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1.  INTRODUCTION

The Caribbean spiny lobster Panulirus argus is
found from North Carolina (USA) to Brazil and
throughout the Caribbean basin. It supports impor-
tant fisheries across much of its range. In Florida (FL),
P. argus is the most valuable fishery, with the major-
ity landed in the Florida Keys. In the Caribbean
region, spiny lobster landings can exceed US $630 M
ex-vessel price annually (FAO 2017) and the fishery
supports a broader economy in artisanal fishing (e.g.
boat builders, fish houses, fishing gear suppliers).

Although regulations vary across this region, spiny
lobsters are harvested both commercially and recre-
ationally using traps, by hand with a hook or net by
divers, or using aggregation devices commonly
called ‘casitas’ (Gutzler et al. 2015).

Despite the size and value of the P. argus fishery
driving a great deal of research, only a few patho-
gens and diseases have been reported (Shields 2011).
In the mid-1970s, a microsporidian was found in a
single female spiny lobster in FL (Bach & Beardsley
1976). Microsporidia comprise a phylum of spore-
forming unicellular parasites that inhabit all major
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ABSTRACT: The Caribbean spiny lobster Panulirus argus supports a large and valuable fishery in
the Caribbean Sea. In 2007−2008, a rare microsporidian parasite with spore characteristics typical
of the Ameson genus was detected in 2 spiny lobsters from southeast Florida (FL). However, the
parasite species was not confirmed by molecular analyses. To address this deficiency, reported
here are structural and molecular data on single lobsters displaying comparable ‘cotton-like’
abdominal muscle containing ovoid microsporidian spores found at different locations in FL in
2014 and 2018 and in Saint Kitts and Nevis Islands in 2017. In the lobster from 2014, multiple life
stages consistent with an Ameson-like monokaryotic microsporidian were detected by transmis-
sion electron microscopy. A partial (1228 bp) small subunit (SSU) rRNA gene sequence showed
each microsporidia to be identical and positioned it closest phylogenetically to Ameson pulvis in a
highly supported clade also containing A. michaelis, A. metacarcini, A. portunus, and Nadelspora
canceri. Using ecological, pathological, ultrastructural, and molecular data, the P. argus micro -
sporidian has been assigned to a distinct species: Ameson herrnkindi.
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biomes. They can infect and cause disease in both
vertebrate and invertebrate hosts (Canning & Vávra
2000, Smith 2009, Stentiford et al. 2016), and are
regarded as one of the most prevalent and patho-
genic parasites of many aquatic species — particu-
larly freshwater and marine crustaceans (Sparks
1985, Meyers, 1990, Morado 2011, Stentiford et al.
2013a). However, they are rarely found in lobsters
(Stentiford et al. 2010, Shields 2011).

In hosts harboring muscle-infecting species, micro -
sporidia infection most commonly causes the ab -
domen of crustaceans to appear opaque or white
with the underlying muscle tissue having a ‘cooked’
or ‘cotton-like’ appearance (Lightner 1988, Edgerton
et al. 2002, Morado 2011). Advanced infections typi-
cally result in the host becoming lethargic and mus-
cle tissue being replaced by masses of parasite stages
that render its meat in edible or blight its esthetics,
thus compromising its market value (Stentiford et al.
2016).

In the diseased spiny lobster reported by Bach &
Beardsley (1976), abdominal musculature was de -
scribed as being milky white in color, consistent with
advanced microsporidia infection. Histology and
transmission electron microscopy (TEM) have more
recently been used to demonstrate the presence of
microsporidian spores with characteristics of the
genus Ameson in 2 similarly affected spiny lobsters
from the same region (Kiryu et al. 2009). As single

spiny lobster specimens displaying cotton-like ab -
dominal muscle caused by advanced microsporidian
infection have since been found in Key Largo and
near Miami, FL, and in the St Kitts and Nevis islands
(SKNI), an opportunity appeared to undertake a
molecular analysis to identify the species involved.
Reported here are histopathology, spore ultrastruc-
ture, and phylogenetic data on a partial (1124 bp)
small subunit (SSU) rRNA gene sequence showing
each microsporidia to be identical and representing a
distinct new species, Ameson herrnkindi, related
most closely to A. pulvis.

2.  MATERIALS AND METHODS

2.1.  Samples

In March 2014, an infected spiny lobster was cap-
tured by divers near Grecian Rocks off the coast of
Key Largo, FL, USA (Fig. 1). The tail muscle was
ab normally white and half of the abdomen was
shipped on ice to the Virginia Institute of Marine
Science (VIMS). Upon receipt, tissue samples were
preserved for histology, TEM, and DNA analysis. In
September 2017, another spiny lobster displaying
the same ab dominal muscle discoloration was iden-
tified during a general health screen of lobsters
from waters surrounding SKNI. Fresh wet mounts

of tissues revealed the presence of
high numbers of parasite micro spores,
and tissues were preserved for his-
tology and DNA analysis. In addi-
tion, an ar chived frozen muscle sam-
ple from an earlier case (December
2007, Pompano Beach, FL; Kiryu et
al. 2009) and an ethanol-preserved
muscle sample from an infected lob-
ster caught from waters off Miami,
FL, in April 2018 were also provided
to VIMS for DNA analysis.

2.2.  Histology

For the spiny lobster processed for
histology in 2014 (FL-2014), small
pieces of abdominal muscle were
fixed in Bouin’s solution (Fisher Sci-
entific) for 48 h, rinsed in tap water
and transferred to 70% EtOH. Tis-
sue sections were processed using
routine histological techniques and
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Fig. 1. South Florida, USA, and Caribbean basin showing the Florida and
Saint Kitts and Nevis islands locations from which the Ameson herrnkindi-

infected Panulirus argus originated
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stained with Harris’s hematoxylin and eosin (H&E;
Humason, 1979). For the spiny lobster processed
for histology in 2017 (SKNI-2017), small pieces of
abdominal muscle, gills, heart, ovary, antennal
gland, gut, hepatopancreas, and eyestalk were ex -
cised from and fixed in Davidson’s seawater fixa-
tive for 48 h. Samples were processed as above
and sections were stained with H&E. A subset of
sections were also stained with 1% Uvitex 2B
(Koch & Pimsler 1987) for 10 min between H&E
staining steps to better visualize spores under UV
light. Tissue sections were examined using an
Olympus BX51 light microscope and images were
captured using a DP73 camera and cellSens soft-
ware (Olympus).

2.3.  TEM

To prepare tissues for TEM, small pieces of affec -
ted abdominal muscle from one spiny lobster (FL-
2014) were fixed in 2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer at 4°C for 48 h. Fixed sam-
ples were placed in 0.1 M sodium cacodylate buffer
pH 7.4 and shipped to the Centre for Environment,
Fisheries, and Aquaculture Science (Cefas), Wey-
mouth Laboratory, UK. Fixed tissue samples were
further processed as described previously (Small et
al. 2014). Samples were embedded in Epoxy Resin
Agar 100 (Agar Scientific, Agar 100 pre-mix kit,
medium) and polymerized overnight at 60°C. Ultra-
thin sections (70 to 90 nm) were mounted on un -
coated copper grids and stained with uranyl acetate
and Reynolds’ lead citrate (Reynolds 1963). Grids
were examined using a JEOL JEM 1400 transmission
electron microscope and digital images captured
using an Advanced Microscopy Techniques (AMT)
XR80 camera and SAMT V602 software.

2.4.  DNA extraction and SSU rRNA gene
 amplification

DNA was extracted from 4 ethanol-preserved mus-
cle samples. Briefly, tissues were placed in sterile de -
ionized water for 30 min to remove residual ethanol,
transferred to a 1.5 ml microcentrifuge tube contain-
ing 180 µl ATL buffer and homogenized using a
micro pestle (Sigma-Aldrich). DNA was extracted
using a DNeasy Blood & Tissue Kit (QIAGEN) follow-
ing the manufacturer’s recommended protocol, and
was eluted in 100 µl AE buffer and stored at −20°C. A
fragment of the SSU rRNA gene of microsporidia was

amplified by PCR using the primers V1 (5’-CAC CAG
GTT GAT TCT GCC TGA C-3’) and 1492R (5’-GGT
TAC CTT GTT ACG ACT T-3’) (Zhu et al. 1993). PCR
reagent concentrations and thermal cycling con -
ditions were as described previously (Small et al.
2014). Reactions were amplified in duplicate for each
sample.

2.5.  Cloning, sequencing, and phylogenetic
 analysis

An aliquot (10 µl) of each PCR was analyzed by
agarose gel electrophoresis. The remainder of each
duplicate PCR was combined for each sample and
DNA was purified using a QIAquick PCR Purification
Kit (QIAGEN). DNA products from the FL-2007 and
FL-2014 lobsters were cloned and sequenced essen-
tially as described previously (Small et al. 2014).
Three clones for each sample were bidirectionally
sequenced using an ABI 3130 genetic analyzer
(Applied Biosystems). DNA products from the SKNI-
2017 and FL-2018 lobsters (SKNI and Miami, FL,
respectively) were sequenced directly using the V1
and 1492R PCR primers. Aliquots (10 µl) of each re -
action were sequenced using the ABI 3130 genetic
analyzer. Two forward and reverse direct sequencing
reactions were analyzed for each sample.

The partial SSU rRNA gene sequences of the Pan-
ulirus argus microsporidians were imported into Se -
quencher (version 5.1), trimmed of vector and
primer sequences, and consensus sequences were
aligned using MacVector (version 15.1.5). The
sequences were deposited in GenBank with Acces-
sion numbers MN190182−MN190185. BLAST sear -
ches of the NCBI database (www.ncbi.nlm.nih.gov)
were performed using MacVector. SSU rRNA
sequences from micro sporidia with high similarity
scores, as well as those from others infecting aquatic
hosts were aligned using CLUSTALW in MacVector
using the default gap settings for multiple and pair-
wise alignment. Maximum-likelihood analysis was
performed using MEGA6 (Tamura et al. 2013). A
partial SSU rRNA sequence from Kneallhazia
solenopsae (AF031538) was used as an outgroup.
The robustness of resulting trees was tested using
1000 bootstrap replicates. The aligned fragment
was 1124 bp in length. Genetic distance (uncor-
rected ‘p’) calculations were performed using
MEGA6 on an alignment of a trimmed (895 bp) SSU
rRNA gene sequence of Ameson pulvis, A. mi cha -
elis, A. metacarcini, A. portunus and the micro -
sporidia detected in P. argus.
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3.  RESULTS

3.1.  Gross presentation, pathology, 
and ultrastructure

The abdominal musculature of infected spiny lob-
sters displayed a ‘cooked’ or ‘cotton-like’ appearance
(Fig. 2). Muscle smears and histological tissue sec-
tions revealed the presence of masses of ovoid micro -
sporidian spores (approximately 1−2 µm in dimen-
sions) interspersed between and within muscle fibers
(Fig. 3A,B). In the most seriously affected lobster,
multifocal coagulative necrosis and hemocyte infil-
trations similar to those reported previously (Kiryu et
al. 2009) were evident in abdominal muscle (Fig. 3B);
however, samples from the lobster collected in 2014
were not fixed until >24 h after death, and thus
the coagulative necrosis was possibly due to post-
mortem degradation. Transverse sections of abdomi-
nal  muscle bundles varied in infection severity of the
microsporidian from light to moderate to heavy
(Fig. 3C−E). Uvitex 2B-stained spores were easily vi -
sualized in muscle tissues under UV light (Fig. 3D,F)
as this stain binds chitin in the spore wall. In the tis-
sues from the SKNI lobster (SKNI-2017), spores were
also observed in the retractor muscles of the eyestalk,
but not in connective or epithelial tissues of the
antennal gland, ovary, gills, gut, hepatopancreas,
cuticle, or in cardiac muscle.

Despite tissues from lobster FL-2014 being fixed
sub-optimally, TEM revealed multiple microsporid-
ian life stages in direct contact with the cytoplasm of
host muscle cells. The earliest stage observed was a
uninucleate meront (Fig. 4A), with stages transition-
ing from a diplokaryotic meront to an early sporont
identified by increased vacuolation and thickening
of the spore wall (Fig. 4B). Cytoplasmic cisternae,
thought to be an early precursor of the polar filament,
were observed adjacent to the nucleus. Developing
early sporont stages with a short chain-like appear-
ance and thicker electron-dense cell wall were also
observed. Early precursors of the spore extrusion
apparatus (e.g. polar filament and associated com-
plex) were observed in large electron-lucent vac-
uoles within both sporonts and early sporoblasts that
had undergone cytokinesis (Fig. 4C). Early sporob-
lasts displayed an increase in the numbers of turns
and peripheral arrangement of the polar filament
within a single large vacuole (Fig. 4D). Maturing
sporoblasts were observed to become increasingly
electron-dense with a more ordered peripheral ar -
rangement of the polar filament coils (Fig. 5A,B).
Late-stage sporoblasts were elongate, with an elec-
tron-dense cytoplasm, and had an early form of a tril-
aminar wall (Fig. 5C). Fully developed spores were
approximately 1.6 × 1.1 µm in size and had 8−9 turns
of a polar filament arranged mainly in 1 linear outer
rank but occasionally in 2 (Fig. 5D). Spores displayed
a laminar polaroplast, electron-dense cytoplasm, an -
choring disk, and a trilaminar spore wall comprised
of an inner plasmalemma, a thick electron-lucent
endospore, and an electron-dense exospore. Host
microtubules were observed in close proximity to the
developing sporoblast and spore stages. Un like some
Ameson species, no exospore ornamentation was
observed.

3.2.  Molecular phylogeny

The partial (1154 bp) SSU rRNA gene sequence
from the FL (FL-2007, FL-2014, and FL-2018) and
SKNI-2017 lobsters was identical. BLAST analysis
indicated a relationship with other Ameson spp.
infecting marine crustaceans (Table 1). Phylogenetic
analysis positioned the Panulirus argus microsporid-
ian closest to A. pulvis, and within a highly supported
(bootstrap support = 100) clade containing A. micha -
elis, A. portunus, A. metacarcini, and Nadelspora
canceri. (Fig. 6). Genetic distance values of a trimmed
895 bp SSU rRNA gene sequence showed the P.
argus microsporidian (0.012−0.047) to be similarly
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Fig. 2. Gross appearance of abdominal muscles of unin-
fected and Ameson herrnkindi-infected Panulirus argus.
Note the ‘cooked’ or ‘cotton-like’ abdominal muscle appear-

ance of the infected lobster (right). Scale bar = 3 cm
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distant from the other Ameson species assessed as
any of these species were to each other (0.014− 0.072;
Table 2).

3.3.  Taxonomic summary

Type species: Ameson herrnkindi sp. nov.
Description: Parasite stages infecting the abdominal
muscle and eyestalk retractor muscle of a tropical to
subtropical marine crustacean. Monokaryotic ovoid
spores measuring approximately 1.6 × 1.1 µm in tis-
sue fixed for electron microscopy. Mature spores con-
tained 8−9 turns of a polar filament with the majority
forming one linear outer rank and the re mainder ori-
ented towards the center of the spore. Observed
stages suggest a life cycle that progresses from a
uninucleate meront to a diplokaryotic meront, chain-

like quadranucleate sporonts, with cytokinesis to
produce individual sporoblasts which develop into
microspores.
Type host: Panulirus argus (Latreille 1804)
Type locality: Atlantic coast of FL, USA (multiple
locations), and SKNI.
Site of infection: Striated muscle tissues.
Etymology: The species is named in honor of Dr.
William F. Herrnkind, a specialist in the ecology and
behavior of P. argus.
Type material: Syntype specimens of stained histo-
logical sections have been deposited with the Reg-
istry of Aquatic Pathology at the Cefas Weymouth
Laboratory, UK (www.cefas.co.uk/cefas-data-hub/
registry-of-aquatic-pathology/). The partial SSU
rRNA gene sequences obtained from A. herrnkindi
have been deposited in GenBank with Accession
numbers MN190182-MN190185.
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Fig. 3. Histopathology seen in
Panulirus argus abdo mi nal
muscle infected with Ame-
son herrnkindi sp. nov. Lon-
gitudinal abdominal muscle
sections showing (A) masses
of parasite spo res (light pink,
arrows) in terspersed among
muscle fibers (dark pink, m)
and (B) localized areas of
coagulative necrosis (arrow)
and postmortem artefacts.
Trans ver se abdominal mus-
cle sec tions showing (C) mus-
cle bundles with light (L),
mo derate (M), and heavy
(H) infections (arrows) and
(D) viewed using UV light
and DAPI filter to show nu -
merous spores (blue, arrows)
localized throughout the
muscle bundles. Transver se
section of heavily infec ted
abdominal muscle sho wing
(E) parasites occupying al -
most the entire muscle bun-
dle (arrows) and (F) viewed
using UV light and DAPI fil-
ter to see stained cell walls
of individual spores (blue,
ar rows). Scale bars = (A,B)
100 µm, (C,D) 50 µm, (E,F)

10 µm



Dis Aquat Org 136: 209–218, 2019

4.  DISCUSSION

Described here are ecological, histological, struc-
tural, and molecular data identifying a new micro -
sporidian species, Ameson herrnkindi, of spiny lob-
sters Panulirus argus inhabiting FL and SKNI.
Histology and TEM showed that the parasite infected
skeletal muscle and eyestalk retractor muscle cells
but not cardiac muscle or myoepithelial cells and
possessed developing and mature spore morpholo-
gies similar to Ameson spp. found in other decapod
crustaceans. Phylogenetic analysis of a partial SSU
rRNA gene sequence aligned A. herrnkindi most
closely to A. pulvis in a clade also containing A.
michaelis, A. metacarcini, A. portunus, and Nadel-
spora canceri, species that, to date, have only been
detected in portunid and cancrid crabs.

Due in part to the infrequency of spiny lobsters
with ‘cotton-like’ abdominal muscle being found
and/ or noted to authorities and the A. herrnkindi

samples available for analysis coming for different
sources, tissues from only a single spiny lobster from
FL (FL-2014) were available for TEM. Despite tissues
from this lobster being fixed postmortem, uninucle-
ate meronts, diplokaryotic meronts (likely formed by
the division of the uninucleate meront), and both bin-
ucleate and chain-like tetranucleate sporonts were
observed, the former more commonly, suggesting
that the parasite life cycle might involve both Devel-
opmental Pathways I (uninucleate meront elongation
and division to form chain-like sporonts) and II
(diplokaryotic meront division followed by cytokine-
sis to form binucleate sporonts; Wang et al. 2017).
Alternatively, the observation of binucleate sporont
structures might be from preseparation of a third
sporoblast from a chain-like form or sectioning arte-
fact. Precursors of the polar filament were clearly
observed within electron-lucent vacuoles in uninu-
cleate, binucleate, and chain-like sporonts prior to
them maturing and separating to form mature spores.

214

Fig. 4. Transmission electron microscopy showing Ameson herrnkindi meronts and early sporogony in abdominal muscle cells
of Panulirus argus. (A) uninucleate meront; (B) diplokaryotic sporont with relatively electron-dense membrane (white arrow)
and cytoplasmic cisternae (black arrow); (C) initial phase of cytokinesis of sporonts and a single early sporoblast, with spore
extrusion precursors, such as a nascent polar tube (arrows), visible within a large electron-lucent vacuole (v); (D) early sporo -
blasts displaying an increased number of turns and a more peripheral arrangement of the polar filament (arrows) within a single 

large vacuole (v). Scale bars = 500 nm
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Collectively, the morphological characteristics of the
microsporidian life stages observed were similar to
those of other Ameson species (Sprague 1965, Weid-
ner 1970, Vivarès & Sprague 1979, Stentiford et al.
2013b, Small et al. 2014, Wang et al. 2017).

A. herrnkindi sporogony progressed in a manner
similar to other Ameson species (Sprague 1965, Vi-
varès & Azevedo 1988, Stentiford et al. 2013b, Small
et al. 2014, Wang et al. 2017). In liberated sporoblasts,
the spore extrusion apparatus was contained within a
single vacuole and observed to migrate to peripheral
positions within mature spores. As sporoblasts ma-
tured they became increasingly electron-dense with a
developing laminar polaroplast and trilaminar spore
wall. Mature A. herrnkindi spores did not possess mi-
crovilli (hair-like protrusions) that have been de-
scribed on spores of other Ameson species (Sprague
et al. 1968, Vivarès & Azevedo 1988, Stentiford et al.
2013b, Small et al. 2014, Wang et al. 2017). However,

this might be a postmortem artefact (due to delayed
fixation), as Kiryu et al. (2009) showed that the same
parasite possessed microvilli extending from the sur-
face of the exospore.

Mature spores (1.6 × 1.1 µm) were most similar in
size to A. michaelis found in Callinectes sapidus (1.6
× 1.2 µm; Sprague 1965, Sprague et al. 1968) and A.
portunus found in Portunus trituberculatus in China
(1.4 × 1.2 µm; Wang et al. 2017) (Table 1). Kiryu et al.
(2009) found that mature spores of what is likely A.
herrnkindi ranged from 1.2 to 1.6 µm in length and
0.8 to 1.4 µm in width, similar to the spore dimensions
of A. pulvis, A. michaelis, and A. portunus. Due to the
size variations in mature spores formed by these spe-
cies, spore size alone cannot be used for definitive
species identification.

Although microsporidia have traditionally been
classified based on their nuclear configurations, life
cycle, and ultrastructural features, more recent ap -
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Fig. 5. Transmission electron microscopy of Ameson herrnkindi late-stage sporogony in abdominal muscles of Panulirus argus.
(A) Maturing sporoblast displaying a peripheral arrangement of polar filament coils (white arrows), a single nucleus (n), and
nascent polaroplast (black arrow); (B) late sporoblast (white arrow) displaying an electron-dense cytoplasm and a developing
polaroplast (black arrow); (C) immature spore with an electron-dense cytoplasm and early formation of a trilaminar wall (ar-
row); (D) mature spore displaying approximately 8−9 turns of the polar filament (asterisk), laminar polaroplast (black arrow),
electron-dense cytoplasm, anchoring disk (white arrow) and trilaminar spore wall comprised of an inner plasmalemma, a thick
electron-lucent endospore (white arrow head), and thin electron-dense exospore (black arrow head). Scale bars = 500 nm
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proaches have included their pathology (site of in -
fection), ecology (host and geographic location), mor -
pho logy (ultrastructure, life cycle), and gene se -
quen ces (Vossbrinck & Debrunner-Vossbrinck 2005,
Sten tiford et al. 2010, 2013b, Small et al. 2014, Wang
et al. 2017). The combined ecological, pathological,
and morphological features of the spiny lobster micro -
sporidian placed it within the genus Ameson. How-
ever, its presence in P. argus in subtropical (Pompano
Beach) and tropical waters of FL and the Caribbean
(SKNI) differentiates A. herrnkindi from other Ameson
species detected to date in portunid and cancrid crabs
from temperate waters (see Table 1), and host speci-
ficity tends to be very high in this taxon. Phylogenetic
analysis clearly placed A. herrnkindi within the genus
Ameson, most closely related to A. pulvis detected in
Carcinus maenas crabs in Europe, and within a highly
supported clade containing A. metacarcini, A. micha -
elis, A. portunus, and Nadelspora canceri (all infecting
crabs from the Americas and Asia).

The presence of N. canceri, which forms elongated
needle-like spores, within the Ameson spp. clade has
been discussed previously (Stentiford et al. 2013b,
Small et al. 2014). Although there is potential for
 synonymy between these morphologically divergent
genera (Stentiford et al. 2013b), no needle-like
spores were observed in tissues, including cardiac
muscle, in the single P. argus examined. Spore mor-
phological plasticity of this and other Ameson spp.
thus remain to be investigated.

A. herrnkindi appears to be a rare parasite of
P. argus, with only 6 infected individuals formally re-
ported to date (Bach & Beardsley 1976, Kiryu et al.
2009). This is not unusual, as microsporidia of wild
crustaceans are usually found at relatively low preva-
lence (Shields et al. 2015). However, aquaculture can
result in a substantially higher prevalence (Wang et
al. 2017). Here, and in the study of Kiryu et al. (2009),
the lobsters examined from FL were caught by recre-
ational fishers and only identified as abnormal (discol-
ored abdominal muscle tissue) once the abdomen was
removed from the cephalothorax in a practice termed
‘wringing’. As recreational fishers may well discard
and not report abnormally colored tails, light infec-
tions, which may be the norm in crusta ceans, would
largely go unnoticed. Likewise, the infected lobster
from SKNI was only identified as abnormal during
necropsy. Lobsters harvested commercially are re-
quired to be landed whole in FL and are desired
whole by consumers in the Caribbean and in the
global live-lobster market. As such, it is likely that the
majority of infections go undetected or unreported.
However, the parasite has not been ob served in sur-
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Small et al.: Ameson herrnkindi sp. nov. infecting Panulirus argus

veys of several hundred juvenile (<40 mm carapace
length) spiny lobsters for Panulirus argus virus 1
(PaV1) from the Florida Keys and Caribbean (Shields
& Behringer 2004, Behringer et al. 2012, Moss et al.
2013). Other than as reported here, the distribution of
A. herrnkindi remains unknown. Five of 6 reported
cases are from lobsters inhabiting locations along the
Atlantic coast of FL and suggest that A. herrnkindi is
localized to FL, but the case from SKNI, ~2000 km
from FL, suggests a Caribbean-wide distribution.
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