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Electron detachment in negative-ion collisions. II. The dynamical complex potential
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Physics Department, The College of William and Mary, Wilit'amsburg, Virginia 23185

(Received 23 June 1983)

Early experiments on collisional detachment of electrons from negative ions were interpreted in

terms of a "local" or statIc" complex potentIal. In the preceding paper we developed a more gen-

eral close-coupling framework for describing such collisions. In this theory, the amplitude for find-

ing the electron in the bound state C &(t) satisfies an integro-differential equation. %'e define an

"exact" or "dynamical" complex potential 8'(t} such that C &(t) =exp —i 8'(t')dt'/A . An
0

integral equation for 8'(t) is derived and solved. It is found that in slow collisions, the dynamical

complex potential oscillates about the static complex potential. Approximate formulas for 8'(t) are

given.

I. INTRODUCTION

In thc preceding papcI', 1t was shown that proccsscs 1n-

volving transitions from a discrete state to a continuum
can be described in the semiclassical close-coupling frame-
work by a set of coupled differential equations, and that
under assumptions believed to be quite general, the solu-
tion to those equations can be obtained from the solution
to a single integro-differential equation

i' C, (t) =5(t)C, (t)+ f Ã(t, t')C, (t')dt',

where C &(t) is the amplitude for finding the system in
the bound state as a function of time, i.e., it is the proba-
bility amplitude for survival of the negative ion. The pur-
pose of this paper is to find solutions to this fundamental
equation (1.1).

For the rest of this paper, we will be considering only
C &(t) and not C,(t), so we will simplify the notation by
dropping the subscript, writing

where V &, is the coupling matrix element between
discrete and continuum states, and p, is the density of
continuum states. Later Demkov and his collaborators
showed that if a d1screte state moves through a cont1nuum
linearly with time, and if the coupling matrix elements
V ~,(t) are independent of time, then the exponential de-

cay law again holds. However, the assumptions made in
these derivations cannot be valid for most negative-ion
systems, because experiments have shown unambiguously
that the exponential decay law with a local complex po-
tential sometimes makes incorrect predictions about iso-
tope effects.

By solving the fundamental equation (1.1), we can find
the exact behavior of the survival amplitude C(t) [subject,
of course, to the assumptions made in deriving Eq. (1.1)];
this enables us to find conditions under which exponential
decay occurs, and it enables us to give an accurate descrip-
tion of systems that decay nonexponentially.

Let us define 8'(t) such that

C(t) =exp i f I'(—t')dt'

C &{t)—=C(t) . {1.2)
I.e.,

In early treatments of electron detachment it was as-
sumed that the unstable negative molecular ion AB
which is temporarily formed in the collision, decays by
electron emission according to an exponential law, so that
the survival probability is given by

P,{t)=
~

C(t)
~

=exp —f I [R {t')]dt' A' . (1.3)

5'(t) =i%'C(t)/C(t) . (1.6)

8'(t)=4(t)+ f, S(t,t')exp i f 8'(t")dt" A' dt',

For all t such that C(t)&0, 8'(t) is finite, continuous, and
differentiable. Substituting (1.6) into (1.1), we obtain an
integral equation for 8'(t),

1=2sr~V ), ~ p, , (1.4)

—,I" can be regarded as the imaginary part of a local com-

plex potential. This assumption of exponential decay fol-
lows a long tradition in physics, one that goes back to the
first studies of the decay of radioactive nuclei. In a study
of atomic autoIonlzatlon, FRIlo showed that 1f RIl 1solatcd
state is imbedded high in a continuum, then the decay is
indeed exponential, and

w1th thc bouIldary condition

8'(t, ) =A(t, ) .

(1.7)

We take to to be a time long before the collision, when

S(t,t ) is insignificant. Then 8'(t) remains equal to h(t)
until S(t, t') becomes substantial, at which time t tzis-
large. Changing to variables t, r= t t', Eq. (1.7) bec—omes
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(1.9)

The analysis above is exact, and (1.9) is just another
form of the fundamental equation (1.1). However, 8'(t) is
amenable to a physical interpretation: Because of the
close relationship between (1.5) and (1.3), if the local-
complex-potential model were correct, then Im[ 8'( t) ]
would have to be equal to —,I (R(t)}. But since 8'(t) is
defined by its relation to the exact solution to (1.1), we
may think of it as an exact or dynamical complex poten-
tial, which may or may not be close to the local or static
complex potential.

In this paper we shall give ways of calculating 8'(t) by
solving (1.9), and we shall show that for slow collisions
the dynamical complex potential approaches the static
complex potential. However, we shall also show that they
cannot be identical; they differ in some obvious ways and
in some surprising ways.

II. SLOW COLLISION APPROXIMATION
AND THE LOCAL-COMPLEX-POTENTIAL

FORMULAS

In this section it is shown that for slow collisions, 8'(t)
tends to approach the local complex potential. To estab-
lish this, we must assume that the time scale on which
8'(t) changes is comparable to that on which b, (t) and
V &,(t) change, and that this time scale is long compared
to the time Ar on which S(r;t) is significant. Then in
(1.9) we can replace 8'(t") by 8'(t), to obtain

8'(t)=b(t)+ f Ã(r;t)exp[i@'(t)rifi]dr . (2.1)

Since h~ is also small compared to t —to, we can replace
the upper limit by infinity. We then recognize that the in-
tegral in (2.1) is just the Fourier transform of 8 that was
introduced in Eq. (3.17) of the preceding paper. ' Con-
sistent with the approximation 8'(t")=8'(t), which was
already made, we may also use the short-memory approxi-
mation, V, ,(t')=V &,(t), which leads us to Eq. (3.19)
of Ref. 1. Thus for slow collisions, 8'(r) is approximately
equal to the solution to the equation

(2.2)

and, substituting this back into (2.2), the first-order ap-
proximation is

(2.4)

Let us define 8', (t) as the exact solution to this approxi-
mate equation (2.2). Once G, (E;t) is known, 8', (t) can be
obtained by an iterative algebraic process: The zero-order
approximation is

(2.3)

and so on. For a slow collision, the exact 8'(t), defined in
Eq. (1.5), will be close to 8', (t)

Equations (2.2) and (2.4) represent two different ver-
sions of the classical local-complex-potential formulas; if
this is not already clear, we may use Eq. (3.20) of the
preceding paper' to obtain

Im[8',"'(t)]=—m
~

V ( g(, )(t) ~ pg(, ), (2.5)

which corresponds directly to (1.4).
It is very pleasing to arrive in this way at the local-

complex-potential formulas because they are familiar re-
sults, known to be applicable to some systems. The above
is one of the most general derivations of these formulas
that has yet been given. Other treatments have relied
upon the hypothesized existence of a long-lived quasi-
bound resonance, and Taylor and Delos's treatment (fol-
lowing Demkov) made use of special assumptions about
b, (t) and V (,(r}. The present derivation used only the
general assumptions listed in the preceding paper and the
approximations leading from (1.9) to (2.2).

On the other hand, it is well known that the classical
local-complex-potential formulas have some problems: It
is not that they are slightly inaccurate, but rather that
they give a qualitatively incorrect description of some
systems —for H (D ) on Ne, Ar, Kr, or Xe, they predict
an isotope effect that is opposite to what is observed. This
is because they do not properly describe phenomena that
arise when the discrete curve just grazes the continuum.
A related but rather subtle inconsistency of the above
equations also appears when calculations are made. We
showed that G(e) has a discontinuous derivative at @=0;
G, (e;t) must have the same behavior. As a consequence,
8', (t), the solution to Eq. (2.2), will have a discontinuous
derivative with respect to time when 8', =0. However, in
Appendix A of Ref. 1, we took some care to prove that
C ((t), dC (Idt, and d C

&
Idt all are continuous func-

tions of time, and this implies that the exact 8'(t) has a
continuous derivative. The exact or dynamical complex
potential must go smoothly through the region where the
static local complex potential has bumps. '

III. ITERATIVE CALCULATION OF 8'(t)
AND FIRST-ORDER APPROXIMATION

and the iterative scheme for solving (1.9) is obvious: given
an "nth-order" approximation 8'"~(t), the "(n + 1)th-
order" approximation is

Recognizing the limitations of the slow-collision ap-
proximation given in the preceding section, we present
here an iterative method to find 8'(t) and we show the re-
sults of a "first-order" calculation. It is found that
8'"(t), obtained from this first-order calculation, is com-
parable to that obtained in the local-complex-potential ap-
proximation, but this first-order approximation also de-
scribes tunneling and interference effects.

Returning to Eq. (1.9), the zero-order approximation to
5'(t) is of course

(3.1)
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t —t0 t8'"+"(t)=b,(t)+ f S(r;t)exp i f 8'"'(t')dt' IIt dr .
0

The "zeroth-order" approximation (3.1), together with Eqs. (2.13) and (3.3) of Ref. 1, lead to
t

C,(t) =(iIIl) 'exp[ ie(—t —tp)/tI1] f dt'V, i(t')exp i f [e h(t—")]dt"
0 0

(3.2)

(3.3)

g(t)=1,
&(t) =Ep Pt' . —

(3.4)

We then have

which is easily seen to be the result of first-order time-
dependent perturbation theory applied to the original cou-
pled equations (2.8).' This approximation was used re-
cently to calculate cross sections for collisions of H and
D with Ne. ' On the other hand, although the zero-
order approximation coincides with first-order perturba-
tion theory, there is in general no correspondence between
the present nth-order approximation and any level of the
standard perturbation theory; even our first-order approxi-
mation given below contains parts of all orders of pertur-
bation theory.

In the present paper, we will calculate only the first-
order approximation. Furthermore, to reduce the amount
of uninteresting complexity, we use the separable approxi-
mation and the short-memory approximation for 9(~;t),
so the propagator takes the form (3.23).' For a simple but
not unrealistic calculation, we may take

i.e., fk(r; t) is a kth degree approximation to the exponent
in Eq. (3.6). We may also define

Fk ( t)—:f 9 (r )exp [ if k (r; t) ]dr . (3.10)

In Fig. 1 we show Fi(t) and F2(t), and in Fig. 2 we show
F2(t) and F3(t). These all are numerical evaluations of
Eq. (3.10) for Ep ——0.2 and' p=5&(10

Fi(t) is given in (3.8), and it is the local complex poten-
tial [minus A(t)]. It is a symmetric function of t, and it
has a discontinuous derivative at the times +t"
=+(Ep/p)', when 6(t)=0. This is the time at which
the discrete state crosses into or out of the continuum;
there the real part of G has a cusp, and the imaginary part
goes to zero as ! t t"!' . In —Fig. 1 it is seen that F2(t)
stays close to Fi(t) for 0 & t & t", but that Fz(t) oscillates
about Fi (t) for t"& t. (In the present case t",«——200 a.u. )

In Fig. 2 we see that the oscillations in F2(t) also occur
when —t"& t & 0 (these oscillations damp out for
0&t &t"), whereas Fs(t) has some oscillations for all
t ) t". Figure 3 —compares Fi (the local complex poten-
tial) and F3, the first-order approximation to the dynami-
cal complex potential.

8'"(t)—h(t)= f dr &(r)exp i f A(t')dt' II1

~exp i Eo —t (3.5)

+Ptr ,
' Pr') I dr —(—3.6)

(3.8)

[IIi=1 in (3.6) and below].
We have seen in Fig. 1 of Ref. 1 that 9 (r) gets small as

w gets large. So, temporarily neglecting the terms involv-
ing r and r in the exponent, we obtain

8' I(t) —b(t)= f dr 9(r)exp[i(Ep Pt )r] (3.7)—
=G(Ep Pt ) . —

I I Q
I

I

I
I

II
II
II
Il
II
II

I
II

I

Ii

—-2x lo

fi (r; t) = (Ep Pt )s, —

f, (r;t) =fI (r;t)+Ptr',
f3(r;t) =f2(r;t) (p/3H', —

(3.9a)

(3.9b)

(3.9c)

This is a special case of the slow-collision approximation
that was discussed in the preceding section, and we have
again arrived at the local-complex-potential formula.

The neglected terms in the exponent of Eq. (3.6) have
surprising effects: they give oscillations in 8'(t). To see
this, let us define

FIG. 1. F~(t) (dashed line) and E2(t) (solid line) for t&0. El
and E2 are defined in Eqs. (3.9) and (3.10). El(t) is the same as

G(h(t)), so it represents a part of the local complex potential.
Its real part has a cusp at the point where the discrete curve
crosses into the continuum, and its imaginary part goes to zero
there. [h(t)+F2(tl] is an approximation to the dynamical com-
plex potential. It is continuous, and oscillates about the local
complex potential.
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oscillatory because of interference between transitions that
occur on incoming and outgoing parts of a trajectory.
Similar oscillations are also known to occur in Penning
ionization, which involves transitions between a discrete
state and a continuum. Such oscillations are also possible
in systems undergoing electron detachment (though they
have not yet been seen in experiments). Oscillations in the
transition probability must also manifest themselves in
C(t), and, therefore, also in the dynamical complex poten-
tial 8'(t). Like Stueckelberg oscillations, the phase of the
oscillatory part of Eq. (4.3)

f h(t')dt' (4.4)

is related to the integral of the energy gap b, (t) from the
time of crossing to t

Re

X

Out

„() f, i', Q'

V. CGNCLUSIGN

We have shown that the survival amplitude C(t) can be
written in the form (1.5), and that 8'(t) then plays the role
of a dynamical complex potential. It satisfies an integral
equation (1.7) for which an approximate solution is

'0
8'"(r)=b, (r)+ f 9(r;r)exp i f h(r')dr' fi dr,

and further approximations to the integral give

FIG. 4. Test of the approximation defined by Eqs. {4.1)
and (4.3). Sohd line: Dynamical complex potential
5'(t) —h(t)—:F3{t). Dotted line: Static complex potential

G{h(t)) plus contributions from stationary phase points {4.3).
The approximation is evidently very accurate except in small re-
gions where the discrete curve crosses into or out of the continu-
um.

8'"(r)=G [A(r);ij+ g &(r. )

1/2

exp i b(r')dt' A+(n/4)sgnh(t„") S(r r„";r), —
ll

gX

where the sum is over times r„"&t for which b,(t„")=0.
Numerical calculations show that the dynamical complex
potential oscillates about the static complex potential. In
a future paper (in preparation), we will use this method to
calculate cross sections.
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