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Solution of the Two-State Potential-Curve —Crossing Problem

John B. Delos* and Walter R. Thorson
Division of Iheoretioal Chemistry, Department of Chemistry, University of Alberta, Edmonton t, Canada

(Received 11 February 1972)

A general theory of the bvo-state curve-crossing problem has been developed, with a
complete solution of an accurate model for "close" crossings (including numerical com-
putations for strong coupling). Results clarify the position of the Landau-Zener approx-
imation and its improvements by Nikitin and others, provide a general way of extending
these approximations into regions often treated incorrectly (including the high-energy
limit), and can be readily adapted to simple, rapid calculations.

This is a brief report of a theoretical analysis
of the potential-curve-crossing problem in atomic
collisions, with a complete solution of that prob-
lem (including computations) for the case of
"close crossings. " A detailed account of this
work will be published in the near future. '

The Landau-Zener-Stueckelberg' (LZS) approx-
imate solution to the curve-crossing problem has
had a long history, and has frequently been suc-
cessful even in situations where its basic assump-
tions seem to fail. The need for simple tech-
niques for calculating accurate inelastic transi-
tion probabilities associated with curve crossings
has led to many attempts to extend and genera-
lize the theory.

Assuming a two-state model for the crossing
problem, the coupled second-order Schrodinger
equations obtained are commonly replaced with
first-order time-dependent equations for the
electronic state vector, assuming classical mo-
tion for the heavy particles. Recently, we have
shown' that the same first-order equations re-
sult even when the assumption of classical mo-
tion is not valid. In particular, using a momen-
tum-space semiclassical approximation we
showed' that the same equations are valid even
when the crossing point is near classical turning
points, provided the forces —dV„, jdR in both

states have the same sign near the turning points.
In this more general semiclassical derivation the
invariance of the results with respect to elec-
tronic representation choices is essentially pre-
served. Therefore the coupled first-order "clas-
sical trajectory equations" provide a sound basis
for accurate treatment of curve crossings.

Remaining assumptions of a curve-crossing
theory are then associated with the two-state
electronic potentials. The LZS approximation
assumes that the diagonal elements Vt,.(R) are
linear near the crossing point and the coupling
V,2(R) is constant. Bykhovskii, Nikitin, and
Ovchinnikova' (BNO) have exploited these assump-
tions consistently and derived a particularly
satisfactory form of solution, including analytical
formulas useful in various limits, which depends
on only two parameters: a reduced collision en-
ergy e and a reduced coupling strength P. How-
ever, the special assumptions about V„and U»
are a severe limitation, resulting, among other
things, in incorrect behavior with increasing
energy. We have now generalized the BNO pro-
cedure and overcome these difficulties.

For an accurate treatment the motion of the
heavy particles, as well as the electronic poten-
tials, must be correctly described. To this end,
assuming that the interaction potential V» does
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not change its sign dul ing the collision we de
fine

s (7) = h 'f V, (R (7')}d v' „

s(T) is then a monotonic function of the time T

from the turning point w=0 to 7-~. In the dia-
batic representation the classical trajectory equa-
tions can then be expressed in terms of s as in-
dependent variabl:

idc, /ds =c,exp[-2if, 't(s')ds'],

idc, /ds = c, exp[+2tf, t(s')ds'j,

where the quantity

t= (V.2- Vxi)/2V»

is expressed as a function of s. Equations (2)
greatly simplify the curve-crossing problem:
ALL effects, both of potential surfaces and heavy
particLe motion, are determined by the single
function t(s).

H I f, V»dR I is bounded, Eq. (1) maps the semi-
infinite time range onto a finite range of s(0 ~s
~s„). For a crossing problem, t(s) has a simple
structure: At s =0 (turning point) t(0) has a finite
(negative) value, but (dt/ds), = 0 because (dR/d7'),

. =0. At the crossing point s„, t(s„)= 0 but (dt/
ds) + 0. Finally, t(s) ls singular at 8 (7' ~),
a fact of fundamental importance for the theory.

We define a close crossing by the assumption
that s and s„al 6 sufficiently well separated that
the behavior of t(s) near its singularity has no
important influence on inelastic scattering; t(s)
ean then be adequately represented by a few-
term Taylor expansion about s„or s =0. In a dis-
tant crossing the detailed properties of t(B) at
very large A must be considered as well as the
behavior near 8„. A given crossing may be "dis-
tant" for small impact parameters and "close"
for large ones, as the turning point approaches
the crossing point. ' Also, since I f,"V»dBI is
boundedp Is ~ s„)(x:5 fol" high velocities 5p so
for any system the effect of the singularity at
s „increases with increasing velocity (this is
what causes the failure of the LZS formula at
high energies' ). In general, however, a crossing
is likely to be "close" when R, is small.

We treat only the close-crossing case. It is
necessary to provide an adequate description of
t(s) near s =0 and s =s„. Almost all previous
theories effectively assume that t(s) is linear,
as does the LZS model. However, if s is small,
it is obvious that (a) the finite size of t(0) and
(b) the curvature of t(s) near s =0 will have strong

effects, and of these the more important is that
of curvature in t(s). This curvature is mainly
due to acceleration near the classical turning
point, but contributions also arise from higher-
order variations 1n the potentials V;~(R). The
BNQ model is the only curve-closslng theory
which adequately treats the effect of acceleration.
Their method is equivalent to a quadratic expan-
sion of t(s) about s = 0.

A simple yet significant improvement can be
made on the BNQ model using the best quadratic
for t(s). Expanding t(s) about s„, and eliminating
s„via the imposed constraint (dt/ds), = 0, we
obtain

t(s) = —&+4&'/p',

~ = ~"'j(1+2E/DE),

c = fE(F, -F,)/j2EV»]

P = P'"/(1 + 2E/DE)"

P" = (4V /@)[td V /S(E -E )]

u '=[(E, -E,')/(E, -E,)+sdinv„/dR]. (4e)

Here M is mass. The E, are forces . (dV;, /dR)~
with I,.' their derivatives; I" and E' are averages
of these. The quantities e and P are just
the variables & and b defined by BNQ—but evalu-
ated at R„. Using Eq. (3), Eqs. (2) become

i dc,/ds = clexp[- t(8s'/3p' —2es)],

i dc,/ds = c,exp[+ t(8s'/8 p' —2 as)] .

Equations (5) are identical in form to Eqs. (10) of
BNQ; the difference between our model and theirs
is in the definitions of e and P. BNO's special
derivation of Eqs. (5) requires that V,, be strict-
ly linear and V» strictly constant; via the more
general derivation of the classical trajectory
equations given in Ref. 3 we can relax these re-
strictions and still recover Eqs. (5). The only
resulting change is the E-dependent scaling of
e and P given by Eqs. (4a) and (4c). Taking such
scaling algorithms into account all the approx-
imate formuIas derived by BNQ for various limit-
ing conditions on e and P remain valid. We give
a summary of these and other formulas in Ref. l.

Using Eq. (3) for t(s), the classical trajectory
equations in the adiabatic (noncrossing) repre-
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sentation become

d'f /dt =[2(l+f )] y&

& exp'- f(P/2) f,[(1+f')/(~+ t)]"«j,
dy~/dt = —[2(1+i')] 'y, (6)

&«xp(+ t'(P/2) f,[(l + t')/(~+ I)]'"df'I

This x'ep1 esentRt1on 1s less conven1en't for Rna
lytical work because of the complicated integral
in the exponent, but it is quite convenient for
numerical work for strong P and small e.

%e wish to emphasize the necessity of abandon-
ing the linear approximation for t(s) if a valid
model for close crossings is to result. This is
particularly important in view of the preoccupa-
tion with Weber's equation and its asymptotic
properties which has dominated past studies of
this problem. ' ' In Ref. 1 we show that the xe-
duction to%eber's equation depends upon assum-
ing the effective linearity of t(s). Equations (6)
also show quite clearly why this is not a good
idea. If f(s) is taken to be linear, Eqs. (6) are
modified to a form which is the same except that
the integrand in the exponent is replaced by
T,(I+i')'?', with T, = P/2&a. It is evident that if
significant coupling occurs near the turning point,

the linear approximation is inadequate.
We have computed solutions for a complete

grid of parameters (P, e). In Ref. I these results
are presented in detail and compared with vari-
ous RnRlytlcRl f01 mulas.

%e thank the National Research Council of
Canada for support of this work.
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Linewidth of Tunable Stimulated Raman Scattering

C. K. N. Patel
Be/l Telephone XubotetoHes, IIolmdel, ¹svt'et'Sey 07788

(Received 17 November 1971)

We report direct measurements of the tunable spin-flip Haman (SFB) laser liuewidth,
obtained by heterodyning the SFH laser output arith the output from a cw gas laser. The
measured linewidth for the cw SFH laser operating near 5.3 pm is & 1 kHz and is limited
by the spectrum analyzer resolution. The measured linevridth of & 1 kHz is the narrow-
est known for any tunable source of coherent radiation in the infrared.

A recent report of t nable st1mulated Ra,man
scattering' from the spin flip of conduction elec-
trons in InSb (i.e., the spin-flip Raman laser) has
evoked considerable interest in its use in the in-
vestigation of numerous physical phenomena.
The tunability of the spin-flip Raman (SFR) laser
now covers' ' a wavelength range from about 9
to 14.6 p, m and from 5.2 to 6.2 p, m and has been
used in high-resolution infrared spectroscopy, '
trans1ent infrared spectroscopy, ' pollution detec-
tion, ' and nonlinear optics. 'o A very important
parameter of a tunable laser source is the line-
width of its radiation output. Heretofore, only in-

direct measurement of the linewidth of the SFR
laser was available with a quoted number' of
-900 MHz. In this paper we report direct mea-
surements of the SFR laser linewidth by hetero-
dyning the SFR laser output with power output
from a cw gas laser. %e measure a linewidth of
S 3 I;II@ for the spin-flip Raman laser pumped at
5.3 p, m. The linewidth is limited by spectrum
analyzer resolution. The SFR laser linewidth
calculated from consideration of the amplitude
and phase fluctuations 1n the 1asex' is I Hz. The
contribution of the SFR laser bnewidth arising
from the fluctuations in the magnetic field which
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