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Highly excited states of a hydrogen atom in a strong magnetic field
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Chemistry Department, College of William and Mary, Williamsburg, Virginia 23185

D. W. Noid
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
and Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916
(Received 8 October 1982)

Classical trajectories and semiclassical energy eigenvalues are calculated for an atomic electron in
a high Rydberg state in an external magnetic field. With the use of perturbation theory, a classical
trajectory is described as a Kepler ellipse with orbital parameters evolving slowly with time. As they
evolve, the ellipse rocks, tilts, and flips in space, but the length of its major axis remains approxi-
mately constant. Exact numerical calculations verify that perturbation theory is quite accurate for
the cases considered (principal quantum number ~30, magnetic field <6 T). Action variables are
calculated from perturbation theory and from exact trajectories, and semiclassical eigenvalues are
obtained by quantization of action. Excellent agreement is found with observations.

I. INTRODUCTION

Since the beginning of this century, it has been known
that when an atom is placed in a magnetic field, the mag-
netic moments associated with orbital and spin angular
momenta are coupled to the field, splitting individual
atomic spectral lines into several components. Very de-
tailed quantitative descriptions of these effects were ob-
tained,"”? and the phenomena are now so familiar that it
might seem that there is nothing more to be learned about
isolated one-electron atoms in magnetic fields. However,
these familiar effects appear only when the magnetic field
is very weak compared to the electrostatic field. Recently
it has become clear that as the magnetic field is increased,
an atom will display a very rich diversity of behavior. In
this paper, we explore some of the interesting phenomena
that appear if the magnetic field is not so weak.’

Let us begin by sorting out the ranges of magnetic field
strength in which different types of behavior can occur.

' The Hamiltonian for an electron in a magnetic field con-
tains (P + ed /c )2, where o is the vector potential
B=Vx . ); there are therefore two terms, one linear
and one quadratic in B. Let us define the “linear” regime
as that range of field strengths and quantum states in
which the linear term is significant but the quadratic term
is negligible. Phenomena that occur here include the “nor-
mal” and “anomalous” Zeeman effects and the Paschen-
Back effect, all of which have been extensively studied.

We define the “quadratic regime” to be that range of
fields and states in which the quadratic term (e o7 /c)? is
significant, but still relatively weak, i.e., its effects are ob-
servable, but they can be calculated or at least estimated
using perturbation theory. This regime is the main subject
of this paper.

As the magnetic field strength is increased further, our
calculations have shown that classical orbits of the elec-
tron do not retain their orderly, multiply periodic
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behavior; they become irregular or chaotic. It is believed
that this implies that the quantum-mechanical energy
spectrum will also be irregular.*

For very strong magnetic fields, there is another regime
in which orbits are regular, but totally different from fa-
miliar elliptical orbits.’> If the field is so strong that the
magnetic force on the electron is much larger than the
electrostatic force, then the electron will move on an ap-
proximately helical path. Hence the atom must have the
shape of a long tube, with the electron spiraling rapidly
around a field line and traveling slowly back and forth
along the field line. We hope to study these trajectories
and their associated quantum states in the future.

In this paper we present the results of our studies of the
“quadratic region,” where (e.oZ /c)? is significant but not
too large. The primary motivation of this paper is to in-
terpret the spectrum of energy levels that was observed in
Kleppner’s laboratory at Massachusetts Institute of Tech-
nology (MIT).3

After specifying the coordinates and Hamiltonian in
Sec. II, we will use perturbation theory to calculate classi-
cal orbits in Sec. III. The results will be compared with
exact, numerically computed orbits in Sec. IV. Then in
Sec. V we quantize the action variables associated with
these orbits to obtain a discrete energy spectrum. Excel-
lent agreement is found with observations and calculations
made at MIT.

II. DEFINITIONS, COORDINATES,
AND HAMILTONIAN

We take the nucleus to be infinitely massive, and at rest.
Let T represent the position of the electron relative to the
nucleus, with length r.

In a space-fixed frame with unit vectors i,,k, let
x',y’,z' be the components of T, and let P be the canonical

7 ©1983 The American Physical Society
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momentum of the electron, with components Px"\Py'sPz'
For a uniform magnetic field in the 4z’ direction,
B =Bk, the vector potential is

o =—37xB
=—1B(y'T—x'}]) 5
and the Hamiltonian for the electron of mass® y is
H'=L(f5+e.xz?/c)2-Zez/r
2

=p%/2u+eBL, /2uc+e*B*x"+y")/8uc?

—Ze?/r . (2)

The main effect of a magnetic field is to cause the plane
of the orbit to precess at the Larmor frequency
oy =eB/2uc, and the Hamiltonian is simplified if we
transform to a frame of reference that is rotating the same
way. Let

x=x'coswyt+y'sino;t ,
y=—x'sino;t+y’ coswt , (3)
z=z".
In classical mechanics, the appropriate canonical transfor-
mation has the generating function
Wi =p,(x'coswpt+y'sinw;t)

+py(—x'"sinwy t +y' coswr t)+p,z’ (4)
from which the transformed Hamiltonian is obtained by
the usual rules

pi =0W_./3x{, x;=3W_/dp;,
H=H'+0W, /ot .
A straightforward calculation gives
H=p?/2u—k/r+AMx*+y?),
k=Ze?, A=e’B?/8uc*. (6)

In this precessing frame, the term linear in B has disap-
peared, and the Hamiltonian contains a cylindrically sym-
mzetric attractive effective potential-energy proportional to
B-.

In Sec. III we use standard methods of celestial mechan-
ics to find the evolution of the orbit, assuming that the B?
term is weak compared to the Coulomb term.’

III. DESCRIPTION OF CLASSICAL MOTION
BY PERTURBATION THEORY

In perturbation theory, the trajectory of the electron
may be described as a Kepler ellipse with orbital parame-
ters that evolve slowly in time. For this purpose, Kepler
action and angle variables provide the simplest canonical
momenta and coordinates.

A. Action and angle variables for unperturbed
Kepler ellipses

Action and angle variables for the Kepler problem?® are
given in Table I and indicated in Fig. 1, in the rotating
X,y, z coordinate system.

The plane of the orbit intersects the xy plane in the line
of nodes; the ascending node is the point at which the elec-
tron passes through the xy plane from negative to positive

TABLE 1. Variables describing Kepler ellipses.

Action-angle variables
I,=L,

I,=L
Iy=(uk?/—2Hy)?

z component of orbital angular momentum
Magnitude of orbital angular momentum; I, > |1, |
Principal action, related to the Kepler energy,

and corresponding to the principal quantum

number; I5>1,

& Longitude of ascending node
23 Argument of perihelion
b3 Mean anomaly, related to the true anomaly X

Other variables
i=cos~NL,/L)

Polar angle specifying orientation of angular

=cos~ (I, /I5) momentum vector
P=¢,—7/2 Corresponding azimuthal angle
X True anomaly, or geometric angle between Laplace

vector and instantaneous position of particle

a=—k/2H,=1%/uk

b=(aL?/uk)?
=1,1s/uk

e=(1 _b2/a2)l/2
=(1-13/1)""

A=pke

T=2nI3/uk?

Ho=p?*/2m —k/r

Eccentricity

Major semiaxis
Minor semiaxis

Magnitude of Laplace vector
Period of Kepler orbit
Kepler energy
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Kepler ellipse

plane of orbit

<\

direction of motion
line of nodes
ascending node

FIG. 1. Kepler orbit in space.

z, and ¢, is the angle between the x axis and the ascending
node. The angular momentum vector is distinguished by a
canonical arrowhead, and it is perpendicular to the plane
of the orbit. Its polar and azimuthal angles are i and ®.
The Laplace (or Runge-Lenz) vector

A=BXL—pkt/r )
points in the direction of the perihelion and has a magni-
tude which is proportional to the eccentricity e of the or-
bit; it is shown with a flat arrowhead in Fig. 1. The argu-
ment of the perihelion ¢, is the angle, measured in the
plane of the orbit, between the ascending node and the La-
place vector. The ‘“true anomaly” X is the angle between
the Laplace vector and the instantaneous position of the
particle (again measured in the plane of the orbit). The
angle variable ¢; is called the “mean anomaly”: Like X, it
increases by 27 every time the particle goes around one cy-
cle, but unlike X, ¢; increases linearly with time. All three
angle variables ¢,,4,,¢3 have the range [0, 27).

Action variables in the Kepler problem (Table I) are re-
stricted such that

[ 1| <<y . (8)

The first of these is just | L, | <L, and the second follows
from the fact that the principal action is a sum of radial
and angular actions. In quantum mechanics (8) corre-
sponds to [m | <I<n—1.

Geometrical information is extracted from action-angle
variables as follows. The polar angle i between the angu-
lar momentum vector and the z axis is given by
cos~YL,/L)=cos~!(I,/I,), and the corresponding az-
imuthal angle is ¢;— /2. Since these two angles specify
the direction of the angular momentum vector, they define
the plane of the orbit. Then ¢, tells the orientation of the
ellipse in that plane. The major semiaxis of the ellipse, a,
is a function only of the energy a= —k /2H, so it is cal-
culable from I, and the minor semiaxis is calculated from
a and the angular momentum.

Conversely, given the instantaneous position T and
momentum P of the particle, Kepler actions and angles
can be calculated by the following procedure. From T and
P, compute the vector angular momentum L and the
Kepler energy Hy=p?/2m —k /r. This gives I, I,, I;, ®,
i, and ¢;=®P+7/2. The Laplace vector can be computed
from (7), and, using its components, we can calculate polar
and azimuthal angles 6,4 and ¢,, giving the direction of
A. By perusing Goldstein’s figure 10.5,% we find

$r=cos ™ ![sin@ cos(¢4 — ;)]

and

(9a)

d3=yY—esiny, (9b)

where ¢ is the “eccentric anomaly,” related to the true
anomaly X by

tans X =[(1+e)/(1—e)]"*tant e . (9¢)

The relationship between the set {T,p} and the set
{I,,¢,]} is a canonical transformation, so it holds indepen-
dently of the Hamiltonian. For the Kepler Hamiltonian,
I, I, I, ¢y, and ¢, are constants of the motion, whereas
for the full Hamiltonian these quantities could change
with time, but the equations transforming T and P into I’s
and ¢’s hold in any case.

B. Effective Hamiltonian and conservation laws

Equations of motion are obtained by reexpressing the
Hamiltonian (6) in terms of action and angle variables,
and evaluating the canonical equations

¢;=0H /3I;, I;=—03H/3¢; .

In perturbation theory, the Hamiltonian (6) is divided into
zeroth-order and perturbing terms

H=Hy+AH, ,

(10)

and the canonical equations are averaged over one cycle 7
of the unperturbed Kepler motion

_A_fizT—l Of%d, (11a)
25%7 %fOTHldt], j=1.2 (11b)
ATIj R Of%d, (110)
z_a%j %f;H,dr], j=123. (11d)

Equations (11b) and (11d) hold because H, and 7 depend
only on I3, not on the other actions or angles. [Equation
(11b) does not hold for j=3; the equation for A¢;/7 has
other terms, but we do not use that equation.]

The average development in time of Iy, I,, I3, ¢, and
¢, is therefore given by canonical equations having the ef-
fective Hamiltonian
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7J—1’—1(12,<l52;11,13)=2L fTHldt . (12)
T 0

This effective Hamiltonian is evaluated in Appendix A,
and the result is

AH | =(AI3/4u%k2T3)
X[(I3+13)(513—312)
+5(13—13)( 13 —1%)cos2¢,] . (13)

Equations of motion for I’s and ¢’s are given in Appen-
dix B, but we can get most of the information we need
from conservation laws. The effective Hamiltonian AH,
is independent of ¢, because the magnetic term A(x%+y?)
is cylindrically symmetric; hence I,=L, is conserved.
This holds not only in first order, but also for the exact
motion. H is also necessarily independent of ¢3, because
we have averaged over one closed cycle of the unperturbed
motion, and therefore I is, to first order, a constant of the
motion. Since I3 is related to Hy, and Hj is related to the
major axis and the period of the Kepler ellipse, it follows
that the ellipse evolves under the perturbation in such a
way that its major axis, its zeroth-order energy, and the
period of motion of the particle around the ellipse, do not
change with time.

A third constant of the motion relates the time develop-
ment of I, to that of ¢,. This third conserved quantity is
of course the effective Hamiltonian AH, itself. In their
measurements of the spectrum of high Rydberg states of
an atom in a magnetic field, Kleppner and his collabora-
tors® found evidence that there may be three conserved
quantities associated with the motion. In the present for-
mulation these conserved quantities are found to be I,
H,, and I;. An alternative set of conserved quantities is
H, L,, and Hy; the first two of these are exactly conserved,
but H, is conserved only to first order in perturbation
theory. We already mentioned that when the strength of
the magnetic field is increased, the trajectories become ir-
regular; this implies that a third integral of the motion
does not in general exist, so H, cannot in general be con-
served.

C. Evolution of orbital parameters

As stated above, in the present framework we describe
the trajectory as an ellipse whose parameters evolve slowly
with time. Mathematically, the simplest representation is
in terms of action-angle variables, but this description re-
quires some translation in order to become physically
meaningful. We present the mathematical description
here.

We showed that I, and I; are conserved, but I, and ¢,
change with time. Their time derivatives are independent
of ¢, so ¢, is an ignorable coordinate, and we can discuss
the motion within the (7,,4,) phase plane. We have there-
fore reduced the problem to two canonical equations, or
one degree of freedom. Furthermore, we know that the
motion in the (I,,$,) plane is such that H, is conserved.
Hence if we draw a contour plot of H, as a function of I,
and ¢, for fixed I, and I, then I, and ¢, develop together
in time such that the system follows a contour of constant
Hl .

Contours can be calculated by solving the equation

H\(I,¢51,,1;)=HY (14)

for ¢, as a function of I,

(213H3 /D) — (1} +1})(513 —313)

cos2¢, = , 15
& S(I3—13)(13—12%) 13)
where
D=I3/2u%* . (16)

Alternatively, to obtain I, as a function of ¢,, one solves
the quadratic equation

al3+bI3+c¢=0, (17a)
where
a=5cos2¢,+3, (17b)
b=(2H? /D) —5I3(1+cos2¢,)
—I%(5c082¢,—3) , (17¢)
c=5I%1%(cos2¢,—1) . (17d)

Such contour plots are shown in Fig. 2. In all of these
plots I3=307%, while |I,|=0, 1, 5, 10, 15, and 25%.
From Eq. (13), we see that H; is periodic in ¢, with period
, and it depends only on I 2. hence these plots repeat
themselves in every interval [n,(n + 1)7], and plots for
+1I, are identical. Also, the plots are symmetric about
/2.

1 I;=1

Let us examine the graph with I;=1 first (in the
remainder of Sec. III C, the factor of # for I, I,, and I3
will be omitted). In this case I, must fall between 1 and
30, so there is a forbidden region between O and 1. When
I,=1,, H, is independent of ¢, and is given by’

HP™ =(1%/2uk?)(515—31%) (18)

which turns out to be the maximum value of H,. H, is
also independent of ¢, on the line I, =I5, where it has the
value

H = (12 /202212 4 13) . (19)
H| has a minimum when 3H,/3¢,=0 and 3H,/3I, =0,
$y=9¢7=m/2, (20a)
=17 =(1I;V5), (20b)
AP = (13 /20 2)(20 (V5T —20) . (20¢c)

This is a point of stable equilibrium; in Fig. 2(b) it is at
¢y=m/2,1,=8.19.

Around the equilibrium point, contours of constant H,
form closed loops. As time increases, a phase point would
move clockwise around a loop, moving most rapidly where
contours are close together, near the bottom of the loops.
We refer to motion around these loops as “libration.”

Other contours in Fig. 2(b) are open, extending from
one side of the figure to the other. A phase point moves
on these curves in a generally leftward sense, from 7 to O.
We refer to this motion as “rotation.”

Between rotation and libration curves is a U-shaped
separatrix. It joins the line I, =13 at two “T points,” so
the value of H, on the separatrix is HS™, and, from (15),
the separatrix satisfies the equation

cos2¢,= (13 +213)/(I}—13) . 1)
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30 30
] (a) (b)

1
[¢] 2 T (0] T T T

O T ] T l
0 : . : ,
© ng K (o] m/2
2
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¢ (f)
I —
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1
2 12
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© 7;:2 T (o} ™2 m
¢ .

FIG. 2. (a) Contours of constant H,(I,,¢I1,13). In all cases I;3/#%=n =30, and I, corresponds to L. Here I;=0. Abscissa in units
of fi. (b)I,=1%4. (c)I,=5%. (d)I,=10%. (e) I,=15%. f) I,=25%.
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The T points occur at
$r=¢3 =+ cos ' [(I}++I) /(17 —I3)],
where dH | /31, =0, and the lowest point of the separatrix
is at ¢,=7/2 and
I,=IY=V3I, .

(22)

(23)

Each of the T points is an unstable equilbrium, and since
they occur when I, =13, this means that circular orbits are
unstable if I, is small. The motion of a phase point
around the separatrix is also clockwise, starting at the
right-hand T point at t— — « and approaching the left-
hand T point as t— + . Points close to the separatrix
but inside it move along the loops, while those outside it
follow the rotational motion.

2. ISI] <lI;

If I, increases, the allowed region (8) decreases in size,
and the equilibrium point, the loops, and the separatrix
move upward in accordance with Egs. (20b), (21), and (23).
Also the range of values of H, between H"™ and H**
gets smaller. This is indicated in the plots with I, =5 and
10. As I, is increased further, the equilibrium point, the
loops, and the separatrix all cease to exist. Equations
(20b) and (23) tell us that the equilibrium point and the
bottom of the separatrix simultaneously pass through the
upper boundary of the diagram when

Il=f1=13/\/g. (24)

For larger I, only rotational motion occurs. For I close
to I3, I, remains nearly constant on the H, contours and
phase points move with ¢, decreasing at a nearly constant
rate. For these larger values of I, circular orbits are no
longer unstable.

3. I;=0

The case I, =0 is trickier, because in these variables, the
motion is actually discontinuous. For I,=0, the equilibri-
um point (20b) is at I, =0, and the separatrices are at

$r="=~+ cos~'(—2)=1.11 and 2.03. 25)

Only upper parts of loops appear in Fig. 2(a), and the
motion around a semiloop is clockwise, beginning to the
left of 77/2 and ending to the right.

The rotational curves have been broken into two parts
by the separatrices, and a phase point that starts at large
I, and ¢,=7 moves toward decreasing ¢, and I,, while a
point starting at small ¢, and I, =0 moves toward increas-
ing I, and decreasing ¢,.

What happens at I, =0? Classical mechanics does not
allow piling up of phase points (density in phase space is
conserved). Hence a phase point approaching I, =0 and,
say, ¢,=2.36 must disappear and reappear somewhere else
on a curve having the same value of H,. We can under-
stand this only by thinking of the case I; =0 as the limit
of 1) small but nonzero. Then we can see that this discon-
tinuous motion is the limit of the very quick passage of
the phase point through 7/2 that is apparent on the plot
for I, =1 [Fig. 2(b)]. This leads us to the rule that when
the phase point touches I, =0, it is reflected through /2,

$r>T— . (26)

The same thing happens near 37/2.

4. Evolution of ¢,

Let us now examine the time development of the previ-
ously ignored coordinate ¢;, the longitude of the ascending
node. Its evolution is governed by the equation of motion
(B1). It is easy to show that when we average over a
Kepler cycle (indicated by angular brackets), then
(d¢/dt) >0, so ¢, increases in every Kepler cycle.
Furthermore 3{d¢,/dt)/dI, <0 so the rate of increase of
¢, is larger when I, is smaller. When I, is small,
{d¢,/dt) is small unless I, is also small.

We have found an interesting approximate degeneracy
between the periods of motion of ¢, and ¢,. Let 7, be the
period for ¢;, so ¢, increases by 27 in the time ;. Then
for the rotational orbits, ¢, decreases by 27 in about the
same period,

T . (27a)
For librational orbits, the time required for ¢, and I, to
move around a loop in Fig. 2(b) is

Ty~ (27b)

This approximate degeneracy holds when I, is sufficiently
small, but not in general. In fact, in the opposite limit
I,—1I3, one finds from Egs. (B1) and (B2) a different de-
generacy,

<d¢1 >_ AL < dé, 4013
dr | uk?’ dt >_—;¢2k2 ’
S0 ¢, decreases by 27 when ¢; increases by 7/2,
Try= %Tl . (28)

IV. EXACT CLASSICAL MOTION

Above, first-order perturbation theory was-used to cal-
culate and describe trajectories of the Hamiltonian (6).
We have also computed essentially exact classical trajec-
tories, using numerical integration of Hamilton’s equa-
tions. The computations presented in this section verify
that first-order perturbation theory is accurate for states
around n=30 and fields less than 6 T. In addition, these
exact trajectories provide an alternative basis for semiclas-
sical calculation of the energy spectrum, which we will
present later.

In cylindrical coordinates,

p=(x*4+p)12 p=tan~y/x), z=z, (29)
the Hamiltonian (16) is
H=2u)""(ps+pi+p}/p?)
—k /(P22 24 02 . (30)

Pg=L, is a constant of the motion, ¢ is an ignorable coor-
dinate, and the equations of motion are

P5=Pp/l% i=pz/ﬂ ’
Pp=—kp/(p*+2?V*+p] /up®—2xp ,
p'zz_kz/(p2+22)3/2 ,

(31

b=ps/up’, ps=0.
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FIG. 3. (a) Rotating trajectory in p,z coordinates (a.u.). (b) Librating trajectory in p,z coordinates (a.u.).
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FIG.4. H,(?) vs ¢,(t) for exact numerically computed trajec-
tories (B=1T).

Trajectories were drawn on a two-dimensional plot,
with p and z as axes. When L, and A are both small, two
types of trajectories are found, as indicated in Figs. 3(a)
and 3(b). The first of these corresponds to what we previ-
ously called a rotating trajectory, and the second is a li-
brating trajectory. This correspondence was established by
calculating instantaneous values of Kepler actions and an-
gles from the instantaneous position and momentum of
the particle, using the procedure given in the next-to-last
paragraph of Sec. IIT A.

When projected into (p,z) coordinates, a Kepler ellipse
is folded. In Fig. 3(a), if one traces the orbit starting at
z=0 and p~ 500, near the center of the upper caustic, one,
sees the projection of a wide precessing ellipse. When the
trajectory touches either of the upper corners, the ellipse is
very narrow. Close examination reveals that on every
Kepler cycle, the ellipse touches four caustics.

To verify that our first-order calculations are accurate, .
it is sufficient to show that H, is approximately conserved
on the exact trajectory. Again using the relationship be-
tween {T,B} and {I,,¢,}, we have calculated the value of
H,(#) as a function of ¢,(?) for several exact trajectories.
The results plotted in Fig. 4 demonstrate that, as expected,
H, is not exactly conserved, but it has no secular change;
it fluctuates slightly in each Kepler cycle, but after a long
time it is still fluctuating in the same way about the same
value.

Similarly, Fig. 5 shows I,(t) (angular momentum) vs
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30

20 A

(0] ' 77'}2 ' a
28

FIG. 5. I,(t) vs ¢,(2) for exact numerically computed trajec-
tories (B=1T).

¢,(2) for some exact trajectories with L, =1. If the plot is
expanded, small fluctuations become visible, but the
correspondence between this figure and Fig. 2(b) is obvi-
ous.

V. SPECTRUM OF ENERGY LEVELS

In Secs. IIT and IV, we displayed properties of classical
trajectories of the Hamiltonian (6). With this information
in hand, it is now quite simple to compute a spectrum of
semiclassical energy levels of our Hamiltonian. Classical
action variables can be calculated either from perturbation
theory or from the exact numerically calculated trajec-
tories, and in either case, the spectrum is obtained by
quantizing the action variables.

A. Action variables and quantization conditions
for exact trajectories

It turns out that we cannot give a correct quantization
prescription in perturbation theory until we examine the
trajectory in p,z coordinates. Hence it is most convenient
to consider exact trajectories first.

As is well known,® action variables are defined as

4= Sﬁc > prdax
i %

on topologically distinct paths C;. An outline of a rotat-
ing trajectory is shown in Fig. 6(a); C, is a path on which
p is constant, and p, as a function of z can be obtained nu-
merically as a Poincaré surface of section (every time the
numerically computed trajectory passes through p=p, in
the positive sense, the values of p, and z are recorded by
the computer). This gives the set of points shown in Fig.
7(a), and the action variable!!

A,= ¢C p.dz

(32)

(33)

1680 ; . : : .
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FIG. 6. (a) Outline of a rotating trajectory, and integration
paths C,, C,, and C,. (b) Outline of a vibrating trajectory, and
integration paths C,, Cp, and Cp.

is the area inside the curve that is interpolated from the
set of points. Now the path C, touches two caustics, and
since they look like ordinary “fold” caustics!?> we expect
that each contributes 7/2 to the phase of the wave func-
tion. Hence the quantization condition is

P, pdz=(n,+5)h (34)

where n, is a (non-negative) integer.

The path C, in Fig. 6(a) is topologically distinct from
C,. C, is obtained by following the trjaectory itself from
one Poincaré surface point to the next, then closing the
loop on the p=p, surface of section. This path touches
four caustics, and since again each looks (more or less) like
a fold caustic, we suppose that each contributes 7 /2, and
the quantization condition is
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FIG. 7. (a) Poincaré surface of section for a rotating trajecto-
ry. Surface is p=p,, and the graph shows p, as a function of z
on this surface. (b) Poincaré surface of section for a librating
trajectory. Surface is z=z,, and the graph shows p, as a func-
tion of p.

A,= ¢Cp (ppdp+p.dz)=nyh , (35)

where n, is a positive integer (not zero).
Clearly n, is related to the principal quantum number

n. The latter is proportional to the sum of radial and an-
gular actions around an unperturbed Kepler ellipse

nfi=I;= % gS prdr+ped6+pydd

1
= Z_‘ ¢ deP+Pde +P¢d¢=npﬁ+Lz ’

SO

n,=n-—m (36)

again confirming that n, should be a positive integer.

For a librating trajectory, shown in outline in Fig. 6(b),
C, is a path on which z is constant, and C, is a path like
C,. By the same arguments, the quantum conditions are

G, o=ty 0. o

456 Ppdp+p,dz=nyh , (38)
4

where n, and n, are, respectively, non-negative and posi-
tive integers.

B. Action variables from perturbation theory

Quantization of classical perturbation theory requires
additional thought, but it gives more information about
the spectrum.

We showed in Sec. III B that I, and I; are, respectively,
exact and approximate constants of the motion. It follows
that they are quantized just as in the zeroth-order, unper-
turbed Kepler problem

(39)
(40)

with m,n integers |m | <n—1. The third conserved
quantity in the unPerturbed problem is I,, which would be
quantized as (/+ 5)%, but this is not conserved for the full
Hamiltonian (6). In its place is the new action variable

A= P Ids,

which is computed holding I, and I, fixed. For librating
trajectories, this action variable is the area inside one of
the loops in Fig. 2, while for rotating trajectories it is the
area under one of the corresponding curves, extended from
0 to 27w. An analytic formula can be found for 4, in
terms of complete elliptic integrals, but it is more practical
to evaluate the integral numerically.

41)

C. General properties of the spectrum

Even before we compute these areas, we can see many
qualitative properties of the spectrum. The total number
of states for given I, and I is #~! times the area between
the lines I, =1, and I,=15; i.e., it is I3 —1,)/# or n —m,
of course. For every state, the correction A E to the un-
perturbed energy is positive, since AH; >0. In perturba-
tion theory, A E is linearly proportional to A, i.e., the ener-
gy shift is proportional to the square of the magnetic field.
The shift is greater than (20c) and less than (18),

AHT" < AE <AHT* (42)
so we have an upper and a lower bound on the spectrum.
Since there are two types of trajectory, there are two
types of quantum states, which we again call librational
and rotational. Librational levels are doubly degenerate:
One group is associated with loops centered at 7/2 and
the other with loops at 37 /2. For the former, the wave
function, like the trajectory, is mainly confined to a region
close to the —z axis; the latter group is oriented opposite-
ly. Wave functions which are also eigenfunctions of the
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parity operator can be constructed as linear combinations
of two degenerate librational wave functions, and presum-
ably the degeneracy is split in higher order because of tun-
neling. (Numerical calculations presented later show that
this splitting is very small.) .

The total number of librational levels is proportional to
the area inside the U-shaped separatrix. A quick calcula-
tion (Appendix C) tells us that this number is an even in-
teger close to

r_m
57

NL=—2" 13 —Il(DOS_1

7

21,
(17

(43)

A somewhat simpler formula is obtained by approximat-
ing the U by a rectangle; using (22) and (23) we immedi-
ately obtain

Np~(I;—V5I)(1—2¢1 /m) /% . (44)

Rotational states are nondegenerate. They have higher
energies than librational states, and adjacent states
presumably have opposite parity. In the observed spec-
trum it should not be difficult to identify the transition
between rotating and librating states. A phase point takes
a very long time to travel along the separatrix, and rotat-
ing or librating paths near the separatrix have very long
periods, or very low frequencies. From the correspon-
dence between energy gaps and frequencies, we conclude
that the two energy levels of given n and m that lie closest
together correspond to trajectories that lie closest to the
separatrix. Furthermore, the energy of the separatrix is
given by (19), and this should also mark the boundary be-
tween librational and rotational levels.

D. Quantization prescription in perturbation theory

For quantitative calculation of the energy spectrum, a
quantization condition is needed. We found that an accu-
rate energy spectrum is obtained from the prescription

Ary=P Ldp,=(n,++)n 45)

i.e., the new action variable is quantized in half-integers
for all states. One can “prove” that this prescription is
correct by the following method. Consider first the rotat-
ing states. The new action variable can be written as
2

Ay= [ hdg,= [ 1,dé\+L,dg,+1sd¢;,  (46)
where the last integral is evaluated on a path on which ¢,
and ¢;3 are constant and ¢, goes from O to 277. From the
canonical invariance of the form ¥, p;dq,

Ar= [ p,dp+p.dz+pyds 47)

on a corresponding path in pz¢ space. That corresponding
path is obtained using equations given in Sec. IIT A, that
relate {I,,¢,} to (B,T). For ¢,=0, ¢3=m/2, and ¢, vary-
ing from O to 2, one finds by numerical calculation that
the projection of that path in p,z coordinates is the closed
loop labeled C, in Fig. 6(a). Moreover, from these calcu-
lations, or by careful thought and attention to Fig. 1, one
finds that if ¢, increases by 27 holding ¢, and ¢; fixed,
then ¢ must increase by 27. Therefore,

A, = ¢Cz'ppdp+pzdz +27L, . (48)
Finally, the path C, is topologically equivalent to C,, so
A= gSCZ ppdz +2wL, =A, +27L,
=(n,+~5+mh , (49)

i.e., for rotating states, 4, is quantized in half-integers
greater than m,

ny=n,+m . (50)

For librating states, a similar analysis leads to the path C,
in Fig. 6(b), and most of the same argument follows.
Motion of ¢, around a librational loop leaves ¢ un-
changed, so for librating states

Ay=(n,+5)h, (51

TABLE II. Quantization conditions.

Iy=L,=m#
I3=nﬁ
L=(1++)

1
5= & Bdga=tno+ 1o

L1

=
2 2w Jc,
1

1 1
3= 2 P pde=tnt

or fpp/’dp +pzdz=npﬁ

1 1 1
—A,=— dp= =)
DY R €ﬁcppp p=mp+7)
Quantum number
in perturbation theory

n <

ny, <>

Exact

For unperturbed problem, and in first-
order perturbation theory

Unperturbed problem only

First-order perturbation theory
For exact orbits
For exact rotating orbits

For exact librating orbits

Quantum number
for exact classical trajectory
n, +m
n,+m for rotating states
n, for librating states
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(52)

These quantization conditions and the relationships be-
tween them are summarized in Table II.

ny ZHP .

E. Energy spectrum

Calculated energy levels for B=1 T, n=30, and m=1
are presented in Table III. The first set of columns shows
the result of quantized classical perturbation theory, Eq.
(45). The numerical precision'? of this calculation is such
that the error in the last digit should not be more than +2.
The next column shows corresponding results of quantum
perturbation theory; these energies were obtained by ex-
panding the wave function in a hydrogenic basis, and di-
agonalizing the Hamiltonian matrix within the 29-fold de-
generate manifold of states having m=1 and n=30. (The
matrix was first divided into two uncoupled parts, a
15X 15 block of odd-parity states and a 14X 14 block of
even-parity states; then eigenvalues within each block were
calculated numerically.) This calculation, as well as the
“full quantum” calculation, were kindly provided to us by
Hulet.

Examining these results, one finds the following.

(i) At low energies there are four doubly degenerate li-
brational levels, or eight such states. This is in agreement
with Egs. (43) and (44), which for 7, =1 and I3 =30 give,
respectively, Ny =7.87 and 8.17.

(ii) The largest energy shift A E for a librational level is
~0.19 cm ™!, consistent with (19), which gives 0.20 cm ™!
as the boundary between librational and rotational levels.

(iii) The quantum calculation shows some evidence of a
tiny splitting between nearly degenerate librational states,
but the energy gap is in the sixth figure, and we are not
certain of the precision of this calculation.

(iv) The smallest energy shift is 0.0571 cm™!, and the
largest is 0.9751 cm~!. These are consistent with the
bounds predicted by (42), which are, respectively, 0.0291
and 1.004 cm™— !,

(v) The smallest energy gap between adjacent levels is
the one between 20R and 21R, which are the two rotation-
al levels lying closest to the separatrix.

(vi) To within the precision of these calculations, quan-
tum perturbation theory and quantized classical perturba-
tion theory are in essentially exact agreement with each
other. The largest discrepancy between the two occurs for
state 21R, and this might be associated with quantum ef-
fects related to the classical separatrix.'4

An “exact” full quantum calculation was also carried
out. In this case the expansion of the wave function in-
cluded all hydrogenic states having m=1 lying between
n=27 and 34. Results of this calculation are also shown
in Table III. These exact energies are essentially identical
to those obtained by quantum perturbation theory except
in the following respects.

(i) The apparent splitting between nearly degenerate li-
brational levels might be very slightly increased, but it is
still very small.

(ii) The energies of the highest levels are slightly de-
creased. This represents the usual sort of higher-order
correction to first-order perturbation theory. The first-
order energy correction is just AH, averaged over an un-
perturbed orbit or quantum state. In second order, the
trajectory or wave function adjusts to the perturbation,

90 -

100

1o
-E
(em™)

120

130

ol 2 3 4

B (T)
FIG. 8. Spectrum of energy levels for m=1, n=29, 30, and

31. Solid lines are results of perturbation theory. Points are ex-

act semiclassical eigenvalues for the highest-energy state in the

n=30 manifold.

shifting away from regions in which AH, is large.

We also calculated energy levels using exact numerically
computed trajectories and action-variable quantization, as
discussed in Sec. VA. For B=1 T, these calculations are
quite time consuming, because Kepler ellipses precess very
slowly, and it takes many cycles to obtain the data of Fig.
7. We obtained energies for only a few representative
states. Table III shows agreement between this calculation
and the full quantum calculation.

Energy levels as a function of magnetic field strength
are shown in Fig. 8. These are in very good agreement
with calculations and experiments reported in Ref. 5.

VI. CONCLUSION

Using a combination of perturbation theory and exact
trajectory calculations, we have studied classical orbits of
an electron in a high Rydberg state in an external magnet-
ic field. By quantizing the resulting action variables we
have calculated the spectrum of discrete energy levels.
Our results are fully consistent with quantum calculations
made for us by Hulet, which in turn are consistent with
experimental measurements made at MIT. Our semiclas-
sical pictures provide a way of interpreting such experi-
ments.
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APPENDIX A: EVALUATION OF THE EFFECTIVE
HAMILTONIAN

Equation (11) tells us that we have to average
AH | =MA(x? + y? over time on a Kepler ellipse. The cal-
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culation can be done in a number of ways, most of which
require some pages of analysis. The cleanest derivation we
found is given below.
Define
= 1
H,-j=; ¢x,-xjdt , (A1)
where x; =x,,z for i=1,2,3 and the integral is performed

on a Kepler ellipse. The nine components 17,-1- form a ten-
sor, which transforms under rotations of coordinates as

H'=AHA' (A2a)

if components x’ in rotated coordinates are related to
components x in the original system by

x"=A4x . (A2b)
Furthermore,
AH,=MHy +H,y) . (A3)

Consider the following sequence of coordinate transfor-
mations: (i) rotate by ¢; about the z axis, (ii) rotate by i
about the new x axis, and (iii) rotate by ¢, about the re-
sulting z axis. Then in the rotated coordinate system, the
positive z" axis coincides with the angular momentum
vector, so the orbit lies in the x"’y" plane, and the positive
x'" axis passes through the perihelion. It immediately fol-
lows from symmetry that

Hynr 00
H'=| 0 Hy 0 (A4)
0 0 0

and we can calculate A using the reverse transformations.
Rotation matrices for steps (ii) and (iii) are, respectively,

1 0 0
A;= 10 cosi sini |, (A5a)
0 —sin/ cosi
cosp, sing, O
Ajii = | —sing, cos¢, O (A5b)
0 0 1

Multiplying out the matrices for the reverse transforma-
tions

H=4{4lH"dud;
a moment’s calculation gives
AH | =A[ H,nyr(cos’p,+cos?i sin’p,)
+ H,yyn(sin’p, + cos?i cos’¢,)] . (A6)

Rotation (i) and its inverse leave H; invariant. Defining

Hy =H oyt Hyryr (A7)
and using
cos’d, = +(1—cos2¢,) ,
sin?g, = +(14cos2¢,) ,
we obtain
AH,=A[H,, 5(1+4cos%)
+(Hyogn— 5 H, (1 —cos? )cos®2¢,] . (A8)

The integrals H,, and H,..~ are now most easily calcu-
lated using the so-called eccentric anomaly 3 as an auxili-
ary variable,

Bp=L 12+ =L 2 (A9)
T T

since z"'=0 on the orbit. Using Egs. (3-69) and (3-76) of
Goldstein’s second edition,®

dt T
3 - —_— —— 1—
r=a(l—cosy), v 217_( cosy) ,
we obtain
—_ aZ 27 3
r=5-J, (1—ecosy)dy .

Only terms with even powers of ¥ contribute, and
H,=a%1+2e?). (A10)
For H,.,» we note that
x''=r cosX

and that the geometrical angle X between the perihelion
and the instantaneous position of the particle is related to
the eccentric anomaly ¥ by Goldstein’s Eq. (3-77),

cosX =(cosy—e)/(1—e cosyp) ,

SO

1
Hyr=— P r 2cos?x dt

02 27 2
=5 fo (1—e cosy)(cosyp—e ) dy

=a¥2e2+1). (A11)
Combining (A8), (A10), and (A11), we obtain
AH, =Aa[(14+ +e?)5(1+4cos?)
+3e?+(1—cos?)cos2¢,] . (A12)

This can be reexpressed in terms of action-angle variables
using formulas in Table I, and the result is Eq. (12).

APPENDIX B: EQUATIONS OF MOTION

For reference we list here the equations of motion for ¢,, ¢,, and I,, derived from Hamilton’s canonical equations us-

ing Eq. (12),

<d¢,>_ 3H, M}
dt |7 aI, T 2uk2a3

[(5I%3 —3I2)I,—5cos2¢,I,(I3—12)],

(B1)
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dgp\ _BH\  —Mi 5 4 22 g4
—=)=A =———[(5I1I5+4313)—5cos2¢,(I115—13)], (B2)
< ar > ar, 2,u2k21§[( il3+313)—5cos2¢,(1115—13)]
di, 0H,  +AI3 s aa n
—)=— =———>[5(I; —I1)I5—1I3)sin2¢,] . B3)
< o > 3, 2/.¢2k21§[ VU313 $1 (
The angular brackets (dx /dt ) mean that the time derivative is averaged over one Kepler cycle.
APPENDIX C: NUMBER OF LIBRATIONAL dé, 212
— = C3
STATES dl,  (12—I2) 12 —513)\/2 (€3
To compute the area inside the two U-shaped separa- .
trices, we find the area inside half of one of them, and and the substitution
multiply by 4, u=(I%—5I%)1/2
o7 reduces (C2) to
- T_m_
2aNp =4 |13 |¢; ) fﬂ/212(¢2)d¢2] ) (3] o fuz_ﬂ%)l/z du 3 » 21,
o w241} ! (I3 —13)'72
where I,(¢,) refers to the right-hand half of the U. The (C4)
integral in Eq. (C1) is most easily evaluated using I, as the
independent variable Therefore
of i ddy 2 \p, gr ]2
= —I= Ny=—|I —— |- _—
fﬁ/212(¢2)d¢2— flglz al, dI, . (C2) r=— 1|4 5 | —1icos )7
From Eq. (21), we have on the separatrix (C5)
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variable. The correct prescription for an arbitrary loop is Eq. theory is accurate in this case only to about six figures (less for

(32), and since we take p=const, dp=0 and the action integral the highest levels). Also, some error arises from taking u=1,

reduces to (33). which we used for consistency with the calculations made for
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and accuracy. Our numerical techniques should give almost tion. One expects that similar phenomena will occur here.

seven-figure precision for the energy levels, but perturbation
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