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Semiclassical interpretation of eigenvectors for excited atoms in external fields

J. B. Delos, R. L. %aterland, and M. I.. Du
Physics Department, College of William and Mary, Williamsburg, Virginia 23I85

and Joint Institute for Laboratory Astrophysics, Uni Uersity of Colorado and ¹tional Bureau of Standards,
Boulder, Colorado 80309-0440

(Received 5 brune 1987)

Eigenvectors for an electron in an atom in parallel electric and magnetic fields are calculated,
and a semiclassical interpretation of their behavior is obtained. Eigenvectors can in this case be
regarded as "wave functions in angular momentum space. " The matrix equation de5ning the
eigenvectors is written as a difference equation, and then converted to a pseudodinerential equa-

tion; a systematic procedure is then used to construct a semiclassical approximation. It is found
that the same classical Hamiltonian that has been previously used to calculate semiclassical eigen-
values provides a %KB-type representation of the eigenvectors. The development sheds new light
on action-angle formulations of quantum mechanics and on semiclassical approximations in

action-angle variables.

I. PURPOSE

In this paper we shall obtain a semiclassical approxi-
mation to eigenvectors representing excited states of a
one-electron atom in collinear electric and magnetic
fields.

II. PRELUDE

A standard method for calculating wave functions in-
volves expansion in a basis set, evaluation of matrix ele-
ments of the Hamiltonian in that basis, and diagonaliza-
tion of the resulting matrix. The eigenvalues and eigen-
vectors come out of this process as a collection of num-
bers. Confronted with the list of eigenvalues, with
sufhcient thought one can often discern patterns in the
numbers, and thereby gain understanding of the physical
system.

However, the numerical list of eigenvectors provides a
more difficult challenge. As an example, the list of ele-
rnents of an eigenvector that describes a wave function
of an atomic electron in collinear electric and magnetic
fields is given in Table I. At first glance it is a pretty
formless coBection of numbers. Lengthy perusal does
not help; no pattern to the numbers becomes evident.
Given a wave function in configuration space, we can
often provide an intuitively satisfying interpretation of
its structure. But given an eigenvector —which after all
is just a wave function expressed in a diFerent way —our
abilities to give physical meaning to its elements are lim-
ited.

In this paper we show that eigenvectors can be under-
stood in a much more complete and satisfying way. %e
will give a method for calculating semiclassical approxi-
mations to eigenvectors such that each element is given
by a simple %KB form, or by an integral representation
corresponding to a uniform %KB approximation.

This step forward in physical understanding arises at
least partly from some relatively recent developments in

mathematics: the study of "pseudodifferential equa-
tions" and especially the development of formal asymp-
totic series expansions of the solutions to these equa-
tions. While the words may seem a little intimidating at
first, we hope to convince the reader that the essential
ideas of the subject are easy to understand, and that they
are a perfectly natural extension of familiar &KB
theory. "Formal asymptotic expansions for
pseudodiffereniial equations" is mathematicians' jargon
meaning semiclassical approximations for unusual sys-
tems or unusual representations. Examples of
pseudodiFerential equations are the Schrodinger equa-
tion in momentum space (which is typically an infinite-
order equation involving a continuous variable), or any
matrix representation of the Schrodinger equation (in
which the independent variable is discrete, and the equa-
tion could be regarded as a di8'erence equation or recur-
sion relation). We will discuss this in more detail later.

1

2
3
4
5
6
7

10
11
12
13
14
15

0.156
0.024
0.248

—0.204
0.049

—0.246
0.013
0.118
0.025
0.253

—0.225
0.020

—0.208
—0.007

0.236

16
17
18
19
20
21
22
23
24
25
26
27
28
29

—0.036
0.226

—0.298
—0.099

0.060
—0.026

0.414
—0.253
—0.301

0.289
0.039

—0.096
0.013
0.008

TABLE I. Elements of eigenvector number 17 for the sys-
tem described in Sec. III.
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The recent mathematical advances are essential for a
proper physical formulation. However, we should also
mention some related earlier work in semiclassical
theory, much of which was developed in @n intuitive or
heuristic fashion. Some of this work hinted at the ex-
istence of the general and systematic theory that is now
available, and all of it can be more clearly understood
now that a solid mathematical foundation has been built.

We already stated that the theory of formal asymptot-
ic solutions 4o pseudodiferential equations is a natural
outgrowth of %KB theory, which was originally set up
for second-order ordinary differential equations.
Asyinptotic approximations for difFerence equations also
have been available for a long time. 2 After the funda-
mental work of the early 20th century, however, the
theory of asymptotic approximations did Qot receive
much attention from mathematicians for many years,
and theoretical physicists and chemists were left to their
own devices. A semlclasslcal approxlmatlon ln mornen-
tum space seems to have first appeared in a book of
problems. 3 More recently, a "discrete %KB approxima-
tion" was developed by Braun and by Kirkman, who
used it to study excited states of a hydrogen atom in a
magnetic field. Also, the mathematically informal but
physically suggestive "classical S-matrix theory" has
been used to obtain semiclassical approximations for
scattering amplitudes in discrete representations ' and
for Clebsch-Gordan coefficients, Finally, there is a long
history of attempts to formulate semiclassical mechanics
or quantum mechanics in terms of action-angle vari-
ables. Some of these studies express semiclassical
correspondences by using a variable (the action) which is
continuous in classical mechanics but discrete in quan-
tum mechanics. Others attempt to formulate exact
quantum-dynamical laws in a representation that goes in
the classical limit to the action-angle picture. If simple
and general quantum analogues of classical angle vari-
ables exist, they have still eluded discovery; the formula-
tion given here has some bearing on this problem. In re-
cent years, rnaihematicians have found new reasons for
interest in pseudodifkrential equations and asymptotic
expansions. Fundamental aspects of the theory, includ-
ing theorems about existence and regularity of solutions,
are discussed in recent work of Hormander, "'
Taylor, ' ' Treves, "' and Peterson. ' ' Maslov and
Fedoriuk' ' have provided methods for calculating
asymptotic solutions for a very wide class of
pseudodifferential equations. This work has provided a
mathematical imprimatur for some of the ideas that
were already extant in the physics and chemistry com-
munities; ln addition, lt has given lrnportant Qew insights
and understanding of the great breadth of applicability
of semiclassical ideas.

In this paper a semiclassical approximation provides
an interpretation of the structure of the whole set of
eigenvectors. This approximation is calculated by treat-
ing the matrix equation defining the eigenvector as a
di8erence equation. This is rewritten as a pseudo-
differential equation. Then we extend a procedure of
Maslov and Fedoriuk and use it in a new way to calcu-
late the semiclassical approximation.

HI. SYSTEM: AN EXCITED ATQM
IN COI.LINEAR KLKCTRIC AND MAGNETIC FIELDS

If the external fields lie along the z axis, then in a
frame of reference that precesses at the Larrnor frequen-
cy about this axis the Harniltonian is

Ho =p /2IJ—, Ze /r—,

A, —:e 8 /Spe, v=eF,

H, =—(x +y ), Hz=z,
(3.1b)

8 and F being the magnetic and electric fields, respec-
tively. We consider atoms in states of principal quan-
tum number n =30, with 8 =2 T, and I' = —l8. 7 V/cm.
In this case the eigenfunctions of H can be calculated in
first-order quantum-perturbation theory by using an ex-
pansion in Hydrogenic radial functions times spherical
harmonics,

4"™k(r,8,$)= g 1(," "A„,(r)YI (8,$) .
l=im

(

(3.2)

This expansion involves only the degenerate I levels at
the given n; rn is an exact quantum number because of
the cylindrical symmetry of the Hamiltonian, and n is a
good quantum number because the external electric and
diamagnetic fields are weak compared to the atomic
Coulomb field. Henceforth, therefore, we drop the un-
necessary labels n and m, and designate the coef5cients
in expansion (3.2),

iII nmk
y

k (nrm
~

qPnmk)

= f R„'&(r)Y; (8,$)%" "(r,8,$)dr . (3.3)

By using the same letter for the coefficients, g &, as for
the wave function, %™(r,8,$), we emphasize the fact
that the coefficients are the representation of the abstract
state vector

~

4" k) in the
~

nlm ) representation. We
might say that the set of coefficients is "the wave func-
tion m

~

nlm ) space. "
Eigenvalues and eigenvectors can now be calculated

by diagonalizing a matrix having (n —
~

m
~

) elements,

(3.4)

%ithin the set of states of fixed n, the zeroth-order
Hamiltonian is a constant, E = Ze /2n fi, and it-
can be ignored.

Our basis functions R„&(r) and Y& (8,$) have the
phase conventions given by Condon and Shortley. '

With these conventions, the matrix elements are (in
atomic units, but with i)i kept explicit)
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( nlm
i
z

i
nl'm ) =

fi for 1'=1+1

(1 +m)(l —m)
(21 —1)(21 + 1)

1/2

[ 2 2]i/2 (1+m +1)(l —m +1)
(2/+1)(21 +3)

' ]/2

for 1'=1—l,

s [n 2 (1 +2)2]1/2[n 2 (1 + 1)2]1/2 2

1/2

X
(1+m +2)(l +m +1)(1—m +2)(1 —m +1)

(21 +5)(21 +3) (21 +1)

(
)

2 2 ), )
n'[5n'+1 —31 (/+1)](1'+1—1+m') ~g f

(2/ —1)(21+3)
5 (n 2 /2)1/2[n 2 (/ 1 )2] l/2n 2

1/2

X
(/+m )(1+m —1)(1—m)(l —m —1)

fi for 1' =1 —2.
(21 + 1)(21—1)'(21 —3)

(3.5)

The result of this calculation for n =30, m =1 is
shown in Fig. 1. Each of the 29 eigen vectors is
represented by 29 coefficients $1", which are plotted as
spikes along the 1 axis at integer values of 1 from I to 29.
The eigenvalues have already been discussed in a previ-
ous paper. ' Here we seek a physical understanding of
the eigenvectors.

Of course, the basic quantum-mechanical interpreta-
tion of the eigenvectors is well known. If the system is
in a state represented by the wave function //" (r, 8,$),
and if a measurement is made of I. „ the square of the
electronic orbital angular momentum, then
represents the probability that the value of I. will turn
out to be 1(/+1)fi . Another point of view is also well
understood: according to (3.3), if we take an eigenfunc-
tion %™(r,8,$) (a few are plotted in Ref. 13) and pro-
ject it onto a R„&(r)Y& (8,$) basis function, then the re-
sult will be i//&.

However, we are seeking a difkrent sort of under-
standing. We want to understand the patterns of behav-
ior of the coefficients. For example, we want to know
why some eigenvectors have elements that change
smoothly with 1 while others have wildly varying
elements —why some eigenvectors have elements that
are significant in only a small region and others 611 the
whole range. %e know that con6guration-space repre-
sentations of wave functions have oscillations in classi-
cally allowed regions, exponential behavior in forbidden
regions, and Airy-function structure near turning points.
The coefficients Pt represent the wave function in angu-
lar momentum space. Are there similarly simple struc-
tures in this representation'7

%'e can already see that the coefBcients representing
some of the eigenvectors show simple patterns, remind-
ing us of wave functions of one-dimensional oscillators.
But other sets of coef5cients are much more disorderly. '

Nevertheless, we shall show that all of these sets of
coef5cients can be well represented by com.binations of
simple %'KS-like expressions

and by integral representations analogous to uniform
%KB approximations. In this picture the coef6cients
are therefore discrete values of continuous functions of l.
In various regions these functions represent either a su-
perposition of traveling waves in 1 space, exponentially
decaying waves in a forbidden region, or Airy-like
diffraction near a classical turning point.

IV. CLASSICAL DESCRIPTION

Semiclassical approximations give a relationship be-
tween the quantum-mechanical description of a system
and the classical description. In the present case, even
the classical description is unusual enough to stretch our
minds a bit.

Because the external 6elds are weak, classical pertur-
bation theory can be used. The electron is said to move
on a Kepler eHipse with slowly varying orbital parame-
ters. These parameters are most conveniently chosen to
be canonical action and angle variables II&,gkj defined
in Table II.' ' ' In 6rst order the average rate of
change of each of these variables is obtained by averag-
ing the perturbing Hamiltonian over a Kepler cycle,

t'

b,IJ lr= f — —dt = — —f H dt
1 r "dH 8 1

o BP& dgj. r o

(4.1)

The average Hamiltonian h was shown in an earlier
paper' to be

/t =—f (AH&+vH2)dt

[(Ii +I2 )(5I3 —3I2 )
4I2

+5(I& I2 )(I2 I', ) cos(2$—2)]—
31"exp(iS&"hri) (3.6) [(I3 I2)(I2 I, )]'/ sin(()2 . ——

2I~
(4.2)
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FIG. 1. Elements of the eigenvectors of the matrix defined in Eqs. {3.4) and (3.5). Each horizontal line is an I axis, with I going

from 1 to 29. The vertical lines are the values of Pi, i.e., the 1th element of the kth eigenvector. The first seven eigenvectors have

simple patterns relniniscent of wave functions of a one-dimensional oscillator. The others have no obvious patterns. An interpreta-

tion of these structures is obtained in this paper.

The analysis given in this paper will be clearer if we use
a minor change in notation. I, is the z component of
angular momentum, which in quantum mechanics takes
the value mfi; let us call it M. I3 is the principal action,
corresponding to ttR in quantum mechanics, so we will

call it ¹ Iz is the magnitude of the orbital angular
momentum, which in quantum mechanics is

[I(l +1)]'/ R or in semiclassical mechanics is (I +1/2)A',
so let us call it L L, M, an. d N are therefore continuous
classical variables related to the Hydrogenic quantum
numbers I, rn, and n Finally. , iI)z is the only one of the
three angle variables that occurs in (4.1), so let us drop

+5(N L){L —M—) cos(2$)]

—v [(N —L )(L —M )]' sing .
2L

(4.3a)

For comparison with formulas that will appear later, let
us write this in the form

the subscript and call it P. With this change of notation,
the efFective Harniltonian is

Nh=k, [(M +L )(5N —3L )
4I.

h (L {(i)=A (L)— [e'~ B (L—)e'~ e'~ B (L—)e '~ ]+ [e't'Co(L—)e'~+e '4'Co(L)e '«]
2l 2

(4.3b)

where

A'{L)=A, (L'+M'}(5N' —3L'),
4L,

B (L)=v [(N' —Lz)(L' —M )]' ',
2I.

C'(L) =X 5{N'—I, ')(L. ' —M') .
4L

(4.3c)

second of these holds in first order because (4.1) involves
an average over the Kepler orbit. Hence N and M are
effectively fixed parameters in (4.3). Therefore, h can be
regarded as a Hamiltonian for a system with a single de-
gree of freedom, having coordinate P and conjugate
momentum L. [Compare the fact that in the quantum
expansion (3.2) we may regard m and n as fixed parame-
ters, and the single quantum number l as the variable. ]

The equations of motion for L and P are

According to Eq. (4.1), this eff'ective Hamiltonian
gives equations of motion in canonical form. Since h is
independent of pi and QI, M and N are conserved quan-
tities„

dgldt =Bh/BL,

dL/dt = —Bh/Bp .
(4.5)

dM/dt = —BIt /BQ, =O,

dN!dt = —Bh/BPI ——0 .
(4.4)

The 6rst of these holds exactly because the Hamiltonian
{3.1) is cylindrically symmetric about the z axis. The

Since h is a constant of the motion for these equations,
the system evolves in its (L,P ) phase space on a contour
of constant It. We saw that the formula for h (L,P) was
a little complicated, but its messiness is no problem;
everything we need to know about the motion in (L,P)
space is contained in a contour plot of Ii (L,P).
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TABLE II. Action and angle variables of t pf the Ke ler Problem.

Ij= [ I. ! =L—
er m of the uantum mechanical Coulomb problemII correspon s 0

b 1 f h C 1 b blI2 corresponds to the total angular momentum quantum num er o

I, = [Ij,k~/ 2H—O]'i':—N
corres onding to the principalThe principal action, re ate o el d to the Kepler energy Ho and corresp

'
g

quantum number n of the Coulomb problem
k =Ze2
I, &I,

Longitude of the ascending node
Argument of the perihelion
Mean anomaly

A contour plot of h (L,P) is shown in Fig. 2. The ar-
the direction of motion of the trajectory

on the contour. ese conTh ontours fall into the following
three groups, which were discussed

'
in Ref. 13.

L„,librators confined to the region jr & P & 2jr.
Rz, rotators having the property that L is large near

|I)=jr /2.
R&, rotators having the property that L isL is small near

P = rr/2.

Of the 29 quantized energy levels, wewe shall show that 28
of them correspond to the contontours shown in Fig. 2;
states 1-7 are L„ librators, states 8 and 9 are R„rota-

es 11-29 are Rjj rotators. (State number
10 will be discussed later. ) In addition, i a o e
tours were rawn,d ' the following two other classes of li-
brators would appear.

L librators confined to 0&/ & jr and smnd small L.I~, ~rao
Lc, librators confined to 0 & P & jr and Ld L close to 12.

50
8

j
j j
j j

j s jj

j
s j

jjj '

1

j j
j

j j,'
j

} j
I

j

I
jlj'

!
j ~

it'
!
jj I

!

l

i/

~lI i~ "

lj 1

, !

~bJ~) I)i

i the resent case, the area in the (L,P) planeHowever, j.n t e presen
occuple y e

'
d b th se states is too small to suppor a q

turn state. (At other field strengths these hbrators s can
be more important.

1 a roxima-W 'd that by means of a semiclassica approxima-e sar a
tlon it s oil e ph ld b ossible to relate the Schroding q
tion, w 1c inh' h in / representation is given by qs.
(3.5), to the classical equations of motion,
At the moment, the relationship is not very obvious.
One is a completely opaque matrix equ
other descri es an a ien o'0 1' form of one-dimensional motion.

h 11 show that there is a very simple rela-However, we s a s ow
tionshi that makes both of them clearer. pwar-
downward-) moving sections o

'
pf classical aths in the

(L ~&) hase space correlate through a WKB form sucp ase
as (3.6) to traveling waves in I space whic p p g
the direction of increasing (or decreasing)

V. PSEUDODIFFERENTIAI, EQUATIONS
AND FORMAL ASYMPTOTIC SOLUTIONS

A. Basic definitions

A liminary definition, a pscudodifi'crential equa-s a pre im
tiontion is w at one ge s wh ets when one takes a general func

'

forf '
bl &(p, q) and substitutes ( iliad/dq) or—

FIG. 2. Constant energy contours (or levellevel curves) of the
Hamiltonian, ~~ . i

'
n h(J ~~). Librators are closed curves centered at

P= 3m /2. Rotators are open curves extending rom n o
The direction o moh d t f motion on the curves is indica e yted b the ar-

ih, q %(q) =—0 . (S.l)

~ 4

In the cases of interest herc, the equat'otion contains an cc-

genValues and %'C Write
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so

—q P(q)=0. (5.4c)
4

Mathematical theories require a more precise
definition and restrictions on the operator. Obviously,
we must not be too capricious about the operators that
are admitted: at least some sort of smoothness and
boundedness properties are necessary. The restrictions
chosen by Maslov and Fedoriuk (MF) are very mild.

(MFI). &(p,q) should be infinitely differentiable in p
and q for all real values of p and q.

(MF2). At large real values of p and q, % and its
derivatives should not increase faster than polynomials;
for all k, l,

gk gl
t(p q} «kt(I+ Iq I

} (I+ Ip I

)"
aqk ap'

(5.5)

Furthermore, if %(p, q) has any explicit dependence on R

(other than the imphcit dependence arising from

p = i%id ldq —) then the following restrictions apply.
(MF3). &(p,q;A') should be infinitely diff'erentiable in

p, q, and A for all real values of p and q, and for all
strictly positive (nonzero) values of irt.

(MF4). &(p, q;i}I) should have an expansion in powers
of fi,

%(p,q;i)l)= g A"%f' '(p, q)+R +'Rtv(p, q;A),
k=0

(5.6)

such that the "expansion coefficients" %k(p, q) satisfy
conditions (MFl) and (MF2), and the remainder term
can also be bounded; for all j,k, I,

gk pl
R~(p q &) «klj(I+ I q I

}"(I+
I p I

}" .
aq' ap' ee

(5 5')

In this type of theory, ihe %KB approximation is re-
garded as an expansion of %(q) in powers of A'; therefore,
one should expect as a requirement of the theory that
the operator &(p,q„fi) must permit such an expansion.
Of course it might also have no explicit dependence on
fi.

&(p,q) =H(p, q) E—. (5.2)

We seek approximations to the solution %(q).
Any ordinary dilerential equation, such as the

Schrodinger equation in one dimension, is a
pseudodilerential equation. The Schrodinger equation
in momentum space

2

+ V iA E t—(p)=0 (5.3)
2p dp

is also a pseudodifferential equation. Difkrence equa-
tions, such as

P(q+fia ) =qg(q), (5.4a)

can be written as pseudodifkrential equations using the
exponential operator. For this example we define

Wp, q) = exp(ipa )—q (5.4b)

Conditions such as (MFl) —(MF4) are sufhcient to en-
sure the validity of the theorems developed by MF. To
what extent these conditions are necessary is not present-
ly known. Other mathematicians make use of different
conditions on their operators, some more restrictive,
some less so. In the case we shall examine, one of the
conditions is violated in a minor way, so we are pushing
the theory a little beyond its proven range of validity; the
calculation shows that good results are obtained anyway.

Two additional conditions are required for the specific
formulas we shall use.

(Sp5). If the operator &(p,q) involves products of
noncommuting p's and q's, then the operator must be
self-adjoint. For example, pq is not allowed by itself, but

(pq +qp)/2 or (pq qp—)/2i is allowed.
(Sp6}. The expansion of the operator in powers of R

[Eq. (5.6)] contains no term Hnear in fi.
These specific conditions are not required for the gen-

eral theory. MF show that if an unsymmetrized opera-
tor is used, or if the operator contains a term linear in fi,
then the formula for %(q) is slightly modified.

Now given the function %(p, q), we need a precise
definition of the operator %( ibid/d—q, q). Its Taylor
expansion in powers of p is often useful, but this expan-
sion raises difficult questions about convergence. A
much better definition of the operator can be made by
using the Fourier transform. MF define the Fourier
transform operators F and F ' as

[Fz z%'(q)]:—(2miiri) ' I exp( ipq/h—')%(q)dq,

q'(q)=—F, ', th(p)[F, „,+(q)]I . (5.8a)
dg

If h( —Md/dq ) is an ordinary differential operator and
q'(q) is a smooth square-integrable function, one can
easily show that this definition (5.8a) gives the same re-
sults as are obtained by differentiation.

More generally, ff(p, q) may contain products, such as
g (q)h (p), or functions of such products, such as
exp[h (p)g (q)]. In such cases, the order of the operators
is important, so the classical function JV(p, q} by itself
does not uniquely specify the quantum operator. %'e
need a rule that wi11, in e6'ect, tell which operator acts
first.

A rule that says "differentiate first, " or "put all p's to
the right of all q's, " is

i', q 'k(q)—=F ' gf(p, q)F O(q),
Ilies

(5.8b)

and a rule that says "differentiate last, '* or "put all p*s to

(5.7a)

[+& & P(p)] =( 2' ft) —I exp(t'pq/g)+(p)dp

(5.7b)
Then «r any «rm h (p) in &(p„q) that is independent of
q the effect of h( iliad/dq) on —a wave function is
defined by the following rule: take the Fourier trans-
«rm of Wq), multiply by h(p), then transform back to q
space,
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the left of all q's, " is

i—R,q +(q)=F„'qF~ ~%(p, q W(q) .
dq

(5.8c)

The definition we shall use is the symmetric combination
of these two, as required by condition (Sp5),

if—i,q 4'(q) = ,' [F~—'q&(p,q )F
q

+Fp 'qFq p&(p, q)j%(q) .

(5.8d)

The resulting operator is formally Hermitian if the func-
tion &(p, q} is real. As a example, if %f(p, q) pq, it is
easy to show that Eq. (5.8b) gives XF(p, q }0'(q)

=q( i%did—q)%(q), Eq. (5.8c) gives &{p,q)=( i'—l
dq)q+(q), and Eq. (5.8d) gives the symmetric combina-
tion.

The point of this definition (5.8d) is that it reduces to
the Taylor expansion whenever that expansion makes
sense, but the Fourier integrals converge under much
more general conditions than does the Taylor expansion.

The Fourier transform of the pseudodifkrential equa-
tion,

Fq ~ & i%—,q 4'(q} =0, (5.9a)

can be written using the same de5nitions as

% p, if& 4(p)=0, (5.9b)

and it is referred to as "the momentum-space representa-
tion" of the equation.

A formal asymptotic approximation to the solution
%(q) is a function which satisfies the pseudodifferential
equation with an error that is bounded by a constant
times some power of fi We write .the function as 4' '(q)
if

(5.10a)

These functions are usually constructed ss power series
in A',

e(")(q)= y e~'~'(q) . (5.10b)

Let us now describe the results. The major conse-
quence of the theory is, that at least under conditions
1 —6 above, a simple, so-called "primitive" semiclassical
approximation to the solution %(q) can be obtained us-
ing the procedure stated in Sec. VB. A better, "uni-
form" semiclassical approximation can be obtained using
the procedure in Sec. Vc. This uniform semiclassical
approximation is the leading term in a formal asymptot-
ic expansion of the form {5.10b).

In the case considered in this paper, the operator de-
pends explicitly upon fi, and its expansion in powers of A

contains terms of order A snd terms of order A' snd
higher, but no terms linear in A. %e will describe only
the procedure for calculation of 4' '(q) and 4' '(p). A
more detailed study' shows that the term of order N+ 1

in the operator affects the term of order X in the solu-
tion. In particular, the quadratic-in-iri term in J9(q,p)
afFects the linear-in-A term 4""of the solution. Since we
shall not include this term, we can replace the operator
%(p, q;A') by its leading term &(p, q;A=O) and simply
denote the resulting operator &(p,q).

8. Simple or primitive semiclassical
approximation

%e now give the procedure for constructing the prim-
itive semiclassical approximation. If the procedure
seems long, let us emphasize that it is a straightforward
generalization of the procedure that one would follow in
calculating a semiclassical wave function for a one-
dimensional oscillator. A brief statement is that a primi-
tive semiclassical wave function is a combination of
terms of the form

1.e.)
&(p,q) =0,

H(p, q)=E .

(5.11a)

(5.11b)

(The level curve is an elementary example of a "La-
grangian manifold. "' '3)

(3) Identify "q charts" on this curve. These are
domains or sections of the curve in which it can be de-
scribed by an infinitely differentiable function p =p, (q).
The various q charts are separated from each other by
singular points, where the level curve rises vertically,
and the derivative dp/dq would be infinite. The singu-
lar points are turning points of the q motion. Hence,
each nonsingular point on the level curve is in one snd
only one q chart. Pick any one of the q charts as the ini-
tial chart and 1et it be described by the function
p=/, (q). Pick an arbitrary nonsingular point (p q ) in
it as the initial point and choose an initial value S arbi-
trarily at this point.

(4) Define for other points in the initial chart

S, (q) =S'+ f '~, (q')dq' . (5.12)

Alternatively, S(q) on any chart can be calculated by us-

ing an auxiliary variable t and solving the di8'erentisl
equations

B&(p,q)
exp i I p(q )dq'ZO

p =p(q)

where+(q) is a level curve of %, so that &(p( q), q) =0.
Care is required to combine terms with consistent
phases. The precise procedure for this is described
below. Once the procedure is clearly stated in this gen-
eral way, the form of the Hsmiltonian does not matter.

(1) Identify the appropriate eigenvalue E. The formu-
la satis6ed by E is s modi6ed Bohr-Sommerfeld rule stat-
ed below.

(2) In the "phase space" (p, q), compute the level curve
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dp BH
dt Bq

dS dq
dt dt

(5.13a)

(5.13c)
bS= f/i(q')dq'/A' —hp—=2mn .

2
(5.18)

At last we can state the rule for the allowed
eigenvalues —S(q) must be single valued, mod 2n. .This
leads to the quantization rule: for any cycle, the change
in 4' must be 2m times an integer.

S (q}=S[t (q)] . (5.14a)

S is therefore continuous on the level curve, and for
every branch,

The first two of these trace out the level curve of H(p, q )
in phase space and the third gives the rate of change of
S on this curve.

(5) Extend S(q) to other charts in the obvious way.
From Eqs. (5.13), q (t) and S(t) are continuous functions
of "time." Inverting the relationship between q and t
gives t =tj(q) as a "multiply branched" function of q,
and then

(8}Define 4 (q) as
—1/2

+J(q)= exp[i/, (q)] .
aH

a=a, ~e~

(5.19)

Then the primitive semiclassical approximation to 4(q)
ls

~~r™(q)=g ~, (q) . (5.20)

The sum is over all charts that project to the point q. [If
the level curve has no projection onto the point q, then
%(q) is zero in this approximation. ]

dS)
=/t, (q), (5.14b)

C. Uniform semiclassical approximation

S (q)= f /ii(q')dq'+const, (5.14c)

1

dq

where e (x) is a step function such that

where the constant is chosen such that S(t) is continu-
Ous.

Note that if the level curve closes on itself, Si(q) has
another kind of multiple valuedness. If we start at p q,
and follow (5.13) around the loop until we come back to
the initial point„S will not return to its original value.
Of the resulting values of SJ(q), we can use any one we
wish, provided that we put it together with the appropri-
ate value of the Maslov index, defined below. The sim-
plest choice is to integrate (5.13) from the initial point in
the positive-t sense until the loop closes, then stop. On
the level curve including the initial point but excluding
the final point, S is then continuous.

(6) Calculate the Maslov index }M for each q chart.
The index for the initial chart is taken to be zero, and it
is found in the other charts by following the level curve
in the direction implied by the equations of motion
(5.13). The index changes when and only when the path
goes through a singular point dividing two q charts.
Upon passing through such a singular point from chart i
to chart j, the change in the index is

S '=S'—p'q' . (5.21)

(10) Define for other points in the initial p chart

SiV»=S' —f,yi(S')4'.
A differential equation for S(p) analogous to (5.13c) is

(5.22)

dS dp
dt dt

(5.23)

(11} Extend S(p) to other p charts, again requiring
that S must vary continuously along the level curve.
S(p) is then multivalued in exactly the same way that
S(q) is.

(12) Compute the Maslov index vk for each p chart.
For the initial p chart, the index is

To obtain a uniform semiclassical approximation, fol-
low the steps above, but skip the last bit of step (8) [Eq.
(5.20)]. Continue as below.

(9) Identify "p charts" of the level curve. These are
domains in which the level curve can be described by a
smooth functloii q =gk(p). These p charts are separated
by "p-singular points, " where the derivative d yk /dp be-
comes in5nite. These are turning points in momentum
space. Each point on the level curve that is not a p-
singular point is in one and only one p chart. Use the
same initial point as in step (3) (take the initial point to
be nonsingular with respect to both q and p). Define

e (x)=1 if x &0,

8 (x)=0 if x~0. (5.16)

dg]
dp

(5.24)

The sign of 1/ildq is examined on either side of the
singular point.

(7) Define in each chart

Then each time the level curve passes through a p-
singular point from p chart i to p chart j, this index
changes by

(5.25)
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Note that the order of terms in this equation is opposite
to that in Eq. (5.15). Again the signs of the derivatives
are examined on either side of the (p-)singular point.

(13) For each p chart, define

(5.26)

S~(q), Si, (p) is single-valued mod (2m ) for the quantized
eigen values.

(14) (optional) A primitive semiclassical approximation
in momentum space is given by

—1/2
H

exp[i Sk(p))
e =ek~i»

(5.27)

(5.28)

where the sum is over all charts that project to the point

(15) Define for each point on the level curve a pair of
"switching functions" e (q) and ei(p). The point (p, q) ts
in the jth q chart and the kth p chart. The switching
functions have the following properties. (a) At every
point on the level curve, the two switching functions
sum to unity,

e. +ek ——j. , (5.29)

1.e.,

e, (q)+ek(/tk(q»= 1

or

D. Modi5icatioas to the procedure

The procedures described above are most suitable if
the range of the coordinate q is the entire real axis

e(y, (p)) +e(k)p= .I

(b) Each is infinitely differentiable in its variable. (c) At
any q-singular point (turning point in q space), e&(q)~0,
and at any p-singular point (turning point in p space),
ek(p)~0 in such a way that ei(q)%, (q) and e„(p)%„(p)
are infinitely di8'erentiable.

(16) The final formula for the uniform semiclassical
approximation is

+' '(q)= g e (q)4 (q)+ gF~ 'q[F&(p)4k(p)) . (5.30)
j k

If desired, the uniform semiclassical approximation in
momentum space is

qj' '(p)= g ek(p)haik(p)+ gF, ~[e, (q)+, (q)] . (5.31)
k j

This procedure is easy to implement, as we shall show
below. MF prove that the wave function so constructed
is the 6rst term of a formal asymptotic series solution to
the pseudodi8erential equation —i.e., it satis6es the
pseudodNerential equation with an error that goes to
zero as A~O.

( —ao, + oa ). In the present case, our coordinate is an
angle, so we will seek periodic solutions to a
pseudodiC'erential equation. For this purpose, it is only
necessary to rede6ne the Fourier transform operators,
and then the rest of the theory is unchanged.

If the function %(q) has period Q, then let us redefine

Fq ~p as

q'(p) =Fq p'Ii(q) = (iQ ) I exp( ip—q /A')4'(q)dq
Q

(5.32a)

This operation gives a continuous function of a continu-
ous variable p. The inverse transform is de6ned as

4(q}=F~ '~4(p)= ( iQ—) —'~ g exp(ip„q/A')4'(p„) .

(5.32b)

This formula makes use of the values of the function
t(p) only at discrete points p„=2nnh/Q, so t(p) is of
particular interest at those points. %ith these
de6nitions, the rest of the theory goes through directly,
and in particular, the stated procedures again lead to
formal asymptotic approximations in q space and p
space. '

The asymptotic approximations apply in the limit
R~O. For 6nite fi, a function which is accurate to order
fi is also nonunique to order A. Given a function 4', (q)
which satisfies the pseudodifkrential equation to within
a certain error, we can add to it a small smooth function
4'2(q), and the sum will still satisfy the pseudodifferential
equation to the same order of accuracy, provided only
that 0'i(q) is sufficiently small and sufFiciently smooth.
In this sense the approximations in each order are not
unique. This also means that modi6cations to the stated
procedures can be made to simplify the results. For ex-
ample, the Fourier integrals appearing in (5.30) and
(5.31) could be calculated exactly by numerical methods
or they could be estimated by some approximation. The
stationary-phase approximation leads back to the primi-
tive semiclassical approximation. Extensions of the
stationary-phase approximation, incorporating two
coalescing stationary-phase points, lead to Airy-function
formulas. In some cases, with finite fi, such approximate
evaluation of the integrals could actually lead to a more
accurate solution than is obtained by exact evaluation.
%'e shall see an example of this later.

VI. THE MATRIX REPRESKNTA'HON AS A
PSEUDODIFFERENTIAI. EQUATION

Now let us look again at the matrix representation of
the Schrodinger equation (3.5). We would like to ex-
press this matrix equation as a pseudodi5'erential equa-
tion so that we can make a semiclassical approximation
to the coefficients f&. Since i represents the angular
momentum, it is natural to set up the pseudodifFerential
equation in momentum space, as in Eq. (5.9b). (There is
no fundamenta1 distinction between coordinates and mo-
menta in classical mechanics or in the theory of
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pseudodifferential equations. )
Let us start with a IIhase change. ' Consider any par-

ticular eigenvector (1/),
~

/=
~

rn
~

n —1), and set

(6.1a)

(The label k in the elements it/l is dropped. } Then the
matrix equation (3.4) retains its form

to state /kl and /+2, so H is a pentadiagonal matrix.
(There is a way of reducing it to tridiagonal form, but
we are content with the present representation, and the
theory given in Sec. V is more than powerful enough to
deal with it. ) Let us define

g (HI —E5ii )1// 1
——0

l

(6.1b)
(6.2)

if we define

(6.1c)

The matrix elements HJI given in (3.5) connect state /

The symmetry relations follow from (6.1c), together with
the fact that H/ is real and symmetric. %ith these
definitions, and noting that /)

~

m ~, the matrix equa-
tions for it 1 can be written as

1

/

rn I+1
1I& tm ~+1

—1
I rn ) +1

1
2~ Im (+1

1
b /m /+2 2C)~

(
+2

12 In ~+2

1
. b(m (+2 a)m ~+2 2 b~m (+3

1 C i' ~+3

—C
1

2
b ~~ ~+4 TC ~m ~+4

0 (m /+)

0 /m /+2

P(m /+3

(6.3a)

or

pc/ —14 1 —2 ~ bl 0 l —1+(al E)4 1

1+ b(+14 l+—1+. Tci+)1/ I+2=o ~ (6.3b)

) [e d/dlc(/)e d/dl+ed/dlC(/)ed/dl]

1
[e —(1/2)d/dlb(/ + ( )e

—(1/2)d/dl
2l 2

e(1/2)d/dlb(/+ ) )e(1/2)d/dl]
2

At this point we can start thinking of I as a continu-
ous variable. The matrix elements cl, bl, and al are
known functions of /; they are defined by Eqs. (6.2) and
(3.4) for integer / and we can use these same formulas for
all real values of /. The resulting continuous functions
can naturally be denoted by c(/}, b(/), and a(/). The
solution vector (pl ) is in principle specified by (6.3) only
for integer values of /. Let us define P'(/) to be any C"
function that reduces to t(} I for integer /. Then Eq. (6.3)
can be reexpressed as a pseudodiSerential equation using
the exponential operator as in Eq. (5.4),

I 'c(/ 1)e "-"""— -b(/)e '—"—'+. [a(/)-E]—1
2 2l

+ . b(/+1). ""'+"—(/+1).""""IP -(/) =0.1

2I, 2

(6.4)

To obtain a semiclassical approximation to g'(/) we
must de6ne a classical variable related to I and obtairr
the expansion of thc oper'atol 1n powers of A. It 18 dcslr-
able also to express the operator in a manifestly self-
adjoint form.

This symmetrization is easy; we reexpress (6.4) as

+[a(/}—E] 1/l'(/)=0 . (6.5)

We dejFne the classical variable to be 0

I.—= (/+T()fi . (6.6a)

(6.6c)

as was already suggested in our discussion of the classi-
cal Harniltonian.

To write thc pseudodi8erential equation entirely in
classical notation, let us de6ne for the solution

(6.7)

When L is half an odd integer times fi, t(L) is equal to
the element of the solution vector g'(/) defined in (6.1).
For the matrix elements we write

The matrix elements also depend upon m and n, and it is
convenient to express this dependence in terms of vari-
ables,

(6.6b)
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C(L)=c—(1)=c I.
2

(6.8a)

8(L)=b(—l + ')=-b—I.
2

(6.8b)

A (L):—a(l) =a L 1

2

and for the displacement operators we write

d
exp +—= exp TA' = exp{+i/) .

dl dL

(6.8d)

[H(L, Q;iri) —E ]4'(L}=0,
with

H(L P fi)= ' fe't'C(L —fi)e't'+e 't'C(L R)e '~]

(6.9)

[e' 8—(L fi)e'

e 't'"8(—L.X-)e 't "]+~(-I. e) E—
(6.10)

Then, using a little algebra, one can show that the
pseudodiIFerential equation takes the form

and we find that in this limit H(L, P;0) is exactly the
Hamiltonian obtained from classical perturbation theory.

Inspection shows that for most values of L and P,
H(L, P;iii) satisfies the conditions mentioned in Sec. V A:
it is infinitely difFerentiable, bounded as a function of P,
self-adjoint, and its expansion in powers of A' contains no
linear term [the difference between H (L,P; fi) and
Ii(L,P) is proportional to R ]. MF recommended that
these conditions should be satisfied for all L and P, but
in this regard, the operator violates the conditions in a
minor way. Near the ends of the permissible range of I.
(M & L & N in classical mechanics, or m & I & n in quan-
tum mechanics) the operator has poles and branch
points. Our calculations show that the semiclassical ap-
proximation remains accurate in these regions.

I.et us now calculate the semiclassical approximation,
following the procedures given in Sec. V. As stated ear-
lier, since we are considering only the leading term
V '(L) of the formal asymptotic series for %(L}, and
since H(L, P;fi) contains no term linear in A', we can set
II to zero in the operator, and thereby replace H(L, p;irt)

by Ii(L,P). The semiclassical calculation involves exam-
ination of the level curves of Ii(L,P). Two different

types of states arise, depending on the structure of the
level curves: librators and rotators. Each type can be
treated by the methods given in Sec. V, but each intro-
duces small surprises. %e consider librators first, then
rotators.

A. I,ibrators

E'(5N' —3L '+ —,'R')(L '+M' ——,'A')
A(L;iii)=A,

4(L —I )

3 N(N L)' (L —M—}'
8(L;R)=v

2 L fi /4—
C(L "A)=A,5N [(N —L ) ——'(lV +L }irt + —' i)i"j'

' 1/2

(L +M) ——
4

(6.11)

' 1/2

(L —M) ——

4[L2(L 2 g2) ]I/2

No approximations have been made in this section,
and so the pseudodi8'erential equation (6.9) is exactly
equivalent to the algebraic equations (3.4). Now, howev-
er, the equation is set up in a form appropriate for deriv-
ing a semiclassical approximation.

VII. SKMICI.ASSICAI. APPROXIMATION
TG THE KIGKNVKCTORS

The operator in (6.9) now looks very much like the
classical Hamiltonian (4.3b). In fact we only have to
take the limit as A~O,

A(L;fi) A (L),
8{I.e 8'(I. )

C(L;fi} C (L),
H(L, P;fi) +It (L,P), —

1. Primitive semiclassical approximation

Since we regard L as a "momentum, " we first want a
primitive semiclassical approximation in momentum
space, so we follow steps (9)-(14) of Sec VC.. A typical
librational level curve is shown in Fig. 3 (see also Fig. 2).
%'e choose the initial point on the level curve to be just
to the right of the uppermost point of the curve, at
P =3m'/2+8, L =28. 139—e, and there we set S =0,
S = LP . It is b—est to say that the level curve has
three p charts, each corresponding to a smooth function
f=gk(L} such tliat Ii(L,+t (L))=E. Tlie first chart has

y, (L) p3n/2 and L &L, the second has pz(L) &3'/2,
and the third has qr&(L) ~ 3m/2 and L & L . Starting at
(L,P ), Eqs. (5.13a)-(5.13c) and (5.23) were integrated
to obtain L(t), P(t), S(t), and S(t) The i.ntegrator
paused at a grid of L points to tabulate S&(L) (while L
was decreasing on the right-hand side of the curve) and
S2(L) (while L was increasing on the left-hand side of
the curve), and finally S3(L) (closing the loop). At the
same time dL /dt = —BIi /Bp was tabulated on this grid.

The Maslov indices for the three p charts are v, =1,
vz ——2, and v3 =3. The first of these comes from
(5.24); at the initial point dp, / dL is negative and
e (d y, /dL }= 1. (Note that the sign of dy, /dL
changes in chart 1, but v& is fixed for the entire chart at
its initial value. ) The level curve passes from chart 1 to
chart 2 when L {t}goes through a minimum. On either
side of that point, dq&i/dL &0 but dy, /dL ~0. There-
fore, according to Eq. (5.25), the index increases by 1.
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Vs (L)

X exp i — y„(L ')dL '/i)t' —i—v„
2

i('z (L),

I
a

I

I

I

Vi(L)

~P
O 4 ~ ~

Then v2 retains its value of 2 all the way through the
second chart (even though dtp2/dL changes sign). At
the uppermost point of the curve, dtpldL again changes
from positive to negative, and v again increases by 1.

The quantization rule is obtained from the
momentum-space version of (5.18). The total change of
S(L) on one cycle is equal to the area inside the loop,

ES(L)= —f tp(L')dL', (7.2)

and the change of the index v is 2, so the quantization
rule for the librators is

—f tp(L'}dL'/A l}v=2irK——
2

(7.3a)

g (ot q}
FIG. 3. Typical librational level curve and its charts. The

solid line is the level curve, with turning points in q space and
in p space marked with solid or hollow circles. The initial
point is just to the right of the top of the curve. Charts corre-
spond to sections of ihe level curve. P charts are sections
defined by smooth functions yk{p), k =1,2, 3; they are marked
~, o, and X, respectively. Q charts are defined by smooth
functions p~{q), j =1„2,3; they are marked ———,-- --,
and ———., respectively.

(7.4)

Note that although we wrote this sum with three terms,
for each L the second chart and either the first or the
third chart contribute, so it is really a combination of
two terms.

A graph of 4 t'" (L) is shown in Fig. 4, together with
the discrete eigenvector elements already computed. Al-
ways the semiclassical results are multiplied by the ap-
propriate phase factors for comparison with the exact
real ei envectors. From Eq. {6.1a) there is a factor
( i) ~ —= exp(3iLm/2A'); in addition, there is a constant
phase e' chosen such that the results are real at half-
integer values of I.. Also, the semiclassical results are
normalized by dividing them by the square root of the
period of motion around a cycle, T.

The semiclassical approximation reproduces the oscil-
lations in 4(L} beautifully. For most values of L, the
difference between the exact values and the semiclassical
values is less than the thickness of the line on the graph.
Naturally, the primitive semiclassical approximation
diverges at the turning points.

2. Uniform semiclassical approximation

To get the uniform approximation in I. space we cal-
culate also the primitive semiclassical approximation in

(( space, attach switching functions, then transform us-

ing (5.31).
There are three q charts which are also shown in Fig.

3; they are represented by three functions L =El(p)
such that h(LJ($), $)=E. The first is the part of the
level curve on which dgldt & 0 and (() & (('i, the second is
where dgldt ~0, and the third is where dg/dt ~0 and

S (4 ) is calculated for these charts concurrently
with the calculation of S(L).

From Eq. (5.15) the Maslov indices for these q charts
are 0, 1, and 2, respectively. (At the right-hand turning
point dX/d(( changes from negative to positive, and the
same thing happens at the left-hand turning point; the
other places that dX/d(('i changes sign are irrelevant for
the calculation of p, .)

Hence, the primitive semiclassical approximation to
4'(P) is

of

i}S(L)=(K+—,
' )2M . (7.3b}

p„~ Bit {L,P)
i)I 'L =~ ((t))

This is the familiar rule that applies to any one-
dimensional oscillator described by a Cartesian coordi-
nate. The fact that it applies also to librators in these
much more abstract action-angle coordinates is a lovely
consequence of the theory. '

Now everything in the primitive semiclassical approxi-
mation is available, and

X exp i I X&(P)dP/g —i—pj . ('75)

Again at each (() only two terins contribute. These two
terms are plotted in Fig. 5. One term is rapidly oscillat-
ing as a function of (() because dS /d((i=XJ($) is large
near the top of the loop. The other is slowly varying—
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FIG. 4. Exact and approximate eigenvectors for a librator.
E1ements of the eigenvector of state No. 5 in Fig. 1 are plotted
as +'s connected to the I.={1+1/2)A axis by 1ines. The curve
with 0 is the primitive semiclassical approximation. This
curve passes right through most of the +'s, but it diverges at
the I.-space turning points. The curve with O is obtained by
calculating the Fourier transform of the primitive semic1assica1
approximation in P space %~" (tI)). The curve with ~ is the
fu11 semiclassical wave function {5.31).

in fact, ahnost constant —because Xz(P) is small near
the bottom of the loop. Both terms have singularities
near the turning points.

A smooth global wave function can be constructed by
taking the Fourier transform of W" (P) in (7.5); the re-
sult is shown in Fig. 4 as the line marked with hollow
circles. It is not at all as accurate as ihe primitive semi-
classical wave function for most values of L, but it goes
smoothly through the turning-point regions where the
primitive semiclassical approximation diverges.

To construct the full wave function according to the
prescription given by Maslov and Fedoriuk, we need an
appropriate pair of switching functions. In principle,
the results should not be very sensitive to the switching
functions chosen. MF have proved that changing the
switching functions changes the calculated 4~" (L) by
an amount which is bounded by some constant times fi,

I l I I I l l l l I l I

4. l 4.2 4.3 4.4 4.5 4,5 4.7 4.8 4.9 5.0 5. 1 5.2 5.3

FIG. 5. Real part of semiclassical approximation in P space
'P~" (P) for elgenvector No. 5. The bald solid line is for the
upper charts X,(P) and X3(P) and the dashed line is for the
lower chart L2(P).

so as R~o the results become independent of the switch-
ing functions. However, in any given physical system
with fi fixed, a poor choice of switching functions could
lead to poor results. Since this aspect of the problem
has not previously been explored computationally, we
discuss it briefiy in Appendix A.

The uniform approximation in L space, t' '(L), is
calculated using (5.31), and the result is shown in Fig. 4
as the line of solid dots. This uniform approximation
obtained from the prescription of Maslov and Fedoriuk
is a reasonable approximation to the exact t(L) near the
turning points, but near the center of the range it is not
nearly as accurate as the primitive approximation. By
varying parameters in the switching functions we found
that we could improve the accuracy near the center, but
at the price of lower accuracy near the ends. For many
purposes (and certainly for ours) this residual error is
not important —Fig. 4 clearly shows that this semiclassi-
cal approximation provides an interpretation of the
structure of the eigenvector. However, if a more accu-
rate result is desired, the major source of error is easily
identified. The uniform approximation involves an in-
tegral over P; this integral covers regions in which
4"" ((()) is accurate as well as regions in which it is
singular. The switching function inside the integral
eliminates the singularity, but at the price of introducing
some other form of distortion. If fi is small enough (or
L is large enough), then the factor exp( iLQIR) o—scil-
lates rapidly enough that such regions contribute negligi-
bly to 4'' '(L). However, if A' is not small enough, the
errors are not necessarily negligible.

In Appendix 8 we describe a modification of the pro-
cedure that produces an improved uniform approxima-
tion, based upon an Airy-function representation. Using
this improved approximation, 4' '(L) has been calculat-
ed for all of the librator states. Representative results
are shown in Fig. 6.

The four states shown correspond to eigenvalues num-
bered 1, 3, 5, and 7; their level curves are numbered the
same way in Fig. 2. The values of the quantum number
E for these states are 0, 2, 4, and 6, respectively. In Fig.
6 the values of the elements of the exact eigenvectors are
again indicated by asterisks (they differ from those
shown in Fig. 1 by the factor —1). The semiclassical ap-
proximation represents them all with acceptable accura-
cy, and it is best for states 3, 4, and 5. For states 1 and
2 the level curve is a small loop with turning points close
together. For states 6 and 7 the turning points at the
top and bottom of the loop are very close to the ends of
the allowed region, and there the Hamiltonian (6.10) has
poles and branch points. In either case we should expect
semiclassica1 approximations to be less accurate than for
the intermediate states 3—5.

Let us conclude our discussion of the librators by re-
calling our early observation that the first several eigen-
vectors show simple patterns similar to the wave func-
tions of a one-dimensional oscillator. The same is seen
in Figs. 4-6. The reason for this should now be clear.
Such patterns do not require a Hamiltonian of the famil-
iar form p /2m+ V(q); they emerge for very general
Hamiltonians, including those as complicated as (4.3) or
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gether with the exact values for this state. Again this
primitive semiclassical approximation beautifully
matches the exact results, except that it diverges near
the turning points.

Additional interpretation can be gained by examining
the terms two at a time. In particular, for charts 1 and
2, q&J(L) is close to m/2, and we can write each of these
terms as

r

exp i —f p„(L ')dL '/fi

m'= exp i — pk (L ') ——dL '/tti
2

X exp i —(L L)—0

2

(7.7)

FIG. 6. Exact eigenvectors for states 1, 3, 5 and 7 compared
with the uniform semiclassical approximation defined in Ap-
pendix 8. Asterisks mark the values of the Ith element of the
eigenvector; they are placed on the axis at L=(l+ 2)A. The
smooth curve is Eq. (88).

(6.10). The characteristic functions S(q) or S(p) and the
Maslov indices p and v, all of which determine the phase
of the wave function in the semiclassical approximation,
really do not depend upon the form of the Hamiltonian
H(p, q). Rather, they depend upon the structure of a
level curve of H(p, q). Independent of the detailed form

of the Hamiltonian, whenever the level curves show
closed loops the wave functions will have forms analo-
gous to those of a one-dimensional oscillator.

Since q&k(L) —n/2 is small, the first factor is a slowly

varying function of L. The combination of
—1/2

L
/ 7T

exp i (p
—i(L ') ——dL '/A

2

L I ~ ~+ exp i —p2(L') ——dL'/fi exp i—
2 2

(7.8)

is shown in the lower part of Fig. 8 as the dashed line.
It is a smoothly oscillatory function (except for singulari-
ties near the turning points). Its wavelength is largest at
small L, where gk(L) is closest to n/2, and its wave-

S. Rotators

/. Primitive semiclassical approximation

Rotators are level curves in Fig. 2 that extend from 2m

to 0. An example is shown in Fig. 7, with the range of P
changed to ( —m, m. ). The state considered is number 17.

For this level curve the primitive wave function (5.28)
is a sum of four terms,

—1 /2

y Prim(L ) y

P+(L)r~'

)o I

l

I

I

I

I
/

p&(L) 4

l 4

f p~(L)
t 4

(7.6)X exp iS„(L)lfi iv„——
2

0

having Maslov indices vk found from (5.24) and (5.25) to
be 0, 1, 0, and 1 for k =1, 2, 3, and 4, respectively. To-
gether, these four terms combine to give a rather compli-
cated interference pattern, which is shown in Fig. 8, to-

FIG. 7. Typical rotational level curve and its charts. 0 are
turning points in L space, which separate the four p charts
yk(L) from each other. In P space there is only one chart.
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two terms in the primitive wave function, gk(L) is close
to —ir/2, and we consider

J
PRlMlTIVE
SEMI CL+SSICA

L
exp —i I yk (L ') +—dL '/fi

2

X exp i —(L L)—. (7.9)
2A

K iii i
i I.

ll fl li fl i' e'I

~4

il II ii

FIRST TWO TERMS ii 'u

SECOND TNO TERMS

20
I

50

length gradually decreases as I. increases.
%hen this quantity is multiplied by the last factor in

(7.7), and also the phase factor in Eq. (6.1a} is incor-
porated, then the effect is to multiply (7.8) by
exp( im(L Lo—)IR). T—his is a rapidly oscillating func-
tion of L, changing sign each time L increases by A'. In
Fig. 8 the dotted line is equal to the dashed line times
the real part of this oscillating factor. The result is an
amplitude-modulated cosine wave. Finally, for the other

I

FIG. 8. Primitive semiclassical approximation for eigenvec-
tor number 17, a rotator. Asterisks mark the exact eigenvector
elements Pi. The bold solid curve is the primitive semiclassical
approximation. It is a sum of four terms shown pairwise
below.

This time the last factor in (7.9}cancels the phase factor
in (6.1a}, so charts 3 and 4 combine to give a slowly
varying contribution. This contribution is the dot-
dashed line in Fig. 7. The sum of this dot-dashed line
(charts 3 and 4} and the dotted line (charts 1 and 2) is
equal to the primitive semiclassical approximation.

I.et us now refer back to Fig. 1 and Table I (values
shown in Fig. I difFer from those plotted in Fig. 8 by the
factor —1). We saw that the coefficients for this particu-
lar state showed no evident pattern. Now we recognize
that these numbers are in no way random or chaotic;
they are discrete values of a continuous function which
is itself a superposition of four simple %KB terms.

2. Uniform approximation

For the level curve shown in Fig. 7, there are no turn-
ing points of the {() motion, and 4™(P)consists of only
one term, which is accurate over the whole range of (().

Before calculating it, however, let us look once more at
the pseudodifferential equation for %(P). In P space, the
Schrodinger equation (6.9) is

H iA—, P;i)i -E %(P)=0,d
dP' (7.10)

with H(L, P;fi) given by (6.10) and (6.11). For example,
a term involving 8(L;R) is

1 N (N2+ A2d 2/d $2) '
( Ad 2/dy' —M)'—

&it I2( g v) ~i P/2
2l ( —iil d /dP —A' /4)

(7.11}

exp i J X(P')dP'/A
JL =X(f)

(7.12)

The only problem that remains is to identify the ap-
propriately quantized level curves or eigentrajectories

At Srst sight, this thing makes us ask if we should not
find some other way to approach the problem [the terms
involving C(L;iil) are even worse]. However, their awful
appearance only reemphasizes the great power of the
methods discussed here. We obtain the semiclassical ap-
proximation to WP) with only a few minutes of work.

Since there is only one P chart, there is only one
Maslov index p, which is taken to be zero. At every
point P the level curve is described by a smooth, single-
valued function L(P), and, therefore,

—1 /2
BA (L y P )

I.

(actually we had to solve this problem before computing
the primitive L-space approximation). Here we find a
little surprise. One would first think that %" '(P) must
be periodic with period 2m,

P($+2ir}=%(f}.

When this boundary condition is applied to Eq. (7.12), it
leads to full-integer action quantization

I X(P)dglfi=2mK,
0

where E is any integer.
This quantization condition is known to give an in-

correct spectrum of energy levels. In an earlier paper'
we pointed out that the correct spectrum is obtained us-
ing half-integer quantization of action for all states, and
we promised to give a new proof of that condition in the
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%(/+2'') = —4'(P) . (7.13}

[As a consequence, %(p) is periodic with period 4Ir.]
When this boundary condition (7.13) is applied to the
primitive semiclassical approximation (7.12), it leads to
the half-integer quantization rule

I L(P')dry'=(E+ ,' )2M . — {7.14)

Thus we obtain half-integer quantization of action for
both librators and rotors. Further implications of this
surprising condition are discussed in Sec. IX and in Ap-
pendix C.

Once the appropriate level curves are identified using
(7.14), the calculation of wave functions using {7.12) is
trivial. In Fig. 9 we show the real part of the primitive

]

r/2 21F

FIG. 9. Primitive semiclassical approximation in ((i space for
rotators 8, 21, and 11. Number 8 has a level curve in which
X(P} is large when P=n. /2. Number 2l has X(P} small at
m/2, so it is more slowly varying. Number 11 has a level curve
which folds back over itself as in Fig. 11, so it has tuning
points in P space, and associated singularities.

action-angle formulation.
The proof is very simple. In the present case, the ex-

act wave fllllctloll ill IllolllclltllII1 space 4"(L) is dcflllcd 111

terms of the elements in the eigenvector P'(l)=( i—) P&

through Eqs. (6.7) and {6.1a). The function 4(P) is
defined through the Fourier sum (5.32b). This sum in-
volves only certain discrete values of L,. Now according
to Eq. (6.6a), the relevant discrete values of L are half
integers times fi. It follows that the function %'(P) obeys
the unexpected condition

semiclassical wave function %~"' ((()) for some of the ro-
tator states. The curve marked 8 applies to one of the
level curves for which X((()) is large (-29111) at p =a./2,
and the one marked 21 refers to a more typical curve
having X((()) small at P=rr/2. These functions are rap-
idly oscillatory where X is large and slowly oscillatory
where X is small; the amphtude of the oscillations is
large where dP/dt=BA/BL is small, and small where
this is large. In particular, near (()=3m./2, Bh/BL gets
huge, and 4' '((() ) nearly vanishes. Generally, these
wave functions look like a traveling wave in a system
having a periodically varying potential energy. (There is
one major difference: in more familiar systems the ve-
locity BH/Bp is proportional to the momentum p, so the
amplitude of the wave function is small where the wave-
length is short; in the present case the opposite is
true —the amplitude is large where the wavelength is
short. }

The uniform semiclassical approximation in L-space
't' '(L) was calculated by taking the Fourier transform
between the limits +m. The result for several cases is
shown in Fig. 10, along with the eigenvector elements
ITY(. Again the uniform semiclassical approximation gives
a good representation of the overall structure of the
eigenvectors, and it retains its accuracy at both large
and small L. (As for the librators, however, the uniform
approximation is somewhat less accurate than the primi-
tive approximation near the center of the range of L.)

State 29 corresponds to the lowest [smallest X(P)]
curve in Fig. 2. Therefore, ql(L) is significant only for
small L, and for L & 15 it is wiggly but small, especially
on the half-integers. States 25, 21, 17, and 13 have level
curves that reach to successively higher values of L, and
so 4'(L) is significant over more of the range.

As mentioned earlier, state 8 has a level curve that
dips to small L only once, near /=3'/2, and X(((i) is
large near p=tr/2. Therefore, the magnitude of $19 for
this state is very large, and the other elements show
smooth oscillations as a function of I., consistent with a
two-term interference pattern.

Finally, state 11 has a level curve that does not every-
where admit a good projection into (() space. An exag-
gerated picture of this level curve is shown in Fig. 11.
This curve forces us to compute the Maslov index care-
fully. There is a misconception which asserts that the
Maslov index p increases by 1 each time a curve passes
through a turning point. This level curve provides
several counterexamples. Table III lists the Maslov in-
dices of the various sections of the curve, together with
the incorrect values that would be obtained if the indices
were calculated according to the misconception.

The primitive wave function in P space, %~" ((()), for
this state is also shown in Fig. 9. Its singular behavior
near the turning points is obvious. However, since the
singularity is integrable, we computed an approximation
to 4' ' '(L) directly by Fourier transformation of %~" (P)
[omitting switching functions and 4'~" (L)]. The result
for this is shown in Fig. 10 along with all the others; we
see that t'c'(L) for this state is somewhat less accurate
than for the other states, but the presence of the singu-
larities did not cause any serious problems.
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C. The "missing" state

One quantum state is still missing from our semiclassi-
cal description. This is state number 10 in Fig. 1. Its
energy places it somewhere in the large gap between lev-
el curves 9 and 11 in Fig. 2. In this gap there is a
separatrix, and a small area near (() =m /2, L =12, having
closed level curves. Earlier we named these curves Lc
librators, and they are shown in Fig. 2(c) of Ref. 13. For
the present value of v/A, the area in the (L,P) space oc-

~M, I
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FIG. 11. Exaggerated picture of the level curve for state 11.
~, turning points in ((); o, turning points in L Labelin. g of
charts is indicated.

cupied by such Lz librators is less than M. Hence,
there is no room for a quantum Lz hbrator here. On
the other hand, the total area available for R„rotators
is only enough to support two states, and the area avail-
able for Rz rotators supports just 19 states. Together
with the seven Lz librators, these 28 states occupy an
area of less than 28% in the (L,P) plane. The total area
in the gap between states 9 and 11 is large enough for
the one additional state, but that state does not corre-
spond to any single level curve of h(L, Q). It must
therefore have a mixed character, partly R „,partly Rs,
and partly Lc. The eigenfunction for this state was
shown in Fig. 10(h) of Ref. 13, and its mixed character is
evident there. A semiclassical description of this excep-
tional eigenvector requires a more elaborate theory than
that given here. We leave this for a future study.

VIII. SUMMARY

Eigenfunctions can be calculated by expansion in a
basis, evaluation of matrix elements, and diagonalization
of the resulting matrix. The sets of coeScients (the

I

IO

TABLE III. Maslov index pk for charts indicated in Fig.
11. Note: If the Maslov index increased by 1 each time the
path passed through a turning point, then the incorrect index
would be obtained. Correct values are obtained from Eq. (5.15)
(Ref. 27).

FIG. 10. Exact eigenvectors compared with the uniform
semiclassical approximation for rotator states. Asterisks, ex-
act; solid line, semiclassical, from Eq. (7.12).

Incorrect index
Correct index
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eigenvectors) that result from this process are usually
uninterpretable. ~c have calculated and plotted ln Fig.
1 a set of eigenvectors obtained for a one-electron system
in parallel electric and magnetic fields.

%e have shown that a simple and systematic semiclas-
sical approximation provides an understanding of these
eigenvectors. The matrix equation was written as a
difference equation, then as a "pseudodi8'erential" equa-
tion. The resulting operator H(L, i'—/dL;A) was
given in Eq. (6.10). In the hmit A'~0, this operator goes
to the corresponding classical Hamiltonian i( (L,P )

defined in Eq. (4.3b).
Eigenvectors were regarded as "wave functions in an-

gular momentum space, " and were denoted t(L}. A
primitive semiclassical approximation to %(L) was cal-
culated using the formula

)( exp i f —y), (L')dL'/R i vk n /—2
J

X exp l '8 —lpp7T 2 (8.2)

and computed its Fourier transform. The two types of
forms were combined with switching functions, using
Eqs. (5.30) and (5.31). An alternative form based on
Airy functions was also used.

In this way, the structure of the eigenvectors shown in
Fig. 1 was explained by examining the forms of the level
curves of h(L, (t)} in Fig. 2. Seven of the states are "li-
brators, " having closed level curves in Fig. 2. Their
wave functions 4(L ) look like those of a one-
dimensional oscillator. The remainder of the states are
rotators, with open level curves. Two of these states
have cur~es such that L is large near P=n/2. Those
states have very large elements %'(L) for large L, and for
smaller I. they have a simple oscillatory structure. The
remaining states have more complicated wave functions,
which are well represented as superpositions of four os-
cillatory terms.

(8.1)

where tpk (L ) is a branch of the level curve
h (L,(pk (L ) )=E. This approximation is excellent over
most of the range of L, but it fails near the L-space turn-
ing points, where dL/dt= —Bh/((t vanishes. To obtain
a uniform semiclassical approximation we calculated a
primitive semiclassical approximation in ((t space,

—I /2
ai (L,y)

j L =X(p)

p;(q, Q)=BF(/Bq;, P;(q, Q)= —BF) /BQ;, (9.1)

and ig a corresponding quantum unitary transformation
pq~PQ exists having transformation matrix (q'

~

Q" },
then the matrix elements are related to the generator
F((q, Q) by

$2F
(q'

1

Q"},„exp[iF,(q', Q" )/(rt] .
Bq 3

(9.2)

action-angle variables. Classical mechamcs permits
change of phase-space variables from the original Carte-
sian coordinates (p, q) to various types of action and an-
gle variables (I,())). For any given system, the "exact"
action-angle variables are de6ned such that the actions
are constants of the motion, the angles increase linearly
with time, and the transformation (p, q)~(I, (t}) is
periodic in the ((} s, with period 2n. When they exist,
such variables clearly provide the simplest possible
description of the motion. Even systems that do not
possess exact action-angle variables might admit "unper-
turbed" or "zeroth-order" action-angle variables, which
are also useful for obtaining a quantitative description of
the motion (cf.„ for example, the calculations in the
present paper).

Hence, since the earliest days of quantum mechanics,
a persistent question has arisen: Can quantum mechan-
ics also be formulated in terms of action-angle variables'
One would expect such a formulation to share many of
the harmonious features of the classical formulation.
However, the simple quantization prescription
p~ itic/—Bq that applies in Cartesian coordinates cer-
tainly cannot be carried over into general coordinates.
ls there a quantum analogue of the classical transforma-
tton to action-angle variables?

Dirac's early researches were particularly oriented to-
ward formulating quantum laws in general variables, and
he eventually arrived at the conclusion that "unitary
transformations in the quantum theory are the analogue
of [canonical] transformations in the classical theory. "2~

Today, 60 years after the appearance of his papers, it
still is not known exactly how far this analogy can be
carried. Certainly the analogy is not an isomorphism:
there exist classical canonical transformations for which
no corresponding quantum unitary transformation exists,
and vice versa. However, Dirac's seemingly successful
early work usin quantum action-angle variables for the
hydrogen atom ' has suggested that a general quantum
action-angle formulation might exist.

Dirac's provocative remark could be restated a little
more precisely as follows. Let classical variables be
given by pq, and corresponding quantum operators by

If a certain classical canonical transformation
pq~PQ exists, and is obtained by a generator such as
F, (q, Q), as

IX. CQMMENTARV QN ACTION AND ANGI. K
VARIASI.ES IN QUANTUM MECHANICS
AND IN SKMICLASSICAI. MECHANICS

The results obtained here shed new light on a very old
problem. —the formulation of quantum mechanics in

The vagueness implicit in Dirac's "analogy" is here re-
placed by two existence conditions and a new vagueness
in the meaning of the symbol ~ in (9.2). This symbol
means that either the left-hand side is equal to the right-
hand side, or else that the two approach each other over
most of the range of the variables q and Q in a classical
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limit. An obvious, .necessary condition for the existence
of a unitary matrix (q'

~

Q" ) is the existence of a com-
plete orthogonal set of kets

~

Q") which are the eigen-
kets of the operator Q. Now in the case of the harmonic
oscillator, the obvious definitions of action and angle
operators are

—(P+im coy ) =i ''2e'&,
2

(P i—mcog ) =I ' ~ e
2

However, calculation shows that the operators exp(i/)
and exp( —ig) are not unitary, are not inverses of each
other, and do not even commute with each other. ~

This definition does not lead to a Hermitian angle opera-
tor, so it provides neither the required complete set of
eigenkets

~

P") nor the unitary transformation matrix

It is puzzling„ therefore, that many valuable results
have been obtained in semiclassical mechanics by either
ignoring this fact or by being unaware of it. For exam-
ple, Miller 'b' bases his "classical S-matrix theory" on re-
lationship (9.2), and he uses this relationship specifically
with g taken to be an angle operator ((t, conjugate to an
action operator I. Many closely related formulas appear
in the literature. ' But since there is not any such set of
kets

~

P"), the 'right-hand side of (9.2) is somehow a
semiclassical approximation to a unitary matrix that
does not exist. %e 6nd this hard to understand.

Moshinsky and Seligman+d' have closely examined the
nature of the analogy between unitary transformations
and canonical transformations. They pointed out again
the impossibility of a quantum transformation from
Cartesian coordinates and momenta to action-angle
operators. But they showed by direct calculation that
for certain systems, if the space of eigenstates is expand-
ed in certain ways, then in the enlarged space a unitary
transformation does exist, and its form closely corre-
sponds to the form of the classical canonical transforma-
tion.

This. issue was examined further by Newton. '" Con-
sidering one-dimensional oscillators, he de6ned a simple
and general way of expanding the Hilbert space. In the
case of the harmonic oscillator, if

~

n ) is an eigenket of
the Hamiltonian, H

~

n ) =E„~n ), then states in the ex-
panded space are two-component "spinors" such as
( ~o

)
) or (

~
„)). He showed that in this doubled space it

is possible to define a set of eigenkets ~~P')) which are
eigenkets of unitary operators with eigenvalues
exp(+i/') These unit. ary operators could be denoted

e +—'~, and they obey equations similar to (9.3). Hence,
Dirac's analogy between unitary transformations and
canonical transformations holds not in the Hilbert space
of physical eigenstates, but in a more abstract, expanded
Hilbert space. He suggested that calculations could be
made in the expanded space, and then at the end a pro-
jection into the physical space could be made.

In the present paper we have arrived at a somewhat
similar conclusion from a totally different starting point.
%e developed a semiclassical approximation: starting

from quantum equations (3.5) we followed a systematic
mathematical procedure to obtain approximations to
eigenvectors. This procedure led us to the conclusion
that when the wave function is expressed in angle space
as %(p), then 0'(/+2'. )= —'p(p). Specifically, if we
want our quantum operators to have the same form as
the classical operators, except for corrections of order fi
and higher, then we are forced to this conclusion. Then
if we also decide that we want our wave functions to be
periodic, the period must be 4m. . The domain of
de6nition of the semiclassical angle variable is therefore
twice the domain of the classical angle variable. Eigen-
functions appearing in the "nonphysical" region
(2n &/&4') are (except for a minus sign) the same as
those in the "physical" region (0 &/ &2ir). For Newton
the doubling of the Hilbert space is a postulate or
definition; for us ii is a consequence of a systematic pro-
cedure. Although the doubling of the space takes two
very different forms, the similarities between these two
different conceptions is striking.

At present no final conclusion on the generality of
Dirac's analogy or on the viability of theories based
upon quantum action and angle operators is available.
Semiclassical approximations starting from equations
such as (9.2) have led to correct results, but the "deriva-
tions" of those results made more use of physical intui-
tion and insight than of systematic mathematical
analysis. Reexamination of such approaches in the light
of these new developments may prove to be worthwhile.
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APPENDIX A: SW'ITCHING FUNCTIONS

Two principles guide the choice of switching func-
tions. (i) The mathematical theory demands that the
product of the switching function times the primitive
semiclassical wave-function must be in5nitely differentia-
ble, even where the primitive wave function is singular.
Functions like

0, a~0
e(iU)= '

exp( —I /w ), w & 0

have the required property: they can be multiplied by a
function with a pole or a branch point at m =0 and the
product will still be C". (From a numerical point of
view, this property is not very important, because the
uniform approximation is calculated by an integral, and
the functions are never actually differentiated in the
computation. ) (ii) The switching functions should be
slowly varying compared to the primitive semiclassical
wave function. They must not introduce sharp edges, or
additional oscillations, or any other significant structure
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into the Fourier integrals (5.30) and (5.31}.
Each point on the level curve lies in one 4 chart and

one L chart, so two switching functions are associated
with each point, and e+P=1. At the P turning points
e =0 and 2=1, while at the I. turning points e =1 and
F=O. This suggests that the variable in the switching
functions could be taken to be related to the slope of the
level curve,

ul(4) =r[d«4)/d0]"
%ith this choice of variable it makes sense to take the
switching functions to be symmetric in w,

' 1/2
2m

0 Ai( —z

5
Xexp i

dt dL L=L, /=-3m'

a'

S~=S(L~)= L~—

where L is the value of L at turning point o.,

(83)

(84)
e(u )=e( —~) . (A2)

e(1/Ie)=F(w)=1 —e(lc) .

%e chose switching functions of the form

e = —,'(1+g),
e = —,'(1 —g),

(A4a)

(A4b)

Also, since wave functions in L or in P space are treated
on an equal footing, it is reasonable to incorporate a cor-
responding symmetry into the switching functions,

i

III (85)

& = —,
' I [yl(L') —q&I(L')]dL'/Ill . (86)

In Eq. (85) the sign of z is taken to be positive in the
classically allowed region and negative in the classically
forbidden region. In Eq. (86), qual(L') and grl(L') are the
two branches (charts) of the level curve. In the classical-
ly forbidden regions, the equation h(L, q(L))=E admits
two coIIlplcx solutloils g;(L) sllcll tllat +;(L) goes to
3Ir/2 as L goes to L, . The phase ri is

1
w exp 2 w-

w

1
w exp 2 w — +1

w

(A4c)

I]ower

3~2'
3m L+kn,

(87a)

(87b)

It is easy to show that this function e (Ic) goes to 1 when
w goes to 0, to 0 when IU goes to infinity, to —,

' when

w =1, that it is infinitely difrerentiable as a function of w

or as a function of P, and that when it is multiplied by
%' " (P) the result is still infinitely differentiable. After
a few trials, we chose r =0.05, d =0.5 in our computa-
tions.

APPENDIX B: T%0%AVS TO IMPROVE
THE ACCURACY OF THE UNIFORM APPROXIMATION

The uniform approximation computed from Eq. (5.31)
was shown in Fig. 4. Compared to the exact result, this
result is too large in the center of the range of I.. %e
found two ways to improve the result.

(1) Take the switching functions outside the Fourier
integral, so that (5.31) would be replaced by

+'"(p}=ge (p»}q' (p»)+ gei[q, (p)l+, ,[q', (q)] .
k J

(81)

The function +J(q) is singular, but the singularity is in-

tegrable. The result is a smooth combination of the
primitive semiclassical term and the transformed term,
each of which was shown in Fig. 4. %e have obtained
good results this way.

(2} Use an Airy-function approximation near the
turning-point regions. %e label the two L.-space turning
points by the index a (a= upper or lower). Then the
wave fullcflon 4 (L) llcal tur111llg polllt R ls cqllal to

where k is the librational quantum number.
A global wave function can be calculated by tying (82)

to the primitive approximation using switching functions

+"'(p)=&(p)+'" (p)+[1—e(p)]p (p) . (88)

e(q) I', „& i', q +(q—)d

dg

The function V(q) contains turning-point singularities
such as

i q —qo ~

'~ . These singularities are them-
selves integrable, but when d/dq acts upon them they
become nonintegrable. Switching functions inside the
Fourier integral annihilate the singularities, but outside
they do not. Therefore, we have no proof that (Bl) can
give good results. Calculations in the present case show
that it gives results more accurate than (5.31) but not as
good as (88).

Equation (88) is on a somewhat more solid mathemat-
ical footing. It can be derived as an approximation to
(5.31) by routine manipulations of the Fourier integral.
However, such a derivation does not make clear why

Justification of the formulas

%e do not have a good mathematical justi6cation of
Eq. (Bl). To establish this formula as the beginning of a
formal asymptotic expansion, one would have to prove
that the operator %(p,i Rd /dp ) acting upon (81) gives a
result which is 0(fi ) or less. Now when % acts upon
the last terms, %[eF 4(q)] gives among other things
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(BS) gives significantly better results than (5.31). Intui-
tively, we can understand (BS) as the beginning of anoth-
er kind of locally valid formal asymptotic series, based
upon Airy functions instead of exponential functions.
Such series are well known as approximations for oscilla-
tory integrals, but they have not yet been developed for
solutions to pseudodifferential equations. Future work
might address this problem.

APPENDIX C: A CONSISTENCY CHECK

with 8(L,P;fi) defined in (6.10), it follows that

4(P}=exp( —i((}/2)%'(P)

satisfies

gf i—A, p;A' e'~ 0'($)=0dP'

or

(C6)

In Eq. (5.32b) we defined the wave function in angle
space as a Fourier sum, and in Eq. (6.6a) we took the an-
gular momentum variable to have half-integer values
times fi. Thus we may write Eq. (5.32b) in the form

qI(((})=( 2tri—) '~ g exp[i(l+ —,')((}+I, (C 1)

where P& ——i'P& ——'l(L) was given in (6.1a) and (6.7). We
pointed out in Sec. VII 82 that this wave function %(P)
obeys the boundary condition

4($+2ir ) = —4(P ),
and we showed that this boundary condition leads to
half-integral quantization of action for the rotator states.

The alert reader should be suspicious. Could we not
drop the —,

' from (I+—,')P in the exponential in (Cl)? If
this is done, the wave function

%(P)=( 2iri )—'~ g exp(ilg)QI
I

would obey a "more reasonable" boundary condition

%($+2ir}=P(P) .

Would this not lead to full-integral quantization of ac-
tion'?

In this appendix we show that (1) we could define the
wave function in angle space as %(P), given by (C3), in-
stead of 4(P), defined by (Cl), and one consequence of
such a definition is the boundary condition (C4). How-
ever, (2) another consequence of such a definition is that
the pseudodifferential equation governing 4(((}) contains
terms linear in fi. Therefore, the semiclassical approxi-
mation to the wave function 0' '(P) is not determined
by the classical limit of the operator WL, p;irt=0); it
contains also a correction factor coming from 8%'/BA.
(3) As a consequence of the "classically reasonable"
boundary condition (C4} and the "nonclassical" correc-
tion factor, the classical action variable must still be
quantized in half integers, even for the rotators.

Statement (1) is trivial —one can define %(P) any way
one likes —and the boundary condition (C4) follows
directly from (C3). Since %(P) satisfies exactly

i A ——+—,((};A 4(((})=0 . (C7b)

As was mentioned at the end of Sec. VA, when the
operator depends exph'citly upon iii (other than through
L= ibid/d—P), then in calculating the semiclassical ap-
proximation qI' '(p) we may neglect terms in JV that are
quadratic or higher order in A', but not those that are
linear in R; terms of nth degree in fi in the operator
affect terms of (n —1)th degree in the solution. From
careful study of Ref. 10, pp. 54-59 and 78-85, we find
that the semiclassical approximation to a pseudo-
differential equation whose operator contains a term
linear in i)t'is

expi t fi

dt . (CS)

Here X(((})is the function representing the level curve
of the operator with Pi=0,

=0, (C9a)

and dP/dt is, as always,

The last term in the exponential in (CS) is a correction
factor to the zeroth-order wave function arising from the
6rst-order-in-A terms in the operator. %ritten out more
explicitly, the correction factor is in our case

exp i I Mf—L+ ,P;fi—

Henceth, e first parts of (C7) are the familiar form of the
semiclassical approximation

—1/2
Wf' '(L,P)/BL, exp i I X(P')dg'/fi

(C10)

i%,g;A E'l—(P)=0, —

(C5)

To evaluate this correction factor we take the opera-
tor in (C7b} and recall its functional form, which was
given in (6.10) and (6.11). The explicit dependence of
A(L+(A'/2l, P;fi} upon iii arises in two ways: through
the A/2 in L, +I/2 and through the fi after the sem-
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icolon. i Through perusal of Eqs. (6.10)-(7.1}, we find
that the dependence on A after the semicolon involves
only terms of order A' and higher, so this dependence
can be neglected. Hence to 6rst degree in R the operator
1S

The first two factors are 4' '(P) and the last is the phase
change as given in (C6).

Action quantization is obtained by applying the
boundary condition (C4), from which it follows that

& L+ —,P;A' =h L+—,P E—+0(A).fi
(C12)

or

f X(P)dglfi ~=—2mk

The correction factor (Cl 1}is therefore f X(P)dP=(k+ —,')2m'fi.

exp —i

ah(L„((})= exp
BL

dt
dP

dt/dg=[Bh(L, Q)/BL]

so the correction factor is

X exp( ——,'tP) . (C14)

exp ——,'i dP = exp( ——,'iP) .
I,

Combining (C10) and (C13) we obtain the semiclassi-
cal approximation to 4(('),

—1/2

4'0'((()= '~ exp i f X(P')dP'/A
aL L X(4)

%e have therefore shown that consistent application
of semiclassical formulas (including corrections corning
from terms proportional to A' in the pseudodifferential
operator) leads to consistent results; consistent wave
functions are obtained and half-integral quantization is
an unambiguous consequence of the theory.

One is now free to select either of two formulations of
the theory.

(A) As in the main text, the wave function in angle
space is 4(P) defined in (Cl). It has a curious boundary
condition (C2), but the semiclassical approximation to
%(P) is completely determined by the classical Hamil-
tonian function h(L, P) =8(L,P;"='0).

(8) As in this appendix, the wave function in angle
space is %(P) defined in (C3). It satisfies a more pleasing
boundary condition (C4), but its semiclassical approxi-
mation cannot be determined so1ely froxn the form of the
classical Hamiltonian function h(L, P); it involves a
correction arising from the explicit dependence of the
quantum Hamiltonian P(L,P;A) upon R.

We prefer formulation (A).
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