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Studies of the potential-curve-crossing problem. III. Collisional spectroscopy

of close crossings

J. B. Delos
Department of Physics, College of William and Mary, $Villiamsburg, Virginia 23185

I'Received 29 October 1973)

Using a previously developed semicIassical theory of electronic excitations, the cross sec-
tions that result from potentia1-curve crossings are calculated for a model system. The
phenomena appearing in the differential cross sections are displayed and discussed.

I. INTRODUCTION

In a previous paper, ' we developed a rather com-
plete theoretical analysis of the two-state poten-
tial-curve-crossing problem in atomic collision
theory, Our approach was based on a generaliza-
tion of a method developed by Qvchinnikova and
Nikitin' and their collaborators for the solution
to the coupled "classical-trajectory" equations.
In that paper we also showed how such solutions
could be combined with elastic scattering phase
shifts to obtain the differential cross sections.

At the same time, Qlson and Smith' and their
collaborators were making use of the Landau-
Zener theory to analyze the effects that are actual-
ly seen in experimental differential cross sections.
Such analyses go by the general name of collision-
al spectroscopy.

The purpose of this paper is to develop the re-
lationship between these two lines of thought. We
present here the results of a set of calculations
on a "typical" curve-crossing system, making
use of the rigorous theory developed in Ref. 1.
We focus our attention on the interesting effects
that usually occur close to the crossing point
(where the Landau-Zener theory is inadequate).
The parameters of our typical system were cho-
sen to reflect some similarities to the He"-Ne
system and to alkal. i-halogen-atom systems, which
have been the subjects of recent experimental in-
vestigations in our laboratory and others. 4 Our
results should be useful in the analysis of these
and other experiments.

A great deal has already been learned about the
nature of such cross sections. For purely repul-
sive potentials, it is well known that the elastic
cross section is smooth at small angles, shows a
simple two-term interferenee pattern at large
angles, and at angles close to the crossing thresh-
old, there is a complicated three-term interfer-
ence pattern. By using the Landau-Zener-
Stueckelberg (LZS} approximation, Olson and
Smith' showed that the small-angle end of this re-

gion is marked by a rainbow peak. Also, if the
upper state is attractive, Delvigne and Los' have
shown that the inelastic cross section may show a
second peak. The rigorous theory has been applied
by Bobbio, Champion, and Doverspike' to analyze
the collisions of He with Ne. They established
the existence of a different rainbow peak, not pre-
dicted by LZS theory, marking the large-angle end
of the threshold region. This phenomenon was also
described somewhat differently by Ovehinnikova
and Kotova. '

We do not have any spectacular new results to
add to the above. However, a complete display of
the results of the rigorous theory, and a really
clear display of the types of phenomena that ap-
pear, have not been presented before. In particu-
lar, we wanted to clarify the existence of the two
distinct rainbows recognized by Olson' and by Bob-
bio'; these have caused confusion in the past, be-
cause the one that was first predicted theoretically
is not the one that usually appears in the data. In
addition, we wanted to see how the phenomena
change as the coupling strength is varied. We be-
lieve our results provide a rather exhaustive sur-
vey of the behavior of differential cross sections
for two-state curve crossings, and we hope they
will be useful in the analysis of new experimental
data.

II. THEOR Y

In this section we develop the relationships be-
tween the solutions to the classical-trajectory
equations and the scattering angles and differential
cross sections.

We define

f „(&)=(2ik;} ' P (2&+1)P (coss)(S~ —5 ),

where 4,. is the magnitude of the wave vector as-
sociated with the initial state. The 4 matrix can
be written in two parts,
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ei(Ij~ + g )g
Nil Ilq (2)

S=GG, (3)

The first factor contains only the elastic phase
shifts for scattering on two potential curves;
these can be obtained by quadrature. The second
part represents the solution to the classical-tra-
jectory equations [(12) or (17) of Ref. I]; this
factor contains all of the inelastic effects. The
inelastic scattering matrix S can be factored in
the form

01 = 2d ()},+ I', )
d

6 =2—(ri —F')
dL

(6a)

(6b)

f22(e) =(2ik2) ' Q (2I. +I)P~(cos6)

X((] g )e2)&"2 1 +g e2'i22

Now, in the usual way, we may use the asymptotic
approximation for P~(cos6), and find the points of
stationary phase. This leads to deflection func-
tions

where G (denoted G, in Ref. 1) comes from solv-
ing the classical-trajectory equations, making use
of their symmetry with respect to time reversal.
6 is a 2~2 unitary matrix, with detQ=1, so it
can be represented by only three parameters,

(I g2)1/2e'r2

82 =—(q, + )4 + I', + I'2),

84 =—(q„+)4 —I", —I;},
82 = 2—()4 + I;),
e =2—(q -r).6 dL 2 j.

(6c)

(6e)

(6f)

6=
(1 —Z2)1/2e )r1 (4)

f»(8) = (2if), )
' g (2I. +1)P~(cos&)

X((1 —Z )e"2'"1"1'+Z'e"'"1- 2' —I)

(b) for excitation or deexcitation,

(5a}

f„(6)=(2i/2, ) ' p (2L+1)Pz, (cos&)

x(2iZ(l —Z2)'/'e'"1' "2' sin(I', + I;)},

where 8 represents the transition probability on
a single crossing, and I', and I", are the associat-
ed phases.

These matrices and the phase shifts can be cal-
culated in either the diabatic or adiabatic repre-
sentations; to within the accuracy of the classical
trajectory equations, the full scattering matrix 8
is invariant to the choice of representation. How-
ever„we have found (somewhat to our surprise)
that the adiabatic representation is always prefer-
able, because 6" is more smoothly varying than
6 . We will discuss this in detail in Sec. IV; from
this point on, however, we assume that all the
parameters have been calculated in the adiabatic
representation.

When the above forms are combined, the result-
ing scattering a,mplitudes are as follows: (a) For
elastic scattering in the ground state,

The behavior of these deflection functions and the
transition probability provide the means of inter-
preting the differential. cross sections. If the
partial-wave summations are carried out by sta-
tionary phase, the classical result is obtained,
with additional factors representing the interfer-
ence between the different trajectories. However,
the stationary-phase approximation should not be
used in the threshold region because of the pres-
ence of rainbow extrema in the deflection func-
tions. In Sec. III we present the semiquantal re-
sults of the direct numerical summation of Eq.
(1).

lll. NUMERICAL METHODS AND RESULTS

A. Methods

q =6.5,

A~~ =0.574,

A„=4.5„

A =3.4,

2o=5 9

C22 = 2.82,

A, 2
= 2.2, 0.88, 0.29~ +12 = 0.444~ C

Calculations have been performed for scatter-
ing of 10-eV protons on the pair of potentials of
Fig. 1, which are given analytically in the diabatic
(crossing) representation by

+ (2 1 2/if)e l(1-R/R11)

12 12

V Q (R2c22i1-R/R22) 2ec2211 R/R22)) +-@
22 22 20

where (in eV and bohrs)

f„(e)= (/2, /'/2, )f„(i));
(c) for elastic sca, ttering in the excited state,

(5b)

(5c}

The mass used was that of the proton (1636 a.u. )
As we mentioned before, these potentials bear a
vague similarity to those encountered in collisions
of He" with Ne and of alkali metals with halogen
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forces have opposite sign when the crossin oint
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g e( -~ ro/'2)

I', = —[(T,/2) —(T,/2) ln(T, /2)

+argi'(iT, /2)+ v/4],
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FIG. 1. Potentials Vti ls V&& and V22 and coupling V& for
4&2 =0.88 (moderate coupling).

FIG. 2.
coupling.
coupling.
coupling.

(a) p vs L for weak, moderate and strong

(c) P vs ~ for weak, moderate and strong
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To join smoothly to the larger-L region, and to
get the interference pattern right, it is essential
to use the correct phases as given by Eq. (8).

For 80 = L:125, A,~ -8„, and the LZ8 approx-
imation cannot be used. Here, 6 must be calcu-
lated by direct integration of the classical-trajec-
tory equations. We use the quadratic approxima-
tion to f(s) with parameters P, e defined by (see
Ref. 1)

h E(E, —E,)
(E —E )(E —E ) 2(E —E )

2EV "
DZ

I', —E, V2

where all quantities are to be evaluated in the
diabatic representation, at the crossing point.
The behavior of these parameters is displayed in
Fig. 2 for three values of A12. It is seen that & is
essentially linearly decreasing with L, and P is
essentially constant, except for the case of strong-
est coupling.

For I- & 125, A,~&+ A„, and the scattering is
purely elastic. There are still some interesting
effects in the phases I', and I; in this region, but
Z is so small that they do not appear in the scat-
tering pattern.

We now present three sets of calculations, for
V„small, moderate, and large. We analyze the
moderate coupling case in great detail, and then
the other two.

B. Moderate coupling

In Fig. 3 is a plot of Z' as a function of I- for
al.l three cases. This is essentially the probabil-
ity that the system will jump from one adiabatic
curve to the other on a single passage through the
crossing region. It is seen to have a very steep
drop near the threshold region, except in the case
of strong coupling. The Landau-Zener (LZ) form-
ula predicts that Z' should go to zero at L„=110,
where crossing point and turning point coincide;
in fact, 8' is non-negligible for some five to ten
partial waves into the forbidden region. Except
for this, which is not too important, it is rather
well predicted by the LZ formula.

We now consider elastic scattering that begins
and ends in state l. In Fig. 4(a) are the l-l scat-
tering angles 6, and 6,. For large I-, small 6,
R„«A,~, and there is only one path the system
can follow (region 1). For small f., there are two

paths; 8, is the angle resulting from staying on
the lower adiabatic, and 6, is the angle resulting
from making transitions to and from the upper
adiabatic. As L decreases, and the turning point

I.O-

WEAK

'0 80 I60 240

I'IG. 3. Z2 vs J for weak, moderate, and strong
coupling.

approaches the crossing point, the repulsive force
on the particle abruptly decreases„so the scatter-
ing angle stops increasing, and starts decreasing.
This turning around resul. ts in a stationary point
at 4, causing a rainbow peak originally recognized
by Bobbio e1 a~.' For those same values of L, if
the system makes a transition up and down, then
during the time it spends in the upper state, it
feels a much weaker repulsive force. Accordingly,
6,& 8, in this region (point 3). There are also
two stationary points here, but they have no effect
on the scattering. As L continues to decrease,
6, continues to decrease for a while, but since it
must go to ~ at L =0, it eventually turns around,
resulting in a rainbow first pointed out by Olson. '
In this range of I., the particles that make transi-
tions feel a strongly repulsive force in the upper
state, so 0, & 0,. Clearly, then, 0, and 8, must
cross each other at L„.

The behavior of the scattering angles is clearly
manifested in the cross section [Fig. 4(c)]. In
region 1, the cross section is smooth (except for
some calculation noise). The highest peak at 2

represents the Olson rainbow. Interference be-
tween the two branches of this rainbow is repre-
sented by oscillations of wavelength about v/10;
this is only recognizable in the envelope (dashed
lines). The finer oscillations (wavelength v/40)
result from interference between the pair of
branches of the rainbow and the branch of the de-
flection function that extends into region 1. The
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very large peak at 4 represents the Bobbio rain-
bow; superimposed on it are fine oscillations due
to the interference of its branches with the highest
branch of 6,. The Bobbio rainbow is generally
much more clearly visible than the olson rainbow
(especially on a plot of Inc vs 8) because both are
weighted by the (I-Z') factor in the partial-wave
sum, and Z' is very much larger at small L
tha, n at large I.. In this case, this factor gives
a weight of esentially unity t:o the Bobbio rainbow,
but only 0.2 to the Olson rainbow. In region 6, a
simple interference pattern is seen to result from
6, and 8,. In principle, it is possible to recon-
struct 6, and 62 from this pattern, but this has
not yet been done in practice. Finally, we note
that the stationary points of region 3 have no in-
fluence on the cross section because they are
weighted by Z' in Eq. (5a).

Let us now go on to consider excitation or de-
excitation, starting in state 1 and ending in state
2 or vice versa. The scattering angles are shown
in Fig. 5(a). They seem quite similar to 8, and

6, at first glance, but they do have a somewhat
different behavior in the threshold region. For
large L (region 1), again R,~»A, . If the system
makes a transition at all, it will do so at the turn-
ing point, because it never reaches the crossing
point. As a consequence, the deflection function
is the average of the deflection functions for elas-
tic scattering on the two potentials. This also
can be seen mathematically from Eqs. (Gc) and

(6d), since both I', and 1", go to zero in the forbid-
den region. For small L (region 6) 6, is greater
than 6, because the upper curve is more strongly
repulsive than the lower curve inside the crossing
point. These facts are well known from the I.ZS
theory; however, the behavior of the angles near
L, is not correctly predicted by the LZS approxi-
mation. For L just greater than L, , 0, is greater
than 64 because the lower curve is more strongly
repulsive than the upper curve outside the cros-
sing point. This results in a set of stationary
points near 2 and 3, which, however, have no

consequences in the scattering pattern. There is
also necessarily a crossover of 6, and 64 at L,„
(point 5). It is seen that the angles do not approach
L„with a vertical slope; accordingly, there is no

especially dark region there in the differential
cross section. Point 4 is the Olson rainbow.

In the 1-2 cross-section curve [Fig. 5(c)], the
Olson rainbow is clear, but not spectacular. In
contrast to the 1-1 and 2-2 cross sections, there
is essentially nothing in the 1-2 cross section
that distinguishes the crossing itself, L„. The
stationary points at 2 and 3 are too far into the
forbidden region to give maxima in the cross sec-
tion. The slopes of 6, and 6, at the crossing point,

00—-
01

l80

SQ

l60

Qa
0 90

8
I80

8
I

-'

00 90 I80

50)

20

IO

OI
0

FIG. 4, Elastic scattering in the ground state. 1-1
scattering angles vs I. and differential cross sections
for vveak, moderate, and strong coupling (top to bottom).

5, are steep enough to cause a minimum, but the
darkening effect of these steep slopes is complete-
ly canceled by the behavior of the weighting factor
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Z(1-Z )'~' which has a maximum near L, . On a
p-vs-7 plot, O„can just be made out at the bot-
tom of a gentle decline in the envelope of the cross
section, (5), but it cannot be distinguished in a
in@'-vs-0 graph.

Finally, let us consider the elastic scattering
that begins and ends in state 2. The scattering
angles are shown in Fig. 6(a). In region 1 (R,~
»B,), they are now negative, because the upper
potential is attractive. At point 6, e„which rep-
resents a trajectory entirely on the upper surface,
turns around to suddenly become repulsive. This
results in a stationary point, 6, and a prominent
rainbow that is directly analogous to the Bobbio
rainbow in the 1-1 pattern. The behavior of 0, is
directly analogous to the behavior of 8, in 1-1
scattering. For I-& L„, 6, is more repulsive than

06, while for L & I.„, 8, is less repulsive than 86;
the same is true of the potentials. As a conse-
quence, there are two stationary points at 2 and
3 in the forbidden region, and a crossover at 4.
At point 5 is an ordinary, everyday rainbow that
owes its existence to the attractive mell in the
lower potential.

In the 2-2 cross section, both rainbows are
perfectly clear at small angles. The usual one,

25, is slightly lower because it is weighted by Z,
while the Bobbio rainbow, 6, is weighted by 1-Z',
or essentially unity. The interference pattern
here is very complicated, and will never be re-
solved in practice, because it consists of a super-
position of as many as six different terms. At
larger angles, 7, the pattern again becomes sim-
ple.

80 4

160

zoo~

0

4.8)

1.6

90
8

180

('. Weak diabatic coupling (strong adiabatic coupling)

By weak coupling, me mean V» is small; the
system usually folloms the diabatic curve, so in
the adiabatic representation, it is almost certain
to make a transition. As a consequence, Z'
(Fig. 3} is almost a step function. The 1-1 scat-
tering angles (not shown) are essentially the same
as those for the moderate coupling case, but it
turns out that the crossover near I.„ is sharper. In
the cross section (Fig. 4), the Bobbio rainbow is
clear (4} but the Olson rainbow is scarcely visible
(2). Both are weighted by (1 —Z'), which is essen-
tially unity at I.=110, but very small at L = 80. In
the 1-2 cross section, at small angles, the pattern
terminates in the Olson rainbow, which is not a
high peak. It is completely impossible to deter-
mine 6, from the cross section; the behavior of
the scattering angles at 4 gives neither peak nor
valley in the scattering pattern. In the 2-2 cross
section, the usual rainbow, 5, is higher than the
Bobbio rainbow, 6, which must slowly disappear

0
0

180

FIG. 5. Excitation from ground state to excited state.
1-2 scattering angles vs L and differential cross sec-
tions for weak, moderate, and strong coupling (top to
bottom). The numbered points are explained in the text.
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in the limit of very weak coupling. In both of the
elastic cross sections (1-1 and 2-2) the interfer-
ence pattern is scarcely visible at large angles,
but in the inelastic (1-2) cross section it is equally
strong everywhere (but note the scale}.

D. Strong diabatic coupling (weak adiabatic coupling)

Strong diabatic coupling means here V„ is large;
the system tends to remain on the adiabatic (non-
crossing) curves, and Z' is small. The 1-1 angles
(not shown) are essentially the same as before,
but more rounded; also, there is a somewhat
steeper rise in 0, at 5. In Fig. 4(d) we see that
the Bobbio and the Qlson rainbows are about equal-
ly prominent in the cross section (2, 4}. The
steep slope of 6, at 5, together with the small
value of Z', leads to a relatively dark region
with little interference just past the Bobbio rain-
bow [point 5 in Figs 4(a) and 4(d)j. The 1-2 angles
are analogous. However, in this case, the Qlson
rainbow stands out dramatically (4) in the cross
section, and we can now see 6„marked as a rel-
atively dark region with iittle interference (5).
This is what had been predicted by the LZS formu-
la, ' and is a manifestation of the greater accuracy
of LZS theory for strong coupling. (However, at
extremely strong coupling, the LZS theory and the
parabolic approximation used here again deviate
from the exact result. ') In the 2-2 cross section,
the usual rainbow (5), weighted by Z', is very
small, while the Bobbio rainbow, weighted by
(1 —Z'), is quite prominent (5).

80

l60

20

l0-

0

6 „
4

0

IV. ON THE USE OF THE OIABATIC REPRESENTATION

The diabatic or crossing representation is pre-
ferred by many who engage in curve-crossing
studies, and much effort has been well spent on
obtaining formal definitions and properties of
such a representation. ' Our experience has been
that derivations and formal work are generally
simpler in the diabatic representation, especially
for weak coupling, and also in some strong-cou-
pling situations. However, for the kinds of nu-
merical calculations carried out in this paper,
the diabatic representation has an important dis-
advantage: The G-matrix parameters in the dia-
batic representation do not behave as simply as
the corresponding parameters in the adiabatic
representation.

In Fig. 7(a) is shown (Z )' as a function of f. for
the case of moderate coupling. At large L it goes
to zero, of course, and at small L it oscillates
about the LZ result (I-e 'ro). Similar oscillations
in I', and I; lead to the scattering angles shown
in Fig. 7(b). These angles are qualitatively
similar to those obtained from the adiabatic rep-

0

FIG. 6. Elastic scattering in the excited state. 2-2
scattering angles vs L and differential cross sections
for weak, moderate, and strong coupling.



STUDIES OF THE POTENTIAL-CURVE-CROSSING. . . III. . . 1633

1

p

(a)

pressions in the weak coupling limit [Ref. 1, Eq.
(52h)].

As we have emphasized before, the S matrix
and the cross sections are invariant to the repre-
sentation, provided that the semiclassical approx-
imations are valid. The parameters of the S ma-
trix, while complicated, have a direct physical
interpretation. But when S is factored, as in

Eq. (8), tuere is nothing to guarantee that the re-
sulting parameters will be well behaved, or that
they mill have a simple physical interpretation.
The calculations show that these parameters are
well behaved in the adiabatic representation, but
not in the diabatic representation.

V. SUMMARY AND CONCLUSiONS

'0 80 160 240

&0 180

(h)

240 (b)

FIG. 7. (a) Z vs L as calculated in the diabatic rep-
resentation. (b) 1-1 scattering angles vs I. as calculated
in the diabatic representation.

resentation, but they have small, rapid oscilla-
tions which make semiclassical interpretations
disquieting, if not completely wrong. These oscil-
lations arise from the exact solutions to the cou-
pled classical-trajectory equations for G+ [Ref. 1,
Eqs. (22) and (28h)], and they are not an artifact
of any further approximations. The same oscilla-
tions arise whether the phases are calculated di-
rectly in the diabatic representation, or trans-
formed to the diabatic representation from adiaba-
tic calculations; they also appear in analytic ex-

As stated in the introduction, the LZS theory is
not too bad for calculating the phenomena resulting
from curve crossings. It fails in the threshold
region, where the complete theory predicts two
additional phenomena. First, there is a second
rainbow peak, resulting from a maximum in one
of the adiabatic scattering angles. Second, for
strong coupling only, there is a dark region with
no interference structure close to the threshold
region. This could be called an antirainbow, be-
cause it results from the very steep slope of the
def lee tion function.

Each of these phenomena has either been identi-
fied or at least speculated upon before. "' Our
only contribution is to present a systematic survey
of cross sections in such a way that all of the phe-
nomena can be seen together; thus the significance
of each is made clear. Of course, in any given
cross section, they will not all appear. For ex-
ample, if both potentials are attractive, the Bob-
bio rainbow will not appear in the j.-i cross sec-
tion, and if both are repulsive, it will not appear
in the 2-2 cross section. Also, in many cases,
the two rainbows will not be distinguishable, but
will. appear superimposed on each other. Never-
theless, it is hoped that this presentation provides
a useful guide to "what to look for" in interpreting
experiments.
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