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Semiclassical Theory of Inelastic Collisions. II. Momentum-Space Formulation
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The time-dependent equations of the classical picture of inelastic collisions (classical-tra-
jectory equations) are derived using the momentum-space semiclassical approximation. There-
by it is shown that the classical-trajectory equations remain valid in the vicinity of classical
turning points provided that (a) the momentum-space semiclassical approximation is valid, (b)
the trajectories for elastic scattering in the various internal states differ only slightly, and (c)
the slopes of the elastic scattering potentials have the same sign. A brief review of the exist-
ing derivations of the classical-trajectory equations is given, and the general conditions for their
validity are discussed.

I. INTRODUCTION

This is the second in a series of papers' dealing
with the derivation and application of semiclassical
methods to collisions involving a quantal change in
the internal states of the colliding systems. We
are primarily interested in discrete electronic ex-
citations in slow atomic collisions.

The starting point is the set of coupled radial
Schrodinger equations

+Z U„„(R)u„(R) = Eu (R) .

In this paper, we restrict ourselves to the diabatic
representation; analogous results can be obtained
in the adiabatic representation, but the analysis is
much more complicated.

In the classical picture, we imagine the nuclei

to be moving classically on some trajectory R(t);
in the basis (n) the electronic system obeys the
time -dependent Schrodinger equation

~t

xexP i 5 V Rt' —V„„Rt' gt' 2

The objective of this series is the derivation of
these classical-trajectory equations (2) from the
full coupled Schrodinger equations (1) under the
most general assumptions possible.

In the second derivation in Paper I, the classical-
trajectory equations (2) were derived by an exten-
sion of the usual semiclassical approximation. One
of the assumptions used, (c), was that inelastic
coupling is negligible near the classical turning
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II. MOMENTUM-SPACE SEMICLASSICAL
APPROXIMATION

For the purposes of this paper, we may use the
term "momentum-space wave function" to refer to
the Fourier transform

v (P)= Je' "i"u (R)dR.

The integral goes from zero to infinity, or it may
be extended to minus infinity if u„(—R) is suitably
defined. ' In the absence of coupling, v (P) obeys
the differential equation

P2
~ d+V„„e„-Zv.(P)=O, (4)

with the potential energy operator defined by its
Taylor expansion. Let us write

v (P)=a (P)e'~' ' "

and denote

" =-e„(P) . (8)

It follows that a obeys the differential equation

P 2 d
+ V„„S,„(P)+i@ — —E a„(P)=0 . (7)

The semiclassical approximation is obtained by
assuming that a(P) and (R(P) are slowly varying
functions; and thereby treating i@d/dP as a "small"
quantity. By using the Taylor expansion for func-

points. However, calculations on the O'-H sys-
tem and other considerations ' prove that as-
sumption (c) is not necessary for the validity of
the classical-trajectory equations. In this paper,
the momentum-space form of the semiclassical
approximation' is taken as the starting point. Using
this approach, we show that assumption (c) can be
replaced by an alternate assumption: (c') The
forces F, = —dv«/dR have the same sign near the
classical turning point. The significance of this
assumption is discussed in Sec. IV.

A special case of this analysis was presented by
Bykhovskii, Nikitin, and Qvchinnikova. They
showed that for the Landau-Zener-Stueckelberg
(LZS) model of linear potentials and constant cou-
pling, the classical-trajectory equations are com-
pletely equivalent to the Schrodinger equations.
The present paper shows that similar ideas can be
applied to more realistic models.

In Sec. II we review the momentum-space semi-
classical approximation. The derivation of the
classical-trajectory equations, and the relationship
of this formulation to the configuration-space ap-
proach, is presented in Sec. III. Finally, in Sec.
IV the assumptions used in this as well as other
derivations of the classical-trajectory equations
are summarized and compared.

tions of two noncommuting variables, ' the poten-
tial energy operator can be put in the form

v e.+I —= vs+in v'"e, +-,'v'"e

+((F)'I-,'F'"(8)~, —
g V"'(t))) „~+3

where

v(a)(g) d v((R)
Sd8,"

+~~ F' '(t()) —I+ ~ ~ ~, 0))4) dR

Using (8) in (7), we see that it is natural to choose
(R„(P) such that the zero-order term vanishes:

p'/2m+ v „(61„(p))-z=o.
Then 6I (P) is the position that is associated clas-
sically with the momentum P; also

S„(P)=je.(P')dP'. (10)

The momentum-space semiclassical approximation
consists in neglecting terms of second order and
higher in (8). From this it follows that

a.(P) = ~F„(S (P))~-"',
where

(~) dv„(S)
ckR

The important feature of this approximation is
that it remains valid at small momenta; therefore
it can give an adequate description of a system in
the vicinity of classical turning points. The ap-
proximation breaks down near points in momentum
space, Po, such that F„((R„(PO))=0; such points
could be called "momentum-space classical turning
points, " since the momenta Pp are extrema of the
classically accessible values. In collision problems
these points occur at infinity, and at any point for
which the potential has a maximum or a minimum.
We have shown elsewhere' that a general criterion
for the validity of the momentum-space semiclas-
sical approximation is the condition

(MF )(F dR)
where

F =F (6I (P)) .
In classical mechanics a strict correlation exists

between P and R for a specified dynamical state
(trajectory). The essence of the semiclassical ap-
proximation is that on the average some such cor-
relation persists, in the sense that contributions to
u„(R) come mainly from momentum eigensta&es
near the classical value P= (P(R), while contribu-
tions to v„(P) come mainly from position eigen-
states near (R(P). For such a case it follows that
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the Fourier transform (3) and its inverse can be
approximated by the method of stationary phase,
provided that points of stationary phase do not lie
too close together. ~ Therefore it is possible to
represent the state vector for a semiclassical col-
lision by using the configuration-space semiclas-
sical approximation at R- ~ and near potential ex-
trema, using the momentum-space semiclassical
approximation near classical turning points, and
transforming from one representation to the other
by the method of stationary phase in the regions
where both approximations hold. In this paper this
procedure is used to extend the domain of validity
of the classical-trajectory equations.

III. CLASSICAL-TRAJECTORY EQUATIONS

Now, using the momentum-space semiclassical
approximation as a starting point, we obtain the
classical-trajectory equations (2) by a method an-
alogous to that used in the second derivation given
in I.

A. Derivation

The two-channel momentum-space Schrodinger
equati. on is

(i6)

This requirement implies another; if the trajector-
ies are to be approximately the same, the forces
cannot be too different,

1(Fs —F()/(F s+ F1) I

'& 1 . '(17)

Inequalities (12), (16), and (1V) are the conditions
for validity of (15).

We now define

of V&& with the second term from the expansion of
V». This approximation is valid if first-order and
higher terms in V,& and second-order and higher
terms in V», V» can be neglected. An estimate
of these higher terms consistent with the validity
of (15) can be made using Eq. (8) and

1 da ((Rs-(R1)
a dP

vt(vhich follows from (15). Generally, Eq. (15) is
valid if two conditions are satisfied: (a') The mo-
mentum-space semiclassical approximation is valid
in the absence of coupling, i. e., the inequality (12)
holds; (b') The difference between the elastic scat-
tering trajectories is small,

P I'. d d
+ V„~&e —-E ~,(P)+ V„ iX —v, (P)=0, b„(P)= a (P) [F„((R„(P))]'

then

(i6)

A,

+i@ ~F,((R,)Fs((RS) ~' = V(s((Rs) e" 1 s& "bS

(19a)

P . d d
dP

+ Vvv iS —S vv(P)+ Vv, (iS ) v (P) D. =

~vv A d
dP

1 g) V (R +zS a

d
+ V,s ) (Rs+i@ ——E as(P)

(14)

e(4/&) (~j-~1) V g + jg —

ag ~21 1

We now use the Taylor expansion (8) for V„„((R„
+ ih(d/dP)); in collecting terms, we consider that
all inelastic coupling terms [right-hand side of Eqs.
(14)] are one order higher than corresponding elas-
tic scattering terms. Thus, the resulting "zero-
order" equations are (9), and the "first-order"
equations are

Using (5) and (6), we obtain without approximation

P
+ V1, (R1+ih ——E a, (P)

0
V ((R) e-i (s1-sS)/))

V ((R) ((s - 1s) S/-))

0

Defining the variable 7' such that

+i@
~
F((81)FS((RS)

~

' = VS(((R ) e-' 1- S

(19b)
In Eq. (19a), the sign to be used is the sign of F, ,
while in Eq. (19b) the sign is that of F~. If the
forces have opposite signs, the equations are very
similar to the classical-trajectory equations, but
the matrix involved is anti-Hermitian and does not
conserve probability. We must therefore make a
third assumption: (c') The forces all have the same
sign. Equation (19) then simplify using (16) and
(IV) to

N V „((R1) + —, V „((R,) a,gy] daj 1 t. PQ dS],
dP

= l F(N(P))l

we obtain

(20)

e((s(-s(()/)( V ((R ) g (15)

with a corresponding equation for a&. Here we have
equated the first term from the Taylor expansion with

N—d b '" 0
dT j, Vq~ e

v12 1 (21)
'-bp-
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(22a)

= J [V„(6I(1-'))—V2,(bt(7-'))] dT' (22b)

(see Appendix). Equations (21) and (22b) are the
classical-trajectory equations (2).

It should be noted that this de'rivation, like the
second one given in I, does not imply that the sys-
tem could be observed moving along the classical
trajectory with amplitudes changing according to
(21). Semiclassical derivations prove the validity
of the form of the equations of the classical picture
but do not imply the substance of the classical pic-
ture itself.

Finally we remark that it is possible by this
method to derive corrections to the classical-tra-
jectory equations which apply if the approximations
made here begin to break down. These corrections
are the many-channel generalization of the well-
known expansion of the elastic scattering phase shift
in powers of k.

B. Relation to Configuration-Space Formulation

The configuration-space wave function is given
by the inverse Fourier transform,

u„(R) = (2') "' f„" ~„(P)e""'"dP

=(2') ~ f dPb (P) ~F (6t(P))~

x exp[- (i/h) f [(R„(P') —R] dP'j .

Far from the turning points, the integral can be
performed by the method of stationary phase; the
result for the classically allowed region is

u (R) = [M/a'„(R)]"

xlb (+ (R))exp[(i/@) f + (R')dR' ——,'ir]

+ b„(-+„(R))exp[- (i/h) f 6'„(R ) dR + ,"iv]);—
(23)

6'„(R) is defined in Eq. (32) of I. Comparing Eqs.
(30) and (34) of I with (23), we obtain the corre-
spondence

b„,(R) b (+ 6'(R)) e"'~

or, equivalently,

The equivalence of the classical-trajectory equa-
tions in the two forms is thus definitely established.
The phase factor e'" is the same as that obtained
in I via the WKB connection formulas for elastic
reflection at a classical turning point; traditionally
it is incorporated into the WKB phase shift.

Similarly, in the classically forbidden region,
well inside all the turning points, all u„(R) are ex-

ponentially small. If R is between two turning
points, one wave function is oscillatory, and the
other is exponentially small. If R is close to the
turning point of the mth potential R„[i.e., the point
such that V„(R„)=E], then the corresponding con-
figuration-space wave function can be shown to be

u (R) = bm(P=0) n' '[M'/2AF (R )]'

xAi((2MF/k )' (R„—R)) . (24)

Therefore, in spite of the fact that different elec-
tronic states have different turning points R, the
momentum-space formulation shows that a classical
description involving a single trajectory is uniform-
ly valid throughout the entire turning-point region.

IV. DISCUSSION

A. Validity of Classical-Trajectory Equations

For a single-channel system, there are five well-
known ways of obtaining "classical behavior" in
quantum mechanics. The most intuitive but least
general approach involves the use of localized wave
packets. More general are the semiclassical ap-
proximations in configuration space and in mo-
mentum space. Feynman's approach most clearly
displays the connection with the principle of least
action. The fifth approach involves the use of the
Wigner distribution function, which corresponds to
the classical phase-space density. '

Each of these approaches has been used to derive
the classical-trajectory equations, which describe
"classical behavior" for a multichannel system.
The Feynman approach was developed by Pechukas,
the wave-packet formulation by Mittleman" and by
Delos, Thorson, and Knudson, ' and the configura-
tion-space semiclassical approximation method by
Cross, "Bates and Crothers, "Child, "and Delos,
Thorson, and Knudson. ' Derivation via the mo-
mentum-space semiclassical approximation is the
subject of this paper, and the Wigner function de-
velopment is given elsewhere. "

It is plausible to suppose that there can exist no
derivations that are substantially more general than
these already known; therefore it is appropriate
now to compare the derivations to find the most
general conditions under which the classical-tra-
jectory equations are valid. Since most of the
derivations give sufficient conditions for their va-
lidity, the equations are valid provided any single
derivation holds. By comparing them we can ob-
tain the weakest possible restrictions still suffi-
cient for their validity.

The wave-packet derivation was shown to be valid
provided that the microscopic wave packets remain
small as they traverse the interaction region. As
was extensively discussed in I, this happens if (i)
the de Broglie wavelength is extremely small com-
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pared to atomic dimensions [(X/~)'~ « Ij and (ii)
there is a negligible difference between the elastic
scattering trajectories for the several internal
states. The first restriction is very severe and
makes this derivation much less general than the
others.

Pechukas's derivation, using the Feynman ap-
proach, may well be the most general, but the con-
ditions for its validity are not at all clear.

The Wigner-function approach can easily be re-
duced to the semiclassical formulation or to the
wave-packet formulation, so it provides no addi-
tional insight.

We therefore turn to the semiclassical deriva-
tions. In both of them, we assumed that the single-
channel semiclassical approximation would be valid,
either in configuration space or in momentum
space, for zero inelastic coupling. This condition
is expressed loosely by the requirement that the
de Broglie wavelength be small compared to atomic
dimensions, or more precisely, by the inequalities

~gMF(It)/a (g)
~

«1 (configuration space)
(25a)

ol

~

hPF /MF~~ «1 (momentum space) . (25b)

Some such assumption is used in every derivation
of the classical-trajectory equations. In spite of
this, it is an odd fact that in certain systems, the
inequalities (25) are not strictly necessary; for the
lower states of the harmonic oscillator and the hy-
drogen atom, (25) are not satisfied but the semi-
classical approximation to the eigenvalue spectrum
is exact. Strictly speaking, conditions (25) are
also not sufficient for the validity of the semiclas-
sical approximation. ' Nevertheless, they provide
a useful guide to its validity.

The second assumption, also made in both semi-
classical derivations, is that the trajectories for
elastic scattering in the several internal states are
similar:

~

(6'2 —+q)/(6'2+ +q)
~

«1 (configuration space)
(26a)

~

(&q —6lq)/ao
~

«1 (momentum space) . (26b)

It has not been proven that this assumption is nec-
essary for the validity of the classical-trajectory
equations. There does exist a special case for
which it is violated but for which the classical-tra-
jectory equations are exact —the case with two lin-
ear potentials and constant coupling: V&&= -E&A;
V», Ez constants, E, Ez&0. However, this case
is unrealistic. Unless V,~ and E& are constant
eeeryuhere, the classical-trajectory equations are
not exact.

It might be claimed that Pechukas's derivation
does not require the assumption (26), but this has

yet to be proven, as the explicit conditions for the
validity of his formulation are not yet known.

The data of Bates and brothers tend to support
the conclusion that (26) is not necessary. However,
this support is rather tenuous, since their calcula-
tion involved a crossing problem, in which (26)
were satisfied throughout the region of strongest
coupling.

There are strong reasons for believing that the
classical-trajectory formulation requires condi-
tions (26). Consider the following intuitive argu-
ment based on the configuration-space formulation.
If (26a) is not satisfied, then the momentum of the
nuclei changes drastically in an inelastic transition.
In that case, only a small additional impulse would
be required to also change the direction of the mo-
mentum so that the nuclei would be reflected by the
coupling potential. Such a process would occur al-
most as frequently as excitation without change in
direction. Since this process cannot be described
by the classical-trajectory equations, they could
not be valid under such conditions.

In any case, if the elastic trajectories differ
substantially, the classical-traj ectory equations
offer little computational advantage over the exact
coupled Schrodinger equations (1). The oscillatory
factors in the classical-trajectory equations have
wavelengths X;& = 5/) 6', —6 &I; if (26a) is not satis-
fied, then y,.&

—-min(X, , X&), so no great advantage
is gained by using Eq. (2).

A third assumption was made in each semiclas-
sical derivation. In the configuration-space deriva-
tion, we assumed (consistently with the other two
assumptions) that the coupling is negligible near the
classical turning points. In the momentum-space
derivation, we assumed that the diagonal forces
F&= —dV&&/dR have the same sign. The classical-
trajectory equations are valid unless both of these
assumptions are false.

The most important case involving the simulta-
neous failure of these assumptions is the two-state
crossing problem illustrated in Fig. 1(a). The
"diabatic" curves (labeled 1 and 2) cross with
slopes of opposite sign, and the "adiabatic" curves
(labeled a and b), which are obtained by diagonaliz-
ing the potential energy matrix, each have an ex-
tremum near the crossing. If the turning points are
close to the crossing point, then the system has an
energy between E, and Ez. An incident particle in
internal state 1 in this energy range would approach
the crossing point very slowly, and pause for a
long time, unable to "make up its mind" whether
it should continue approaching in state 2, or recede
in state 1. For energies slightly above E„ the
phenomenon could be described as tunneling through
the barrier in state a, while for energies slightly
below E2, it could be considered as temporary
trapping in a bound vibrational level of state b. In
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tremum, the tunneling and trapping phenomena do
not exist, and the classical-trajectory equations
are valid.

V(R}

R

(a)

V(R)

R

(b)

FIG. 1. Potential curves near the crossing point. "Di-
abatic" potentials are labeled 1, and 2, and "adiabatic" po-
tentials are labeled a and b. The potential curves differ
only in their orientation with respect to the E =0 axis. Nev-
ertheless, they lead to totally different effects. (a) Forces
have opposite signs. For E& ~E —E2, tunneling, orbiting,
and temporary capture are possible, and classical-tra-
jectory equations are not valid. (b) Forces have the same
sign. Nonclassical effects do not occur, and classical-
trajectory equations are valid at all energies.

any case, the situation cannot be described clas-
sically, so the classical-trajectory equations are
not valid.

If, on the other hand, the classical turning point
is far from the crossing point, then either E«E&
or E» Ez. In the former case, tunneling is neg-
ligible, while in the latter case, the semiclassical
approximation is valid for the vibrational levels of
state b. Therefore, the classical-trajectory equa-
tions are again valid. Likewise, if the forces have
the same sign near the crossing point [Fig. 1(b)],
then the adiabatic potentials do not have an ex-

B. Choice of Classical Trajectory

The various derivations of the time-dependent
equations suggest different choices for the classical
nuclear trajectory. It is appropriate to review
these here to consider their applicability to differ-
ent situations.

The wave-packet derivation suggests that the ap-
propriate trajectory is that of the center of mass
of a microscopic wave packet. ' This trajectory has
great intuitive appeal, ' since it weights the poten-
tial of each internal state in proportion to the prob-
ability of finding the system in that state. This tra-
jectory is independent of the internal-state represen-
tation, and it satisfies the conservation laws of en-
ergy and angular momentum. However, we believe
that this trajectory is unnecessarily complicated,
and that it does not in general lead to results that
are more accurate than those obtained from simpler
trajectories. Contained in the wave-packet deriva-
tion is the assumption that the ground-state and
excited-state trajectories differ negligibly from
each other. Also, a calculation on the proton-hy-
drogen atom system showed that the wave-packet
trajectory led to results that were less accurate
than those obtained from the ground-state trajecto-
ry. Therefore, this approach will only lead to re-
sults that are either trivial or suspect.

The Feynman approach also leads to trajectories
with considerable intuitive appeal, ' as they also
are independent of the internal representation, and
they obey the classical conservation laws. How-

ever, they do not obey the "law" of causality, and
therefore they cannot be calculated exactly by any
known method. Moreover, hidden in the compli-
cated path analysis may be the assumption that all
trajectories are very similar. If so, this theory,
like the wave-packet theory, would be valid only if
it is unnecessary.

The semiclassical derivations explicitly contain
the assumption that the trajectories are approxi-
mately the same in the region of inelastic coupling.
(Elsewhere, they can be quite different —in this
formulation, the scattering angle is not calculated
from the nuclear trajectory, but from the phase
shifts; the nuclear trajectory is only a device for
calculating the amplitude for leaving the coupling
region in a particular electronic state. ) It follows
from the above assumption that the "average tra-
jectory" is not precisely defined by the theory. If
the ground- and excited-state trajectories differ
substantially, then the only reliable way to obtain
accurate results is to incorporate higher-order
corrections to the time-dependent equations. It is
not difficult to obtain a series expansion of the
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multichannel wave function that is analogous to the
"expansion in powers of 8" for elastic scattering;
the first term in series leads to the classical-tra-
jectory equations and the higher terms are cor-
rections to them.

However, it is often possible to avoid this extra
effort by a very careful choice of the nuclear tra-
jectory. We have repeatedly said in earlier sec-
tions that there is no trajectory that is best in gen-
eral. Qn the other hand, for any given situation,
there certainly exist trajectories that are rather
poor. No a priori rule can be derived, but experi-
ence and intuition can often lead to a good choice.
Several possibilities are suggested by the deriva-
tions. The configuration-space derivation uses a
geometric-mean momentum at one point and an
arithmetic mean at another:

[s', (Z) 6,(fl)]'"
dT M

or
d& —,'[a, (a) + a,(~)]
d~ M

The momentum-space derivation uses a geometric-
mean force at one point and an arithmetic mean at
another:

or

= [s,(z, (~))s,(e,(p))]"'

„—= —,'[z,(e.,(z))+ z,(@,(&))] .
From the nature of the derivations, it follows

that the geometric- or arithmetic-mean forces give
better trajectories if the coupling occurs at small
R, close to the turning points, where the velocities
are small and the forces are strong. Clearly, the
arithmetic -mean momentum becomes meaningless
between the turning points, where one momentum is
imaginary. The geometric-mean momentum keeps
the nuclei entirely outside the outer turning point,
so it does not properly sample the region between
the turning points. Calculations on the H'-H sys-
tem confirm that this is not the best trajectory
when coupling near the turning points is important.
The geometric-mean force gives the exact solution
to the (LZS) linear crossing model, so it is certain-
ly the best choice for systems which approximate
that model. The arithmetic-mean force is almost
as good, and usually better if one force is very
small. Since the momentum-space formulation
does not involve a common turning point in configu-
ration space, the region between the two turning
points and the classically forbidden region are
properly treated.

On the other hand, similar arguments can be used
to show that the geometric- or arithmetic-mean
momenta are better trajectories if the coupling oc-
curs far from the turning points, at large R, where

the velocities are large and the forces are weak.
Bates and Crothers ' have proposed a very

useful trajectory under the name of the "forced-
common-turning-point procedure. " The nomencla-
ture is perhaps a bit misleading; their analysis is
a configuration-space derivation of the time-depen-
dent equations in which certain approximations lead
to a particular choice of the classical trajectory.
We would like to emphasize that the use of a com-
mon classical trajectory does not have to involve
the us of a common turning point [see Eg. (24)].
As a consequence, the results of Bates and Crothers
are valid more generally than their analysis or their
nomenclature would suggest.

The essential feature of their approach is the
choice of an intuitively appealing average trajec-
tory (this choice is not derived),

(e,5,)"' i-a'(r. —,'P)"'
d~ M (6, aa)A'

where 6 &(R) differs from 6'&(R) in that the latter in-
cludes the angular momentum repulsion, while the
former does not. At large R, this trajectory is es-
sentially the same as the geometric mean of 6'&,
while at small R, it is very close to the trajectories
that are based upon an average force. Therefore,
this trajectory will give good results in a wide va-
riety of situations. '

We conclude however by reiterating that if the
difference between the initial- and final-state tra-
jectories is very large in the region of inelastic
coupling, then the classical-trajectory equations
cannot be expected to provide accurate results.

V. SUMMARY

By the use of the momentum-space semiclassical
approximation, we have extended the domain of va-
lidity of the classical-trajectory equations. They
are valid if (a) a semiclassical approximation would
be valid in the absence of coupling, (b) the poten-
tial energy difference is small compared to the ki-
netic energy, and (c) the coupling is negligible near
the classical turning points or (c') the forces have
the same sign near the classical turning points.
Each of these assumptions appears to be necessary
for the validity of the classical-trajectory equations.
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APPENDIX

We demonstrate here the equivalence of the con-
figuration - and momentum -space formulations.
More precisely, we show that if
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l
(s 2-6»)&(6'a+ +i) I

-
&

l(e,, -e,)/~l

l
(F.-F,)i(F,+ F,) l

n-,

then Eqs. (20), (21), and (22a) differ from Eqs. (37)
and (40) of I by terms of order q'

There are two possible sources of discrepancy
between the two formulations. In the configuration-
space formulation, U„ is evaluated at R(~), which
is the solution to

[ + (&(&))& (R(~))l
M

while in the momentum-space formulation, V, ~ is

evaluated at

@(~)= —,'(6t, + 64),

where (R&(P) satisfies

P j2M+ U))((R)(P)) —E= 0

and P(7) satisfies

„=F= IF (~ (P))F.(~.(P))l"'.

The other possible discrepancy is between the
forms of S(~) in (22a) and (22b).

We begin by proving the intuitively obvious fact
that R(7) has the same v dependence as $(~). We have

Also

and

(2~(p (p )-1 (p &+(p & +1F2+ 2Fy FR+F2 I 0 s'p —s'g F2 F1
d& d R d R d~ 2M 6'i 6'2 2~, (P2+ g F2+ F

d, , ggg p

2 1/2 F +F 2

P(@ ~ ))
( g a) i+ a I,o 2-

d72 ~ 1 2 ~ 2~ F + F

Therefore R and 8 obey the same second-order
differential equation and the same boundary condi-
tions, so they have the same "time" dependence.
It also follows that P(~) and ~( 6', +0'2) have the same
"time" dependence.

Finally, we show that (22a) and (22b) have the
same r dependence. From Eq. (22b)

d& dR=(F (&(&))-F (&(~))] —,
whereas from Eq. (22a)

dA P 1 1 —dP
Fg(dti) F,(6t ) 2d~

dF d8, dP"+'-~'dm d
In the first term, we use a Taylor expansion of

I

F,((R,) about (R. It then follows that

d'a
d7' M, =—[F,(N) -F,(%))+——(W. -6t, )2 M

1 dFp I dFqx(F2
—F,)

Fp dip Fg dSg
The second term is of order

R~ —(R~ Fa —Fg 0(„a)
a, F+F,

compared to the first. Hence, to within errors of
order q, the second derivatives of 6 and 6 are
everywhere equal. Since the values and the first
derivatives are equal at the turning point,

'r

~= 1 (U„-U„)d '

and the configuration- and momentum-space for-
mulations are valid to within terms of order g .
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