools is its support for the detection of native
code. Native code is widely used in practice, however, it severely complicates the process
of static analysis. Researchers found that 14% of application with fewer than 50,000
downloads contained at least one native library, whereas 70% of applications with more
than 50 million downloads contained at least one native library [58]. Nevertheless, native
code could be inherently challenging for static tools to detect. Some code from native
libraries are simply hidden with concealed execution path and could escape the scanning
of static crypto-detectors; others are obfuscated by some obfuscators binaries such as O-
LLVM [47]. Obfuscation is not novel to static analysis tools, but there are only few tools
focusing on native code obfuscation or recovery of the original control flow graph [28].
These scenarios will largely increase the difficulty of security analysis process.

It clearly indicates that there is a gap in static crypto-detectors and would encourage
attackers to inject more malicious code into native code in order to evade security detection.

However, many of the extant static tools such as Cryptoguard overlooked native code
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obfuscation during their detection process. Although their accuracy is not significantly
damaged so far, the potential harm from it could be irreparable once it succeeds and

expands.

4.1.3 Transform DEX bytecode to readable Java source code

Another challenge unique to static tools is to transform DEX bytecode to readable Java
source code, and Java bytecode is a crucial medium. Although Java is the widely-used
programing language for Android applications, Java bytecode is not contained in the ap-
plication package. This is because that aiming to run the applications in Android-specific
Dalvik Virtual Machine, the Android SDK has to include an extra step to transform Java
bytecode into DEX bytecode [47]. Inaccurate transformation of the executable source may
severely degrade the program analysis performance and obscure the results [5]. Since a
vast majority of static analysis tools are designed to operate on either Java bytecode or
Java source code which is further derived from Java bytecode, the need of an appropriate
reverse engineering technique is ample and urgent.

The most common strategy applied by static analysis tools to solve this is to include a
decompiler [41], which is used to decompile both the Manifest.xml and DEX file to generate
an easily-readable version of Java code. However, rather than directly decompiling DEX
bytecode to Java source code, the transforming process is markedly different, since the
former process could results in hard-to-read source code with infinite while loops and
break statements [47].

There are several existing tools, dealing with this complex process, and they could be
classified into two groups — one-step process and two-step process [53]. Strategies of the
latter group have been commonly utilized and the representative tool is DEX2jar [15]. It
first converts DEX file to jar file and then to Java code, facilitated by jd-gui [18|, which
is popularly adopted to display Java code. DEXZ2jar could generate greatly readable code
but it is hard to modify or recompile the code with it. In comparison, jadz [16] directly

produces Java source code from DEX file. It is considered to be relatively more robust and
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preferred by some developers since, without generating jar file, it is capable to circumvent
certain problems of broken code.

Although there are constant improvement, the assumption that this challenge has been
solved in still far from true. Several tools are created to optimize the Java bytecode before
further decompilation to Java source code, but they remarkably increase the performance
time [47|. For example, Cryptoguard uses Soot optimization, which sacrifices performance
for more readable code, to decompile apk file to Java source bytecode. Thus, this reverse

engineering process remains to be one of the limitations of static analysis tools.

4.2 Dynamic tools

Dynamic tools are designed to detect security vulnerabilities in a running system, and
one inherent drawback of this is its potential low code coverage. It would be unlikely for
dynamic crypto-detectors to cover the entire code base. However, as seen in the experi-
ment, with logger, the checker submodule is much more straightforward to be understood,
implemented, and modified. Its main purpose is to check offline if messages in logger are
legit given the predefined cryptographic rules. However, we found that the demand to
modify native Java libraries could cause some issue. We noticed that, during the experi-
ment, nearly half of the fellow developers have overlooked that they are required to modify
native libraries such as libcore before execution. There are other limitations due to the
involvement of runtime logger and automated input generation strategies, which would be

discussed in details in the following subsections.

4.2.1 Our example: Crylogger

We chose Crylogger [42] as our example to further analyze dynamic crypto-detector, mean-
while, we will also take Monkey, which is fully automated, lightweight, and common among
developers, as an example for automatic input generation. As a noticeably recent tool

which is published in 2020, Crylogger is the first open source tool to detect cryptographic
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misuses dynamically and, further, it supports large number of rules (i.e., 26 crypto rules).
All these features set Crylogger distinct from its counterparts and make it a perfect target
for our research.

We analyzed techniques used by Crylogger in depth. In addition, we set up Crylogger
both on remote server and on local virtual machine to test its applicability. However, due to
limited resource, we only focused on its accessibility and robustness during our experiment
and decided to collect results from its authors to further compare its performance results to
those of Cryptoguard. Compared to static tools, except for its relatively inferior robustness,
Crylogger significantly decreases false positives and since it combines online logger and
offline checker, its performance is not largely compromised. However, admittedly, it is
inevitable to confront challenges from execution traces management and automatic input

generation.

4.2.2 Generate execution traces for subsequent analysis

Dynamic tools examines applications by inspecting information captured at runtime, there-
fore, generating and collecting execution traces for succeeding analysis is paramount. These
traces can happen at any level in the software stack during runtime, including native pro-
cessor instructions, virtual machine instructions, system calls, and Android APT calls [47].
A full view of application behavior could be obtained from the information provided by
these traces (i.e., certain parameters, locations of the traces, etc.).

There are usually two general approaches to deal with traces — on-line trace analysis
(i.e., traces are analyzed immediately during execution) and off-line trace analysis (i.e.,
traces are stored for later analysis) [19]. Crylogger uses the latter technique by implement-
ing an online logger and offline checker. It separates the process of obtaining traces and
that of analyzing traces in order to improve performance but it also unavoidably sacrifices
some memory space for storage.

In all, the major tasks for dynamic tools are i) how to narrow down and generate

specific traces to acquire only desired information; and ii) how to convert information in
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original traces, which is presented in low-level machine instructions, to readable high-level
semantics for later analysis. Instead of collecting the entire piece of arcane information,
logger in Crylogger tackles these two challenges through monitoring the API calls and
collecting only the relevant parameters that are passed to the APIs of the crypto algorithms.
Those parameters are presented in a much more straightforward manner, which can ease

the checking process.

4.2.3 Automatic test input generation

There are many existing tools which aim to test inter-application communication by ran-
domly generating input values. These tools have slightly different purposes. Monkey [59],
as a frequently used tool, uses black-box to generate Ul events and is easy to use without
additional installation efforts. Dynodroid [35] is smarter than Monkey in several perspec-
tives — it takes the context and frequency of events into account so that events that are
relevant in more context will be selected often. In comparison, Intent Fuzzer [48] mainly
tests how applications interact with other applications on mobile devices. We chose Mon-
key as our example not only because Crylogger chose it as well but also due to its great
performance in both simplicity and efficiency.

There are several apparent setback of Monkey. First of all, it can easily get stuck in some
activities during execution and could not continue to explore the rest of the application
until restart the process. Manual work is required here. Secondly, it cannot deal with
registration or login page which appears before the application would be used. We have
taken this into consideration during our empirical experiment and have eliminated some
types of applications. In addition, Monkey usually obtains low code coverage — the input
generation process is randomized and finite (e.g., 10k, 30k random events), it is unlikely
to cover the entire code base and some malicious code could successfully evade detection.
One remedy for this is to set a large number of Ul events for Monkey to generate, however,
this could substantially slow down the performance.

Nevertheless, according to Crylogger [42], although Monkey achieves on average about
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25% of line coverage, the number of reports on crypto rules violations is comparable to that
of other static tools. This result is a little counterintuitive but successfully reveals that the
seeming drawbacks of dynamic analysis tools might not always hold water. Admittedly,
Monkey has inherently limited code coverage but this does not necessarily compromise its
efficiency in triggering most cryptographic APIs for catching vulnerabilities. We assumed
that this could be caused by the fact that cryptographic API calls are crucial and commonly
used in mobile applications so that they can be easily triggered. Furthermore, the results
of Crylogger which runs with 10k, 30k, and 50k UI events are actually similar, and this
helps confirm our assumption.

In all, given the above analysis, developers should not simply discard the option of
designing or applying dynamic analysis tools because of the limitation of automatic test
input generation. This also partially substantiates one of our primary hypotheses that it

might be promising to combine static and dynamic analysis techniques.
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Chapter 5

RC2: Evaluation on accessibility and

robustness

In this chapter, we aim to address RC2 — compare crypto-detectors’ accessibility, robustness,
and adaptability. We are going to discuss over the accessibility (i.e., how easy the tools
can be learned/used) and robustness (i.e., how strong the systems of the tools are while
handling diverse and unexpected cases) of current crypto-detectors, and specifically we
will compare Cryptoguard and Crylogger from these perspectives. Both accessibility and
robustness are crucial in the life cycle of crypto-detectors since they determine whether one
tool will be widely adopted by developers in industry and academia at the starting point
and whether it will survive after intense competition. In order to make our evaluation
more tenable, we put it into practical context by convoying empirical experiments with
Crylogger and Cryptoguard and recording technical issues along the way.

Despite all of the technical issues occurred, we were constantly inspired to carry out the
analysis to a deeper level to find out the underlying problems. In summary, Cryptoguard
turns out to be more robust and adaptive in practice with only rare failures in the testing

process.
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5.1 General perspectives

Generally speaking, we assessed tools’ accessibility and robustness from four aspects in
three phases of the tool’s life cycle as shown in Figure 5.1. We then applied this evaluation

schema to Cryptoguard and Crylogger.

User Friendliness
(difficulty to learn,
environment setup)

! !

Parameter Tuning
Hardware Limitation Process

Stage 2: use the tool (space, accelerator, etc.) (algorithmes, architecture)

Stage 1: Start to learn
and configure the tool

Y

Tool Maintenance

Stage 3: upgrade the tool (feedback, new versions)

Figure 5.1: General aspects and stages of tools’ life cycle

User friendliness (i.e., Stage One) includes indicators of how easy one tool could be
learned in terms of environment understanding and setup. In practice, tool’s level of diffi-
culty to be learned and used by novices with limited specialized knowledge is a determining
factor of its future success. Usually the user groups consist of undergraduate/graduate stu-
dents and employees in industry with only shallow expertise [47]. Furthermore, even with
open source code, there is often a steep learning curve before the tool can be DEXterously
applied. Although Crylogger claims to be largely improved and simplified upon its process
of environment setup [42], a visible gap still exists during our experiment process. Many
incompatible issues get in the way of our research experiment such as ABI incompatibility
with emulator and AOSP setup problems on virtual machine. Supports from hardware
(e.g., Linux machine) and software (e.g., emulator setup) are particularly entailed and
tend to be easily mishandled by users. In comparison, getting started with Cryptoguard is

more trouble-free. Only JDK and Android SDK are listed in prerequisites. One solution
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to make tools more user friendly is to release a virtual machine image together with the
artifact. However, many technical issues still occurred when Crylogger did release a virtual
image.

Hardware limitation is a crucial component of Stage Two. This applies especially
when emulators are involved. Accelerators, even though are not required theoretically, are
strongly recommended in practice since limited speed is an inherent challenge of emulators.
Besides, lack of sufficient memory space also limits the usage of certain tools. For example,
Crylogger entails AOSP (i.e., Android Open Source Project) which offers source code to
create customized Android variant. The requirements of AOSP includes 500 GB of free
disk space (i.e., 250 GB to check out the code and 150 GB to build it) and recommended 64
GB of available RMB [12]. Other common hardware requirements includes virtualization
techniques, KVM acceleration, GUI supports such as XQuartz, and so on. These conditions
may be easily satisfied in common lab settings but it caused substantial problems when
we tried to configure it virtually with remote lab servers during the pandemic.

In addition to restraints on hardware, software parameter tuning process has compa-
rable importance in Stage Two. Researches has to understand the underlying mechanism
of the tool in order to appropriately tune the parameters. For example, knowledge of both
base machine, emulator, and mobile applications’ architecture and major techniques of
crypto-detector are in demand so as to input proper parameters for either emulators (i.e.,
adb commands) or cryptographic algorithms.

Tool maintenance belongs to the last phase. Most tools are open-source tools with
source code available on Github, and the frequency of their updates on code fixes are,
therefore, apparent. Among crypto-detectors, there is a wide discrepancy exists — some
have been actively updated while others are outmoded, fragile, or only exists in theory
(i.e., some research release no actual artifact beyond an academic paper). Cryptoguard
has more than 3 versions while Crylogger has only one version available. However, release
time is also needed to be taken into consideration since Crylogger is more recently released

than Cryptoguard. Many technical issues including corner cases, which are hidden or
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overlooked by developers for some reason, will be easily revealed by developers or researches
in public once released. To solve those issues not only is favored by practitioners who
need the tools to guarantee security issues in real world but can also make the tool more
compatible, applicable, and robust in order to become more popular. In this case, original

tool developers should take the responsibility to constantly update their tool.

5.2 Dynamic tool: Crylogger

The empirical experiment we have carried out with Crylogger involves two phases. In
the first phase, we used remote lab server to install and conduct tests with Crylogger,
while in the second phase we switched to use local virtual machine (i.e., VirtualBox)
after confronting several technical obstacles. Crylogger, as a representative of dynamic
crypto-detectors, is more restricted on hardware requirements than static counterparts
are. Although we did not end up conducting large-scale testing on Android applications
with Crylogger due to limited resource available during the pandemic (e.g., limited virtual-
ization, KVM accelerator, and GUI support with remote server), we collected information
about each problematic case and analyzed them respectively to find out its fundamental

causes.

5.2.1 Experiment process 1: Remote headless server

We started with using remote headless server. The process involves downloading Android
SDK and JDK, downloading AOSP and installing Crylogger by making required modi-
fications on AOSP, installing OpenGApps, building and starting emulator, and, finally,
installing and testing applications. However, the above process went through only with
the sample application provided by the authors but not with any other published Android
applications. In short, none of the applications can be installed on the emulator besides
the sample application. After discussing with other related researchers, who conducted

research on Crylogger before, through online forum and in-depth consultation with the
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original author of Crylogger, we hypothesized that this may be caused by connecting to
the server remotely and without GUI support.

During our experiment, we managed to overcome most of the problems by adjusting
parameters with emulator, but the only bridle that we could not surpass is Broken Pipe
(32) and Transaction failure errors while trying to install Android applications onto the
emulator through command line. Slightly different errors were met by other researchers as
well but not by the authors. After consulting the author, we learned that the environment
he worked in while developing Crylogger is "a physical machine (no virtual machine) with
Ubuntu 18.04.1 with kvm installed and with the possibility of opening the graphical user
interface of the emulator". He then suggested me to either get physical access to Linux
machines or export graphical interface (i.e., GUI) through SSH. However none of these
worked out for me — i) because of the pandemic, I did not have the chance to work physically
on Linux machines in lab; and ii) since I was physically distant from the server (overseas),
any graphical interface tools were so slow that this option turned out to be impractical.
However, this does not discourage me from continuing the research, on the contrary, it
accidentally provides me a unique perspective to assess dynamic crypto-detectors. By
simply switching workspace might bypass this specific problem but the fundamental issue
still exists, and might appear elsewhere to others in the future as well. Thus, I have
conducted further analysis on how and why these obstacles come across and whether there
are ultimate solutions for them.

We have come up with four hypotheses why errors such as Broken pipe and Transaction

failure could occur which are shown in Figure 5.2.

32



Instability of server adb emulator backend

mess-up
Network confusion ABI incompatibility for
(IPv4 and IPv6) CPU and ISA

Figure 5.2: Four hypotheses for errors related to Crylogger

e Instability of server — The first and most intuitive hypothesis is that since emula-
tor is running on remote server which is connected through SSH across long distance,
it is innately unreliable. The most common solution is to reboot the server to start
over the process. However, there are still various error messages after rebooting —

broken pipe (32), which is the most usual one, failed transaction, and can’t find service

(package).

e adb emulator backend data messed up — This is similar to the first hypothesis
but focuses more on emulator complications. Given that emulator is running with
virtualization support, it tends to slow down or crash when backend data behaves
oddly for some unknown reason. One of the possible reasons is that there are pre-
viously installed apps with the same name as the current one or the current apps
have already been downloaded before. To avert this, we have used commands such
as adb -s emulator-5554 uninstall zzx.apk and ./gradlew clean to constantly check
and uninstall unnecessary apps. Besides, we also used commands such as adb kill-
server &€& adb start-server to restart the emulator. This worked for few developers

as reported online over StackOverflow, but is not helpful in our scenario.

e Network confusion (IPv4 and IPv6) — Same type of issues has also been brought
up by Android developer official website [13]. They presume that this broken pipe
error is caused by failure of Gradle sync process and, more specifically, is because of

network confusion (i.e., Gradle is trying to use IPv4 rather than IPv6). Since IPv4
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and IPv6 use different bit-size IP addresses, they enable unique communication ap-
proaches among devices and applications. Thus, we set Java option to IPv6 in profile
configuration for shell. However, by doing this does not solve the problem. There
might either be more complicated network confusion issue that could not be simply

addressed by choosing IPv6 or this has nothing to do with network configuration.

e ABI incompatibility — This explanation ended up being the most possible and
fundamental cause of our problem after our analysis. Android Application Binary
Interface (ABI, for short) typically includes the CPU instruction set, the endianness
of memory stores and loads at runtime, conventions for passing data between ap-
plications and system, and format of executable binaries, etc [11]. Since different
Android devices use different CPUs, which in turn support different Instruction Set
Architectures (ISAs, for short), each combination of CPU and ISA has its own ABL
While working with native code, hardware matters. The Native Development Kit
(NDK, for short) ensures that developers are compiling for the right architectures
and CPUs by providing a them a variety of ABIs to choose from. Incompatibility of
ABI between applications and emulator might inherently limit the apps that could
be installed to the emulator and be further tested by Crylogger. This could not be
simply solved by paying more attention to match the version and architecture of

Android applications while downloading to that of the emulator.

5.2.2 Experiment process 2: Local VirtualBox Ubuntu

Because of the above mentioned obstacles, we were not able to continue our experiment
with remote server and chose to use Ubuntu 20.04.2.0 with local virtualization (i.e., Virtu-
alBox) instead in order to work on Linux operating system. However, this also introduced
several issues. The two main problems are caused by i) nested virtualization and ii) Virtual

Private Network (VPN, for short) availability.
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Figure 5.3: Nested virtualization scenario

Nested virtualization appeared when we were trying to run a virtual machine instance
(i.e., android emulator) inside of another virtualization environment (i.e., Ubuntu with
VirtualBox). This scenarios could potentially cause several problems. While some hyper-
visors can nest within KVM, this does not work well in our case with VirtualBox. We
were not able to use hardware accelerator (i.e., KVM) again this time. Besides, because
of physical limitation (i.e., conducting this experiment abroad), we could not download
Android AOSP directly from official website but need mirror images. However, to our
best knowledge, all of the mirror images in public has been either broken/unavailable
or outdated so that they are not well-suited with the image provided by Crylogger’s au-

thors. Thus, we were again incapable of moving forward with Crylogger in our experiment.

Despite that we were unable to conduct extensive tests with Crylogger after many
attempts, the whole process inspired us to not only try out different approaches to circum-
vent certain issues but also lead us to carry out deep analysis on the underlying reasons
why those problems occurred and whether those are intrinsic weakness of dynamic crypto-

detectors.

5.3 Static tool: Cryptoguard

When it comes to configure and test with Cryptoguard, the process becomes relatively
light-weighted and smooth. This is partially because the essence of static crypto-detectors

— it only needs to statically scan the source code of applications without execution. Thus,

35



there is no need to setup virtualization environment for emulators.

The environment setup process includes adjusting JDK and Python versions. More
specifically, we downgraded Java version from Java 8 to Java 7 and upgraded gradle version
from 4.4.1 to 6.5.1 (but not to the newest version because maven is depreciated in version
7). In additional, we do not have to check low-level architecture of either base machine or
applications. As long as the source code is available, Cryptoguard could almost succeed

to conduct the analysis on the target app.
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Chapter 6

RC3: Implementation, data, and

plots

This chapter, aiming to address RC3 — extensive empirical tests with Cryptoguard on clas-
sified apps, covers the procedure of automating crypto-misuse detection on 1003 Android
applications and data collection, presents the results efficiently, and makes comparison
between the results of Cryptoguard and those of Crylogger. We will start by discussing
about how to automate the process of conducting tests with Cryptoguard on applications
at a large scale and effectively collect their results. Then the reports of the results will be
showed with graphs focusing on different perspectives, namely across both different cate-
gories and different cryptographic rules. Finally, we will compare the number of violations

detected by Cryptoguard and Crylogger.

6.1 Implementation

In order to ensure the exhaustiveness and persuasiveness of our analysis, we conducted
extensive tests on 1003 popular Android applications across 21 different categories (shown
in Figure 6.1) downloaded from Google Play Store. The categories covers nearly every

aspect of people’s daily life, ranging from finance and education to game, social media,
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and traveling. For each category, we collected 40 applications on average with certain
degree of variation and exception.

counts

app_type
bank 46
book 28
browser 59
calculator 50
cartoon 75
dictoinary 57
education 58
fit 37
food 37
game 60
invitation 26
map 49
medical 118
music 35
music-player 28
photo 35
real estate 37
shopping 80
social-media 36
travel 37
weather 14
total 1003

Figure 6.1: Categories of Android applications downloaded

We packaged all of the applications to be detected together to automate the testing
process. However, there are some occasional cases when Cryptoguard failed at testing
certain apps and manual effort is required then. In comparison, the procedure to collect
and pre-process the data is relatively more complicated. We used Python and Shell scripts
to separate results of individual app from the package, filter the results to only keep the
information of violated rules and ignore the unnecessary one, and export the results to
excel/csv file for further analysis. While analyzing the collected data, we utilized several

python packages such as Pandas, Numpy, and Matplotlib.
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6.2 Data and plots

93.3% of 1003 applications have violated at least one cryptographic rule as shown from our
results. Rule 9, 16, 1&2, and 7 are the 5 rules (highlighted in Figure 6.3) which are most
likely to be violated — with possibility higher than 50%. More detailed analysis on these

rules will be discussed in Chapter 7.

Crypto-rules Violations Report

m percent

92.22 90.13

63.9163.91

53.44
38.4g40.18 41.28 41.28
28.51
23.73
9.37 10.67
I 4.09 7.08 4.39
1 m 00 m

rule rule rule rule rule rule rule rule rule rule rule rule rule rule rule rule
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.2: Cryptographic rules violated by Android applications tested using Cryptoguard

1 Predictable/constant cryptographic keys

2 Predictable/constant password for PBE

3 Predictable/constant password for KeyStore

4 Custom Hostname verifiers to accept all hosts

5 Custom TrustManager to trust all certificates

6 Custom SSLSocketFactory w/o manual Hostname verification
7 Occasional use of HTTP

8 Predictable/constant PRNG seeds

9 Cryptographically insecure PRNGs (e.g., java.util.Random)
10 Static salts in PBE

11 ECB mode in symmetric ciphers

12 Static Ivs in CBC mode symmetric ciphers

13 Fewer than 1,000 iterations for PBE

14 64-bit block ciphers (e.g., DES, IDEA, Blowfish, RC4, RC2)
15 Insecure asymmetric ciphers (e.g., RSA, ECC)

16 Insecure cryptographic hash (e.g., SHA1, MD5, MD4, MD2)

Figure 6.3: Cryptographic rules examined [45]

We also inspect whether there are huge discrepancies or strong correlation among both
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various categories of applications and different cryptographic rules. As shown in Figure
6.4, there is surprisingly high correlations among different categories of apps. Nearly
all types of applications have similar potential to violate certain rules. This is somewhat
counterintuitive while considering simple offline calculators and complex online video games
are similar in probability of containing cryptographic misuses. It can be partially explained
by that developers of video games are especially advertent about security issues including
cryptography usage and they have sound project management system to supervise this.
However, in contrast, calculator developing team may not pay enough attention on security

issues. More explanations are needed to be studied further.

Figure 6.4: Crypto-misuses across different rules (extract categories)

The plots are more spread out in Figure 6.5 (the x-axis is a little blurry because of
scaling but it does not matter in our analysis), which reveals that there is a huge variation of
number of cryptographic rules violated across different categories. In other words, rules do
not have a homogeneously regular trend over all types of applications. Generally speaking,
the top two lines (i.e., rule 9 and rule 16) have particularly similar tendency, the same is

for rule 12 and 13 (green and orange lines in the middle).
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Figure 6.5: Crypto-misuses across different categories (extract rules)

6.3 Cryptoguard vs. Crylogger

The result of Cryptoguard has been collected and processed as described above and Cry-
logger’s result is obtained from the authors due to our technical issues discussed in Chapter
5. Although the applications have not been completely overlapped, both of them tested
popular apps from a wide variety of categories from Google Play, so that we assume the
results can be properly compared. Both of the resulting datasets have been put into the
same graph in order to make direct comparison.

However, given the two datasets having different scale (i.e., distinct number of appli-

Number of apps violating Rule x

Total number of apps examined here to make them compatible

cations), we applied the formula

while comparing. Normalization or standardization is not used here because we want the
discrepancy to be more distinct and sharper rather than smoother and subtle.

Generally speaking, the results of Cryptoguard and Crylogger are highly similar (as
shown in Figure 6.6). They have alike peaks and valleys with only relatively large diver-

gence for a few rules, namely rule 4, 5, and 14.
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Figure 6.6: Comparison on the number of violations reported — Cryptoguard vs. Crylogger

Figure 6.7 reveals that Cryptoguard reports more violations than Crylogger. More
specifically, there are significantly more violations caught by Cryptoguard than did Cry-
logger for rule 4, 14, 5, and 11; while more violations of rule 12 and 15 are caught by
Crylogger. We think this result and its corresponding analysis (Chapter 8) are particu-
larly crucial since they can lead to the exploration of the fundamental difference between

static and dynamic crypto-detectors and their strength and weakness.
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Figure 6.7: Difference Bar Chart (Cryptoguard - Crylogger)
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Chapter 7

Evaluation

In this chapter, we further evaluate the results obtained in the previous section. We start
off by having an in-depth analysis on the top four violations reported by Cryptoguard.
Given that these four violations nearly overlap with the top four reported by Crylogger
(based on Figure 6.6), they deserve to be rigorously studied in order to understand why
they are especially susceptible to be breached within mobile apps and what procedure
should be carried out to effectively prevent these violations and make the apps securer. In
addition, we also introduce the outline of our four research questions (RQs) derived from

the results by demonstrating their originality and corresponding methodologies.

7.1 Top four violations detected by Cryptoguard

The top four violations reported by Cryptoguard while detecting Android applications dur-
ing our empirical experiment are i) use of predictable cryptographically insecure PRNGs,
ii) use of insecure crypgoraphic hash, iii) use of predictable/constant cryptographic keys or
password for PBE, and iv) occasional use of HTTP. These violations fall into four distinct
perspectives of security, namely randomness, integrity, confidentiality, and SSL/TLS Man-
in-the-middle Attack. Besides, they be closely inspected from their fundamental definition,
historical evolution, security considerations and problems, detection methodology used by

crypto-detectors, and proposed solutions.
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7.1.1 Randomness: Cryptographically insecure PRNG

Pseudorandom number generator (PRNG for short) has been extensively used in mobile
applications, which require numerous random numbers for common operations such as key
or salts generation. The more entropy and the higher-level uniqueness these random num-
ber can achieve, the securer and more stable the applications are in terms of cryptographic
communication. However, several significant vulnerabilities relating to weak random num-
ber generation have been found in widely used software. In 1996, the Netscape browser’s
SSL implementation was found to use fewer than a million possible seeds for its PRNG,
which makes it highly vulnerable [26]. Java.util. Random is a commonly-used class for
generating random numbers, while it is proven to be cryptographically insecure.

Rule 9 — use of cryptographically insecure PRNG — checks specifically the use of
Java.util. Random in mobile apps. The technique used to catch the use of Random in Cryp-
toguard is locating the class, method, and then string orderly and checking if the string
contains insecure PRNG such as Java.util. Random: void <init> and Java.lang. Math: dou-
ble random. A code snippet is as follows. This procedure has certain limitations — it tends
to result in false positives (i.e., redundant alerts which are not harmful). It will output
violation reports as long as predefined untrusted PRNGs are found in the apk file, however,
in some cases those algorithms are reasonable to be applied with respect to performance
and on small-scale tokens and will not cause any insecure issues. Having 92.22% of appli-
cations violating it, this rule is most likely to be breached as shown in the result. This
reveals that there is still substantial usage of Random class to generate random numbers

and its underlying mechanism and insecurity need to be further exposed.

for (String prng : UNTRUSTED_PRNG){
if (unit.toString().contains(prng)){

analysis.add(unit);
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Random() creates a new random number generator when predefined seed can be passed
in as parameter to generate different data types such as int, float, etc. Those generators
output a stream of pseudorandom numbers. However, it implies that with the same seed
and same sequence of method calls, it will output identical sequence of numbers. The class
has a 48-bit internal state and thus will generate a 48-bit seed. It will repeat about 24%
calls and will not be able to produce all possible longs or doubles. Besides, it uses system
clock to generate the seed and this feature could be taken advantage of by attackers, who
knows the time at which the seed was generated, to predict the seed easily. In stark
contrast, the class Java.security.Secure Random has been proven to be cryptographically
secure. It uses random data from people’s os such as keystrokes and other data saved
in /dev/random or /dev/urandom directory as seeds. Attackers can rarely collect these
information unless they can fully get access to the target os. Besides, all output sequences
are non-deterministic and, therefore, cryptographically strong. However, the operation of
this class is noticeably slower than that of Random and this is one of the key reasons why
Random has not lost its popularity in practice.

With partial knowledge, one possible solution has come out and been commonly adopted
for a while. It suggests developers combine Java.security. SecureRandom and Random class
by feeding a cryptographically secure seed generated by SecureRandom class to Random in
order to guarantee the security of the pseudorandom number generation process. However,
this does not completely solve the problem. In addition to predictable seeds, Random also
employs linear congruential generator (LCG, for short), which has high predictability, to
produce random numbers. In optimal cases, it is easy and fast for a modern computer (i.e.,
in a second) to predict future values within a full cycle. Therefore, the cryptography secu-
rity of applications will still be compromised no matter how safely the seed is generated —
either using other cryptographically secure procedures such as Java.security.Secure Random
or rolling a die randomly.

As a result, Java.security.Secure Random should be publicized and used more in getting

a cryptographically secure PRNG for security-sensitive applications. While Java.util. Random
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does have merits, since it is cryptographically vulnerable, it should only be used to generate

small tokens in few cases with experts’ confirmation and close surveillance.

7.1.2 Integrity: Insecure cryptographic hash

In addition to randomness, data integrity of mobile apps is a crucial part of a secure system.
However, it would be severely compromised while insecure cryptographic hash functions
such as SHA1, MD5, MD4, and MD2 are used. A hash function is a function that takes an
arbitrary amount of input and produces an output, which is known as message digest, of
fixed size. The standard hash function serves as a basis for cryptographic hash functions. In
recent years, MD5 and variants of SHA are commonly used cryptographic hash algorithms.
With the help of these functions, users are able to generate message digests to detect and
further prevent the unauthorized changes in files. This is especially important for critical
system and sensitive databases [43].

Rule 16 — use of insecure cryptographic hash — checks if those insecure hash functions
are used in the applications. It uses slicing strategies to scan the application in order to
look for the usage of 6 predefined unsafe hash algorithms (i.e., BROKEN HASH) mainly
in 3 cryptographic methods of MessageDigest class as shown below. However, since MD5
remains suitable for other non-cryptographic purposes such as determining the partition for
a particular key in a partitioned database|43]. Alike cases could imply that the potential

false positives could be generated by the straightforward method Cryptoguard used.

BROKEN_HASH = ("MD2", "MD5", "MD4", "SHA-1", "SHA1", "SHA")
criterial.setClassName("Java.security.MessageDigest");
criterial.setMethodName("Java.security.MessageDigest getInstance(Java.lang.String)");
criterial.setMethodName("Java.security.MessageDigest getInstance(Java.lang.String,
Java.lang.String)");

criterial.setMethodName("Java.security.MessageDigest getInstance(Java.lang.String,

Java.security.Provider)");
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Message Digest 5 (MD5), together with its two predecessors (i.e., MD2 and MD4),
are commonly described as cryptographically broken but are still widely used to produce
128-bit values. It is found to suffer from extensive vulnerabilities such as collision attacks.
There are various types of collisions for MD5 [56]. One of the critical reasons for its
insecurity is its speed. MDb5 can be operated fast and thus, it only takes a small amount
of time to be broken by attackers — simple MD5 collisions can now be found in seconds on
a standard desktop. Compared to MD5, Secure Hash Algorithm 1 (SHA-1) emerges later
and is a more complex algorithm and it can produce a longer hash value (i.e., 160-bit). It
is a widely used NIST cryptographic hash function standard that was officially deprecated
by NIST in 2011 due to fundamental security weakness demonstrated in various analyses
and theoretical attacks. Despite its deprecation, SHA-1 remains widely used in 2017 for
document and TLS certificate signatures and in many software such as Git version control
system for integrity and backup purposes [55]. MD5 and SHA1 are susceptible to hash
collision and pre-image attacks. Commercially available rainbow tables (shown in Figure
7.1) allow attackers to easily obtain pre-images of MD5 and SHA1 and get authenticated
without knowing the actual plaintext. Those collisions enable attackers to forge digital

signatures or break the integrity of messages.

Create a table of multiple chains
with hash and reduction

|

Start with a cipher

Cipher matches with
hash value at the end of the chain ip
the table

v .

Get authenticated
OR Hash and reduce the current
go through the chain to get cipher text
plaintext

Figure 7.1: Rainbow table attack process

47



In spite of the vulnerabilities, we further analyzed why there are substantial reluctance
to replace MD5 and SHA-1. Many industry practitioners are disinclined to give up using
these two hash algorithms for other safer alternatives. The reasons could be grouped into

three categories — outdated information, restricted usage, and operational constraints.

e Outdated information — Because of the history and popularity of SHA1 and MD5,
many developers still consider them secure. They falsely assume there are no known
techniques to find collisions and break those algorithms except via brute force [43].
Finding an actual collision seems to be extremely inefficient and impractical for the
past years due to high complexity and computational cost of the task. However,
they does not gain the cutting-edge information that SHA-1 collisions have finally
become common with known instance of collisions [55]. Besides, some of them made
an assumption that using mainstream protocols such as TLS, IKE, and SSH, which
relies only on second pre-image resistance, are unaffected by collisions. However,
they are ignorant of a new class of transcript collision attacks [8] which can obtain

second pre-image of SHA1 and MD5.

e Restricted usage — Some developers are aware of the weakness of these algorithms
and they have only used those functions in restricted cases assuming there will not be
presence of active adversaries. For example, MD5 is used for the per-block checksums
for Hadoop files systems’ consistency and setup. However, those kinds of premature

execuses should not be made to put cryptographic security in jeopardy.

e Operational constraints of hardware — Take backward compatibility for clients
as an example. Apache Tomcat server has to use MD5 in its digest authentication
code because major browsers do not support secure hash functions. In addition,
there is a lack of support for SHA2 on systems running Windows XP SP2 or older
[43].

Therefore, safer alternatives such as SHA2 and SHA3 deserve more attention both

from industry and academia. While SHA2 includes a significant number of changes from
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its predecessor, SHA3 is internally different from the MD5-like structures of SHA1 and
SHA2 [43]. Tt can be directly substitute for SHA2 in current applications to significantly

improve the robustness of NIST’s overall hash algorithm toolkit.

7.1.3 Confidentiality: Predictable/Constant cryptographic key and pass-
word for PBE

Above all, software with predictable or constant cryptographic keys and passwords are
inherently insecure. Cryptoguard combines the testing of rule 1 and 2 because both of
them examine the constancy perspective of the applications. There are other rules in
Cryptoguard which also focus on confidentiality and predictability — static IVs in CBC
mode symmetric cyphers (rule 12, 25.31%) and static salt in PBE (rule 10, 5.02%). These
rules have relatively low violation rate than rule 1 and 2, which has 63.91%.

More specifically, these two rules focuses on two classes — SecretKeySpec and PBD-
KeySpec. It inspects if there are static strings or instances of other data types in five
methods of these two classes (shown in the snippet). This strategy might overlook certain
insecure cases since it is challenging to define and look for predictable keys. Compared to
the two rules discussed above, rule 1 and rule 2 does not specify a particular insecure al-
gorithm that should not be used, but, instead, it aims to prevent constant and predictable

input provided by developers.

class: Javax.crypto.spec.SecretKeySpec
criterial.setMethodName ("void <init>(byte[], Java.lang.String)");

criterial.setMethodName("void <init>(byte[], int, int, Java.lang.String)");

class: Javax.crypto.spec.PBEKeySpec
criterial.setMethodName("void <init>(char([])");
criterial.setMethodName("void <init>(char[], byte[], int, int)");

criterial.setMethodName("void <init>(char[], byte[], int)");
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The cryptographic functionality in Java is mainly provided by two libraries — Java Cryp-
tographic Architecture (JCA) and Java Cryptography Extension (JCE). JCA is tightly
integrated with the core Java API and delivers some primary cryptographic features;
while JCD provides various advanced cryptographic operations [37]. SecretKeySpec and
PBEKeySpec, which located in Javax.crypto package, are both provided by JCE. These two
classes are commonly used cryptographic classes. However, there are wide uses of constant
symmetric encryption key in these two classes while random key generation algorithm
should be used instead. SecretKeySpec specifies a secret key in a provider-independent
fashion. It converts raw secret keys in byte arrays to a SecretKey directly without having
to go through a provider based SecretKeyFactory [39]. PBEKeySpec generates a crypto-
graphic key from a user-chosen password with password-based encryption (PBE, for short)

[40]. It stored passwords as char arrays rather than as string object.

(bF;zewa‘:?ayy) > SecretkeyFactory > SecretKey
Raw key §
(user-chosen password) rBE »  Cryptographic key

Figure 7.2: SecretKeySpec (upper) and PBEKeySpec (lower) mechanisms

One of the possible reasons for their high rate is that insecurity occurs more frequently
in commonly known robust classes, which developers usually pay less attention to. Since
these two classes are claimed to be secure by official website such as Oracle and by multiple
software developers on widely used online forum such as StackOverFlow, practitioners tend
to use less secure strategies (e.g., predictable/constant keys) within them.

In addition to cryptographic insecure scenarios, there are some other features of PBEKeySpec
class which might cause some potential vulnerabilities — read incompatibility (i.e., unre-
peatable read) and manual garbage collection. As described above, an instance of the

class PBEKeySpec stores the raw key material from which an encryption mechinism can
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derive a cryptographic key. Since the password is stored as a mutable char array, it can
be easily overwritten when it is no longer needed. Problem occurs when two threads share
an instance of PBEKeySpec and one of the threads tries to read the password while the
other is clearing or modifying it. The thread that is trying to read the password may ac-
quire an unexpected one. To avoid these types of complication, the password returned by
PBEKeySpec.getPassword() method should match the one given to the constructor, oth-
erwise, an exception (i.e., lllegalStateException) should be thrown as a warning. Besides,
PBEKeySpec does not automatically clear the password after its usage [29]. It expects
the developer to call clearPassword() after the object has fulfilled its purpose. It provides
flexibility in certain cases but may be lead to problems such as read incompatibility or
memory leak when people omit to manually clear the garbage.

In short, random key generation algorithm, rather than static or predictable raw key
material, should be used together with SecretKeySpec and PBEKeySpec in order to ensure

the cryptographic confidentiality of mobile applications.

7.1.4 SSL/TLS MitM Attack: Occasional use of HTTP

The fourth most like to be violated rule is rule 7 — occasional use of HI'TP — which belongs
to SSL/TLS Man-in-the-middle attack. HT'TP and HTTPS are both protocols used while
transferring information between server and browser. The information, either requests or
responses, includes website content and API calls. The major distinction between them is
that HTTPS secures communication over a computer network while HT'TP is inherently
insecure since it can lead to severe data leakage. After the initiation of HTTP in 1989 by
Tim Berners-Lee, Google recommended sites to be switched to HT'TPS in 2014, but only
sites with e-commerce pages back then used HTTPS. In recent years, HTTPS is widely
used. Cryptoguard searches for string ’http’ in five methods from four classes to check

whether HTTP has been used.
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class: Java.net.URL

criterial.setMethodName("void <init>(Java.lang.String)");
criteria?2.setMethodName("void <init>(Java.lang.String, Java.lang.String,
Java.lang.String)");

criteria3.setMethodName("void <init>(Java.lang.String, Java.lang.String,

init, Java.lang.String)");

class: okhttp3.Request$Builder

criteriad.setMethodName ("okhttp3.Request$Builder url(Java.lang.String)");

class: retrofit2.Retrofit$Builder

criteriab.setMethodName ("retrofit2.Retrofit$Builder baseUrl(Java.lang.String)")

Hypertext Transfer Protocol (HTTP, for short) is an application layer protocol, which
prescribes order and syntax for presenting information, in the Internet protocol suite model
for distributed, collaborative, hypermedia information system. In short, it is used for trans-
ferring data over network. However, it is not encrypted and thus is vulnerable to MitM
and eavesdropping attacks. Attackers can gain access to website accounts and sensitive
information and even modify webpages to inject malware or advertisement easily with
HTTP. To put it simply, it has priorities on trust among human other than security, which
is strong discouraged from scientific perspective. As problems unremittingly emerging,
HTTPS (i.e., Hypertext Transfer Protocol Secure) has been introduced. As a combination
of HTTP and encryption, it extends HTTP by using TLS (SSL) to encrypt normal HTTP
requests and responses. Thus, attackers will only get access to cypher texts rather than
simply plain texts. Authentication of accessed website and protection of the privacy and
integrity of the exchanged data while in transits are both guaranteed. This characteristics
of HTTPS effectively protects against MitMA and the bidirectional encryption of com-

munication between a client and server protects the communication against eavesdropping
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and tampering.
We have summarized three potential reasons of continuing usage of HIT'TP — lack of

knowledge, inadequate security checks, and performance consideration.

e Risks of re-enabling and redirection — HTTPS is set by default on Android
versions greater than 8 and could be changed by setting cleartextTraffic Permitted.
However, a high percentage of applications used the flag to re-enable HTTP [38] and
some developers without enough expertise tend to follow the norm and end up using
HTTP inadvertently. In addition, in most situations where HT'TPS would have been
possible, the hosts will redirect from HTTP to HTTPS serving the same content.
However, the risk to leak information is not significantly reduced or eliminated by
simply redirecting. Despite that, many developers seem to suffer from misconcep-
tion and underestimation of the threat of MitMA in the presence of this type of

redirections.

e Inadequate security checks by official platforms — Many authoritative plat-
forms do not constrain developer’s use of HTTP. Android OS with version lower than
9 could allow developers using HTTP without custom workarounds. Not until 2016
did Google announced specific security safeguards and policies to prohibit insecure
certification validation code. Although customization provides developers certain
degree of flexibility, applications’ security might be harmfully impacted. Thus, the

need for more restricted security surveillance should be enforced by official platforms.

e Performance considerations — Another reason why HT'TPS is not widely adopted
is about concerns relating to performance. Encryption increases the response time of
two popular Web servers Netscape Enterprise Server 3.5.1 and Microsoft IIS 4.0 by
at most 22%. Nevertheless, this additional delay imposed by encryption is considered
to be moderate [25]. With typical PCs, encrypted Web communications using SSL
and RC4 can transfer data at speed similar to non-encrypted HTTP. Websites are

still encouraged to use HT'TPS to secure communication.

93



7.2 Overview on research questions (RQs)

We aim to i) inspect if different categories of applications have similar cryptographic mis-
uses and ii) formulate a taxonomy of cryptographic misuses with respect to which is ten-
dentious to be detected by static and dynamic tools, respectively. Thus, we propose four

research questions below:

e RQ1: Are the results specific for different types of apps or consistent across different

types?

e RQ2: Are there any rules which differ greatly in terms of number of wviolations

between static and dynamic?
e RQ3: Which taxonomies do these rules belong to?
e RQ4: When are static and dynamic tools more efficient regarding the taxonomies?

No existing studies, to the best of my knowledge, focus on examining whether there are
discrepancies among different types of mobile apps in terms of their tendency to violate
cryptographic API rules. However, this is critically important to consider because if the
divergence does appear, it is necessary to inform developers of different industries to be
alert of certain type of cryptographic misuses and to enforce more surveillance accordingly.
Although various studies evaluate the performance and accuracy of static and dynamic
crypto-detectors, none of them compares the efficiency of static and dynamic tools via
looking at their capability of detecting the violations of different rules — instead, most of
them focus on calculating various statistics such as the rate of false positives. We intend
to design a schema to better combine static and dynamic analysis strategies to improve
the efficiency of crypto-detectors through classifying cryptographic rules and recognizing
the strength of static and dynamic analysis strategies.

To answer RQ1—RQ4, we analyzed the data obtained from our empirical experiments
described in Chapter 6. We redesigned a new taxonomy based on the one utilized by
Crylogger [42].
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Chapter 8

Results and findings

8.1 RQ1: Crypto-miuses results among 21 different types of

applications

As presented in Fig. 6.4, the number of crypto-misuses is surprisingly consistent across 21
different types of applications ranging from browsers to cartoon to book and real estate.
They all have similar trend and global and local maximums and minimums. There are

several different factors that could be attributable to this result —

1. Susceptibility to break cryptographic rules are evenly distributed across all categories
of applications. Since cryptographic usages are extremely fundamental and common
in developing mobile apps, they have alike tendency to violate certain rules no matter

how complicated their functionalities are.

2. The propensity to violate different cryptographic rules does varies tremendously with
respect to the levels of complexity of different types of apps, but the manpower
employed during the development process is also significantly disproportional. In
other words, the development and supervision team of more complicated applications

are more structured, systematic, and rigorous compared to less complicated apps.
The analysis obtained is correlational rather than causal since it is unlikely to have
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enough control variable in our experiment — the development team of the applications are
not the same but may have some fundamental differences. There might be many other
factors leading to this result, but we did not go further into this direction since as long as
they are consistent as shown by the results, no dramatic change is necessary for security

reasons to be imposed to status quo.

8.2 RQ2 - RQ4: New taxonomy for cryptographic rules

While there are substantial amount of studies on detection of cryptographic API misuses
and diverse designs of crypto-detectors, the categories of cryptographic rule they used
are pervasively consistent. Some common classifications are attack type (e.g., predictable
secrets, SSL/TLS MitM, CPA, and brute force), crypto property (e.g., confidentiality,
integrity, and randomness, etc.), severity (e.g., high, medium, low), and analysis method
(e.g., forward slicing and backward slicing).

Unlike these categorization methods focusing on the content of the rules (i.e., security
features the rules are based on), our new taxonomy is established on the approaches used
to inspect the rules. In other words, we take the procedures used in detection process and
the efficiency of static and dynamic analysis strategies into account while formulating this
new taxonomy. We surmise this novel proposition of taxonomy may be used to contrive
a schema to effectively combine static and dynamic tools to improve the accuracy and

robustness of crypto-detection.

8.2.1 First stage: General taxonomy

According to how cryptographic rules are being inspected, we initially classified them into

two general categories — insecure values and static values.

e Insecure values — Usage of known/proved broken algorithms or ciphers such as

SHA1, MD5, and RSA or unsafe protocols such as HT'TP. There are repository of
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values that are claimed to be insecure, and the rules checking if any of them are used

in applications are classified as insecure values.

— Methodology: Store all broken algorithms and values — get the relevant values
used in the application — check if that value belongs to predefined insecure value

repository — if so, report corresponding rule violation; otherwise, continue.

input v == Accepted

Values

Figure 8.1: insecure value examination process

e Repetitive values — Usage of predictable or constant values in an application
potentially compromise security, especially when they are used as keys, passwords, or
IVs. These values are not predefined but are simultaneously stored when encountered

during the detection.

— Methodology: store relevant value the first time it is encountered — when the
same variable/API is met again, compare its value to the ones’ that are stored
orderly — if it is repetitive, report corresponding rule violation; otherwise, store

that value to the repository

Newly
collected
values

Yes/No

Original
values

Figure 8.2: repetitive value examination process
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8.2.2 Second stage: Crypto rule analysis

The logic of the methodology is the same for both static and dynamic crypto-detectors,
but how they realize it is different. The distinct approaches they used lead to different
results (i.e., number of reports). In this section, we focus on the rules whose number
of violations diverge the most between Cryptoguard and Crylogger and the ones that
are most susceptible to be violated. Generally speaking, the vulnerabilities reported by
Cryptoguard outnumbers those reported by Crylogger. This can be partially attributable
to some specific techniques utilized by dynamic and static crypto-detectors discussed in
Chapter 4. Admittedly, there might be false positives and false negatives in the results,
but we did not prioritize these edge cases in our analysis.

We scrutinize how the following selected rules are examined by Cryptoguard and Cry-
logger, respectively. The analysis of rules falling into insecure values category is presented

below.

e Rule 9: Untrusted PRNG — Use Java.securityRandom rather than Java.util. Random.
Cryptoguard checks if there are strings belonging to predefined UNTRUSTED PRNG
while scanning the file. It aims to catch the insecure usage of Random. Crylogger
checks if the value from logger satisfies RandomGenerator.alg=‘Secure’. It aims to

examine if the secure one has been used.

e Rule 16: Broken Hash — Do not use SHA1, MD5, MD4, and MD2. Cryptoguard
checks if method MessageDigest uses predefined Broken Hash. Crylogger checks if
the value from the logger satisfies MessageDigest.alg!={‘SHA1’, ‘MD5’, ...}. They

both checks if insecure hash algorithms are used in the application.

¢ Rule 4: Dummy Hostname Verifier — Do not return true directly within verify().
This rule inspects if Hostname Verifier actually implement the verification process
instead of accepting all host indiscriminately. Cryptoguard checks if verify method

has used parameter Javaz.net.ssl.SSLSession to verify hosts. Crylogger passes some
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erroneous values (i.e., NULL, empty strings) to check if the function is not imple-
mented naively. This examination is relatively indirect by using test cases rather

than get the actual parameter used.

e Rule 14: Broken Symmetric Crypto Algorithms — Do not use DES, IDEA,
Blowfish, RC2, and RC4. Symmetric encryption algorithms has inherent hard-
ship to properly transmit key used to encrypt and decrypt data between parties.
Cryptoguard checks if predefined BROKEN CRYPTO is used. Crylogger checks if
the value from logger satisfies SymmEncryption!={‘DES’, ‘IDEA’, ...}. They both

checks if symmetric encryption algorithms are used in the application.

e Rule 5: Dummy Cert. Validation — Verify host names and certificates properly
(i.e., do not trust all of them). The purpose of this rule is similar to that of Rule
4. Cryptoguard checks if exception, expiration, and valid list of certificates are
scrutinized appropriately. It simplifies the tasks by examining some concrete cases.

Crylogger checks if the value from logger satisfies SSL/TLS/Cert.allcert=‘False’.

e Rule 11: ECB Mode for Symmetric Crypto Encryption — Do not use oper-
ation mode ECB with AES. ECB mode encryption should be avoided since it can
leak information about plaintext — same ciphertext will be acquired if same plaintext
is put into ECB mode encryption. Cryptoguard checks if method usees predefined
BROKEN CRYPTO. Crylogger checks if the value from logger satistifes SymmFEn-
cryption.mode!=‘ECB’ or SymmEncryption.#block=1. They both checks if ECB

mode is used in the application.
The analysis of rules falling into repetitive values category is presented below.

e Rule 12: Static IVs — Do not use constant Initial Vectors in symmetric en-
cryption. Cryptoguard uses hash maps to keep track of all constant sources in
Javazx.crypto.spec. lvParameterSpec. Crylogger compares the value collected in first

log with that in the second log — { SymmEncryption. IV }*0{Symm Encryption. IV }2.
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They both store the previous values and check if the current value has already been

stored before.

While Rule 4, 5, 9, 11, 14, 16 all belong to insecure values category, only Rule 12
belongs to repetitive values category. This indicates that discrepancy between results of
static and dynamic analysis stategies occurs within insecure values category more often. In
addition, dynamic crypto-detectors, overall, tend to detect more rules examining constant

values while static tools are better at examining broken values.

8.2.3 Third stage: Refined taxonomy

As shown in the above section, static and dynamic analysis shows distinct efficiency within
one category — while all 6 rules belong to insecure value category, Cryptoguard detects more
violations of rule 4, 5, 11, 14 and Crylogger detects more violations of rule 9 and 16. More
detailed classification is needed. We further refined the existing insecure value category

by dividing it into fore-encryption group and encryption and communication group.

e Fore-encryption — Rule 9 and 16. This category focuses on examining value and
algorithm used before the actual encryption. Crylogger detected approximate 9%

more violations than Cryptoguard did.

e Encryption and communication — Rule 4, 5, 11, 14. This category concentrates
on inspecting functions and algorithms used during the encryption and message trans-
mission process. Cryptoguard detected around 34% more violations than Crylogger

did.
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Cryptographic Rules

Insecure Values

Repetitive Values

Fore-encryption

Encryption
and Other rules ...
communication

Figure 8.3: New taxonomy of crypto rules

Our new taxonomy is presented above in Figure 8.3. Overall, dynamic analysis is more
efficient in detecting rules that could be checked explicitly. It can directly log the relevant
information such as RandomGenerator.alg and MessageDigest.alg to check whether broken
values or strings are used in the application. The rules belonging to fore-encryption cat-
egory can be examined more straightforwardly. In contrast, it is relatively challenging to
directly log the values required to be checked during the process of encryption and message
transmission. Take rule 4 as an example. While static tools can easily scan the code and
get the parameters of certain functions they are inspecting, the relevant information for
dynamic crypto-detectors is largely limited — its only option is to use test cases (i.e., input
certain value) to test if the output is as expected. However, this circuitous approach may

miss many insecure cases and constrain its efficiency.
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Chapter 9

Limitation and Future works

While we have reduced the gap in studies of cryptographic misuses in the field of mobile
application security, there are certain limitations of our research and large space for future
work to make further improvement. In this chapter, we focus on discussing our current

limitations and pointing out potential related research topics.

9.1 Limitation

Hardware constraints of dynamic crypto detectors in experiment. Due to restricted hard-
ware accessibility during our empirical experiment, we were not capable of testing Android
applications with Crylogger virtually, instead, we chose to use the data from the author [42]
as a workaround and compared that with the results of Cryptoguard from our experiment.
Although this inspires in-depth analysis on the underlying reasons for the implementation
issues, it would potentially cause the comparison to be deviating from the ground truth
— the applications tested by Crylogger and Cryptoguard can not be guaranteed to be ex-
actly the same. In order to lower this side effect, we attempted to maximize the overlap
between Android applications used in our experiment and those used by Crylogger [42] by
downloading the most popular applications and across a wide variety from Google Play.
Less emphasis on false positives. One of the most critical contributions of our research

is the design of a new taxonomy of cryptographic rules. Its uniqueness comes from our
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emphasis on analyzing the divergence of number of violations of each rule reported by static
and dynamic crypto detectors rather than the mere comparison on their statistics such as
false positives. However, it introduces bias meanwhile — without checking false positives

manually, the number of violations reported might not be as accurate as expected.

9.2 Directions of future works

9.2.1 Integration of static and dynamic analysis strategies

This is the most natural succeeding direction of future work leads by our research — com-
bination of static and dynamic strategies in cryptographic misuses detection. The new
taxonomy indicates which categories of crypto rules could be more efficiently examined
by dynamic analysis strategies and static analysis strategies. Thus, instead of the design
schema used by some previous works (i.e., combining them by using dynamic techniques to
confirm the results of static techniques sequentially), the new strategies should effectively
partition the rules so that the crypto detector checks some rules by static techniques and
others by dynamic techniques. In this way, the efficiency and resources could be substan-
tially boosted and saved, respectively, without compromising the accuracy, which, instead,

might be improved as well.

9.2.2 Automatically repair of the misuses

In addition to the detection of cryptographic API misuses, the automatic reparation may
be equally attractive to software developers, practitioners and, especially, common users
without much expertise. One of the potential techniques to automatically repair the vul-
nerabilities found focuses on modifing lower-level bytecode. The logic is that, in templates
of misuses, they first locate where the actual variables or registers should be, allocate
placeholders accordingly, and finally fix code by replacing placeholders with the mapped
variables or registers [34]. While this is feasible under some circumstances, it cannot over-

haul the entire system. There are certain misuses that cannot be corrected by simple
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replacement. For example, via merely replacing HT'TP with HTTPS, the link would be-
come unreachable or invalid. Overall, this complex topic is potentially meaningful and

deserves more attention from both academia and industry.

9.2.3 Machine learning and deep learning in vulnerability detection

While machine learning (ML) are gaining popularity increasingly over the recent decades
and they have been pervasively applied in the detection of mobile application malware, the
application of ML models in the specific field — cryptographic misuse detection — is largely
limited. They are critically important because of its ability to detect new or unknown
malware that are infected by various Trojans, worms, and spyware [51|. There are about
38 ML models ranging from supervised learning to reinforcement learning such as support-
vector machine, random forest, and neural network [49] and 7 general stages in its life cycle
including problem definition, data acquisition, feature selection, model selection, training,
and evaluation, and so on. ML models can improve automatically through experience and
usage of data. Its unique features greatly improve the prospects for misuse detection of
Android application and should be specialized into catching cryptographic misuses in the

near future.
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Chapter 10

Conclusion

In this thesis, we have studied static and dynamic analysis techniques used in detecting
cryptographic-API misuse in Android mobile applications through extensive literature re-
view, systematic empirical study, and in-depth analysis and comparison. We found that
93.3% of applications contains at least one cryptographic misuses, and the results are
generally consistent across different types of mobile apps. We summarized strength and
weakness of static and dynamic crypto detectors used in public. In particular, we looked
into some challenges confronted by these two strategies — static analysis: i) how native
code are detected and ii) how DEX bytecode is transformed into Java source code; dy-
namic analysis: i) how execution traces are generated during execution and ii) limitations
of automatic input generation. These topics are critical causes of inaccuracies/defects of
each analysis strategy, respectively.

During the course of our experiment with Crylogger, we faced substantial hardware
constraints and, thus, identified and analyzed underlying limitations of dynamic crypto
detectors such as nested virtualization and ABI incompatibility, etc., that caused the issues.
We concluded that static crypto detectors outperforms dynamic ones regarding to their
robustness in implementation. Also, we closely examined four top crypto rules that are
most frequently violated according to the report of static crypto detector Cryptoguard.

Surprisingly, they all belong to separate crypto properties (i.e., randomness, integrity,

65



confidentiality, etc.). This further confirms the need to create a new taxonomy according
to their performance in reality.

In order to bridge the research gap, we found regularity in the results and posited a
new taxonomy schema of cryptographic rules based on how they are examined by analysis
tools in practice instead of commonly used schemas such as attack type and severity
level. This is an especially meaningful blueprint on how to efficiently combine static and
dynamic analysis in crypto detection. Instead of using dynamic strategies to confirm the
results of static ones sequentially, the new combination techniques will substantially boost
the efficiency, soundness, and accuracy of the detection process. In addition, this study
will be continued. Aspects of future work such as integration, automatic reparation, and

application of machine learning algorithms are increasingly expanding and promising.
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