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PHYSICAL REVIEW A

VOLUME 23, NUMBER 5

MAY 1981

Theory of near-adiabatic collisions. III. Coupled equations arising
from expansions involving single-center states

J. B. Delos*
FOM:-Institute for Atomic and Molecular Physics, Kruislaan 407, Amsterdam, The Netherlands
(Received 2 June 1980)

The conventional quantum-mechanical formulation of near-adiabatic collision theory is known to have a number
of defects. These defects arise because the usual description does not account for the displacement of electronic
states with moving nuclei, or for the change of momentum of the electron as it jumps from one moving nucleus to
the other. The purpose of this series of papers is to develop an improved theory, in which such effects are taken into
account. In this paper, we show that displacement and momentum-transfer effects can be incorporated into the
theory in a very simple way, provided that the wave function is expanded in terms of electronic states that have
single-center character. (Linear combinations of single-center states are also permitted.) A particular form of such an
expansion is proposed, and it is shown that this expansion leads to equations in which fictitious displacement
couplings are eliminated and momentum-transfer terms are included. The work of this paper and of others on this
subject leads to revised notions about the definition and meaning of nonadiabatic couplings.

I. INTRODUCTION

The quantum theory of slow atomic collisions
has in the past started with an expansion of the full
wave function ¥ (R,¥) in terms of molecular states
?,(T,R):

YR, E) =Y xuR)0,FR) . (1)
k

Typically the basis functions ¢k('f';ﬁ) are taken to
be eigenfunctions of the electronic part of the Ham-
iltonian, but other choices are possible, and fre-
quently are more convenient. Assuming only that
the basis functions are orthogonal, the expansion
(1), inserted into the Schrodinger equation, leads
to a set of coupled equations, which can be writ-
ten in the form!

{@r)*[(~inv)E+2B. (-ikV)+Bl+k - E}x =0, (2a)

where
B,.= [ 01(-in¥ 00z dF, (2b)
Bjk=f¢f[(—ikVR)2¢k],*dY', (2¢)

and all other notation is defined in Tables I, II,
and III. These equations (2), determining the nu-
clear wave functions x,,(ﬁ), constitute the original
quantum-mechanical form of the perturbed-sta-
tionary-states (PSS) theory.?

It has been known for many years?™ that these
equations have a number of defects which render
them inappropriate for the description of some
collision processes: For example, Egs. (2) con-
tain infinite-range radial couplings, long-range
(~R™) angular couplings, “origin-dependent”
terms, and nonphysical matrix elements for ion-
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ization.” In addition, since the matrix elements
do not contain momentum-transfer factors, Egs.
(2)do not go over to the correct classical limit, as
formulated, for example, in Ref. 4.

The purpose of this series of papers is to devel-
op a “corrected” quantum theory of slow colli-
sions, one in which the above-mentioned defects
do not appear. It was known that the strange
couplings that appear in Egs. (2) are all “ficti-
tious”: They represent only the displacement of
electronic orbitals with the moving nuclei, and
they do not correspond to real nonadiabatic effects
that can lead to observed electronic transitions.
In Ref. 3(b), it was shown that the displacement
terms could be eliminated by making use of an
ansatz [Eq. (5.17) of Ref. 3(b)] which was based
upon a curvilinear heavy-particle coordinate. Al-
though the resulting description is satisfactory for
most purposes, it retains one undesirable limita-
tion: The same curvilinear coordinate was used
for all basis states.

As a result, the modified coupling matrix ele-
ments given in Ref. 3 still do not contain momen-
tum-transfer factors, so they also do not go ex-
actly to the correct classical limit. In addition,
the use of the same coordinate for all states pro-
vides an unnecessary restriction on variational
procedures.”®

In this paper and elsewhere,’ we generalize the
development given in Ref. 3(b), and eliminate this
one remaining restriction. The central idea is an
intersecting-wave picture, which requires the use
of different coordinates for different basis states.
Such an approach leads to coupled integro-
differential equations'®; we will show that ap-
proximations appropriate for slow atomic col-
lisions reduce those equations to a tractable
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form. We will arrive at a set of coupled sec-
ond-order differential equations quite similar
to (2), but with momentum-transfer effects in-
cluded and fictitious displacement terms elimi-
nated.

In its most general form, our development per-
mits the use of any type of basis function, and dif-
ferent curvilinear coordinates for different basis
states. In this very general framework,’ although
the final results are simple, the derivation of
those results is ratherlong. For this reason, we
present here a much easier derivation. However,
this simplerderivation is only possible if we are wil-
ling to impose adifferent restriction: The basis
functions must be either single -center states ov ar-
bitrvary linear combinations of single -center states.
Single-center states are states that areclearly at-
tached to a particular center in the molecule: one
or the other of the nuclei, the geometric center,
the center of mass of the nuclei, or some other
identifiable point. (In Ref. 4 we referred to these
as class V or class F states.')

The precise nature of this restriction will be-
come clear later. Here let us only emphasize that
the present development permits the use of arbi-
trary linear combinations of single-center states,
including combinations involving states from dif-
ferent centers. Such basis sets are used in many
calculations.

The methods presented here are applicable to
multielectron systems, but to keep the equations
simple, we develop them explicitly only for one-
electron (or “effectively one-electron”) systems.
The generalization to multielectron systems is
considered briefly at the end.

(Since this paper is an extension of previous
work, the reader may find it helpful first to look
at Sec. IIT A of Ref. 3(b). The classical analog of
the ideas presented here is given in Sec. II and III
of Ref. 4. Other parts of those references are not
essential for understanding the present paper.)

II. DEFINITIONS: PROPERTIES OF BASIS STATES

Definitions of coordinates are the same as those
given in Ref. 3(b). After the motion of the center
of mass of the system has been separated, the
relative positions of electron and nuclei are con-
veniently specified by any one of three pairs of
Jacobi coordinates. These are shown in Fig. 1,
and their relationships are given in Table I. As in
Ref. 3 (but unlike Ref. 4), the components (x,,2)
of the vector T are defined relative to a “space-
fixed” (i.e., nonrotating) frame of reference.
Associated with each coordinate is a reduced
mass, given in Table II. Later, we will make use
of mass-scaled coordinates, defined by 3(»*2
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A

FIG. 1. Three Jacobi coordinate systems for relative
coordinates of two heavy particles A, B, and an electron
e, for equal masses, M, =Mp, and for unequal masses,
My >Mg. CMN denotes center of mass of 4, B.

Cr=My2.C, (3)

assoc

where Masoc represents the associated mass and
C, is the coordinate.

The full Hamiltonian for the electron and nuclei
is

H=T+V, (4)
with
= ﬁz 2 HZ 2
T e (5a)
2 2
= i 2 Lv2 (5b)

T 20, R 2my, "B

TABLE 1. Relations of coordinates.

A=(My—=Mp)(My+Mp)
5 +AN)=M,/(M4+Mpg), 3(1-7)=Mp/ (M, +Mp)

T=T, +3A

Fa=T, HER=F+30-MR

Tp =T, -fR=F -1 +MR

= _Mp+img my -

AT My+my © Myt+mg
My 30 FNmg my .
ST M, tm, TMytm, t

= _Mp+img o my .

B My +my Mg +m,

_MB+%(1—7\)7"0->+ my
Mg +m Mp +mg
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TABLE II. Reduced masses corresponding to coordinates.

Coordinate Reduced mass

10 my Rest mass of electron

RS M, Rest mass of A nucleus

RS Mg Rest mass of B nucleus

-ﬁg_m. Mp=M,+Mpg +m, Total mass of system

Ta ma=moM 4/ (mg+M ) Electron reduced mass, channel A

R, “pa= bmg+MyMg /My Nuclear reduced mass, channel A

s mp =m Mg/ tmg+Mpg) Electron reduced mass, channel B

Ry up = (mo+Mp)M 4/Mp Nuclear reduced mass, channel B

T m=my(M,+Mg)/Mp Molecular electron reduced mass

§: w=M,Mg/(M, +Mpg) Molecular nuclear reduced mass
Vv, (5c) tion

V is the potential energy of interaction of electron
and nuclei, which might have the form

VetZ, 2 /R=Z [fra=24/7p. (5d)

[For a system containing one active electron out-
side of a closed “inert” shell, V is the effective
potential, which will be more complicated than
(5d)].

We will make use of an expansion of the wave
function in electronic basis states. The elemen-
tary basis states are assumed to be square inte-
grable, and it is assumed that at least some of
them correlate asymptotically to the important
initial and final atomic eigenstates. Furthermore,
each of the elementary basis states is assumed to
have single-center character—it must be associ-
ated with and propagating with a partlcular center
in the molecule.

The concept of “single-center character” is
understood by quantum chemists. For example,
any basis function that depends only on ¥, (or on
Tj) is vigorously a single-center A (or.B) state.
The simplest examples are the 1s, and 1s, states
of the separated atoms,

¢13A =N, exp(-£,7,4),
¢1sB =Ngexp(-£,75) -

Certain other types of states are also permitted in
this theory. The states may have parameters,
like orbital exponents, that smoothly vary to opti-
mize some property of the basis. It is essential
to the present formulation, however, that any
varying parameters must be rvegavrded as functions
of the conjugate Jacobi heavy-particle coordinate.
Thus we also permit, for example, the basis func-

¢13A(Y'A;§A) =NA(§A) eXP[— E(ﬁA)]’VA s

where £R,) varies smoothly as a function of R,.
Another type of parametric variation arises if ro-
tating basis functions are used: the vector R A
specifies a direction in space, and the angular fac-
tor in a basis function could be oriented (“quant-
ized”) relative to this axis.!®* Such rotating basis
functions are much more appropriate than space-
fixed functions for describing molecular stationary
states or slow atomic collisions.

Three parenthetical remarks may be made about
these basis states.

(1) As long as no parametric variation is al-
lowed, single-center states can be given a rigor-
ous mathematical definition: they are functions
only of any one electronic coordinate. However,
if parametric variation is permitted, a rigorous
definition is not so simple. Any function [includ-
ing ¢1s, ()] can be written as a function of T,
and R 4, but this does not mean that it qualifies
as an A-centered state. In actual calculations,
the elementary basis functions are usually defined
in such a way that their single-center character
is apparent. If, however, one cannot be sure that
a given basis state is associated with a particular
center, then, to the same degree, one cannot be
sure that the theory developed here will be useful
for a collision calculation involving that basis
state.

(2) In molecular structure calculations, the
variable parameters are usually regarded as
functions of R, not of R, or R 5+ Given such a
function defmed on a surface of constant R in the
configuration space, one must map i it or displace
it onto a surface of consta.nt RA or R This can
be done by replacing R by RA or R in the analytic
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formula for the function. [See Ref. 3(b) or Ref. 9
for a more detailed discussion. ]

(3) The basis states need not be centered on the
nuclei. If they are functions of some other elec-
tronic coordinate T, then the conjugate Jacobi
heavy-particle coordinate ﬁa may be defined such
that the kinetic energy contains no cross terms of
the form _ﬁug- €,~a. Equivalently, the pair of coor-
dinates T,, R, may be defined by a rotation in

mass-scaled coordinate space.’®)12

III. EXPANSION OF THE WAVE FUNCTION AND
COUPLED INTEGRO-DIFFERENTIAL
EQUATIONS

Having specified the properties of the basis func-
tions that are permitted in the present formulation,
we now expand ¥ in terms of these functions, and
obtain a set of coupled integro-differential equa-
tions. The basic hypothesis is that ¥ can be ex-
pressed to sufficient accuracy by the ansatz

M
U= X, B)0,Fe R,y - (6)
k=l

In this expansion, the basis functions ¢, are cho-
sen, and the “coefficients” x, are to be deter-
mined. Each basis function is expressed in terms
of the pair of Jacobi coordinates (%,,R,) appropri-
ate to the center with which ¢, is associated; then
X is assumed to be a function of the corresponding
heavy-particle coovdinate ﬁk. In most cases, only
basis states centered on the nuclei are used, and
(%,,R,) means either (¥,,R,) or (F,,R,).

Let us examine the meaning of this ansatz. Al-
though Eqgs. (1) and (6) are superficially similar,
the former could represent an expansion in a com-
plete set of orthogonal functions (spanning the
function space associated with the electronic co-
ordinate T), while the latter represents an expan-
sion in a finite set of nonorthogonal functions which
are not members of any particular complete set.
More important, various terms in the expansion
(6) are given in terms of different coordinates.
Although any term, or the whole sum, could be
written in terms of any one pair of Jacobi coordi-
nates, the separation into a product y k(ﬁk)
¢,(F,;R,), with ¢, a one-center state, holds only
in the original coordinates given for each term.

A special case of this ansatz (6) would be'®

v =X1(ﬁA)¢1sA(T'A)+Xz(ﬁ3)¢1s3(?3) ® (7

To make its meaning more clear, consider the
function

exp(ikZ ) exp(— | 2, |) + exp(ikZ ;) exp(~ | 2, ]) .
(8a)

If this function were reexpressed in mass-scaled
coordinates, it would represent the crossing of

two wave trains (Fig. 2). Each of these wave
trains is oscillatory and propagating in a particu-
lar direction (toward increasing Zj or Z7}), but
each is a localized exponential wave in the per-
pendicular direction (27 or 27). In contrast, a
corresponding simplification of (1) would give

exp(ikZ )[exp(~ | z, |)+ exp(- | 2, |)] (8p)

which is quite different from (8a): For example,
the nodal lines of the real part of each term in
(8b) would all be vertical in Fig. 2. To see that
(8a) is the better description, we only need to note
that it satisfies the scattering boundary conditions,
while (8b) does not. The essential postulate of the
present approach is that it is possible to obtain a
sufficiently accurate representation of ¥ in the
molecular interaction region, as well as in the
channels, by a reasonable number of terms in the
ansatz (6).

From this ansatz, it is a simple matter to obtain
coupled thegro-differential equations for the func-
tions x,(R,)."® From Egs. (4) and (5), the Hamil-
tonian is written as a function of any pair of Jacobi
coordinates as

- > 72
H=H(k)(rk’Rk)=_mvik+hk s (93.)
LR (9b)

ke 2m, ™

FIG. 2. Intersecting wave trains corresponding to Eq.
(8a). The waves propagate in the direction of the ar-
rows, but they are localized in the directions perpendi-
cular to their propagation. The heavy lines represent
nodes of the real part of each term in (8a). The light
lines are equipotentials of V =—|z4|™ =] z5|™+ |z]?
drawn as functions of mass-scaled coordinates z™=%,
zZm=Z for M,=18, Mg=6, my=1. These equipotentials
are the same as those shown in Fig. 6 of Ref. 3(b). One
sees in this figure that the wave trains are appropriately
aligned with the channels. In contrast, nodes of indivi-
dual terms of Eq. (8b) would be vertical lines in this
figure, and they would not be properly aligned with the
geometry of the potential. [Plane-wave trains (8) would
extend indefinitely to the left, but ansatz (7) would give
waves only near classically allowed regions.]
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© =(H - E)¥ = 3~ [H®(F,,R,) - EIR)0uFiR,)

k

7 T | |
= Z <"m (¢kV§szk'*7 2V e Vkak+ka2Rk¢k)+thk¢k - Exk¢k) . (10)
%

If the ansatz (6) is a good one, then © will be everywhere small, This function, which is originélly a sum
of terms, with various terms exprg’ssed in different coordinates, can be reexpressed as a function of any
one pair of Jacobi coordinates (T, ,R,;). For eachj (j=1---M), we reexpress 0 in this way,

0=0,(t;R,),

(11)

multiply by ¢, (T ,;ﬁ ;), integrate over electronic coordinates T, holding R ; fixed, and set the result to

zero:

[ e1@sR)e,(,R)dE,=0.
b4

ixed Rj

(12)

Equations (12) are a set of coupled integro-differential equations for the functions Xe(Re).
To see this more explicitly, consider again the special case given in Eq. (7). Then the last term in Eq.

(10) will lead to

E [ b, Gaxa@ s, Fp)dF, == [

fixed R 4

fixed R

¢13A(Y‘A)X2(§B(?A 7§A»¢133 ?B(?A ,EA)) dFA ’
A

where, in the second line, T and R 5 have been eliminated in favor of T A,ﬁ 4+ Other terms are handled

similarly.

We may note already that no displacement couplings appear in these equations. The derivative 3Rk¢k is
evaluated with T, held fixed, so it represents the rate of change of ¢, as seen in a frame that is moving
with the center to which ¢, is attached. Such change of ¢, represents only rotation or other parametric
variation of ¢,, and this type of change leads to real nonadiabatic coupling. The “fictitious” displacement
couplings arise in other formulations when one takes, for example, 3quk(?k) at fixed ¥, or, more general-

ly, 'V.Rj¢k(fk) at fixed T,.
IV. APPROXIMATIONS SUITABLE
FOR SLOW ATOMIC COLLISIONS

The coupled integro-differential equations (12)
are “exact”, in the sense that they follow from the

ansatz (6) without approximations. In principle, it

should be possible to solve them by an iterative
self-consistent method, but such an approach
would be unnecessarily tedious and difficult, It is
more sensible to look for simplifying approxima-
tions. Mott and Massey'® show how to make a kind
of distorted-wave approximation, but this method
is only suitable for systems having weak coupling.
Here we present approximations which are valid
very generally for slow atomic collisions. We will
make use of the fact that the nuclear masses are
much larger than the electron mass, and we will
assume that the relative velocity of the nuclei is
small compared to typical electron velocities.

Let us begin by transforming into mass-scaled
coordinates, defined as in (3),

=m_,,1/2%
Ty =My “Tpy

Rp=u}/?R,.

(13)

A function or operator marked with a superscript
m, as F™ or F»(¥?,RP), is the reexpression of the

Il

function or operator F(,,R,) in terms of mass-
scaled coordinates: For example,

¢Z’(Y‘Z‘;ﬁ;") = ¢k(§k’§k) ’

- —.—b - -1/ -
ng "VR;" - (“k) zvkk .

(14)

Thus we have

0= {-srlop(vy Pxpe2 Yy op - Va X7
+xp(vE Popl xphor - Expert  (15)

and

. [ppEmRyI*or (77, Rymy/2dFy =0,
fixed Rj

(16)

As mentioned earlier, after each term in (15) is
evaluated, it has to be reexpressed as a function
of (?}",ﬁ;") before carrying out the integration (16).
Most of the quantities appearing in (15), [in par-
ticular ¢7, hpop, Vi oF, and (Vg or], can be
evaluated in closed form in their original coordi-
nates (i,',",ﬁ;"). Hence their reexpression in terms
of (¥7,R7) is a simple matter, because there is a
linear relationship between various pairs of coor-
dinates \Table I).
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This cannot be done for x7 or its derivatives,
however, because their functional forms are not
determined until after the equations are solved.
Hence for x we use the approximation

B =xp(RyEr, ')
=xp®7+Rp(Ey,Ry) -Rp)

-

VExr®p,  @am

-

~XMR™)+(Br - 5))
where
Br=Rp-Rm. (18)

Approximation (17) is appropriate if higher terms
in the Taylor expansion are negligible: Essential-
ly, we must have (87— s"‘) small compared to the
wavelength of oscillations of xk(R"') The physical
meaning is more transparent in unscaled coordi-
nates: defining

'§k=(p1/2/m)§g‘ s (19a)
it follows that
(m/ )8, =[(1,/ ) R, - R]1, (19b)

—E [ (opropmi/2aryxp@y) - E [ (op)*@p-3p) opmy 2ty g Tp@p) = -ESqp@p -insy,

and the second term in 17) is

(m/W(s,-s;) - Vkak(R,,) Now IVkakl is of the
order A;L|x,|, where A,y is the de Broglie wave-
length associated with the relative nuclear motion.
The magnitude of (5, - §;) is of the order of atomic
dimensions, a,. Thus the second term in (17) will
be small compared to the first term if

(m/u)ap/Ngep) << 1. (20a)

In a typical atomic collision, the de Broglie wave-
length is small compared to atomic dimensions,
but in (20a), A, is compared with (m/u)a,. This.
length is comparable to the distance from the nu-
cleus to the center of mass of the atom, and (17)
is appropriate if A4ep is large compared to this
distance. Equivalently, taking 2% /u)g.p =¥p,, and

ma,~27%/v,,, condition (20a) is simply
(Unue/v4) < 1. (20b)

By means of approximation (17), the integrodif-
ferential equations (12) can be reduced to coupled
second-order differential equations. For example,
the last term in (15) becomes

Ve xp®7)
(21)

[notation defined in Eq. (23)]. Similarly, evaluating all terms in (15), we obtain the coupled equations

{(s™ — imgm - V™) = SHAV™)?)+ (=i BT - V7 — 2 T
*Imkxm=0, (22)

+3(B" — inBr- Y™ + (hm - infim - V™) = E(S" - 75"

where
ST = f (@my*opmt/2din, (232)
=t [ oprr-spopmy iy, (23b)
Tin= [ (om=(-in¥z0p), mi/2dFy, (23¢)
wn=f (omr@p-BEn op), mi/aEr,  (23)
By= [ @M l-rt(vEFor] , mt/dEr,  (23¢)

Bp=min f @@ -3 or)

(23f)
= f (¢T)*hpopm’/2dFy (23g)
=(i/n) f (¢',")*(§;:—§;")hg‘¢;nmj/ 2. (23h)

In Egs. (23c)—(23f) the derivatives V;’;k are to be

r
evaluated at fixed ¥J; in Eq. (23h) 27 contains (V7)?
which is to be evaluated at fixed R}. Then every-
thing inside the 1ntegrals has to be reexpressed as
functlons of (r"' R’") and integration is performed
holding Rm f1xed The mdependent var1able in the
jth equation of the set (22) is R;‘, and V™ means
V'I';j

Because of the term o"" Vmi(—in vm)? X, these
differential equations are of third order. However,
they can be reduced to second order by an approxi-
mation that is consistent with (17): Multiplying

(22) by
§m(§m_ iﬁém, ﬁm)-lgl.‘_ iﬁé"" 'vfm(§m)—1 (24)

and dropping terms such as ¢™1™, ¢"g8", and "™
[which are related to the neglected higher-order
terms in the Taylor expansion (17)], we obtain

{5S™(~ i V™ + [1+iG™ - Y™(S™)71]
x (_],Em _ iﬁ_ﬁm' Tm g %_Bi’")+ _iﬁ(ﬁm . Om oy %Em . 'ﬁm)

_ﬁzimzﬁmﬁm_EEm}&m.:O. \ (25)



The next step is either very obvious or very sub-
tle. Equations (25) can be written more abstractly
in the form :

3 M @)y, R =0, (262)
k

where M , is a matrix containing functions of Rm
and derivatives with respect to ﬁ';‘. In the devel-
opment up to this point, the various coordinates
ﬁ}" are distinct, being ﬁg, ﬁg, f{”‘, etc., depend-
ing on the center with which the basis function ¢ ;
is associated. However, for the purpose of inte-
gration of the coupled equations (26a), the various
coordinates ﬁ'j" all play the same role: They are
all dummy integration variables, and in any form
of step-by-step integration of (26a), they would all
be set numerically equal to each other. In other
words, equations of the form (26a) are entirely
equivalent to the equations

) M (Rm)y, (Rm)=0, (26b)
kR

where (ﬁ"‘) represents the common numerical val-
ue of the coordinates R™, (If further explanation of
this step is needed, see Appendix C.)

Now it is convenient to transform back out of
mass-scaled coordinates by defining

(Ry=(Rmy/ut/2. 27
Then the coupled equations (25) take the form

TABLE III. Coupling matrices. =0y (TyiRy). V6, =z 0 (s Ro)k; -
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{(1/20)S(~im V7 +[1+ (in/W) G- VS
[h—Gr/w) T - ¥+ (1/21) B) +(1/w) [(Fi+ 3B) (- 9)
+7: (- V) (~in V)] -SE}x =0. (28)

The independent variable in all equations is (ﬁ),
¥ means _V.(i)» and all matrices are defined in
Table III. The V in the term &-V acts on every-
thing to the right, including S, &, x, etc.
~ Equations (28) provide a tractable set of coupled
equations, obtained from (12) by only two approxi-
mations [truncation of the Taylor series (17) and
truncation of the inverse-operator series (24)],
both of which are valid under the condition (20).
However, the same condition (20) permits further
simplification of the equations by the following
method. When (-i% V) acts on x, the magnitude of
the result is of order Hvg,|x |, but when it acts
onany other quantity @ (including ¢,, S°%, £, i, B)
the magnitude of the result is of order (77/a,) | Q |
=mv, |Q|. Let us assume that the nuclear kinetic
energy Mvi,. /2, the energies of the significant
electronic states |%|, and the total energy E are
all of the same order of magnitude, which we call
“zeroth order” in (v, /vy). It follows that
(Vnue /Vq) ~ (m /) /2, Then the various terms in
(28) can be sorted in powers of (vy/vy) Or
(m/u)’? as follows.

zevoth ovder:

h;, defined in Eq.

(9b). After differentiation, all c_gxantities must be written as functions of Y’, and R;, and in-
tegration is performed holding R, fixed. &, = 5(f, +2); fa =1, fa=-1.

Sp= f‘Pf*%ﬁ‘j
By = f¢}khk¢hd?j

-

1y, =f‘i’}k-’7ﬁ¢kdff

By, =_ﬂ2f¢,*v2¢kd¥,

- im - -

[ f¢f*(§k —8;)¢,dT;
- im - -
M=% f¢j*(§1z ~ 8y pd;

- m - - >
T = Il— quj*(sk —sj)ﬁdakdr,

B um f¢f(§k —EJ-)V2¢kd—i‘j
8= (u/m) (1, /) /2R, R

~ 1 -
—-Kkr—gKER

overlap

electronic Hamiltonian
vector nonadiabatic coupling
second derivative

momentum transfer
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@w'S(-inv)?x, hx, Ex,
first order:

wr T (=inVy), BrA-(—inVy), wIEStR- Ty,
second order: everything else except third

order,
third ovder:

X KT (VS7B).

In the earlier approximations [(17) and (24)], all
terms that are second order (or higher) in vp,./v,,
and which are related to (5, -38;) were neglected.
Therefore, without significant loss of accuracy,
all such second-order terms in (28) can also be
neglected. The matrix B is also second-order in
(huc/v,,), but it is not related to (§,-3,); it can be
neglected or retained, and we will retain it in the
formal development below.!* After small terms
are discarded, the equations reduce to the final
simplified form

[@R)*S(=in V) + k=S E+ p ([ +7)-(-ir V)
+(21)"B] x =0. (29)

Coupling matrices appearing here are defined in
Table III.

V. EVALUATION OF ELEMENTARY MATRIX
ELEMENTS

Let us examine more carefully the matrix ele-
ments that appear in Eqs. (29). All of the ma-
trices are similar to matrices that are familiar in
molecular structure calculations, but the present
theory introduces some significant modifications.

A. Overlap matrix, S

The matrix S represents the overlap between
various nonorthogonal basis functions, but it dif-
fers by terms of order (m/u) from the conven-
tional overlap matrix. As an example, let us con-
sider again the special case (7). In atomic units
(my=1, a,=1, 7r=1) one usually writes

¢13A =Nzexp(— |Y'A l)’ (30 )
- a,
¢)ISB =Ng exp(_ , g I) ’
but if we want the basis functions to satisfy the
boundary conditions exactly, we should write

¢lsA =NA eXp(_mA I?A ') ’ (30b)
$155=Ng exp(-m ,?B .

Evaluation of the overlap then proceeds according
to the instructions given below Eq. (15): _The ele-
ment SlsAlsB is in principle a function of R, , so we
have to reexpress ¢, interms of (¥,,R,).
(Transformation into and back out of mass-scaled

coordinates does not affect the matrix elements.!5)
From Fig. 1,

MA ->

?B=m rA_RA’ (31)
SO
slsAlsB(ﬁA) =NANBfeXP(—mA IY'A l)
M - =
xexp(—mamrA—RA )d-fA.
A
(32a)

Finally, as in the change from Eq. (26a) to (26b),
we replace R, by (R) on both sides of this expres-
sion. The result differs from the more conven-
tional overlap

Styy10g=NaNs [ explom, |, |
xexp(-my [T, -R|)dF,, (32b)

or the still more simplified

Sll

1s 155 =NyNy | exp(— ]T'A ) exp(- ]Y-A -R |)dFA R

(32¢)

by terms of order (m/u). For most practical pur-
poses this difference is insignificant. In the first
place, very few calculations on real collision sys-
tems are carried out to such a high level of accu-
racy, and in the second place, the difference be-
tween (32a), (32b), and (32c¢) is as small as terms
that have already been neglected. Hence it is safe
to regard S as being an ordinary overlap matrix. '

B. Electronic Hamiltonian matrix, &

The matrix representing the electronic Hamil-
tonian also differs from more conventional forms
by terms of order (m/up). These differences arise
from three sources. The first is the electronic
kinetic energy operator, —7°V%, /2m,, which con-
tains the atomic reduced mass, m, or my, instead
of the molecular reduced mass, m. The other two
sources are related to the transformation from
(¥,,R,) to (F;,R;): The basis functions are trans-
formed as in Eq. (32a), but also the potential en-
ergy is transformed in the same way. For exam-
ple, the matrix element

- 1
f‘l’fsA I rB I‘ ¢lsBdrA
becomes ’

- M - = -1
N,yNp fexP("mA [, ) MF'_;;,—DI'A —<R>‘

X exp <—mB

MA - = ->
m‘”A‘<R>l)d"A(33 |
Q,
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when expressed as a function of (R). Again the
difference between this form and the more con-
ventional one

N 4Np fexp(—mA [£,]) [, -R|*
xexp(-m,| T, -R|)dF, (33b)

is negligible for most practical purposes. Similar
considerations apply to all the other matrix ele-
ments, but we will ignore them henceforth.

Note that in the evaluation of matrix elements,
neglect of these small corrections 1s equ1valent to
neglecting the differences between R A R »» R, and
(R). Such neglect is justified at this point in the
calculation, but not earlier.

C. Nonadiabatic coupling matrices ﬁ and B

The vector nonadiabatic coupling matrix E
can be separated into “radial” and “angular”
components in the usual way™*® and we will dis-
cuss these components separately.

1. Separation of radial and angular components

Like all the other matrices, _ﬁ_ is a function of
the vector (R). That vector specifies a direction
in space, and we can use it to select components
of TI and also to define a frame of reference for
describing the position of the electron. We have
taken (x,y,2) to represent the components of the
vector T relative to an external “space-fixed”
frame of reference. Relative to this same space-
fixed frame, the vector (R) can be specified by
its length (R) and two spherical-polar angles, O,
&. Then the “rotating” frame of reference is de-
fined by using these polar angles as Euler angles
(Fig. 3). It follows that, for any vector U, the
components (#’,u.,u!) along the rotating axes are

x? y)
related to components on space-fixed axes by

u;7] [cos©cos® coso sind —sinO7|[u

X

uy || -sin© cosO 0 u, |.

,

Uz in®© cos® sinOsing cosO || u,

(34)
Of course, the same transformation applies to the
components of any vector, so, for the vector T,,
for example, (34) describes the relationship be-
tween space-fixed components (x4, ¥4, 2,) and ro-
tating components (x}, y3, z;).

T contains the gradient V( ry» and it is convenient
to express this operator in polar components,

6(1%) <8<8R>, (RY! ae,((R>sm9)" ) (35)

FIG. 3. Space-fixed and molecule-fixed reference
frames for the molecular electron. (x, y, z) denote
space-fixed axes, (¥, 9’, 2’), molecule-fixed axes, and
they are related via rotations by angles (6, ¢) as shown.

Then, using (34), one can show that

( m8<R>>, Y p%p <a<R>>x Vi ‘k, (36a)
.. 9
<—m3é>xk¥m ( mae) kY 2 - Ly'k ’ {360)

9
- -
( 0 ¢) V%% ( a@)

where the L’s are electronic angular momentum
operators—for example,

+ sin© Lx;— cos© Lg’; ,

(36¢)

9 8
L’A =i (z;@—x}i-&z> . (37)
At this point, let us assume that the basis func-

tions ¢,(¥,; (R)) were chosen such that when they
are expressed in rotating coordinates, they depend
only on (R)= |(R)|, and not on © or . This is the
normal property of basis functions used for the de-
scription of molecules in Hund’s cases a or ¢

(Ref. 16); such functions are in fact originally de-
fined in the rotating frame, with at most a para-
metric dependence on (I—i), and only later are they
transformed by (34) into the space-fixed frame.
For such functions, writing

4@ (R) =0 4(F1:(R)) (38)
we have from Table Il and Eqs. (35) and (36),
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WEKRY= it [ o3B3 04 (Fis B ’)Jﬁ; ,
* (39a)

M5 (R)=—(R)~* f(b}(;};(R))Ly£¢,§(;k;(R))d;;, (39Db)
8= (B f 64548 Lyl G RN T,

—coto [ ¢ F¢m) L i@ <R>>d§}] .
(39c)

For any such rotating basis functions, all coupling
matrices are functions only of (R) [except for IT°,

which has the cot© dependence indicated in (39¢)].

2. The radial component—corrected nonadiabatic
couplings

The radial component, 1%, differs substantially
from the P¥ matrix that appears in the original
formulation of PSS theory. In Eq. (39a), we can
again ignore the distinction between (R) and the
internuclear separation R, because that distinction
only involves corrections of order (m/u). As was
noted below Eqs. (12) and (23), the derivative
(6/aR) is to be evaluated holding T, fixed; hence it
represents the rate of change of ¢/as seeninaframe
that is moving with the center towhich ¢, isattached.
Such change of ¢, comes only from the parameters,
like orbital exponents, that are permitted to vary with
internuclear separation to optimize the basis. If such
parametersare all held fixed, thenII® vanishes ex-
actly at all internuclear separations.

This may be contrasted with the behavior of the
PE matrix; in Eq. (2b) we see that it is defined
similarly to (39), but the derivative is evaluated
holding 1’ fixed; hence it involves the rate of
change of ¢, as seen in a frame fixed on the center
of mass of the nuclei. In that frame, the total
change of ¢, arises not only from variation of
optimized parameters, but also from the simple
displacement of ¢, with its center. Such “dis-
placement couplings” do not arise in the present
formulation, and we call them “fictitious”.

3. The angular components—corrected rotational
couplings

In Egs. (39b) and (39c), we see that the angular
components involve operators representing elec-
tronic angular momenta about axes that pass
through the center with which ¢, is associated.
For example, one such matrix element is

f ¢*(2p )L, 0 @,,)dr,

with Ly,@ given in (37). The uncorrected PSS the-

ory gives a similar matrix element of the operator
L,., where the y’ axis passes through the center
of mass of the nuclei.

The same corrected couplings have been known
for a long time in the classical-trajectory formu-
lation. For example, using the notation of Ref. 4,
a class F or class V basis function must be multi-
plied by a corresponding electron-translation fac-
tor, whichdescribes the momentum and kinetic
energy of the electron as it is carried along with
a given center. The action of the el(_a_ctronic Ham -
iltonian on this factor gives a term Ay, and one
can show that, [except for the neglected (/)
corrections]

E=E+§F . , (40)

This holds for both radial and angular components.
(The quantum framework of Ref. 3 also gave the
same correction to the angular components, but
the correction to the radial component was rather
more complicated, and only in the limit as R— «
are those corrections identical to the ones ob-
tained here.)

4. Second-derivative matrix, B

From Table III, or Eq. (23e) we see that the
second-derivative matrix differs from the conven-
tional one in the same way that II differs from P;
derivatives of ¢, are to be evaluated holding T,
fixed.!” Hence, for example, if there are no R-
dependent parameters in ¢,, then the radial term,
J ¢ ,(0%/8R% Wz dT;, vanishes exactly. Angular
terms, however, can be quite complicated, be-
cause one must transform (Vﬁe)rk to (V%),, using
(36). The result is messy, but well-known.%®
Fortunately, one usually finds that these terms
are unimportant.

The conventional B matrix has often been calcu-
lated by the formula?l

-inv-B+P- B, (41)

which is derived by putting 1 =E” |6, X¢,| between
the two Vz’s. No such relationship holds for the
present B matrix, however, because of the differ-
ence between (VR)fk and (Vg).. [Later, however,
we will show how a formula related to (41) can be
used in a special case.]

D. Momentum-transfer coupling matrix, 5

' The momentum-transfer coupling matrix y de-
rives its name from the role it plays in the class-
ical trajectory framework. Momentum-transfer
factors (denoted F}F, in Ref. 4) are responsible
for the rapid decrease in charge-exchange cross
sections at high velocities (v,,,>v,,).> When these
factors are expanded in a Taylor series, one finds
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that at low velocities they give a coupling matrix
¥ that is equivalent to the present one (except for
the usual, unimportant #/p corrections). This
equivalence follows from an approximation derived
from (19b),

Sy=K,T —5K2R+ 00n/ 1), (42)

with k,=3(f,+)), fg=1, f,=-1. This formula
corresponds to Eq. (II16) of Ref. 4.'° [Another use-
ful formula follows from (42):

Sp—-S,=T-3\R=T,, (43)
which shows that ¢ is related to a dipole operator,
but one which only connects states on different cen-
ters.]

Intuitively, one expects momentum-transfer ef-
fects to be small at low collision velocities. Nev-
ertheless, like II, Y is in principle of order n/a,,
so there is no proof that it is always negligible.

VI. CHANGE OF REPRESENTATION

We have now derived the second-order coupled
equations (29) that arise from the ansatz (6), and
we have briefly examined each of the coupling ma-
trices that appear in these equations. Any method
of solution of these coupled equations can now be
used to obtain the scattering matrix, and the as-
sociated transition probabilities and cross sec-
tions. A serious problem remains, however. For
many real systems, an acceptable expansion of ¥
in single-center states requires a large number of
terms. Integration of such a large number of
coupled equations is a task that may be prohibitive
or hopeless.

Hence we must seek means by which the number
of coupled equations can be reduced. Of course,
we already know that many systems can be ade-
quately described by a small set of coupled equa-
tions, provided that the basis functions are very
carefully selected. For example, sharp trunca-
tion is frequently possible if the basis states are
adiabatic (or, in some cases, partially diabatic).
However, such states do not, in general, have
single-center character, so they cannot be used
directly in the ansatz (6).

There is a simple solution to this problem; and
it requires only that we focus our attention on the
final coupled equations (29), and not on the under-
lying theory from which they came. As soon as the
various coupling matrices have been obtained in
the original basis of single-center states, those
matrices can be transformed to any other repre-
sentation by certain rules. Let {¢:} be our orig-
inal set of single-center basis functions, and let
{$2} be obtained from { !} by arbitrary, and per-
haps R-dependent, invertible transformations:
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¢i= Upnor. (44)

Then the form and the substance of the coupled
equations (29) is invariant under transformations
defined by

X2=U"x, (45a)
M?=U'M'U, (45b)

for all matrices M except

2= U0 - 1 U'S'V,U, (45¢)
Ez =_U_+§1£— 2iﬁ-q+(i1 +;1),'€—q_ ﬁ2£&-§1V2U .
' (454)

Whenever we can find linear transformations such
that only a few equations are strongly coupled in
the new representation, then the problem is
solved. In most cases, the transformation is tak-
en to diagonalize %, or all but a small part of %.

Looking at the same problem from the opposite
point of view, suppose we have obtained eigenfunc-
tions of #, or suppose we have found some other
“good” set of electronic functions ¢? such that an
adequate expansion of ¥ requires only a few terms.
Then to solve the collision problem, we require
displacement-corrected coupling matrices ﬁ, B,
andz. One way to obtain them is to decompos_e the
functions ¢7 into single-center states as in (44), eval-
uateIT*, ¥', and _121 asdiscussed earlier, and then
transform back using Egs. (45).?° Inmost cases, in
fact, the functions ¢2 would have been derived by
a variational calculation involving expansion in
single-center states, so in principle the required
decomposition would already be available. This is
the way the present theory would normally be used
in a computation.

Two special results should be mentioned. I the
eigenfunctions are given in terms of a “class F”
basis, in which the elementary basis functions
have no parametric dependence on R, then the ra-
dial part of the nonadiabatic coupling matrix arises
only from the R dependence of the coefficients,?

2,R_ _zrr+ 49 '
o™= —nU’s iR ‘ (46a)
In the same case, if the term —2iZU*" *V U can
be neglected, then the radial part of the second-
derivative matrix, B, also arises only from the
coefficients, and it can be evaluated by a formula
related to (41),

-n*U'S*d*U/dR? = ‘mszE > ®4 (1% * + i dS?/dR)

x (§2)-1_112, R QEZ.R , (46b)
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which is derived by differentiating (46a).

There is still another way to look at these
changes of representation. Suppose that with each
of the new basis functions ¢, we associate a
curvilinear heavy-particle coordinate R{2’ such

that (in mass-scaled coordinates)
(5:)(2)¢‘£z) = [(ﬁ{f)(m _ ﬁm]d’ﬁz)

=3 U GR@e ), (47)
n

where (57)® is the S™ associated with the single-
center basis function ¢ *. It then follows that, if
we define

o= > (Xm)@[(Rm)@]p 2[Tm; (Rm) @] (48a)

"

T = 2 (Xr;)u)[(ﬁ;,.)(n](b’fl)[;:;(ﬁ;n)u)] (48b)

then
YO =D 0m/p). (49)

Equation (48a) is an ansatz having different curvi-
linear coordinates for different states. The gen-
eral theory of such ansatzen is fundamentally the
same as the theory presented in this paper, but
certain details of the general theory are rather
more complicated. Already, however, we see
that (47) provides a link between the present
framework and such a general theory.

VII. MULTIELECTRON SYSTEMS

As was stated in the introduction, the theory de-
veloped here can also be applied to multielectron
systems. Let us consider now how this may be
done.

At the outset, we assumed that the elementary
basis functions for the one-electron case must
have single-center character. Similarly, for the
many-electron case, we assume that the charac-
ter of the basis functions is such that each elec-
tron is definitely associated with a particular cen-
ter. Various electrons can be on different centers,
and the multielectron basis function need not be a
simple product of one-electron functions. Even
7;;~correlated basis functions are permitted, but
it must be possible to identify a specific center
with which the ith electron is associated. (For
this purpose, the electrons must be imagined to
be distinguishable.)

Some examples should make this restriction
clear. For atwo-electron system, a state having
both electrons on one atom might be described by
(Jacobi) coordinates shown in Fig. 4a: T,, goes

(a)

ﬁAA o

(b)

o Rie B
e
. PY e2 (C)
hA Ts
B
A

FIG. 4. Coordinates for a two-electron system. (a)
If both electrons are definitely associated with atom 4,
then the heavy particle coordinate R 44 goes from the
center of mass of A to nucleus B. (b) If one electron is
associated with each nucleus, then the heavy-particle
coordinate connects the centers of mass of each atom.
(c) If one electron is shared by both nuclei, as in an
elliptical orbital, no unique Jacobi heavy-particle co-
ordinate can be identified.

from nucleus A to electron 1, and r, goes from
their center of mass to electron 2. Any function
of r,, and 1}, has single-center (4) character.
(Hence we can also use the variables T, Tp,,
going from A to each electron, at the price of in-
troducing Vg ,*V, terms inh,.) Also, any func-
tion ¢ (t,4, Tpp) is “so permitted, because elec-
tron 1 is definitely associated with A and electron
2with B. Onthe other hand, inanelliptical function
like ¢(FM,FIB), electron 1 is not, in general, as-
sociated with a definite center, and the present
methods may not be applicable.

If the basis functions have the character dis-
cussed above, then for each basis function ¢,
there is an unambiguous Jacobi heavy-particle
coordinate R, (Fig. 4). The ansatz (6) is general-
ized to

u -
¥= 3 X4(R,)¢, (electron variables; R,) (50)
k=1
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and, in the coordinates given for each term,

L 51)
H= -—2—“k VRk+hk °

That is all that is needed for carrying out the
above development. So long as the “heavy-parti-
cle kinetic energy” appears as a separate term,
as in (51), then all the rest of the equations (10)—
(29) follow, with only the obvious changes [S in-
volves many-electron overlap integrals, hk_is
more complicated than (9b), L, becomes a sum
of terms, one for each electron, etc.]

One aspect of this framework may be a little
unusual: The elementary basis functions cannot,
in general, be antisymmetrized, or they will lose
the required character. However, after the basic
matrices have been calculated in an unsymme-
trized basis, antisymmetrization can be carried
out as a special case of the linear transformation
method discussed in Sec. VI. Hence, no funda-
mental problems arise from the antisymmetry re-
quirement. Thus we see that multielectron sys-
tems introduce the expected challenging problems
of implementation, but no new conceptual diffi-
culties.

IX. CONCLUSION

There is really only one fundamental postulate
in this theory: Tt is that the ansatz (6) can provide
a sufficiently accurate representation of ¥ by
means of a reasonable number of single-center
functions. That ansatz leads directly to coupled
integrodifferential equations (12), and we have
shown that those integrodifferential equations can
be reduced to coupled second-order differential
equations (29). The only approximations involved
in this reduction are (17), (24), and neglect of
small terms in (28). All of these approximations
involve retention of terms of order (v ,,./v,,)
=~ (m/u)/? and neglect of some terms of order
(Vue/Ver)? = (m/u). These approximations should
be applicable very generally for slow atomic col-
lisions, in which condition (20a) or (20b) is satis-
fied.

Why should we believe that the ansatz (6) is a
good one? More specifically, given any set of M
single-center functions {d)k}, that set can be used
either in an ansatz of the form (1) or an ansatz of
the form (6). Why should we think that of these
two possibilities, (6) will normally give the better
representation? There is no direct proof of the
validity of this hypothesis, but there are several
reasons for believing it to be correct. (i) As was
already mentioned, by suitable choice of basis
functions, individual terms in (6) can satisfy scat-
tering boundary conditions exactly, while individ-
ual terms in (1) cannot.® (ii) The picture of inter-

secting wave trains that arises from ansatz (6)
seems intuitively much more reasonable than the
picture that would arise fron ansatz (1) (see Fig. 2
and the discussion thereof.) (iii) We mentioned in
the introduction that Eqs. (2) contain infinite-range
couplings and other “fictitious” terms. The fact
that such defects do not appear in Eqs. (12) or (29)
again suggests that (6) is a better approximation
than (1).

(iv) Finally, though our presentation of the theory
involved only a quantum-mechanical framework,
the most compelling arguments favoring ansatz (6)
arise by examining the classical limit. In the
classical-trajectory framework, it is assumed
that the nuclei move along a classical path, and
the electronic wave function T satisfies

E, RENT = zh’% (52)

One way to solve this equation involves expansion
such as

T= 2; d, ()9, (F; R(E)) . (53)

However, it is now well-established that a better
expansion is obtained by including electron-trans-
lation factors, F,:

T= Zk d,0)F,¢,(&; RE), (54)

where (for single-center ¢,) F, is typically of the
form

F,=explim(V, - T-3v71)], (55)

and ¥, is the velocity of the center with which ¢, is
moving. Now, it was previously known that ansatz
(1) corresponds in the classical limit to ansatz
(53). One of the fundamental contributions of this
paper is the recognition that the new ansatz (6) is
the quantum analog of ansatz (54): The same dis-
placement-corrections and momentum-transfer
effects that arise from electron-translation factors
in the classical-trajectory framework are ob-
tained in a quantum framework by modifying the
heavy-particle coordinate (see also Appendix A).

It follows that all of the formal and computational
evidence that favors (54) over (53) also favors (6)
over (1).

The development given herein (and in Ref. 3)
leads to a new conception of the definition and
meaning of nonadiabatic couplings.22 In the earlier
theoretical framework, of which Eqgs. (1) and (2)
were the foundation, nonadiabatic couplings were
defined by the (usually Hermitian) matrix __1_5_, which
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represents the total rate of change of basis func-
tions with internuclear distance. In the present
formulation E is replaced by _ﬁ_, and a new matrix,
z, also appears. We may say that the (generally
non-Hermitian) matrix II represents nonadiabatic
couplings, and that'z represents momentum-trans-
fer effects. 11 is the part of the total rate of change
of the basis functions that represents distortion,
polarization, or change of character: In a single-
center basis, Il arises only from coefficients or
nonlinear parameters that vary with R. Equiva-
lently, 1T involves the rate of change of a basis
function as seen in a frame of reference that is
moving with the center to which that basis function
is attached. Or, yet again, II represents the total
rate of change of the basis functions [as seen in the
CMN (center of mass of the nuclei) frame] minus
the part of the total rate of change that only cor-
responds to displacement of the orbitals with the
moving nuclei. .

Now, given a general molecular basis function
#(¥; R) and its rate of change, V,¢(F;R), it is not
always possible to identify uniquely the part of
Ve that represents displacement. (For example,
displacement effects have sometimes been identi-
fied by using switching functions, for which various
definitions are possible.) It follows that nonadia-
batic couplings are also, in principle, nonunique.
However, the displacement properties of single-
center functions are, by definition, clear and un-
ambiguous. It follows that a representation of ¥
in single-center functions permits definite identi-
fication and elimination of displacement effects,
and unambiguous evaluation of nonadiabatic and
momentum-transfer couplings.
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APPENDIX A: THE CLASSICAL LIMIT

We show here that when the present quantum-
mechanical theory is taken to the classical limit,
it leads to forms of the classical trajectory equa-
tions that incorporate corrections for displacement
and momentum transfer. The simplest technique
suitable for this purpose is to take the limit of '
large nuclear mass at fixed nuclear velocity.?®
This method leads to the impact parameter form
of the classical-trajectory equations.

A. Uncorrected PSS theory

The classical limit of the original form of PSS
theory is well known. We set

X(R) = exp(i ¥ - R/m)d(R), (A1)

where V is a constant velocity in the +Z direction
with magnitude |¥| = (2E/u)Y2. Putting this into
(2), and sorting in powers of U, one immediately
obtains

[-inSV - V4 (+7- Pld=0(u) (a2)

and setting the right-hand side to zero, we obtain
an older form of the classical-trajectory equations.
In this form, corrections for displacement and.
momentum transfer are not incorporated.

B. New coupled equations (29)

When the same analysis is performed on Eqs.
(29), the result is immediately

inS% - Vd=[h+%-{A+¥)]d. (A3)

These are seen to be the same as Eqs. (II112) of
Ref. 4, since =P +A (and ¥ here is essentially
the same'® as ¥ in Ref. 4.) In these equations, dis-
placement and momentum-transfer effects are in-
cluded to first order in v.

C. Integrodifferential equations (12)

What happens if the coupled integrodifferential
equations (12) are taken to the classical limit by
the same procedure? To answer this, let us
simplify by assuming that the basis set {¢,} con-
tains only two types of functions: One set centered
on nucleus A, {d)’u}’ and another set centered on

nucleus B, {d)kB}. The “coefficients” are similarly

divided into {XkA (R,)} and {Xep (Ry)}. Now we set
Xe, =X, - Ry/B)d,, (R,) (Ada)
Xp =€XP(i 15T - R/ d,, (R,). (A4b)

The velocities v, and vy are velocities of relative
motion along the heavy-particle coordinates R, and
R,; let us take

Mav5/2 = pgvd/2=w?/2=E. (A5)

Now, of the set of equations (12), consider the
one involving ¢ !*a:
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61, Goi B0, By a,

= f Ty ¢} explip ¥, - R,y/h)

X kz {@ uA)“[qS,,A‘(uir,, —i Vg S+ A= ilVg &y )+ (1T, — iV ) - 72V, bp J-12(y - BN, }d,
A

+fdx"3¢,*8 exp (i pgvy - Ry/h)

x 2;? {@ ka) oy (Hs¥5 - iV, )+ 2(iﬁ€RB¢ka) “upl¥p - iV, )~V ¢, ]

+(hg - E)p, }d, =0.

(ae)

Again sorting in powers of pu, or py, the term containing p, or ug to the zeroth power is

f drgd ‘(kz [bpp(=ilV5 - Vg ), +d,, (hp = iRV 5+ Vi, )b, |
B

+expli(p,¥, - By = ug¥y - By)/A1 Y [, (- 7%, - VRA)dkA +d,, (hy =iV, - \‘7RA )"’u]) =0. (AT
Ry .

The exponential quantity can be evaluated using

[ My M, m, -
R, '<m0+MA>ﬁ‘9 -( mo+M +mo+MB>rB

and, using also (A5), it turns out to be

exp[-imqg - (F5+3Rp)].

From this point on, we can neglect the differences
between ¥,, ¥, and ¥, and those between R,, Rj,
and ﬁ, because those differences are of order
(m/p). It then follows that Eqs. (A7) become

S@)(= ir% - V)d+[r@)+¥ - N@)d=0, (A8)

where the “direct” matrix elements are defined as
before,

Ssang @) =Si 505 = f 07, Begdf s (A92)

etc., but “exchange” matrix elements contain the
“momentum-transfer factor,”

Sipea@)= [0 exp(=im¥- £)p, dF,  (9D)
hyop, )= f¢;"8 exp(-im¥- i)hd)hdf, (A9c)

ﬁ,BkA(v)=f¢;‘Bexp(-im‘7. 7,)

X (- in Vg, ,), dF . (A9d)

These equations are equivalent to Eqs. (II14) of
Ref. 4 [_ﬁ(v):E(v){é(v)]. These are the exact
classical-trajectory equations (including electron-
translation-factors) for single-center states and
rectilinear trajectories.

l
APPENDIX B: REMARKS ON A DIFFERENT
FORMULATION

Recently another approach to the theory of
charge-exchange processes has been developed.*
That approach is similar to the present one insofar
as it also makes use of single-center basis func-
tions and coordinate transformations. The authors
state that their proposed method “. .. resolves the
formal and practical difficulties ... which have
attended theories of charge exchange ...” and that
it provides “... an exact and practical formulation
of the proper close-coupled (truncated) solution.”
The present author regrets to report that he finds
these claims to be too strong. He holds the view
that the formulation given in Ref. 24 leaves cer-
tain fundamental difficulties unresolved, and that,
as a result, the truncated equations given there
are quite inappropriate for describing some pro-
cesses. Some insight can be gained by examining
the differences between that formulation and the
present one.

(1) The ansatz for ¥, Eq. (2.14) and (2.15) of
Ref. 24a [or Eq. (10) of Ref. 24b] is a special case
of our Eq. (1). In the present notation, that ansatz
is

V=37 X, Ry, (F)+ 2 X, B0, (Fa),  (BY)
kA kB

with ¢k,4 and ¢, being (nonorthogonal) atomic-A
and -B ‘states. The important thing is that the
“cc_)gfficients_’: (XkA’ .)ﬁka) are defined to be functions
of R, not of R, and Ry respectively. Accordingly,
Eq. (B1) is a generalization of our Eq. (8b), and it
implies the same kind of picture. The basic pos-
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tulate of the present approach is that
¥ =§XkA(RA)¢kA(rA)+ ngB(RB)qSkB(rB) (B2)

is a better ansatz, and it is shown that the difficul-
ties which appear in earlier theories of charge-
exchange arise from the difference between Eqgs.
(B1) and (B2).

(2) 1t follows from Eq. (B1) that the coupled equa-
tions (2.18)**® are a form of our Egs. (2), except
that the nonorthogonality of the basis is taken into
account. For a nonorthogonal basis, Egs. (2) be-
come

{@p)S(~ 7Y+ 2P (= #V)+B]+h~SE}x=0.
(B3)
By transforming from the scaled coordinates of
Ref. 24(a) into unscaled coordinates, and by using
the fact that

[Vt 3 1+20)9,]9,=0, (B4)
+-B state,
--A state,

one finds that the matrix**®@ pc/pu or®*® @ corre-
sponds to our P®/y and the matrix®*® §C%/p
or®® ¢ corresponds to the radial term in our ma-
trix B/ [T

(3) Equation (2.18)4® was said to be “an exact
equation” for processes such as charge exchange.
It is true that equations of that type follow rigor-
ously from the given ansatz; however, the present.
author holds that those equations have deficiencies
similar to those of the unmodified PSS theory. For
example, the couplings due to PC and QC2 are
precisely the “fictitious (infinite-range) displace-
ment couplings” that are eliminated in the present
theory, and our “momentum-transfer term”, i ,
does not appear in (2.18).24@

It was suggested in Ref. 24 that the terms PC
and QC2 may be ignored if the electron mass is
sufficiently smaller than the nuclear mass. This,

‘however, only tends to obscure the difference
between that formulation and the present one.
First, it is not generally correct that®® “both @
and @ represent corrections which are smallerfby
the ratio of the electron to the nuclear mass as
nompared to He.” In the scheme presented here,
since P multlphes (- V), the effect of this term
is of order (m/p)”2 , not (m/ ©). Second, although
it is still true that there are many cases in which
these terms are negligible, the present author
holds that they basically should not appear in
close-coupled equations. Real electronic trans-
itions are not caused by these couplings; the
terms reflect deficiencies of the ansatz, rather
than the physics of the collision.

(4) We do not wish to imply by these remarks
that there is some kind of error or mistake in
Ref. 24. No such claim is made. As far as the
present author can tell, those papers give correct
analysis based on the ansatz (B1), so the methods
of Ref. 24 must give accurate results whenever
that ansatz is adequate. Furthermore, those pa-
pers correctly emphasize that much insight is
gained by thinking of charge-exchange as a re-
active-scattering problem.

The present author’s claim is that (a) there are
many cases (even for slow collisions) in which
truncation of ansatz (B1) leads to significant in-
accuracy, simply because the geometry of the
ansatz is not well suited to the geometry of the
potential, and (b) in those cases, ansatz (B2)
should give better results.

(5) As one illustration of the difficulties that will
be encountered in attempts to use the methods of
Ref. 24 (or unmodified PSS methods in general),
let us consider the case of charge exchange be-
tween protons and hydrogen atoms at relative en-
ergies of, say, 50 keV:

H* +H(ls)-H(1s)+H*. (B5)

This process has been quite accurately describeds®
in the classical-trajectory framework using only a
two-state basis (¢, and ¢, ). However, momen-
tum-transfer factors were an essential part of the
calculation, and it was shown that if they were
neglected, the calculated exchange cross section
would be much too large.

In Ref. 24, the matrix elements do not include
momentum-transfer factors. Therefore, the ef-
fects of those factors must either be completely
neglected, or at best, imitated by the effects of
virtual transitions to excited states. In any case,
this method cannot give an adequate description of
process (B5) in this energy range by using only two
basis states.

The present equations (29) also will not give a
very accurate description of process (B5) in this
energy range, but we can see the reason why; in
these equations, momentum-transfer effects are
included only to first order. On the other hand,
the integrodifferential equations (12) do give a
good description, for it was proved in Appendix A
that they reduce to the exact classical-trajectory
equations including momentum-transfer factors.

APPENDIX C: FURTHER EXPLANATION OF
THE STEP FROM (26a) TO (26b)

For readers who do not find this step to be very
obvious, we try to give a bit more explanation
here.?® First, note that in this paper, we are
consistently using “mathematician’s notation” for
changes of variable: if
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XI(RM) = exp(ik - R™)
then
xp(Ry) = exp(ik - RY)

regardless of the relationship between R and R7.
Now suppose ansatz (6) contains just two terms

v =XA(ﬁ.'4")¢A+XB(§'7£)¢B .
Then (26a) is two equations
M, RO)x2®RD)+M, B(R:;')xg(R )=0,
My, B @)+ M o, @ @) =0

(26a’)
(26a’’)

The independent variable in the first equatxon is
Rm =, and the equation holds for all values of R”‘
Among other things, it holds when the components of
™ are equalto (0.98, 2.317, 1. 64) The independent
var1ab1e in the second equation is R , and the equation
holds for all values of R%. For example, it holds
when the components of R are equal to (0.98,
2.317, 1.64). Since both equations hold in general,

they both hold if ﬁjg’ and ﬁg should “accidentally”
happen to have the same numerical value. But, for
integration of those equations, it is most useful to
compare surfaces in configuration space where R"‘
and R”‘ do have the same numerical value. (The
fact that they are distinct surfaces is not relevant
to the mtegratmn ) Thus, if we let the numerical
value of R"‘ be denoted (R"') then Eq. (26a’) is
equivalent to

My, ®myxp®™y+ M7 R™)x 3 ®my=0.

Then at the (distinct) configuration-space surface
where R ; happens to be equal to (R), Eq. (26a’’) is
equivalent to

My, ®™yx @™+ M, ,B™yxm@®™)=0.  (26b’’)

Since Egs. (26a’) and (26a’’) must both be true,
Egs. (26b’) and (26b’*) must also be true. Further-
more, by constructing the solution to (26»’) and
(26b’7), we have the solution to (26a’) and (26a’’).
Therefore, (26a) and (26b) are equivalent.

(26b’)
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