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ABSTRACT

Analyses of a closely-spaced network of high-resolution seismic records 
taken within Mobjack Bay, VA reveal several deep paleochannels as well as a 
complex fill pattern resulting from the infilling of a drowned river valley. These 
paleochannels, which are the precursors of the modern day North, Ware, and 
Severn Rivers, converged in Mobjack to form a single channel that was incised 
approximately 30 meters below present sea level into Tertiary material during 
the last glaciation.

Three Holocene transgressive fill sequences were identified: Unit Q1 is 
the basal, fluvial sequence deposited when stream gradients decreased; Unit Q2 
is believed to be restricted estuarine deposits consisting of fine sand and mud; 
Unit Q3 is the modern sequence deposited during the relatively smooth sea level 
rise of the past 3,500 years.

Due to the relatively low intensity of wave, tide, and riverine energy in 
Mobjack Bay, the application of a facies model, which is based on two end- 
members influenced by moderate to high intensity wave and tidal forces, was not 
conclusive. However, seismic records may indicate the predominance of tidal 
forces over wave energy during the process of infilling prior to the overtopping of 
the channel banks by sea level. In the last 3,500 years of continuous, slow sea 
level rise, waves probably have had more effect on the morphology of Mobjack 
than tides.

Since the marine transgression began at the end of the last glaciation, 
Mobjack Bay has become a sink. Sediments transported along the western flank 
of the Chesapeake Bay and from the continental shelf are deposited in Mobjack. 
Eroded material from the shoreline do not appear to leave the Bay, but are 
instead deposited on shoals while muds carried by the four small rivers entering 
Mobjack are deposited in the deeper, central portion of the bay.

IX



AN INVESTIGATION OF THE LATE QUATERNARY 

MORPHOLOGY OF MOBJACK BAY, VA 

AND

APPLICATION OF A FACIES MODEL



I .  INTRODUCTION

General Statements

This study of the formation and preservation of Late Quaternary 

paleochannels and depositional sequences in Mobjack Bay, which is located in 

the Virginia portion of Chesapeake Bay (Figure 1), is part of the overall 

investigation of the evolution of the Chesapeake Bay.

The Chesapeake Bay is a dynamic, continually evolving system that has 

become a very important natural resource. Increased awareness of the Bay's 

complex network of processes has prompted many studies to decipher the 

puzzle. The interpretation of Quaternary deposits is essential to the 

understanding of earlier deposits all of which can then become an analog to 

modern processes by assuming modern processes were operating at the time of 

deposition. We are able to use Late Quaternary deposits because sea level 

fluctuations are fairly well understood for this time period and can be correlated 

to subbottom deposits. Also, the relative shallowness of the deposits are within 

the resolution of current equipment.

An important consideration is the effect tributaries, as sources or sinks, 

have on sedimentation processes in Chesapeake Bay. Colman and Hobbs 

(1987) postulated that the sedimentation processes involved in the formation of 

each generation of the Susquehanna fluvial channel\Chesapeake Bay due to 

marine regressions and transgressions are still working in the present bay. An 

integral part of this is the antecedent geologic systems upon which present 

systems form and migrate.

1



9 £
I ? 7  r

m i. a I

A/-** !

Middle
Peninsula

Mathews Co.
Gloucester Co.

V  NEWPORT/A ^

■Auncu. *n.ei

Figure 1. Location of study area.
2



While studies have clearly delineated the paleogeology of the main 

portion of the Chesapeake Bay (Colman et al. 1990; Halka etaL 1989; Colman 

and Hobbs 1987), few studies in the southern bay have included any tributaries 

or embayments, particularly, Mobjack Bay. Colman and Hobbs (1987) mapped a 

drainage channel that formed during the last glaciation and branched off from a 

Susquehanna River paleochannel to the mouth of Mobjack Bay, but they did not 

actually trace the channel into the bay (Figure 2).

Stratigraphy Resulting from Sea Level Oscillations

Late Tertiary and Quaternary paleogeology is recorded in sediment 

deposited under conditions analogous to modern-day processes. In general, the 

landward limit of a marine transgressive sequence is a shoreline feature, such 

as an erosional scarp or beach, whereas a level or gently inclined terrace 

develops seaward of the paleo-sea level position (Figure 3). This system of 

erosional scarps and terraces is progressively lower and younger both seaward 

and toward major rivers (Peebles, 1984).

Due to the emergence and subsequent erosion of deposits during a 

marine regression, each stratigraphic unit is separated from others by 

unconformities. Channels, created by water flows transporting sediment during 

periods of lowered sea level, are incised into older sediments creating the lower 

unconformity while subaerial erosion dissects the coastal plain. This creates a 

landscape with flat to rolling interfluves between incised streams (Peebles,

1984)

As sea level rises, stream gradients decrease such that coarse lag 

deposits accumulate in the main channel and change laterally into crossbedded

3
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coarse levees and point bars. Horizontally laminated silts and clays deposit in 

the flood plain (Harms and Fahnestock, 1965). The decrease in stream gradient 

causes the transition of channel and floodplain environments to swamp and 

eventually marsh (Figure 4) as the flow in the channels changes from 

unidirectional, fluvial flow to bi-directional, estuarine flow. The channels are 

eventually filled by sediments that are younger than the channel itself. Hack 

(1957) compared the boring logs of 14 bridge sites to boring logs of the 

Chesapeake Bay Bridge Tunnel and found that sequence of marine 

transgression and regression was similar over the entire length of the 

Chesapeake Bay.

Study Area Description

Mobjack Bay is an embayment within the Chesapeake Bay system (Figure 

1). It is a wide, shallow, irregularly-shaped bay formed by flooding due to sea- 

level rise. The embayment is approximately 11 km long, 8 km wide, and 

averages 4 m in depth; the maximum depth is 8 m. Even though four small 

rivers, the Severn, Ware, North, and East, along with a multitude of creeks feed 

into Mobjack creating its irregular shape, fresh water inflow is believed to be 

minimal; however, no reference could be found to verify this. Notable features of 

Mobjack Bay include the broad marsh areas, the many intertidal sand flats, and 

the subaqueous sand shoals on either side of the bay's mouth.

Since the Bay is open to the southeast, it is exposed to both wind waves 

and swell, creating wave-induced oscillations up to 20-30 cm s'1 during storms; 

net littoral drift in the North River is to the east (Hardaway et ai., 1982). The

6
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primary forcing of the mean current is tidal at a speed of approximately 20 cm s~1 

(Wright e ta /., 1987); the tidal range averages 0.75 meters.

From November 1989 to August 1990, a bottom-mounted wave gage was 

maintained near the Wolf Trap Light Tower offshore of Mathews County (Boon et 

al., 1992). A summary of the wave data obtained from this deployment may 

provide a typical wave climate for Mobjack Bay since fetch exposures are similar 

between the location of the gage and Mobjack; however, the gage's exposure to 

waves originating from the northeast was greater than Mobjack's. The normal 

wave climate at Wolf Trap was found to have an average wave height of only 

0.16 meters with relatively few waves with a significant height of more than 0.2 

meters (Boon et al., 1992). During an extratropical northeast storm, the 

maximum significant wave height reached 1.5 meters with a largest individual 

wave height of 2 meters. The waves observed at Wolf Trap are generally locally 

generated since the direction of wave advance coincided with the local wind 

direction at the time of observation (Boon et al., 1992).

8



I I .  OBJECTIVES

The primary objective of this study is to determine the paleogeology of 

Mobjack Bay. This includes determining the processes involved in its formation 

as well as mapping the paleochannels and describing and interpreting 

depositional sequences in the seismic data.

In order to determine how a paleochannel formed in Mobjack Bay, the 

regional geology and Late Quaternary sea level oscillations are examined. The 

sea level oscillations in the Pleistocene have had a profound effect on the 

stratigraphy and landforms of the area surrounding Mobjack Bay. One important 

effect was the development of many scarps and terraces on the Middle 

Peninsula. Peebles (1984) illustrated the paleo-shorelines of three late 

Quaternary transgressions. About 187 ka during the middle Pleistocene, the 

York River was located slightly north of its present course while the Piankatank 

and Rappahannock Rivers were situated slightly south (Peebles, 1984). During 

the following marine regression, a drainage basin probably would not have been 

available to allow the formation of a paleochannel in Mobjack Bay. In the 

following minor sea level oscillations, the Middle Peninsula's configuration was 

changed significantly because of the development of scarps prior to the latest 

glaciation. When sea level dropped, a new channel was created to drain a 

portion of the Middle Peninsula and joined the Susquehanna River paleochannel 

forming the Mobjack Bay paleochannel.

By applying Vail et al.'s (1977) method for seismic analysis on a regional 

level to Mobjack Bay, several types of stratigraphic interpretations necessary to 

achieve all of the objectives of this study can be made. These interpretations

9



will determine the unconformity beneath the depositional sequences shown in 

the seismic records and describe these sequences in terms of their thickness 

and depositional environment as well as their relative sea level correlation and 

burial history.

A secondary objective is to determine the sources and distribution 

patterns of sediments within the past and present Mobjack Bay. For this, it is 

necessary to look at the Recent sedimentation of the Chesapeake Bay as a 

whole. In addition, an estuarine sedimentation model and facies development 

scheme will be applied to the information derived from the patterns of deposition 

in order to develop a theoretical stratigraphic succession of facies within 

Mobjack. The stratigraphic facies model will be applied to the results of the 

seismic analysis for comparison.

How the estuary fills is determined by the relative influence of river flow, 

tidal forces and wave action on available sediments. Whether a shoreline is 

wave-dominated or tide-dominated is strictly relative; it is not based on absolute 

wave or tide parameters, but rather the set of physical processes that is 

dominated by one energy source or the other (Davis and Hayes, 1984). 

Dalrymple etal. (1992) synthesized two idealized models of estuarine 

sedimentation and facies development: wave-dominated estuaries and tide- 

dominated estuaries. Both of these models predict a stratigraphic succession of 

facies based on the sediment distribution patterns.

A wave-dominated estuary typically exhibits a marine sand body, which 

could consist of subtidal shoals or a flood-tidal delta, at its mouth where wave 

energy is most intense. At the head of the estuary, sand is deposited by the 

river creating a bay-head delta, and in between, the central basin accumulates

10



fine-grained sediments (Figure 5A). As the estuary fills, both the bay-head delta 

and the marine sand body prograde towards one another over top of the central 

basin exhibiting an upward coarsening profile.

The morphology of a tide-dominated estuary is somewhat different. The 

fine-grained silts and clays usually accumulate in tidal flats or salt marshes while 

sands accumulate in the tidal channel or elongate sand bars (Figure 5B). 

Another characteristic is the "straight-meandering-straight" form of the tidal 

channel. The tidal channel will remain fairly straight in higher energy zones 

such as near the mouth and the head, but in the lower mixed energy zone, the 

tidal channel may exhibit tight meanders.

11
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I I I .  CHESAPEAKE BAY HISTORY

The Chesapeake Bay is described as a classic coastal plain estuary 

(Pritchard, 1955). Its channel was incised by erosion during the last glacial 

period which ended about 18 ka ago and subsequently flooded as sea level 

rose. The bay is the largest estuary in the United States; it is about 300 km 

long, averages about 20 km wide, and its surface area covers nearly 6,000 km^ 

(Figure 1). The shoreline is highly irregular consisting of many tributaries and 

embayments which characterize a drowned river valley.

Geologic History

During the Cenozoic Era, which began about 50 ma, numerous marine 

transgressions occurred on the mid-Atlantic Coastal Plain creating shallow seas 

that accumulated relatively thin sheets of open marine sediment. Sediments that 

began accumulating 25 ma are the Chesapeake Group, comprised of the 

Calvert, Choptank, St. Marys, Eastover, Yorktown, Chowan, and Bacons Castle 

formations, and range in age from lower Miocene to upper Pliocene. As these 

formations were being deposited, the Coastal Plain was undergoing warping and 

uplift which began in Maryland and spread southward until the end of Yorktown 

time.

Since the Chesapeake Group contains open marine deposits and 

constitutes the basement of the Chesapeake Bay, the Bay could not have 

existed during the late Tertiary (Johnson and Peebles, 1985). The delivery of 

glacial material to the Susquehanna River during deglaciation shifted the loci of 

marine deposition southward and allowed the accumulation of sand and gravel

1 3



in what is now New Jersey and the Eastern Shore of Maryland and Delaware. 

The paleo-Susquehanna and Potomac Rivers adjusted their courses during a 

sea level lowstand such that they flowed southward between the newly formed 

Maryland Eastern Shore and the western uplands (Byrne et al., 1982).

Quaternary Sea Level Fluctuations

Sea level oscillations that accompanied the Pleistocene glacial cycles 

have been well documented. While the many different studies may not agree on 

exact sea-level curves, the general trends are the same, and the variations can 

be explained as regional differences.

Shackleton and Opdyke (1973) labeled glacial and interglacial cycles as 

stages defined by 180 /160  ratio variations in deep sea cores. Higher 

proportions of the 160  isotope is regarded as an interglacial period (odd 

numbered stage) while the glacial maximums are characterized by larger 

amounts of the 180  isotope (even numbered stage).

Cronin et al. (1981) determined five relatively highstands of sea level 

during the past 200,000 years from uranium-series dates of corals along the US 

Atlantic coastal plain. Both uranium-series and radiocarbon dating methods 

were used by Chappell and Shackleton (1986) to determine sea level highstands 

from corals in New Guinea. Figure 6 shows a sea level curve and the 

Shackleton and Opdyke (1973) stage reference numbers.

From these investigations, an estimate of the Late Pleistocene sea level 

changes can be made. Sea level highstands are believed to have occurred 

200,000 years BP, and 120,000 years BP. Prior to the onset of the Wisconsin 

glaciation approximately 75,000 years BP, several minor sea level oscillations,

14
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whose maximum height of sea level decreased with each cycle, occurred during 

the Stage 5 and 3 interglaciations.

During the last glacial maximum, sea level was probably 120 m below the 

present level and since 18,000 years ago, has been continually rising at different 

rates. Fairbanks (1989), using radiocarbon dates from coral in Barbados, 

reported two rapid rises in sea level due to melt-water spikes (Table 1) as well 

as one period of slowed sea level rise known as the Younger Dryas event.

Table 1. Sea level change based on the sea level curve of Fairbanks (1989)

Yrs BP

17,100-12,500
12,000
11.000-10,500
10.500-9,500

9.500-6,000
6.000-present

Sea level rise 
(m)
20
24

12
28

20
10

Comments

First phase of deglaciation 
Melt-water pulse IA

Younger Dryas event 
Melt-water pulse IB

Slowing rate of sea-level rise 
Smooth curve rise

Bard e ta i  (1990) disputed the dates older than 9,000 in Fairbanks (1989) 

and suggested that the deglaciation began 3,000 years earlier than previously 

thought. Even though the dates are different in Bard e ta i  (1990), the same 

trends listed in Table 1 where supported. Based on the amount of sea level rise 

and the dates in Fairbanks (1989) as well as the incised depth of previously 

mapped paleochannels, the Chesapeake Bay would have begun flooding when 

sea level was at -50 meters so what we know of today as the Bay was initiated

16



approximately 10,000 yrs BP and probably reached its present form 3500 yrs 

BP.

Paleochannels

Over the past 40 years, researchers have tried to identify the 

paleogeology of the Chesapeake Bay and have postulated several ancient 

drainage channels of the Susquehanna River which are incised into pre- 

Holocene deposits. Colman et al. (1990) presented a detailed history of the 

previous work. Halka et al. (1989) and Colman et al. (1990) identified three 

distinct generations of Quaternary paleochannels that have been called the 

Exmore, the Eastville, and the Cape Charles because of landmarks near where 

they cross the Delmarva Peninsula (Figure 7).

A distinctive feature of these channels is that the younger system is 

generally located both south and west of the older one. During interglacial, sea 

level highstands, the tidal channel migrated westward as the former fluvial 

channel filled with estuarine sediments, and at the bay mouth, the channel had 

to migrate as the Delmarva Peninsula prograded southward (Colman et al., 

1990). The processes involved in the fluvial channel migration resulted in the 

preservation of each generation of the relict Susquehanna River and 

Chesapeake Bay.

The seismic records produced by the earlier studies showed similar fill 

patterns for all three generations of the relict Susquehanna River (Colman and 

Mixon, 1988). Overlying the basal boundary reflectors of the paleochannels 

were two distinct fill units. The lower unit at the base of each valley was 

characterized by strong, discontinuous, and irregular reflectors while the upper

17
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unit consisted of fill sediments that exhibited weak, long, and smooth reflectors 

or were nearly reflection free. These patterns are consist with Hack's (1957) 

findings in his study of bridge boreholes which showed that the submerged river 

valleys were filled with sand and gravel deposits overlain with sandy silt of 

estuarine origin.

The paleochannel known as the Exmore is the oldest channel identified 

by both Halka et al. (1989) and Colman etai. (1990). It is believed that the 

channel was created at about either 270 or 430 ka during a major sea level 

lowstand (Colman and Mixon, 1988). The Exmore is located generally eastward 

of both the Cape Charles and the Eastville channels and crosses the Delmarva 

Peninsula about 80 km north of the present bay mouth.

The Eastville seems to have been cut about 150 ka ago during the 

lllonian glaciation (Colman and Mixon, 1988). It is primarily located along the 

eastern side of the Chesapeake Bay and crosses the Delmarva Peninsula near 

the town of Eastville approximately 40 km north of the present bay mouth.

The Cape Charles, the youngest channel, was formed during the last 

major sea level lowstand and is incised into the underlying Tertiary strata to 

depths of 50-70 m. Because the channel has only partially filled with Holocene 

sediments, for the most part it follows the present bathymetry of the bay's axial 

channel except where the progradation of Holocene spits has altered the shape 

and path of the channel (Halka et al., 1989). In addition, the paleochannel is 

offset approximately 12 km to the north of the present mouth of the bay.

It is believed that the processes involved in the formation and 

preservation of the aforementioned paleochannels is still occurring in the Bay. 

Colman and Hobbs (1987) noted that the present channel of the Chesapeake
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Bay is displaced both south and west of the Cape Charles paleochannel. In 

addition, a bayward-prograding wedge of sand is located north and east of the 

present Bay channel whereas south and west, only a thin layer of bay-bottom 

sediments exists.

Regional Pleistocene Formations

The present morphology of the Chesapeake Bay and its surrounding 

uplands is due in large part to the many sea level oscillations of the Quaternary. 

These oscillations on the outer Coastal Plain of Virginia created a stair-step 

topography formed by terraces separated by scarps (Figure 3). Two formations 

are evident in the uplands surrounding Mobjack Bay. These are the Shirley 

Formation and the Tabb Formation (Figure 8). The Tabb Formation has three 

members, the Sedgefield, Lynnhaven, and Poquoson.

The Shirley formation is of middle Pleistocene age since it was formed 

approximately 187 ka ±  20,000 yrs before present when sea level was 14 meters 

above present sea level (Figure 9A) (Peebles, 1984). It was deposited during 

the sea-level highstand prior to the Stage 6 glaciation. On the Middle Peninsula, 

its sediments are part of the Newport News terrace that parallels the York River 

and are separated from older deposits to the north by the Hazelton scarp and 

from younger deposits to the east by the Big Bethel scarp (Figure 10). It 

uncomformably overlies the Yorktown formation which is Tertiary in age. The 

location of the Formation parallel to the York River suggests that the previous 

York River was located slightly north of its present location. Deposits near the 

Piankatank and Rappahannock Rivers suggest that they were located slightly 

south of their present location (Peebles, 1984).
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The Tabb formation is subdivided into three separate members, the 

Sedgefield, Lynnhaven, and Poquoson, all of which are Late Pleistocene 

deposits formed during the Stage 5 and 3 interglaciations (Johnson and 

Peebles, 1985). The Sedgefield member, which is not evident in much of the 

area surrounding Mobjack Bay, was formed 70-90 ka when sea level was 9-9.7 

meters above present sea level (Figure 9B). A small portion of the Rescue 

terrace, whose deposits make up the Sedgefield member, occurs just north of 

the North River on the Middle Peninsula, and the terrace is separated from 

younger sediments by the Big Bethel scarp. Most of the Sedgefield member 

probably was eroded during the many minor sea-level oscillations which formed 

the Lynnhaven and Poquoson members and occurred prior to the last glaciation 

(Johnson and Peebles, 1985). Lynnhaven sediments accumulated on what is 

now called the Chesapeake terrace (Peebles, 1984), and the Big Bethyl scarp, 

which separates it from older sediments, is the youngest scarp evident on the 

Middle Peninsula. The Lynnhaven shoreline (Figure 9C) and Poquoson 

shoreline varied little from the Sedgefield shoreline since the changes in sea 

level were relatively minor and short in duration. In the region surrounding 

Mobjack Bay, the Lynnhaven and Poquoson members are undifferentiated.

The fastland directly surrounding Mobjack Bay is almost all Pleistocene 

deposits except for the Holocene deposits including and surrounding Guinea 

Marsh, Four Point Marsh, and New Point Comfort (Figure 8). While Pleistocene 

scarps and terraces are evident in the uplands surrounding Mobjack Bay, few 

Pleistocene deposits are seen in sub-bottom records. Studies done in the lower 

bay and bay-mouth area on the bridge-tunnel cores (Harrison et al., 1965) and 

seismic and cores (Colman and Hobbs, 1987) showed that much of the
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Pleistocene sediment that may have been deposited prior to the last glacial sea 

level lowstand was eroded before the latest sea level rise.
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I V .  METHODOLOGY

Data collection

The survey grid of Mobjack Bay consists of five sub-bottom tracklines 

(Figure 11), one of which was taken in 1986 as part of the Colman and Hobbs 

(1987) study, and one side scan sonar trackline (Figure 12). The sub-bottom 

profiling system used was a dual frequency Datasonics SBP-5000 set at a 

recorder sweep of 63 or 100 miilisecs. This sweep yielded approximately 47 m 

and 75 m, respectively, of record assuming the acoustic velocity of 1500 m/s for 

shallow sediments. In order to determine bottom topography types, an EG&G 

SMS-960 side scan sonar system was used with the scan set at 100 m on either 

side of the ship track. Both systems displayed the reflections on a continuous 

graphic record; the data were not recorded on magnetic tape.

The closely-spaced network of seismic profiles were obtained along both 

north-south and east-west trending lines. In general, the Loran-C was used for 

navigation. The final tracklines were configured by using both latitude and 

longitude as derived from the Loran fixes and a Global Positioning System 

(GPS). Location fixes were taken primarily at three minute intervals.

Seismic Subbottom Profiling

The acoustic, subbottom profiler utilizes a sound-generating and 

receiving device as well as a graphic recorder to depict subsurface data. The 

system is designed to provide a cross-sectional display of the subbottom strata 

below the transceiver. Calculations of the reflection's depth are based on travel 

time from the source to the interface and back to the receiver and the speed of
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sound through the material. Most researchers assume a velocity of 1500 m/s for 

shallow sediments and the overlying water column. However, an important 

consideration is that the vertical exaggeration of reflections will be quite large 

since the horizontal distance traveled while profiling is greater than the vertical 

depth recorded by high-frequency sub-bottom systems (McQuillin et al., 1984). 

As a result, dipping reflectors will appear much steeper in the data than they 

actually are.

The subbottom profiler recorder plots two-dimensional reflections that are 

based on acoustic interfaces. An acoustic interface occurs when the material 

above and below it differ in acoustic impedance. Impedance is based on the 

acoustic properties such as density and elasticity of the sediment (Sieck and 

Self, 1977). Since vertical resolution can fluctuate, the frequency of the signal 

can be varied in order to obtain better resolution. Higher frequency systems 

increase resolution of particular events but have a smaller range of depth 

penetration (McQuillin etai., 1984).

Side Scan Sonar Surveying

The side-scan sonar system provides a planimetric image of the seafloor 

by transmitting and receiving sonar signals from a fish that is towed by the boat. 

Only signals returned from within a fixed range on either side of the track line 

are collected and processed; the range contains data from directly under the fish 

out to the horizontal range limits. The angles are converted to distances by 

taking into account the two-way travel time and the speed of sound through 

water. While the area directly under the trackline is usually unable to be
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resolved, the system produces a data strip that is much like an aerial 

photograph.

A sixteen tone gray color scale is used by the recorder to indicate the 

strength of the acoustic backscatter. Differences in bottom features or material 

will change the amount of energy returned thereby resulting in shade changes, 

darker tones generally indicate coarser-grained material (or rougher surfaces) or 

areas where the relief reflects the signal while a lighter tone may indicate finer 

material (or smoother surfaces) or a bottom with features that can absorb the 

acoustic energy (Williams, 1982). Because the transmitted pulse is so short and 

the frequency so high (105 kilohertz), the side scan sonar can record small 

objects and details of the bottom topography without penetrating the bottom. 

However, many variables can influence the backscattering strength of the signal; 

for example, the angle of the signal or the slope of the bottom will change the 

tone of the data strip. An accurate picture of the bottom can be obtained by 

tracking over the area several times.

Data reduction

Seismic reflection data were processed in several steps. The original 

records were reduced on a copy machine to a manageable size. This also may 

darken any reflectors that may be hard to detect on the original records. In 

addition, the reduced copies were compared to the original seismic data rolls in 

order ensure that no reflectors or seismic characteristics were created by the 

copy machine. Once seismic interpretation (discussed below) was completed on 

these reduced data, stratigraphic line drawings were made for each profile 

showing marker horizons and stratigraphic units. Since survey lines are closely
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spaced, the resultant data can be used to produce a three-dimensional model of 

seismic events as well as two-way travel time contour maps (Reynolds, 1990). 

The Surfer graphical software package (Golden Software, Inc., Colorado, 1989) 

was used to process the data and create two-dimensional maps depicting the 

extent of a correlated reflector over the study area.

Seismic interpretation

The interpretation of seismic data relates the reflectors shown in the data 

to the paleogeology of an area. Vail et al. (1977) suggested that researchers 

utilize a three-step procedure to reduce seismic data. These steps are: 1.) 

seismic sequence analysis; 2.) seismic facies analysis; and 3.) analysis of 

relative sea level change. This process is flowcharted in Figure 13, and the 

terminology used in this report is listed. Van Wagoner etai. (1988) used this 

process as a basis for seismic interpretation but updated the definitions of 

critical terminology which had evolved in scientific literature since the publication 

of Vail et al. (1977). While this process has mainly been used for shelf 

exploration, the same general principles can be applied to shallow marine 

environments.

A seismic sequence is a set of relatively similar reflections which is 

bounded at the top and bottom by one of the two basic types of discontinuities, 

unconformable and conformable (Vail et al., 1977). Sequence analysis is 

performed on seismic records by identifying the unconformable boundaries, 

which represent hiatuses in deposition, and tracing them over the region to 

where the boundary becomes conformable. Boundaries show up in data as
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Figure 13. Flowchart of seismic interpretation procedure and terminology.
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reflector terminations; unconformities separate younger strata from older 

sediments and are defined as surfaces of discontinuity which result from erosion 

or non-deposition, whereas, conformities separate younger and older strata but 

show no evidence of erosion or a hiatus.

Seismic facies analysis is the description and geologic interpretation of 

both the internal configuration and external form of the seismic sequence. The 

geometric patterns exhibited by a three-dimensional seismic facies unit differ 

from adjacent units by internal parameters such as configuration, continuity, 

amplitude, frequency and interval velocity. Both the internal and external 

configuration of a unit must be delineated before environmental setting and 

depositional processes can be determined because similar external forms can 

have several different internal reflections.

A relative change of sea level is an apparent rise or fall of sea level with 

respect to the land surface. Change in the position of sea level is best 

determined in facies bounded by onlap or toplap (Vail etai., 1977). Sea level 

rise is indicated on seismic records by progressive landward onlap whereas sea 

level fall is characterized by a shift of coastal onlap downslope and seaward 

(Figure 14). Relative stillstand of sea level is indicated on data by coastal toplap 

facies boundary.

The general stratigraphic model for an estuary is such that the paleo- 

valley is incised into the underlying strata during sea level lowstand and is 

separated from the overlying fluvial deposits by an erosional unconformity. As 

sea level rises, fluvial deposits are overlain by estuarine deposits, and the two 

facies are divided by a flooding surface. If sea level continues to rise, the 

estuary will continue to translate landward, and the drowned paleochannels will
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be available to tidal and/or wave action which reworks the sediment and affects 

distribution and deposition patterns. When sea level reaches highstand or the 

rate of sediment supply exceeds relative sea-level rise, the estuary begins to fill 

(Dalrymple eta/., 1992).

Many researchers use this process to obtain information from the seismic 

record because inferences can be drawn concerning the dynamics of the system 

and the processes involved in creating the sub-surface geology (Reynolds, 

1990).

Sediment Samples and Grain Size Analysis

In order to determine surficial sediment types, grab samples were taken 

along the side scan sonar trackline as well as along Mobjack Bay's axis and 

transects across the width of the bay (Figure 15). Grain size analysis consisted 

of pipetting and of VIMS’s Rapid Sediment Analyzer (RSA). The RSA is a 

computerized sedimentation tube that analyzes the sand fraction of a sample to 

determine the grain-size distribution by measuring settling velocities. The 

categorization of grain size is based on Folk (1980) (Figure 16A) and classified 

according to Shepard's (1954) ternary classification (Figure 16B).
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Grain Size Diameter
0 mm Description Phi Size Range

-2 4 Granule -2 to -1
-1 2 Very Coarse Sand -1 toO
0 1 Coarse Sand Oto 1
1 0.5 Medium Sand 1 to 2

1.5 0.35 Fine Sand 2 to 3
2 0.25 Very Fine Sand 3 to 4

2.5 0.177 Silt 4 to 8
3 0.125 Clay 8

3.5 0.088
4 0.0625

4.5 0.044
5
6
7
8

Sorting Value Sorting Class
< 0.35 Very Well Sorted

0.35 - 0.50 Well Sorted
0.50-0.80 Moderately Well Sorted
0.80- 1.40 Moderately Sorted

1.40-2.00 Poorly Sorted
2.00-2.60 Very Poorly Sorted
> 2.60 Extremely Poorly Sortec

CLAY

9  CLAY ^-^SAND/yrJI
SILT/^.1/V'v w .t u

SILTY.
'SAND

SANDY 
* SILT-

SAND

Figure 16. Classifications for grain-size analysis. A.) Nomenclature 
used in analysis (Folk, 1980). B). Ternary classification 
of sediment grain size (Shepard, 1954.)



V . HOLOCENE DEPOSITION

While the paleochannel created by fluvial flow during the last glaciation 

was flooding as sea level rose, the flow of water in the deep channel gradually 

changed from unidirectional, fluvial flow to bi-directional, estuarine flow allowing 

the deposition of fluvial material that previously would have been carried out to 

sea. As sea level continued to rise, erosional processes within the Chesapeake 

Bay supplied additional sources of sediment and caused the rate of sediment 

supply to exceed the rate of sea-level rise. This began the infilling process.

Sediment Size Distribution

Shideler (1975) collected 200 samples in transects across the 

Chesapeake Bay and described the samples in terms of textural variability, 

which included total mud content and the size frequency distribution of the sand 

fractions. In general, the study found that the nearshore regions along the 

margins of the Bay as well as the Bay mouth region were greater than 80% sand 

(Figure 17). In addition, the tributaries of the lower Bay supply sediment that is 

greater than 80% mud while the main stem of the bay is somewhere in between. 

The size distribution of the sand fractions shows a texture that ranges from 

coarse to very fine sand. North of the York River (approximately 37°15'), the 

sand size generally decreases toward the center of the Bay with the very fine 

sand is located mostly in the bay stem. In the lower portion of the study area, 

there was no regional trend for sand size distribution.

Byrne et al. (1982) completed a much more detailed study of the Virginia 

portion of the Chesapeake Bay by collecting 2,172 grab samples. In general,
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Figure 17. Isopleth map of total mud contents in the lower Chesapeake 
Bay bottom sediments (Shideler, 1975).
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the 1982 results agree with Shideler's (1975) results. While a statistical 

correlation between grain size and depth could not be resolved, graphically, 

grain size distribution shows the medium and coarse sand primarily located in 

the shallow portions of the while the finer sands and muds were found almost 

exclusively in the central, deeper areas of the Bay (Figure 18). One of the 

exceptions to the general trend is Mobjack Bay and a band of fine sediments 

running southeast from the mouth of Mobjack Bay. This region is not much 

deeper than the surrounding area and yet exhibits the same pattern of 

deposition as the nearby York river channel. Byrne et al. (1982) theorized that 

the band is a result of the infilling of a paleochannel.

The antecedent geology of the Chesapeake Bay must play a large part in 

the textural distribution of the sand fraction of the samples since it influences the 

sources and sinks of material. The results of Byrne et al. (1982) indicate that the 

medium to coarse sand in the shallower regions could be lag deposits of eroded 

material with the fines winnowed out by wave action. However, certain areas of 

the Bay do not have sufficient sources of eroded material to explain the large 

sand shields present. The large sand belt on the western margin of the 

Chesapeake Bay adjacent to Mathews county is probably the result of erosive 

and transport processes, but the eroded material may not simply be the lag 

deposits transported to the Bay by the tributaries, but actually the reworked 

material of relict nearshore terraces formed during a low sea-level stand. Rosen 

(1976) showed that the shallow (less than 3.6 meters), flat terraces were the 

erosional platform created during the last 3,000 years of relatively slow sea-level 

rise. Sand deposits in the Bay mouth are most likely a combination of relict, 

palimpsest materials and modern shelf transport materials.
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Sedimentation Patterns

Based on the results of his study, Shideler (1975) suggested that the 

Bay's main stem is a trap for fine-grained riverine input while the sand deposited 

on the margins of the Bay are reworked Pleistocene sediment. In the lower Bay, 

the textural variability of the sand fraction of the samples suggests that the origin 

of the sediments is not only Pleistocene deposits but also modern deposits 

coming into the Bay through its mouth.

Byrne et al. (1982) delineated three regions in the southern portion of 

Virginia's Chesapeake Bay to its describe sedimentation patterns. These are 

the upper transition belt (37°35' to 37°25'), the central farfield Bay mouth belt 

(37°25' to 37°15'), and the lower nearfield Bay mouth belt (37°15' to 36°55').

The upper belt is generally depositional (0-0.5 m/cent) and, because of 

the textural distribution of sediment, is considered a transition zone between the 

sandier Bay mouth region and the finer-grained region to its north. The central 

belt is considered a Bay mouth zone because of the deposition of sands that 

appear to originate from the shelf. Meade (1969) reasoned that since bottom- 

water moves progressively landward (Pritchard, 1952) and tends to flow into the 

mouths of estuaries, sediment must also be transported into the estuaries 

mouth. Colman et al. (1988) and Hobbs et al. (1992) confirmed that the source 

of the bay-mouth sand is primarily outside the Bay and that the landward net 

non-tidal circulation results in the deposition of sand far up the estuary.

Byrne et al. (1982) identified several loci of erosion or deposition within 

this region including the depositional nearshore terrace adjacent to Mathews 

county which is believed to be a composite of a relict sand feature and modern 

deposits accumulating there by longshore transport down the western flank of
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the Bay (Shideler, 1975). Just east of this nearshore terrace is a narrow 

erosional locus. The lower Bay mouth belt is described as a region with spatially 

variable patches of deposition and erosion with no clear-cut general description 

of sedimentation. However, Carron (1979) noted that at the mouths of the 

Rappahannock, Piankatank, and York Rivers and the Bay sediments tend to 

accumulate on the left side (looking downstream) and erode on the right.

Mobjack Bay Sedimentation

The textural distribution of sediments within Mobjack Bay is such that 

sand occurs along the margins, clayey silt is found in the central portion of the 

Bay, and silty clay is limited to the mouths of the Ware and North Rivers (Figure 

18). Based on Byrne et al. (1982), Mobjack Bay has been accreting at up to 0.5 

meters/century or more specifically, receiving 0.2 M-Tons/m2/century of clay and 

between 0.2 and 0.4 M-Tons/m2/century of silt; however, no evidence was 

found to indicate that sand is being deposited within the Bay.

Byrne et al. (1979) reported an interesting statistical result of plotting 

water depth versus the average sedimentation rate for that depth in the 

Chesapeake Bay main stem and Mobjack Bay. Both Bays showed high 

sedimentation rates in shallow (0-1.8 meters) waters as well as the deeper 

depths (greater than 3.7 meters). A low rate of sedimentation occurred in the 

1.8-3.7 meter waters.
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V I .  RESULTS

Stratigraphy and Mapping of Paleochannels

In order to analyze the seismic sections, Vail etal.'s (1977) method had to 

be modified to apply it on a local as well as a short-term level. Vail et al. (1977) 

used the method on pre-Quaternary shelf and ocean basin seismic records 

where a seismic sequence is generally tens to hundreds of meters thick and can 

be traced over tens or hundreds of kilometers. Mobjack Bay is only 11 km long 

and 8 km wide so those are the limits to which sequences can be traced, and in 

general, the sequences range from 1 to 10 m thick. Also, the study area is not 

large enough to trace the sequence boundaries to their correlative conformities 

and several characteristics of seismic data, such as frequency, amplitude, and 

interval velocity, necessary to perform Vail etai.'s (1977) facies analysis are not 

part of the high-frequency, sub-bottom profiling system.

The quality of the seismic records varied with the bottom sediment type 

and the gas content of the sediments. Hard-packed sands tended to cause 

multiples (denoted by M on the stratigraphic line drawings) in the records while 

soft mud tended to obscure the sediment-water interface. Gas content in the 

records (denoted by G on the stratigraphic line drawings) is believed to be the 

result of bacterial decomposition of organic matter in the Holocene fill sediments 

and causes a wipe-out of seismic reflections due to increased attenuation and 

rapid dissipation of acoustic energy (Anderson and Bryant, 1990).

The seismic profiles of Mobjack Bay, whose stratigraphic interpretations 

are located in Appendix A, indicate the existence of numerous buried channels 

as well as complex fill sequences which can be described as three separate

44



sequences. In addition, several buried mounds were shown in the record and 

are interpreted as oyster mounds due to the warping of the seismic signal which 

suggests a hard substance. Selected portions of tracklines, represented by both 

stratigraphic line drawings and a reduced copy of the original data, are used in 

the text of this report. Their locations are shown on Figure 19.

Based on the morphologic features of the paleochannels, their relative 

positions, and their fill sequences, reconstruction of the paleo-systems and their 

geographic distribution within Mobjack Bay have been made. During the last 

glaciation, a deep fluvial channel and interfluves were formed by the confluence 

of the paleochannels of the Ware, North, and Severn Rivers (Figure 20). The 

channel was incised into Tertiary material, denoted Tm, which is recognized by 

the series of long, strong continuous, subparallel reflectors (Halka etal., 1989).

It is possible that several of the interfluves present in the seismic records are 

actually Early Pleistocene in age, but that determination could not definitely be 

made so they ail will be designated as Tm. The paleochannel exiting Mobjack 

trends eastward presumably to tie in with the paleochannel mapped by Colman 

and Hobbs (1987).

The East River paleochannel is small compared to the other three rivers 

entering the present Mobjack Bay, and even today it is not nearly as wide as the 

North, Ware, or Severn. In addition to the East River, small tributary 

paleochannels were mapped for what are known today as Caucus Bay, Browns 

Bay, Monday Creek, and Pepper Creek.

Seismic sequences are bounded by surfaces of discontinuity which are 

defined by interpreting the patterns of reflection termination. These sequences 

were then correlated over the entire study area. In general, three fill sequences
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were identified in the seismic record of Mobjack Bay, all of which are assumed to 

be Holocene in age since there was no evidence of an erosional event between 

sequences. If the sequences were deposited earlier than the Holocene, erosive 

and weathering forces acting on the exposed areas during the last sea level 

lowstand would have been represented in the data as an identifiable erosional 

truncation type of reflector termination between the sequences. Since this study 

did not include any cores, it may prove difficult to assign dates to the seismic 

facies, but relative ages can be assigned by using data from outside the study 

area in previously published reports. Harrison et al. (1965) found that the dates 

of the Cape Charles channel fill, representing the current sea level 

transgression, range from about 8 to 15 ka.

Seismic line A (Figure 21) is a south southwest trending line that crosses 

the middle of Mobjack Bay looking downstream and describes its main 

paleochannel whereas line B (Figure 22) is an east-west trending line that shows 

the lateral extent of the paleochannel on the eastern side of the present Mobjack 

Bay mouth. A break in the trackline A-A' (Figure 21) is denoted by the parallel 

lines. From just past mark #56 to mark #60, only gas was observed on the 

original record. The seismic sections are divided into seismic sequences based 

on the criteria of onlap, downlap, toplap, and truncation and facies have been 

identified using reflection configuration. Subaerial erosion of coastal plain 

sediments during the last sea level low stand caused the underlying 

unconformity in the seismic records of Mobjack Bay.

In general, three depositional sequences are identifiable. Unit Q1 is 

defined as a fluvial deposit that is separated from the overlying sequence by a 

flooding surface. This surface shows minor erosion in the paleochannel and the
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sequence itself exhibits discontinuous, relatively strong, irregular reflections. In 

Mobjack, particularly on the eastern side of the Bay, significant deposition 

occurred within this sequence on the margins of the channel (Figure 21 and 22) 

creating a conformable upper boundary. Based on Hack (1957), this unit is 

assumed to consist of sand and fine gravel. Nichols et al. (1991) found that this 

unit in the James River estuary consisted of fluvial deposits overlain by fluvial 

influenced estuarine deposits; however, there is no way to differentiate between 

the two types of deposits.

Unit Q2 generally shows gentle onlap against the underlying fluvial 

sequence while the upper boundary is characterized as toplap. Toplap is 

indicative of a nondeposition hiatus which occurs when sea level is too low to 

allow further deposition. Above the base level, sedimentary bypassing or even 

minor erosion may occur while prograding strata are deposited below (Vail et al., 

1977). This fill sequence is particularly evident in the three large tributary 

paleochannels but is not as thick in the deepest portions of the main 

paleochannel. The origin of Q2 can not be definitely determined without cores, 

but it could represent fine sands or mud originating from paludal or partially 

restricted estuary deposits (Nichols et al., 1991).

Unit Q3 is an onlap fill sequence that is characterized by relatively weak, 

long smooth, continuous reflectors. Colman et al. (1990) found that this 

sequence was fine-grained, consisting of muddy sand and silt deposited in an 

open bay environment. In most of the study area, this layer of sediment, with 

different acoustic properties than the channel fill, covers the entire bay and 

probably represents the smooth, continuous sea level rise during the past 3,500 

years. Interestingly, this present fill sequence has not yet completely covered all
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of the sand shoals on the margins of the bay (Appendix A1-2, A1-3, A2-2, A2-3, 

A3-3, A4-6).

At the western side of the mouth of Mobjack, other sequences were 

recorded on the seismic records but are only identified as undivided Pleistocene 

sequences (Pu). The difference between Tertiary and Pleistocene sediments in 

this area was clearly evident since a York River paleochannel (Figure 23, 

seismic line C) is incised into Tertiary material and covered by Early Pleistocene 

sediments. Farther along the trackline (Appendix A5-1), the paleochannel 

identified in this study as the Mobjack Bay paleochannel cuts into the 

Pleistocene and probably the Tertiary sediment.

The York River paleochannel (Figure 23) was mapped by Carron (1979), 

but the age was not determined. As the location of the channel is slightly north 

of the present York River, it was probably cut during the Stage 6 glaciation at the 

same time as the Eastville channel was formed. In addition, at least one 

erosional event prior to the formation of Mobjack Bay paleochannels is evident in 

the seismic records on the York Spit (Figure 24, seismic line D). These 

sediments were probably deposited and eroded during the many sea level 

oscillations in the Stage 5 and 3 interglaciations which created the Tabb 

Formation.

Channel and Fill Dimensions

Both the location and stratigraphy of the paleochannels indicate that they 

were formed during the last sea level lowstand. The maximum axial depth of the 

major river paleochannels in Mobjack and the maximum thickness of fill units 

were made by direct graphic measurement on the seismic profiles (Table 2) and
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are assumed to be representative of the original channels even though the 

channels could have been modified by erosional and depositional processes. 

The maximum depth of the main paleochannel exiting Mobjack Bay had to be 

projected downward since biogenic gas obscured the deeper portions.

Table 2. Paleochannel Depths and Fill Dimensions

Channel Name
I North River Ware River Severn River Main Channel
Present Depth 
to Bottom

(meters MSL) 7 6.5 5 5

Depth to 
Unconformity

(meters MSL) 17.5 15 20 25-30

Width (kilometers) 1.6 1.4 0.13 1.8

Q1 Thickness
i -

(meters) 3.5 4 6 7

|Q2 Thickness (meters) 4.5 7 5 5

|q 3 Thickness (meters) 5 6 4.5 10

The main channel is relatively narrow at the confluence of the three 

rivers, only 1.3 km and at the mouth of Mobjack Bay, 1.1 km, where it constricts 

and turns southeast before widening again and heading east. However, the mid 

section of the channel is wider, measuring 3 km across. The value listed in the 

table is the average width along the channel. The length of the main channel 

from the confluence to the mouth is 7.7 km. The significantly larger amount of 

deposition in the Q3 sequence at the mouth is indicative of a transgressive 

sequence where the most seaward portion of the paleosystem will prograde 

sooner than the upstream constituents (Nichols et al., 1991).
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During the last sea level lowstand, the shoreline was on the continental 

shelf edge, approximately 120 m below present sea level (Fairbanks, 1989). 

Colman et al. (1990) found that the base of the Cape Charles paleochannel was 

at 50 meters below present sea level at the mouth of the Chesapeake Bay and 

had a calculated 0.0024 m/km seaward slope of the axial channel. Even though 

an accurate depth for the main Mobjack paleochannel could not be obtained, the 

estimate of 25-30 meters below present sea level (Table 2) is reasonable since 

this number fits with the depth given for the Cape Charles channel near the York 

River in Colman et al. (1990).

On the seismic records, the paleochannels exhibit a flat bottomed shape 

rather than the typical V-shaped valley of paleochannels. In addition, smaller 

channels were shown as part of sequences Q2 and Q3 (Appendix A3-2, A3-3, 

A4-5). These V-shaped valleys did not appear to be incised into the underlying 

sequence, but rather developed as part of the sequence when the estuarine 

channels began to meander due to infilling.

Sedimentation Patterns

In most areas of Mobjack Bay, Holocene deposition has completely filled

the paleochannels. The smaller creeks no longer have any bathymetric

expression in the bay. However, some of the interfluves created during the last

sea level lowstand have not been totally covered (Appendix A1-2, A1-3, A2-2,

A2-3, A3-3, A4-6) and occasionally are the present sediment-water interface.

Figure 25 is a contour map of the present bathymetry of Mobjack Bay obtained

from the sub-bottom records. It describes the location of the sandy interfluves 
(denoted as I  on Figure 25) as well as the current expression of the main
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paleochannel. Contours drawn near the shoreline are not necessarily correct; 

they were inferred by Surfer (Golden Software, Inc., Colorado, 1989) since the 

shallowness of Mobjack Bay's margins precluded sub-bottom profiling. The 

deepest part of Mobjack Bay is at the mouth between the two sand shoals 

presumably where the axial paleochannel exited.

The main channel exiting Mobjack Bay was obscured, for the most part, 

by biogenic gas. However, the seismic records indicate that the while the fluvial 

sequence, Q1, was slightly irregular, both Q2 and Q3 were characterized by 

long, continuous, relatively weak reflectors suggesting even deposition over the 

base of the channel (Figure 21). The margins of the channel, on the other hand, 

had significant deposition in Q1 on the eastern side of the bay.

The interfluves, located at the confluence of the Ware and North rivers in 

the present Mobjack Bay, are probably Tertiary and Early Pleistocene in age 

overlain by a thin layer of Holocene sand eroded by wave action against 

Pleistocene sediments. The flat between the mouths of the Ware and Severn 

rivers as well as the flat off the mouth of the East River are also interfluves of 

this age, and seismic evidence suggests the same genesis process. However, 

from the East River to the mouth of Mobjack Bay as well as certain portions of 

the river paleochannels, significant deposition of the Q1 sequence on the 

margins of the channel created the sand flat that is overlain with Holocene 

sediments (Appendix A1-4, A2-3, A2-4, A3-2, A4-5). York Spit, on the western 

side of the mouth of Mobjack seems to be Pleistocene in age with Holocene 

sediment prograding (Figure 22).

The three prominent river paleochannels can be used to illustrate the 

infilling of Mobjack Bay since their channels are relatively gas-free. Figures 26
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(seismic line E), 27 (seismic line F), and 28 (seismic line G) are the North, Ware 

and Severn river paleochannels, respectively, drawn to show their morphologic 

expression since the last sea level lowstand. The orientation of these lines 

varies: E - E' travels east-west, looking south or downstream; F - F' travels 

approximately north-south and faces east or downstream; G - G' is an east-west 

line facing south or upstream. All three show similar trends in the process of 

infilling. The relatively flat base of the paleochannel is incised into Tertiary 

sediments creating steep sides. The infilling of sequences Q1 and Q2 generally 

made the sides of the channel less steep giving it more of a U-shape. With the 

deposition of Q3, the shape of the channel consisted of mounded sand flats 

separated by a flat, muddy bottom.

The Ware River varies from this model in that a possible sand spit 

developed due to the meandering of the tidal channel and occurs in both Q1 and 

Q2 sequences. Looking downstream, this channel appears to be infilling from 

the left or from the interfluve between the Ware and Severn rivers. As sea level 

rose, abundant material would have been available from erosion of the interfluve 

and deposition into both of these rivers.

The Severn River had a small part of its base somewhat deeper than the 

rest such that the channel was not completely flat. During the formation of the 

Q2 sequence, sediment appeared to be filling in the channel from both sides, but 

the side of the channel adjacent to the sand flat off of Guinea Neck appeared to 

be accreting more rapidly. This is even reflected in the present bottom of the 

Severn River. The paleochannel bank is nearly covered by Holocene sediments 

on the south bank but not on the north.
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There is some evidence, from the sub-bottom profiles, that the mouth of 

Mobjack Bay has accreted more rapidly in the past 3,500 years, assuming Q3 

was deposited during this time period, due to the transport of material 

alongshore or from the mouth of Chesapeake Bay. However, the paleochannel 

fill sequence Q3 (Figure 24) is slightly convex upward and had the largest 

maximum sequence thickness at the mouth of Mobjack Bay as compared to the 

fill sequence in the river paleochannels. Also, sediment appeared to prograde 

from the south on York spit to form Q1 and Q2 (Figure 26). On the eastern side 

of the mouth, the majority of the sediment seemed to prograde channelward from 

the north (Figure 23),

The sediment accumulated in the different sequences at various rates 

and in diverse patterns. Assuming that Q3 is the sequence that has been 

deposited in the 3,500 years of relatively stable sea level rise, the accretion rate 

would be approximately 0.3 meters/century in the axial channel where the 

maximum amount of deposition has occurred. While this is not an absolute 

number, it may indicate that the accretion rate has increased since Byrne et al. 

(1982) stated an accumulation rate of 0.5 meters/century.

Sediment Characteristics

The results of grain size analysis for sediments sampled in Mobjack Bay 

are shown in Table 3. In general, the surficial texture changes landward from 

coarse to fine to coarse, and as a whole, the sediments collected for this study 

agreed with the results of Byrne et al. (1982). Nearly half of the sediments 

analyzed for this study were classified as sand based on Shepard's (1954) 

ternary classification; these mostly sand samples were located on the margins of
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Table 3. Grain-size analysis results.

Sand Fraction
Water Mean Phi I Sorting

Sample # Depth (m) % Gravel % Sand % Silt % Clay Size I Class Value Class
MB 1 5.5 0.0 93.7 3.4 2.9 2.5245 Fine 0.5162 Mod Well
MB 2 6.1 0.0 87.8 5.3 6.9 2.9861 Fine 0.8001 Mod
MB 3 4.5 0.0 90.1 3.5 6.3 2.5364 |Fine 0.8403 Mod
MB 4 7.9 0.0 29.9 38.0 32.1 2.8240 IFine 0.9643 Mod
MB 5 7.3 0.0 10.9 46.7 42.4 3.3852 [Very Fine 0.6451 Mod Well
MB 6* 6.7 0.0 3.4 52.7 43.9

.  . . . . . . . . . . . . . . . . . . . . _ L . . . . . . . . . . . . . . . . . . . . . . . . . . .

MB 7* 6.1 0.4 1.5 51.9 46.2
MB 8* 6.1 0.0 1.0 54.9 44.1 |
MB 9* 6.1 0.0 1.2 54.9 43.9 I
MB 10* 6.1 0.0 0.4 52.4 47.2 I i

i

MB 11* 6.7 0.0 0.3 43.5 56.1 !i
MB 12* 7.0 0.0 0.4 41.5 58.1 I ' I
MB 13* 7.9 0.0 0.9 44.1 55.0 i i i
MB 14 8.5 0.0 76.8 7.5 15.6 2.4507 |Fine 0.4313 Well
MB 15* 7.6 0.0 1.5 31.2 67.3 |
MB 16* 7.6 0.0 5.8 30.4 63.7 I |
MB 17 3.6 0.0 96.4 1.9 1.8 2.3621 Fine 0.4733 Well
MB 18 4.2 0.0 95.2 2.3 2.6 2.0632 Fine 0.6332 Mod Well
MB 19* 7.6 0.0 6.7 40.4 52.9 |
MB 20 7.0 0.0 49.0 23.5 27.5 3.1669 |Very Fine 0.8516 Mod
MB 21 3.3 0.0 92.9 0.8 6.3 2.4749 Fine r 0.4179 Well
MB 22 1.7 0.6 88.0 3.3 8.0 2.3594 Fine 0.8443 Mod
MB 23 2.3 0.0 93.2 5.0 1.8 2.1295 |Fine 0.7509 Mod Well
MB 24* 7.3 0.0 3.2 29.5 67.4
MB 25 5.2 0.0 91.0 1.2 7.7 2.2449 (Fine 0.5042 Mod Well
MB 26 3.6 0.0 92.0 1.1 6.9 2.1626 |Fine 0.7333 Mod Well
MB 27 1.8 0.0 93.3 0.4 6.3 2.6028 |Fine 0.4841 Well
MB 28 2.4 0.0 81.5 7.2 11.3 2.5884 IFine 0.4697 Well
MB 29 3.3 0.0 52.6 31.5 15.9 3.4630 Very Fine 0.4851 Well
MB 30 2.9 0.0 94.3 3.0 2.8 2.4616 Fine 0.2606 Very Well
MB 31 6.1 0.0 79.4 10.0 10.6 2.1423 Fine 0.5425 Mod Well
MB 32* 5.8 0.0 2.0 52.9 45.0 |
MB 33 4.2 0.0 93.5 3.1 3.4 2.2954 Fine 0.6458 Mod Well
MB 34 2.8 0.0 95.1 2.1 2.8 2.0434 Fine 0.4968 Well
MB 35 1.8 0.0 95.2 2.1 2.7 1.8682 |Medium 0.7201 Mod Well
MB 36 3.3 0.0 91.4 3.3 5.3 1.6931 jMedium 0.7524 Mod Well
MB 92-1* 5.5 0.0 0.9 44.3 54.9 |
MB 92-2 1.5 0.0 94.5 0.2 5.3 1.9294 IMedium 0.3251 IVery Well
MB 92-3 3.0 0.0 89.5 0.5 10.1 2.0722 Fine 0.4430 Well
MB 92-4 4.5 0.0 87.3 4.6 8.1 2.5020 Fine 0.5154 Mod Well
MB 92-5 6.1 0.0 67.7 15.4 16.8 2.7267 [Fine 0.8342 Mod

I I
* Samples that contained less than 10% sand were not RSA'd I !
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the bay (Figure 29) where sand is supplied predominantly by shoreline wave 

erosion of Pleistocene sediments or deposited by longshore currents. Clayey 

silt is located in the central portion of Mobjack, but the silty clay has extended 

further into the bay than reported by Byrne et al. (1982) and is not exclusively in 

the mouths of the Ware and North Rivers.

In the northern section of the bay, the change between bottom sediment 

types is abrupt. The shallow, sandy flats and shoals along the margins of the 

rivers quickly give way to silty clay in the channels. In the wider, middle portion 

of the bay, there appears to be transition zones between the clayey silt region 

and the sandy margins. The mouth of Mobjack Bay is a predominantly sandy 

area; however, it does have a transitional area between the clayey silt region 

and the two large sand shields on either side of the mouth. Byrne et al. (1982) 

reported a band of finer sediments running southeast from the mouth of Mobjack 

Bay, but in the current study, only sand was found. This is probably due to the 

locations of the sediment samples.

Only two samples contained any gravel-sized material and that was 

actually shell hash. The sand was classified as medium to very fine. The Rapid 

Sediment Analyzer (Table 3) showed that the very fine sand is limited to the 

deeper portions of the bay and in the river channels while the fine to medium 

sized sand is located in the shallows. The sand shoal on the west of Mobjack 

Bay may reflect a dual source of sand. Since grain size fines seaward on the 

shoal and the rivers transport little sand, the upper portion may be a reworked 

relict material from Mobjack Bay's shoreline (samples 35, 36) while the portion at 

the mouth may be deposition of shelf sediments (samples 1, 2, and 3).
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V I I .  DISCUSSION

Development of Mobjack Bay and its Paleochannels

The geologic history of the Chesapeake Bay is well documented by Hack, 

1957; Meisburger, 1972; Colman and Hobbs, 1987; Colman et al., 1990; and 

others. From these studies, three Quaternary paleochannels and their 

associated fill sequences have been reconstructed from seismic profiles, and 

their ages determined by radiocarbon dating. Each channel and fill sequence 

represents the fluvial channel and subsequent infilling of the Susquehanna River 

during sea level lowstands and highstands, respectively. These paleochannels 

are identified as the Exmore, Eastville, and Cape Charles.

Coastal plain sediments are exposed to erosional forces during a marine 

regression, and river channels are incised into older sediments to transport 

water to the ocean creating the underlying unconformity shown in seismic 

records. As sea level rises, sand and gravel accumulates in channels.

Eventually the flow becomes partially restricted estuarine flow and finally 

estuarine. At the limit of sea level highstand, an erosional scarp or beach forms 

and seaward deposition of eroded sediments creates a terrace feature.

Approximately 187 ka, sea level was 14 meters above present mean sea 

level (Peebles, 1984), and during this sea level highstand the Shirley Formation, 

whose landward limit is the Hazelton and Big Bethel scarps, was deposited. 

Based on the location of these scarps, Peebles (1984) suggested that the York 

River was situated slightly north of its present course while the Piankatank River 

was located somewhat south. About 30,000 years later, with the onset of the 

Stage 6 glaciation which lowered sea level, the Eastville paleochannel was
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carved into the underlying sediments. Evidence of a York River paleochannel 

which would correspond to this time was found in the seismic records (Figure 

23) supporting Peebles (1984) hypothesis. With the onset of the Stage 5 and 3 

interglaciations approximately 80 ka, several cycles of sea level oscillations 

created the three members of the Tabb Formation. The formation of the scarps 

associated with the Tabb Formation as well as successively lower sea level 

highstands caused the York and Piankatank Rivers to move to their present 

position. When the latest glaciation began, the configuration of the Middle 

Peninsula had been so altered by the movement of the rivers and the 

development of scarps that a new drainage channel formed in Mobjack Bay.

There was no evidence in the seismic records that the four rivers entering 

the present Mobjack Bay existed prior to the last glacial maximum so the 

Mobjack fill sequences can not be related to the Early Pleistocene Exmore and 

Eastville paleochannel fills shown to exist in the Chesapeake Bay. The 

confluence of the North, Ware, and Severn paleochannels formed during the last 

sea level lowstand created a channel exiting the mouth of today's Mobjack. This 

paleo-river presumably flowed southeastward to become a tributary of the 

ancient Susquehanna River expressed in seismic records as the Cape Charles 

channel.

Seismic records support this claim since only one underlying conformity 

was observed in the records overlying a sequence consisting of subparallel, 

relatively weak, fairly continuous reflectors which is widely recognized as 

Tertiary material (Shideler etal., 1972; Colman etal., 1988; Colman etal., 1989; 

Halka etal., 1989). In addition, only fill sequences are observed in the records 

suggesting that the sediments were deposited after the end of the last glaciation.
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Sequence Q2 did show minor erosion in isolated areas, but the extent of sea- 

level fall during the last glaciation would have resulted in much greater erosion if 

the sequence had been deposited before it.

At the end of the last glaciation, sea level was approximately 120 meters 

lower than it is today (Fairbanks, 1989). As it began to rise 18 ka, coarse sand 

and gravel accumulated in the channels creating sequence Q1. Between 9,500 

and 6,000 years ago, the Chesapeake Bay as well as Mobjack began to be 

influenced by tidal and wave energy. Since sequence Q2 is bounded by toplap, 

sea level had generally not risen over the banks of the paleochannel when this 

sequence was deposited in a restricted estuarine environment. About 3,500 

years before present, Mobjack probably reached its present configuration as sea 

level rise slowed but had already risen to such a height that the confluence of 

the Ware and North Rivers is now the head of Mobjack Bay and the Severn 

River is a tributary. Since that time, sequence Q3 was deposited under 

estuarine conditions.

Application of the Facies Model

The application of a facies model to paleochannel fill sequences of a 

marine transgression is appropriate and useful as sediment preservation 

potential is high because of its location in a paleovalley (Kraft, 1971). How the 

sediments accumulate relate to many factors including the antecedent geology 

upon which the sequences form as well as the relative importance of forces 

(tides, waves, and riverine flow). By applying a model to the information 

gathered from a seismic study to determine the development of an estuary, we
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can learn what forces have been primarily important in the formation of the 

system and how the system has responded to modern conditions.

Presently, the Chesapeake Bay and Mobjack Bay are affected by low to 

moderate intensity tidal and wave processes (Colman etal. 1988). Tidal forces 

extend all the way up the rivers, but no modern tidal channel exists. Due to its 

exposure and relatively wide mouth, waves from the south, southeast, and 

southwest impact the Bay (Hardaway et al., 1982). Riverine energy and 

sediment input is minimal to Mobjack Bay from its tributaries.

Without cores, it is difficult to determine the lateral succession of 

transgressive facies since the type of facies (i.e. sandflat, mudflat, or marsh) are 

not known. However, specific information gathered from seismic profiles can be 

interpreted and applied to a model to classify an estuary. Due to the relatively 

small scale of Mobjack on which the model is applied, some of the facies 

described in the model may not be represented.

The main axial channel exiting Mobjack Bay as well as the river 

paleochannels tended to accrete channelward and vertically. Large sand 

deposits accumulated on the margins of the channel in Q1 (Figure 21) while Q2 

was limited to the channel except for a few areas where it overtopped relatively 

low interfluves (Appendix A1-1, A2-3). In these two sequences, there was no 

longitudinal trend; however, Q3 was much thicker in the axial channel than in the 

river paleochannels (Table 2). Subaqueous shoals appeared to develop near 

the confluence of the three rivers and up the river paleochannels from processes 

occurring during the deposition of Q1 and Q2, but not in Q3. The slight convex 

upward shape of Q3 at the mouth of Mobjack may indicate that, in this area, the 

sediment supply is external.
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Based on the model described earlier, only two possible classifications, 

wave-dominated and tide-dominated, exist for the description of facies 

development within Mobjack Bay. However, in reality, the bay is influenced by 

both wave and tidal energy, and its shape is a compromise between the two 

possible end-members as well as its inherited geometry. Wave dominated 

estuaries tend to develop in irregularly shaped paleochannels, such as in 

Mobjack, since tidal amplification does not readily occur (Nichols and Biggs, 

1985). However, based on the Dalrymple et al. (1992) synthesis of a tide- 

dominated estuaries, sand tends to occur in the tidal channel whereas muds 

accumulate on the margins. The existence of several shoals (Figures 27 and 

28) as well as migrating tidal channels (Appendix A3-2, A3-3, A4-5) suggests 

that tidal forces were probably more important than waves during the formation 

of Q2. In addition, overtopping of lower interfluves probably created mudflats or 

marshes along the edges of the paleo-Mobjack estuary.

Finkelstein and Hardaway (1988) studied Late Holocene estuarine and 

marsh sediments deposited along the York River. They found that the rapid sea 

level rise during the mid-Holocene resulted in the deposition of estuarine 

sediments creating a wide expansive marsh system. However, as sea level 

continued to rise, estuarine waters would have overran the banks of Mobjack 

Bay's paleochannels and spread over the flat subaerially eroded coastal plain 

overtopping the marshland. In the York River, fringing marshes developed 

under moderate estuarine water levels and reduced sea level rise in the Late 

Holocene (Finkelstein and Hardaway, 1988).

When sea level overran the paleochannel banks, the tidal wave would no 

longer be confined. At the same time, fetches would have increased throughout
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the bay allowing the generation of larger waves and the development of a wave- 

dominated estuary. This is evidenced by the even deposition of fines in the less 

energetic central portion of the Bay while sands are deposited at the mouth 

where waves encounter the sand shoals and flats located on either side of the 

Bay mouth. The bay-head delta does not exist in Mobjack as is the case when 

tributaries supply little sediment to the system (Honig and Boyd, 1992).

Comparison of the facies located in Mobjack Bay to the facies present in 

examples of the two end-members can help determine the usefulness of the 

facies model. The South Alligator River in Northern Australia is a macrotidal 

estuary with a spring tide range of 5-6 meters at the mouth (Woodroffe et al.,

1989). The three facies in this river consist of the characteristic "straight- 

meandering-straight" morphology of a tidally-dominated estuary. The funnel 

zone at the mouth has elongate tidal bars which make up the marine sand body, 

and is banked by mangroves which are analogous to the mudflats and marshes 

in Dalrymple e ta l.'s (1992) model. The sinuous meandering region contains no 

point bars but is completely surrounded by mangroves. Woodroffe et al., (1989) 

identified the upriver straight zone as two separate facies, cuspate meandering 

and upstream; however, the two facies are similar in that they both have limited 

mangrove growth but point bars and shoals are well-developed.

Lake Macquarie is located on the southeastern Australia coast in New 

South Wales. Along this coast, the wave climate consists of swell and wind 

waves which frequently exceed four meters, and the tide range averages 1.6 

meters (Roy et al., 1980). Riverine input is considered low. This river has three 

distinct facies. A marine sand body consisting of a modern barrier sediments 

overlying Pleistocene barrier sand as well as a prograding, flood-tidal delta is
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located at the mouth. The central portion consists of a muddy, prodelta basin, 

and a small delta exists at the head of the estuary.

Mobjack Bay varies significantly from both end-members. It is a microtidal 

estuary with low wave energy and limited riverine flow. While the bay is affected 

by sea swell coming through the mouth of Chesapeake Bay, it does not open 

directly to the ocean. The mouth of Mobjack Bay has a somewhat limited sand 

body consisting of two shoals on either side the mouth region. The central axis 

of Mobjack consists of muddy sediment and is flanked by subtidal and intertidally 

sand flats. No bay-head delta exists since river flow is negligible.

The comparison between these three sites reveals that Mobjack is 

influenced by relatively low intensity waves and tides, but its present morphology 

is probably determined more by wave energy. During the mid-Holocene, it is 

reasonable to assume that tidal energy was more important since amplification 

of the tidal wave within the paleochannel, due to shallowing and narrowing of the 

channel from sedimentation, would have increased the tidal range. However, it 

is very unlikely that characteristic "straight-meandering-straight" morphology of 

the tide-dominated estuary ever developed.

Modern Sedimentation, Source or Sink

Many of the modern sand flats and shoals located along the margins of 

Mobjack have been shown to be reworked Pleistocene material derived from 

shoreline erosion deposited upon Tertiary interfluves or Q1 fluvial deposits.

Also, Byrne et al. (1982) determined that Mobjack Bay is in the "central farfield 

Chesapeake Bay mouth region" since it receives sands tidally transported from 

the shelf (Meade, 1969; Colman et al., 1988); in addition, sediments are
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transported alongshore down the northwestern flank of Chesapeake Bay. The 

sediment analysis was not conclusive as to the origin of the spit on the eastern 

side of the mouth; however, mean grain size was similar between the shoals 

inside Mobjack, which receive reworked relict material, and the shoal 

surrounding New Point Comfort. Fining seaward of mean sand size on the 

shoals within the Bay indicates that the material eroded by waves is not 

transported out of Mobjack. It may also indicate that York Spit is receiving 

sediment from an external source.

The abrupt change is grain size from the sand flats to the river channels 

suggests that little sand is being deposited in the deeper portions of Mobjack, 

particularly in the tributaries. The transition zones in the central bay indicate 

that the sand flats are probably prograding towards the axis of the bay.

The main paleochannel in Mobjack has been completely filled by 

sediments, and Q3 is even beginning to take on a convex upward shape at the 

mouth of Mobjack Bay. The highest interfluves of the river paleochannels have 

not yet been topped by Q3 deposition indicating that a major source of sediment 

to Mobjack is external and that the bay itself is a sink. Wave and tidal energy 

transports sediment down the western flank of Chesapeake Bay and from the 

continental shelf. These forces encounter the large shoals at the mouth of 

Mobjack causing the sands to be deposited, but the fines are kept in suspension 

and distributed to the central basin of Mobjack by the tide. Shore erosion within 

Mobjack also contributes to the sediment supply as indicated by the bayward 

prograding sand flats on the margins of the bay. The rivers contributing to 

Mobjack mostly carry silty clay that also is deposited in the less energetic central 

portion of the Bay.
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V I I I .  Summary and Conclusions

While the Chesapeake Bay has had several incarnations during the 

Pleistocene as evidenced by the formation of the Exmore, Eastville, and Cape 

Charles paleochannels and their subsequent infillings, Mobjack Bay is a 

relatively young section of the Chesapeake since it did not exist prior to the last 

sea level lowstand. The system of paleochannels and interfluves created by 

erosion during the last glaciation unconformably overlies material of Tertiary or 

Early Pleistocene age. Three paleo-river channels converged inside the present 

Mobjack to form a main axial channel exiting the bay that joined with the 

previously mapped Cape Charles paleochannel.

The three separate fill sequences observed in the seismic records within 

the paleochannels of Mobjack are depositional in nature with only Q2 exhibiting 

minor erosion in isolated areas. Q1 consists of fluvial fill material that was 

deposited when stream gradients decreased as sea level rose. Q2 is assumed 

to be paludal in origin, deposited in a restricted marine environment when water 

flow was in transition from uni-directional fluvial flow to bi-directional estuarine 

flow. Based on facies analysis, the upper boundary of Q2 generally shows a 

toplap relation indicating sea level had only risen to the tops of the highest 

paleochannel banks and not overrun them. Q3 is a fine-grained depositional 

sequence that accumulated in an estuarine environment over the past 3500 

years while sea level rise was relatively consistent and can be considered fairly 

stable.

In most areas of Mobjack Bay, Holocene sedimentation has completely 

filled the incised paleochannels. Sequences Q1 and Q2 are generally limited to
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the paleochannels themselves except in a few areas where overtopping of low 

interfluves occurred. The largest amount of deposition was taking place on the 

margin of the paleochannels while these sequences were forming, presumably 

from erosion of material by wave action against the shore. This is supported by 

the channelward deposition within the sequences. Q3, however, was deposited 

under less energetic conditions as evidenced by the relatively smooth, weak 

reflectors within the sequence. The extent of this sequence is bay-wide 

indicating that Mobjack Bay had reached its present form while it was being 

deposited. In Mobjack's bay mouth region, Q3 appears to have a convex 

upward shape which could indicate that a large amount of sediment is being 

deposited here.

Analysis of surficial sediments within Mobjack Bay revealed several 

trends. The deeper portions of Mobjack Bay are accumulating fine-grained 

material, and the shallower margins are receiving sand. Silty clay seems to be 

carried into Mobjack from the four small rivers entering it, but clayey silt may be 

transported into Mobjack from the Chesapeake. The sand flats located on 

western side of Mobjack's mouth, adjacent to the York River, appears to be 

prograding channelward from sediments supplied by the York River and/or the 

Chesapeake Bay mouth.

The application of a facies model to the seismic analysis of Mobjack 

indicates the relative importance of the three different types of energy, wave, 

tidal, and riverine, during the formation of the estuary. Riverine flow is generally 

considered to be low in the present Mobjack Bay and was assumed to be the 

same during the Holocene marine transgression. The migration of the tidal 

channels seen in Q1 and Q2 as well as the possible development of
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subaqueous shoals and mudflats or marshes along the margin indicate that tidal 

forces were important during the deposition of these two sequences. However, 

the deposition of sand on the margins and the development of shoals at the 

mouth of the bay in addition to the fine-grained sediment accumulation in the 

central portion are characteristic of a wave-dominated estuary.

Even though evidence exists for the relative importance of different types 

of energy presently and during the formation of Mobjack Bay, the end-members 

described by Dalrymple et al. (1992) for wave- and tide-dominated estuaries do 

not and probably never existed in Mobjack. The semi-enclosed nature of the 

bay within the Chesapeake Bay modifies the energy of tides and waves; in 

addition, the deposition of sediment from several sources leads to complex 

sedimentation patterns.
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I X .  FURTHER INVESTIGATIONS

The most obvious avenue for further investigation would be to take cores 

within Mobjack Bay in order to confirm the ages of the paleochannel and its fill, 

to differentiate between Tertiary and Early Pleistocene deposits of the 

interfluves, to determine the depositional environment of Q1, Q2 and Q3, and to 

quantify sedimentation rates. Additional data on wave and tidal currents would 

prove useful in further analyses performed in Mobjack.

The application of the facies model to Mobjack Bay was not entirely 

successful. Facies models exist for river estuaries within the Chesapeake, but 

are not particularly applicable to semi-enclosed bays, such as Mobjack or any 

other small bay within the Chesapeake, since riverine flow as well as fluvial 

sediment input is so important. A need exists for a facies model that could be 

used to predict stratigraphic development of shallow bays in a low energy 

environment with muddy sediment supply and limited access to the ocean.

As sea level continues to rise, the relatively low topography of Mathews 

and Gloucester counties surrounding Mobjack will be significantly impacted. 

Much of the Gloucester side is flanked by marshes while the Mathews side by 

subtidal sand flats. How will erosion of these sediments affect the depositional 

patterns within Mobjack? Since the bay is a sink for sediment, what processes 

and sediment sources will most affect it’s infilling? A study of accumulation rates 

would determine if Mobjack is really accumulating sediment faster than sea level 

rise.
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APPENDIX A

1.) March 1986
2.) June 1992
3.) June 1993
4.) July 1993
5.) July 1994
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