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PHYSICAL REVIEW A VOLUME 38, NUMBER 4 AUGUST 15, 1988

Effect of closed classical orbits on quantum spectra: Ionization of atoms
in a magnetic field. II. Derivation of formulas

M. L. Du and J. B.Delos
Joint Institute for Laboratory Astrophysics, Uni uersity of Colorado and National Bureau of Standards,

Boulder, Colorado 80309-0440
and Department ofPhysics, College of William and Mary, Williamsburg, Virginia 23185

(Received 30 November 1987; revised manuscript received 15 April 1988)

A formula is derived for oscillations in the near-threshold absorption spectrum of an atom in a
magnetic field. Three approximations are used. (1) Near the atomic nucleus, the diamagnetic field

is negligible. (2) Far from the nucleus, the waves propagate semiclassically. (3) Returning waves are
similar to (cylindrically modified) Coulomb-scattering waves. With use of these approximations, to-
gether with the physical picture described in the accompanying paper, an algorithm is specified for
calculation of the spectrum.

I. INTRODUCTION

This is the second of two papers dealing with the effect
of closed classical trajectories on quantum spectra. In
the first paper, we explained the physical picture, and we
stated a formula that connects closed classical orbits with
oscillations in the absorption spectrum of a hydrogen
atom in a magnetic field. '

The purpose of this paper is to present a derivation of
that formula. The derivation is long, but it is quite
straightforward, provided that the physical picture dis-
cussed in paper I is kept in mind. Let us recall that phys-
ical picture. When a laser is applied to an atom in a mag-
netic field, the atom may absorb a photon. When it does,
the electron goes into a near-zero-energy outgoing
Coulomb wave. This wave then propagates away from
the nucleus. Sufficiently far from the nucleus, the wave
propagates according to semiclassical mechanics, and it is
correlated with classical trajectories. The wave fronts are
perpendicular to the trajectories, and the waves propa-
gate along the trajectories. Eventually the trajectories
and the wave fronts are turned back by the magnetic
field; some of the orbits return to the vicinity of the nu-
cleus, and the associated waves (now incoming) interfere
with the outgoing waves to produce the observed oscilla-
tions in the absorption spectrum. (See Fig. 1.)

Since in this system classical trajectories are chaotic, it
would be impossible to find all of the trajectories that
propagate away from and return to the vicinity of the nu-
cleus. However, since we want to calculate the absorp-
tion spectrum only to a certain resolution hE, we include
only those paths which return in a time less than
T,„=2M/EE.

An additional complication of the theory arises from
the fact that the semiclassical approximation becomes re-
liable only outside the vicinity of the nucleus. We there-
fore use a quantum partial-wave expansion close to the
nucleus and the semiclassical approximation outside of
this region. The two approximations are joined on a
boundary sphere of radius rb -50ao.

The paper is organized as follows. In Sec. II the

photon-absorption rate is expressed by the average
oscillator-strength density Df (E). This quantity is relat-
ed to an energy-averaged Green's function. In Sec. III
formulas are presented for propagation of waves using a
semiclassical approximation. The formulas are reduced
when the cylindrical symmetry of the system is con-
sidered. In Sec. IV the behavior of waves in the vicinity
of the nucleus is described. The initial state and dipole
operator are familiar. The outgoing wave is easy to de-
scribe. Detailed analysis is required for a description of
the returning waves. In Sec. V the results of Secs. II—IV
are put together to derive the formula which describes os-
cillations in the spectrum. In Sec. VI an algorithm for
computation of the spectrum to a specified resolution is
described.

There is nothing difficult in this paper, but the full
analysis requires a lot of mathematical details, which we
have presented as compactly as possible. The title and
the first sentence of each subsection tell what happens
therein. We emphasize the importance of keeping the
physical picture in mind, to avoid getting lost in the for-
mulas. Constant reference to Fig. 1 should be helpful.

II. BASIC FORMULAS FOR SPKCTRA

Fundamental quantities needed for quantitative calcu-
lation of spectra are defined, and relationships between
them are derived. The photon-absorption rate is related
to an average oscillator-strength density, and the latter
quantity is related to a matrix element of an energy-
averaged Green's function.

A. The photon-absorption rate is related to the average
oscillator-strength density Df( E)

Given a collection of N; one-electron atoms in an ini-
tial quantum state lb; of energy E;, if a radiation field is
applied to the atoms, then the rate of absorption of pho-
tons, or the rate of production of atoms in an excited
state g& (energy E&), is
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06, "dipole-coordinate" operator, etiual to the projection of
the electron coordinate r =ix +jy+kz onto the direction
of polarization of the field,

D =r' Aol
~

Ao
~

(2.2b)

where the vector potential for the electromagnetic wave
is given by

A(r, t)= A exp[i(k r cot)—)+ A 'exp[ i—(k r .tot—)] .

(2.2c)

The operator D can be written in the form

D =a+(x +iy)+a (x iy)+—a z

=r(a +sin8e'~+a sin8e '4'+a cos8), (2.2d)

where a+, a, and a are polarization coeScients for the
radiation field,

a+= —,'(A„i A~—)l
~

A

u =—,'(so+iso)r~ Ao~

a =A, /(A

(2.2e)

FIG. 1. Physical picture of the absorption process. (1) The
atom is initially in the 2p, state, with the oscillating field due to
the laser present. (2) The oscillating field produces zero-energy
Coulomb waves, which propagate outward in all directions. (3)
For distances greater than about 50ao, a semiclassical approxi-
mation is appropriate, and we can propagate the wave outward
by following classical trajectories. (4) A pencil of trajectories
propagates outward, encounters a caustic (5), a focus (6), and
another caustic (7). This group of trajectories started out in
such a direction that it turned around and returned toward the
atom (8). Around 50ao, we describe it as an incoming zero-
energy Coulomb wave (9), which continues to propagate inward
(10), until it overlaps with the initial 2p, state (11). Interference
between steadily produced outgoing and incoming waves leads
to oscillations in the absorption spectrum. (The sizes of the first
and last parts of the figure are about 10ao, the sizes of the
second and fourth are about 60ao, and the size of the third is
about 3000ao. )

For example, if the light is linearly polarized with electric
field along the z axis, then a =1 and a+=a =0, while
if the light is circularly polarized and traveling in the z
direction, then a =0, and either a+ =1 and a =0 (giv-
ing transitions having b, m +1)or a+ =0 and a =1 (giv-
ing transitions having b,m = —1); mfi is the component
of electronic angular momentum on the z axis.

In the experiments of interest to us, the energy width
of the photon beam is large compared with the spacing
between the energy levels, and so transitions occur from a
given initial state to many final states. As a consequence,
the measured absorption rate is

dNf= J p(Ef )dEI, (2.3)

where p(Ef ) is the density of states of the system at ener-

gy Ef. For bound states with discrete energy levels,

p(Ef ) is a sum of 5 functions peaked at each discrete en-

ergy level E„,

dNf
=Bf;N;I(co) .

dt
(2.1)

Here I(co)des is the energy flux density (energy per unit
area per unit time) in the frequency range dc@ (It is as-.
sumed that the range of energies in the photon beam is
large compared to the natural linewidth for the transi-
tion. ) Bf; is the induced absorption coefficient between
initial and final states. In many textbooks on quantum
mechanics it is shown that 8f; is given by

p(Ef )= g 5(Ef E„), — (2.4)

while for free states with a continuous range of levels, by
enclosing the whole system in a box of finite volume V,
one finds that p(Ef ) goes to infinity and tPf goes to zero
in such a way that

~ tgf ~ p(Ef ) approaches a finite limit
as V~ ~.

It is convenient to write the photon intensity in the
form

4 2 2

(2.2a)
I (a) )da) =Iog,„,(Ef E)dEf, —

where

(2.5a)

where f; and gf are the initial and final quantum states
of the atom, —e is the electron charge, c is the speed of
light, and A is the Planck constant over 2~. D is the

Io ——II(co)des

is the integrated intensity of the laser beam and

(2.5b)
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(2.5c)

=ION; fBI;p(EI)g, „p,(E~ E)d—EI .
dt

(2.6)

Obviously the observed average absorption spectrum de-
pends upon the width of the convolution function, but
normally it should not be sensitive to the detailed shape
of this function.

In theoretical calculations, the oscillator strength is
often preferred over the induced absorption coeScient.
For a discrete transition, the oscillator strength is defined
as

2m, (EI E;)—
fp= +2 I i@f ID I@;& I' (2.7a)

is the energy of the initial state plus the average energy
A'co of the laser photons. The function g,„,(EI E—) is a
convolution function representing the line shape of the
laser beam —the intensity at energy EI when the laser is
tuned so that its maximum intensity occurs at energy E.

The measured absorption rate is obtained by combin-
ing (2.1), (2.3), and (2.5),

B. The propagator and Green's function are defined

K(r, r') =exp[ —i(r r'—)HI%)=[~(t', t))t,

K(q, t;q't')=(q
~

K(t, t')
~

q')

E" q s" q pE
—iE"(t —t'jib ~~«we

(2.11a)

(2.11b)

(2.11c)

It is also convenient to define the "forward propagator"
E+, such that

K(q, t; qt') for t &t',
K+(q, r;q'r')= '0 f (2.11d)

The outgoing-wave Green's function is

G+(q, q', E)= (q
~

0 +
~

q')

(2.12a)

Given a time-independent quantum Hamiltonian
operator H( —iAV, q), the propagator K(q, t;q', r') is
defined as the coordinate representation of the evolution
operator

m, c (E& E;)—
(2.7b)

oo iEt
dt K+(q, t;q', O) exp

SA 0

where m, is the mass of the electron. When transitions
occur to a group of unresolved final states, it is appropri-
ate to define the oscillator-strength density (the oscillator
strength per unit increment of energy) Df (EI ) as

(2.12b)

where E =E+c.i and c.~+0. All quantum dynamical
properties of a system can be calculated if the propagator
or Green's function is known.

Df (EI)=fI; p(EI) (2.8)

and to define the experimentally averaged oscillator-
strength density by the formula

C. An energy-averaged Green's function is related
to the finite-time propagator

DI,„,(E)= (E E;)f (E—I E—; ) 'Df (EI—)

Xg pg(Ef E)dEf (2.9a)

If the propagator is known for times t up to some max-
imum, 0( t (T, then we can calculate a "finite-
resolution" or "energy-averaged" Green's function. The
range of energy averaging hE is related to the maximum
time Thy the formula TEE-2vrR.

Let us define
Normally the laser beam is narrow enough that
(EI E; ) = (E E; )—over the si—gnificant range of EI, and

Df,„,(E) is a simple average of Df (EI ),

Df,„p,(E)-fDf (E~)g,„p,(Ey E)de . (2.9b—)

G (q, q', E)—:(imari)
' f K+(q, t;q', 0)g(t) exp(iEt/A)dt,

0

(2.13a)

where g(t) is a general cutoff function. We define g (t) to
be symmetric in time, so g( t) =g(t). It is ea—sy to prove
that 6 is an energy-averaged Green's function,
specifically,

G~(q, q';E)= fG+(q, q';E')g(E E')dE', (2—.13b)

Combining (2.7a) with (2.9a) we find

(2.9c)
where

m, c(E E;)—
Df,„p,(E)= fBI; p(EI )g,„,(E~ E)dE~ . —

2' e

Hence the measured absorption rate (2.6) can be ex-
pressed in terms of Df,„,(E) as

222
=ION, Df,„,(E) .

dt '
m, c(E —E, )

g (E)= f g (t)e' '~" dt
2M

g t cos Et/A dt .1

7TR 0
(2.13c)

The goal of the theory developed below is the theoretical
calculation of the average oscillator-strength density.

Proof From (2.12b), the . inverse Fourier transform
gives
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K+(q, t;q', 0)= f G+(q, q', E)e ' '~" dE .2'
(2.14)

2m, (E E—; )
Dfg(E)=

3
Re f (Dp; A(t, O)

I
Dp; )M3 0

Substitute this formula for K+ into Eq. (2.13a), reverse
the order of integration, and use the 6-function formula

Xg(i)e' ""« .

(2.20)

f exp[i (EI E}t—/fi]dt =5(EI E)—(2.15)

to arrive at (2.13b).

D. The oscillator-strength density is expressed in terms
of the propagator and the Green's function

The oscillator-strength density is related to matrix ele-
ments of the propagator and to those of the Green's func-
tion by the formulas

Proof. Equation (2.19) follows trivially from (2.18),
(2.16b), and (2.13b). Then Eq. (2.20) follows from (2.19)
and (2.13a).

Ideally, we should take g (E' E) i—n (2.18) in the same
form as that for the laser profile, as in Eq. (2.5a). Howev-
er, while the resulting theoretical average oscillator-
strength density should depend upon the width hE of the
convolution function, it should not be sensitive to the de-
tailed form of this function. Therefore we consider the
special case that g(t) corresponds to a sharp cutoff,

2m, (EI E; )—Df(EI)=
3 Ref (Dp;

I

K+(t,O) ID/, ) g'= 0 IrI T (2.21a)

iEIt/fi
&(e dt,

2m, (E/ E,)—Df(EI)= — Im(DQ,
I

G +
I Dg; ) .

(2.16a) In this case we use only a finite-time propagator E(t,O),
for 0 & t (T, and the resulting oscillator-strength density
is averaged over energy with the convolution function

(2. 16b)

Proof. First establish the relationship

f (D0; I
«& 0)

I
DW &

Xe I dt . (2.17)

To prove this, use (2.1lc) on the right-hand side of (2.17),
reverse the order of integration, and use (2.15). To prove
(2.16a) from (2.17), use time-reversal symmetry of the
propagator, (2.11a), and the definition of Df, (2.7) and
(2.8). Then (2.12b) leads from (2.16a) to (2.16b).

E. An energy-averaged oscillator-strength density
is related to the Snite-time propagator

and to the energy-averaged Green's function

It is then easy to prove that

(2.18)

2m, (E E,)—
Df (E)=— Im(Dip;

I
G (E)

I Dg, )M2

If the propagator k(t, O) is calculated for only a finite-
time interval 0 ( t (T, then an averaged oscillator-
strength density is determined, and so the spectrum can
be calculated to a corresponding resolution. The same
"low-resolution" spectrum can be calculated from the
energy-averaged Green's function.

Let us define

Dfg(E) =(E E, )f (E' E; ) '—Df (E')g (E—' E)dE' . —

1 sin[(E E')T/A—]
(E E')— (2.21b)

In this way, we obtain a theoretically averaged
oscillator-strength density, Df,h,«(E). This quantity will

be compared to the experimentally averaged measure-
ments Df,„,(E). We take the width (in energy) of the
theoretical convolution function comparable to the ener-

gy width of the laser beam. Equivalently, we evaluate the
propagator up to a maximum time T which is compara-
ble to 2irR/(experimental energy resolution). Henceforth
we no longer distinguish between Df,h«, (E) and

Df,„p,(E).

III. SEMICLASSICAL PROPAGATION OF WAVES

A. Applicability of the semiclassical approximation
is examined

Perfectly rigorous (necessary and sufficient) conditions
for the validity of the semiclassical approximation are not
known, particularly for multidimensional problems.
However, for motion along a line, a set of physically
reasonable criteria is generally accepted. We shall show
that for our system, these criteria are satisfied for motion
along the p axis if p is not too small. The potential ener-

gy is

After the outgoing waves are produced by the laser
from the initial state P;, these waves propagate forward
in the combined Coulomb and magnetic fields.
Sufficiently far from the nucleus, this propagation can be
described using the semiclassical approximation. Here
we describe the semiclassical method of propagation of
waves from an initial surface.

and that

(2.19) 2
1&(q)=-

{p2+zz}i/2 8m
+

2
e8

P (3.1)
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1. The configuration sp-ace form of the semiclassical
approximation applies in the region 10a0&p ~ 1000a0

2Mm,
~

dV/dp
~

i
dA, /dp i

=2m' 2
= « I .

p [2m, (E —V)]

(3.2)

We consider E =0 (the ionization threshold) and 8-6 T.
Consider those values of p such that the Coulomb term
dominates over the diamagnetic term,

eB z
P

e 1

p 8m,

or
2/3

It is generally agreed that the configuration-space serni-
classical approximation is appropriate when the rate of
change of the de Broglie wavelength A, =2M/p is small,

cept close to the nucleus. (There we use the Coulomb ap-
proximation described later. )

B. Wave functions can be calculated from classical
trajectories

g(q )=A(q )exp[iS(q )/fi] . (3.5)

A semiclassical approximation to the solution P(q) to the
Schrodinger equation is given by "' '

k

The semiclassical approximation provides a method for
propagation of waves if the wave function is known on an
initial surface. Consider a three-dimensional system with
coordinates q. Consider a two-dimensional surface in
this three-dimensional space, and let q represent two
coordinates intrinsic to the surface. Let a wave function
be specified on this initial surface as

p (2me -10 ao .3

where

With the magnetic term neglected, V = —e /p,
d V/dp=+e /p, and condition (3.2) reduces to

Sk(q)=S(q )+f p dq, (3.7)

p»(ir /2)ao . (3.3)

What is happening here is the following: as p in-
creases, E —V(p) becomes small and the de Broglie wave
length becomes large. This seems to suggest that the
semiclassical approximation should fail. However,
d V/dp decreases even more rapidly than E —V(p);
therefore the fractional change of A, in a wavelength be-
comes smaller as p increases.

d Vdp
dp dp

Qp

(3.4)

At the turning point, dp/dp =0, so the condition is cer-
tainly satisfied. As p decreases, the left-hand side of (3.4)
increases rnonotonically such that when p-1000ao, the
left-hand side turns out to be —,', . Therefore the momen-
tum space form of the semiclassical approximation is val-
id at large p.

Since the configuration-space form of the semiclassical
approximation is valid for 10ao(p(1000ao, and the
momentum-space form of it is valid for 1000ao(p, we
conclude that the approximation is valid everywhere ex-

2. The momentum-space form of the semiclassical
approximation is appropriate in the region 1000a0(p

At larger p, condition (3.2) is violated, as a turning
point is approached [(E—V)~0]. Nevertheless, the
semiclassical approximation can still give good results,
because the approximation can be made in momentum
space instead of in configuration space. By means of a
long analysis (which is not presented here) one finds that
a corresponding condition for validity of the
momentum-space semiclassical approximation is

J(t =0, qk)

J(t, qk )
(3.8)

~'q'k(t qk )
J(t,qk)= det

~(t qk )
(3.9)

The integral (3.7) is evaluated on a classical trajectory
having energy E, emanating from the initial surface at qk
and arriving at q. The sum in (3.6) is over all trajectories
which arrive at the point q from different points qk on
the initial surface. The Jacobian (3.9) is evaluated by ex-
amining the divergence of adjacent trajectories from each
central trajectory going from qk to q. The quantity pk in
(3.6) is the Maslov index, and it will be discussed later. A
full explanation of this formula is given in Refs. 5(a) and
5(b).

C. Cylindrical symmetry permits reduction to two
dimensions

In Sec. V we will use the semiclassical approximation
outside a sphere of radius ro-30ao —50ao centered on
the nucleus. The Hamiltonian has cylindrical syrnrnetry,
and this allows simplification of the formulas.

The z component of the angular momentum

p& ——L, =mA is conserved, and the azimuthal angle is an
ignorable coordinate. Initial coordinates for the sphere
are the polar and azimuthal angles a=(8,$ ). If a tra-
jectory of given energy and given L, is launched from the
sphere, then the time development of r(t), 8(t), and P(t)
depend upon the initial polar angle 8 (and of course
upon the initial momenta, p„pe), but not upon the initial
azimuthal angle P .

Integration of the equations of motion gives the coordi-
nates r, 8, and P as functions of time and of the initial po-
lar angle,
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r=r(t, 8 ),
8=8(t, 8'},

y=y(t, &)=y'+ f
I r(t, 8 ) sin[8(t, )]I

dr d8
S2(r, 8)=f pr +pe ~

dt .
t Ch

(3.10b)

The integrals are always calculated on the trajectory lead-

ing from the initial sphere to the final point (p, z}.
For the amplitude factor A (q} we need the Jacobian

J(t, 8 )= ' '
0

rsi——n8Jz(t, 8 ),
B(r, 80, yo)

where

(3.11a)

Br B8
Br Br

J2(t, 8 )=

B8o B80

(3.11b)

Therefore the three-dimensional A(q) is related to a
two-dimensional quantity

J2(0, 8 )
A2(r, 8)= (3.12a)

J,(t, 8')

by the formula

The phase of the wave function is calculated from the
classical action

S(q)=S2(r, 8)+mfi(P $0—)+S(r,80,$ }, (3.10a)

where S2(r, 8) is the reduced, two-dimensional action as-

sociated with the r and 8 motion,

x(t) and y(t) pass linearly through zero; in cylindrical
coordinates p(r) goes to zero and dp/dt changes sign
discontinuously. It is possible to prove that this type of
focus also produces a phase loss of n /2. If m is not zero,
the focus becomes an ordinary "fold" caustic, with the
forbidden region at small p. The same phase loss of m. /2
is produced.

In our calculations and examinations of pictures of tra-
jectories, fold caustics and foci are the only types of
singular points we have found. Furthermore, in the tra-
jectories we have examined, we have found a fold caustic
close to each point at which p(t} passes through a max-
imum. For m =0 there is a focus each time p(t) touches
zero, and for m&0 there is a fold each time p(t) goes
through a minimum. We have not seen any other caus-
tics.

It follows from these observations that for this system,
the Maslov index for an orbit is equal to the number of
maxima plus the number of miniina or zeros through
which p(t) passes.

E. Trajectories outgoing from a point give
the semiclassical approximation to the Green's function

The Green's function G+(q, q', E) satisfies the homo-
geneous stationary Schrodinger equation for all q+q'.
Therefore a semiclassical approximation to G+(q, q', E)
can be calculated by the procedure stated in Sec. III B,
provided that boundary conditions are chosen correctly.

The initia1 surface appropriate for calculating the
Green's function is a tiny sphere surrounding the point
q'; the initial momenta are directed outward from this
sphere, and on every point on the sphere f(q ) is taken to
be a constant, denoted by C(q'). At each q through
which a trajectory passes, there is a contribution to
G ( q, q'; E) equal to

1/2
ro sin80

A (q)= A2(r, 8)
zr sin0

C(q') A (q;q') exp[iS(q;q')/iri —ipse/2],
(3.12b)

so if several trajectories of given energy pass from q' to q

D. The Maslov index is calculated by counting
caustics and foci

G(q, q';E)= g C(q')A„(q;q')
k

X exp[iSk(q;q')/R —i@km./2] . (3.13)

Caustics and focal points are singular points where
A (q) goes to infinity because J(q) goes through zero.
They produce additional phase shifts of the wave, and
these phase shifts are described by the Maslov index.
The singular points are shown for a certain group of tra-
jectories in Fig. 1.

Caustics are envelopes or boundaries of a family of tra-
jectories. At a caustic the trajectories curve back over
each other, leaving a boundary between a classically al-
lowed and a classically forbidden region. Near points 5
and 7 in Fig. 1 are the simplest type of caustic, known as
a "fold." It has been proved that when a trajectory
passes through this particular type of fold caustic, then
the Maslov index increases by 1, and the wave undergoes
a phase 1oss of ~/2.

Near p=0 there is another type of singular region. For
m =0, trajectories can converge onto the z axis from all
directions, forming a focus. In Cartesian coordinates

Xexp[iSk(q)/fi —ipj, n/2] . (3.14)

All the quantities in (3.14) are different from, but closely
related to, the corresponding quantities in (3.13). For ex-
ample, the relevant classical trajectories for the propaga-
tor are those that go from q' to q in time t (whereas for
the Green's function the trajectories all have energy E),
and S'(q} is the integral of the Lagrangian over time on
the relevant classical trajectory. This approximation

This formula holds in the semiclassical approximation
for all q outside of a sphere centered on the point q' and
not too close to a caustic or focus. For q close to q' (or
for q close to a caustic or focus}, different formulas are
needed.

A similar approximation holds for the propagator,

K(q, q', &)= gC'(q')AI(q)
k
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(3.14}holds for fixed r in the limit A' —+0.
In this paper we do not need to know the semiclassical

formula for the propagator, but we do need to know that
such a formula exists, and that it is consistent with the
semiclassical formula for G(q, q', E). In particular, sup-

pose we put the semiclassical approximation to
K(q, q', t), Eq. (3.14), into the Fourier transform, Eq.
(2.12b), and evaluate the integral using the stationary-
phase method. Then (1) stationary-phase points occur at
those times tk such that a trajectory of energy E propa-
gates from q' to q in time tk, and (2) each stationary-
phase point contributes one of the semiclassical terms
Ak exp[i(S„ /A ip—kn/2)] to the forinula for Gz(q, q').
These facts are established in Refs. 5(a) and 5(c}.

proposition.
A semiclassical approximation to the energy-averaged

Green s function is obtained by including in Eq. (3.13)
only those trajectories of energy E which propagate from
q' to q in a time less than a fixed maximum, T.

IV. WAUE FUNCTIONS CLOSE TO THE NUCLEUS

Close to the nucleus the magnetic field can be neglect-
ed, and the wave functions are those associated with a
pure Coulomb field. We justify this approximation, then
discuss the initial state g; and the dipole operator times
the initial state Dg, , then the outgoing near-zero-energy
Coulomb wave, and finally the returning wave.

F. Finite-time trajectories give an approximation
to the energy-averaged Green's function

Now we state the central result, on which much of our
theory is based. We showed in Sec. II C that an energy-
averaged Green's function G +(q, q';E) is related to a
finite-time propagator E(q, t;q', 0) for 0& t & T. [See
Eqs. (2.13).] According to (2.21), a longer T gives a
higher-resolution Green's function, and shorter ?' gives a
lower-resolution Green's function. We also stated above
that a semiclassical approximation to the propagator is
obtained by considering trajectories that propagate from
q' to q in time t, and that when the stationary-phase
method is applied to the Fourier transform, it selects tra
jectories of energy E, and gives the semiclassical formula
(3.13) for G(q, q', E}.

Now let the same stationary-phase argument be ap-
plied to the energy-averaged Green's function (Fig. 2).
Since it is obtained by cutting off the propagator at a
finite time T, only stationary-phase points with tk & T are
included. Hence we arrive again, by a different argument
than that given in paper I, at the following important

A. The diamagnetic term is negligible

B. Initial wave functions and dipole operator are speciSed

After dropping the diamagnetic term from the Hamil-
tonian, what remains is the hydrogenic Hamiltonian. For
the eigenfunctions,

f; =g„i~(r, e, p)=R„((r)YI (e,p), (4.1)

we use the definitions and phase conventions given by
Bethe and Salpeter.

When the dipole operator acts on these states, it con-
nects%nrm town, f/), m+]s

If the magnetic field is 6 T, and if the electron stays
within 100 bohr of the nucleus, then the ratio of the mag-
netic term to the Coulomb term in the Hamiltonian
~ould be less than 10 . Therefore neglecting the di-
amagnetic term close to the nucleus is well justified.

t restricted
for all posNve time

0&t&T
Eeet Propagator

for finite time

Semiclassicai Pro~~
for finite time

I W

EcI. (3.14) '

Fourier Transformation

(with &uaenary
phase approximation )

Exact Green's Function

6 (q, q;Ej
enefg(

convolution

Rnite Re!elution
Green's Function

G(q, q;E j

Semic~~cal ApproxirmNon
to Rnite - Resolution

Green's FUnction

[Eq. (3.13 ) + Proposition]

FIG. 2. Conceptual structure. In paper I we went from the exact Green's function to the semiclassical Green's function to the
finite-resolution semiclassical Green s function. The somewhat stronger argument in this paper proceeds from the exact propagator
to the finite-time propagator to the semiclassical finite-time propagator, and then to the finite-resolution semiclassical Green s func-
tion.
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D g, =.rR „I( r) a +
' 1/2 1/2

(I +m +1)(l +rn +2) (I —m)(l —m —1)
Yl+1,m +1 Yl —1 m+1(21+1)(21+3) +' +' (2l +1)(2l —1)

(I —m +1)(l —m +2)
(21+ 1)(2I +3)

' 1/2

Y(+1 -1+ (I +m)(l +rn —1)
(21 + 1)(2l —1)

1/2

YI —1,m —1

+a' (I +m + 1)(l —m + 1 }

(21 + 1)(2l +3)

1/2
(I +m)(l —m)+'™+(21 +1)(21—1)

' 1/2

(4.2)

Dg; = g b/'m Yt.~ rRnt(r) (4.3)

For convenience, let bt'. denote the coefficients in this
expression, and write D f; as

and for the wave function at some other energy E, Rt (r).
The difference between the phases of these two wave
functions is

I', m

The coeScients bI' involve the coefticients a* and a
describing the polarization of the radiation field and the
Clebsch-Gordan coefficients in Eq. (4.2).

Pp

b, (phase) = f (p„p„—)dr

1/2
fp 22E+—

0 T

' 1/2
2

(4.7)

C. Hydrogenic wave functions near the ionization threshold

1. Zero energy ra-dial wave functions are Bessel functions

In general, the radial wave functions R„t(r} can be
written in terms of confluent hypergeometric functions.
However, the solution near the ionization threshold is
much simpler. They are expressed in terms of Bessel
functions by the formula

R&
'" (r) =J t, ((8r)' )/(8r)'

Ro, ou (r) H» ((8r)1/2)/(8 )1/2

(4.4)

(4.5)

(the superscript zero means zero energy}.
Proof. Write down the differential equation satisfied by

Rt (r) (the zero-energy radial Schrodinger equation with
an attractive Coulomb field), change variables to
x =(8r)', and substitute RI (r) =Bt(x)/x and derive the
differential equation governing Bt(x). It is Bessel's equa-
tion of order (2l +. 1).

Later we will need the asymptotic approximation for
the Hankel function. That formula is

H'„"(z)-[2/(~z))' 'exp[i(z ,'vn. ,'m)] as—z—~oo—.—

(4.6)

Accuracy for E&0 is estimated Equations (4. .5) are ex-
act at E =0. We will use these formulas as approxima-
tions also for other E near zero. For energies not too
different from zero, the error made by replacing the exact
wave function at energy E with the wave function at zero
energy is small.

Our formulas will involve a dipole matrix element be-
tween the regular Bessel function and the initial radial
function. Therefore we are concerned about the
difference between the exact regular wave function Rt (r)
and the zero-energy regular wave function Rt (r) for
r ~ r0-n =4. A simple estimate of this difference is ob-
tained by using the Wentzel-Kramers-Brillouin (WKB)
approximation for the zero-energy wave function R& (r)

If r0 is taken as 5a0, then expanding the integrand in
powers of energy E, the phase difference is estimated as

b,(phase)- ro E-5.27E .&2,/2
0 (4.8)

For
~

E
~

&100 cm ', for exam le, the phase difference
would be smaller than 2.4)&10 . Therefore the relative
error in the matrix elements should be no more than a
few tenths of a percent.

G~+(q q"E)= g Yt ((I 0 )gt (r, r')Yt (8 4)
l, m

(4.9)

with the radial part of the Green's function gt (r, r'} given
by the formula

2R '"s(r )R ' "'(r )t I ( I
g, (r, r')= (r')'WR '"'(r'), R '"'(r')) (4.10)

where R& are Coulomb functions at energy E, R&
'" is

the one that is regular at the origin and RI '"' is the one
that is outgoing at large distances, 8' is the Wronskian
W(R&, R2)=R&R2 —R'&R2, r =max[r, r'], and r
=min r, r' .

For the special case E =0, from Eqs. (4.4) and (4.5) we
find

J2t+, [(8r &
)' ]HEI'+, [(8r &

)' ]
gr (r, r') =( 2ni)—

(r, r, )'"
(4.11)

As explained below Eq. (4.6), this formula can be used in

2. The Coulomb Green's function G+(q, q') near
the ionization threshold is specified

To obtain the Green's function 6+(q, q', E) we need
the corresponding Green's function for a Coulomb field.
The expansion of the Green's function in spherical har-
monics is
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a range of energies close to E =0. Proof of formulas
similar to (4.10) can be found in Ref. 8.

3. A radial ouerlap integral is defined

The integrals (DE; ~

G+
~
Dg, ) involve the overlap of

the radial wave function of the initial state R„&(r) with
the zero-energy radial wave function

[( 8r ) 1/2] /( 8r )
I /2

I
I

We define

, J„+,((8r)' ')
I(n, l, l')= I R„I(r)r +, dr .

0
(4.12)

As is shown in Appendix A, I (n, 1, 1') can be expressed as
an analytic function of n, 1, and I'. In Table I, the first
few I(n, l, l') are listed. The only relevant integrals
I (n, 1, 1') are those for which 1' =1+l.

D. The returning waves scatter from the Coulomb field

As stated earlier, when the laser acts upon the electron
in initial state lb, , it excites it to a near-zero-energy outgo-
ing Coulomb wave. These outgoing waves travel in
space, and some of them are turned back by the magnetic
field, so they return to the vicinity of the nucleus. Here
we describe these returning waves. We make the approx-
irnation that these returning waves are similar to the
waves that would be obtained from a plane-wave source
at infinite distance in a pure Coulomb field. This approx-
imation will be justified numerically later (it turns out to
be accurate to a few percent}.

A rather complete description of Coulomb scattering is
given by Schiff. In the conventional description, the in-
cident direction of the waves is the +z direction. Our re-
turning waves can come from any direction, specified by
a polar angle 0I. However, these returning waves must
have a cylindrical symmetry about the z axis: they de-
pend on the azimuthal angle as e ™~.

To construct an appropriate approximation to the re-
turning waves, three steps are necessary (Fig. 3). (1) The
zero-energy limit of the usual Coulomb-scattering wave
function must be found. (2) That wave function must be
rotated so that the electrons approach from direction 8I.

TABLE I. Radial overlap integrals I(n, I, I+1).

FIG. 3. Approximation for the returning wave is constructed
by the following process. A: A zero-energy Coulomb-
scattering wave g, is calculated. The classical trajectories asso-
ciated with such a wave are parabolas with focus at the nucleus;
the wave fronts are also parabolic. B: This wave function is ro-
tated so that it approaches from direction 8f. The resulting
wave function is denoted li, s 4, . C: This wave function is spun'f f
about the z axis. We construct a cylindrically modified zero-
energy Coulomb-scattering wave g, e by coherent superposi-

tion of waves t(, s &
together with the factor exp(imP} We.'f f

make the approximation that the returning waves [(9}in Fig. 1]
are nearly equal to a constant times ti, e .f

(3) The resulting wave function must be spun about the z
axis, so that electrons approach from all azimuthal angles

P and the wave function is proportional to exp(irnP).
These steps are carried out below.

I. The conuentional Coulomb scattering tuaue function
is simplified at zero energy

We imagine a proton located at the origin of the coor-
dinate system, and an electron at infinite distance ap-
proaching along the negative z axis with asymptotic ve-

locity U. The exact solution of the wave equation, includ-
ing the incoming wave and the scattered wave, can be
written as

I(n, I, I+1) I(n, I, I —1) g =e'"'F( itt, l,ik—g) (4.13a)

1.5311
4.6888
5.4142
9.1804

11.1283
9.9535

16.8411
17.9633
18.5393
14.0144

1.3535

—1.2365
1.6589

7.1497
4.0555
1.7518

1 g dI(2ikr}ie'""
1(1+i&)

X F(1+1+i&, 21+2, —2ikr}

XP, (cos8) .

In (4.13),
2

I (I +1+ih ) rnee e

(21)!
'

irt2k fiu

(4.13b)

(4.14)
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Here g is the parabolic coordinate, g=r —z, and F is the
confluent hypergeometric function.

To evaluate this function in the zero-energy limit, we
use the "well-known" expansion for the confluent hyper-
geometric function in terms of Bessel functions,

F (a, b, z) hz y C n( )((/2)(] —b —n)

r(b)

come

ill, II &
—= rotated g,

=Jo(2(r —k r)' )

2l+1 P (k / )
2l+1 ((8.)'")

2 rI 1/2

(4.18a)

(4.18b)

where

X Jb )+„(2(—az)' ),

Co ——1, Ci —— bh,—C2 ————,'(2h —l)a + ,'b (—b+ 1)h
(4.15)

( n+ 1')C„+,——[(1—2h )n bh]C—„
+ [(1—2h)a —h (h —1)(b +n —1)]C„
—h (h —1)aC„

(h any real number).
Using this expansion in (4.13), it is straightforward to

prove that as U ~0 the wave function g becomes

4m
I'm(Oi 4i) Im(82 4z) .

2I +1 (4.19)

(This relationship is independent of the phase conven-
tions for Yi 's. )

Using Eq. (4.19), if Ok(()k denote the spherical polar an-
gles of k, and O, g, r denote the spherical coordinate of r,
then the function in Eqs. (4.18) can be written as

To write Eq. (4.18) explicitly in terms of the spherical
polar coordinate of r, the following relation is used. Let
two vectors have directions defined by polar angles 8, , (})},

and 82, ())2, and let y be the angle between the two vectors;
then

P, =JO(2i k) (4.16a) lP e y
=Jo( 2 I r [ 1 —cosOk cosO

21 +1 Jzl+) ((8r)' )
Pi(COSO)

I 2 r
(4.16b)

(Not surprisingly, this partial-wave expansion involves
the regular zero-energy radial function
J2I +, [(8r )

' ]/i/r found earlier. )

—sinOk sinOcos((I) —(bk)]) ' ) (4.20a)

4m, Jzl+) [(8r)' ]=X —Yl'(Ok Pk)YI (8 4)
Im r 1/2

(4.20b)

2. The u)a(Ie function is rotated to an arbitrary
initial direction 3. Cylindrical symmetry is regained

Ok nOf, ——Pk
.—n.+(tlf—— (4. 17)

tell the initial direction of motion of the electrons.
Equations (4.16) still describe this rotated Coulomb

wave if the variables g and 8 are reinterpreted.
g=r —k r becomes a rotated parabolic coordinate and 8
becomes the angle between k and the electron position
vector r, so that cosO=k. r/r. Equations (4.16) now be-

Section IV D 1 describes the zero-energy Coulomb
wave function if the electron comes from the negative z
direction. We need the solution if the electron comes
from any arbitrary direction. This solution is obtained by
rotation of (4.16) (see Fig. 3).

Let k be the unit vector representing the direction of
motion of the incoming electron long before the collision.
The angles (Of, gf ) tell the direction from which the elec-
trons come, and the angles

The rotated wave, Eq. (4.19), is no longer cylindrically
symmetric about the z axis. The actual returning waves
must be proportional to e' ~.

To get a classical picture, imagine what happens if the
two-dimensional family of trajectories in Fig. 3 is rotated
about the z axis to produce a three-dimensional family.
Then at moderate distances from the nucleus (r -50ao ),
electrons approach the nucleus from directions specified
by a fixed polar angle 8f, not just in the plane of the
figure, but from all azimuthal angles Pf (0&elf &2m. ).
What is the wave function corresponding to this situa-
tion?

Equation (4.19) describes a zero-energy Coulomb wave
coming from the direction (Of, gf). The total wave for
electrons coming from polar angle 8f with any azimuthal
angle is a superposition of waves coming from each Pf.

For the case I =0, this cylindrical wave is

2m 2m 1/2
ij'I, () & dpk —— dp Jk(2oI r [1—cosOk cosO —sinOk sinOcos(p —pk )]] ),

2m o 'f f 2m o

which is also equal to [from (4.20b)]

1 2n 4m n JZI+ i((8 )
|(z 9 d4k y Ylm(Ok~uk )Ylm(8~4)m ™rr 1/2

(4.21a)

(4.21b)

illa'

t|PkFor m &0, the waves have to be superposed coherently with the factor e . The resulting cylindrically modified
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zero-energy Coulomb wave, denoted 1(, e (q), is [from Eq. (4.20a)]

m 1 lmyk 2n. im P& 1/2e g, e & dit)a = d(I}a e Jo(2ir[1 —cose„cose —sinea si necos( t()—(I(}a)]I )
2m' 2m o

or [from Eq. (4.20b)]
1/2

2n imPa 4~
y.,e, = 2

dyae " y Y,
' (e.a, ya)Y( (e,y)

2m. o
I, m'

1/2

4m J2(+, ((8r)' )
Yi' (ea, O)Yi (8,$)

2 i& Im I

r

4n J2, +, ((8r)' ')
( —1)' Yim(ef, O) Yim(8, $)

2 i& 1ml r

(4.22a)

(4.22b)

(4.22c)

4. Asymptotic approximations give a closed form and a partial wav-e expansion

We need a closed-form expression and a partial-wave expansion for the incoming part of the cylindrically modified
zero-energy Coulomb wave. The required expressions are

( ) ( 1 )meis/2 1 1
Vc, ()/ lllc 23/2 (

~

8 )
( /2

—l'2I r [1+cos(8—Of )] Ie

(r sine)'
im ttt (4.23a}

m 4a exp I i [ (8r)'/ —+in+ ,'n ]I. —
(4, () }( = .m g ( 1} 5/4 )/2 Yim(ef 0}Yim(8 0)

& 2 I~
f ]

2 m' r
(4.23b)

1 m
cos z — v77—

2 4
J„(z)= (4.24}

(1(i, () );„,means the incoming Part of P, e . These exPressions hold for r ~ 10ao. The first holds for 8 close to 8f and

the second is the corresponding partial-wave expansion.
Proof ofEq. (4.23a). Use the asymptotic approximation for the Bessel function

' 1/2

to obtain for the incoming part of f, ()

' 1/2
1

(2(r [1—cosea cose —sin8a sinecos(A —4)])

&&exp —i2Ir [1—cosea cose —sinea sinecos((()a —(I})]]' +—
4

(4.25)

There are two stationary phase points for this integral,
namely,

(('a —$=0 (4.26}

(4) —y) f (y)d@

the result is
m

) ( 1 )m i( (/2)s. 1

23/2 ( 8 )
(/2

X
e

—i2I r[1—cos((9+ 8I, )] I

(r sine)'/
eimP

but for the incoming wave, only the second contributes.
[Recall Eqs. (4.17}; k is opposite to the direction of
approach of the electrons. )

Using the stationary-phase approximation,
1/2

i()/4)s ssna

and when it is rewritten with n 8f replacing e—a, Eq.
(4.23a) is obtained.

Equation (4.23b) is proved by putting the asymptotic
formula for the Bessel function (4.24) into Eq. (4.22c) and
examining the incoming part of the result.

Equations (4.23a) and (4.23b) are the required formulas
for the incoming part of the cylindrically modified zero-
energy Coulomb-scattering waves, [tP, () (r, $8)];„,. The

first is a closed-form expression and the second is a
partial-wave expansion. Later we will compute the re-
turning waves by a semiclassical approximation that is
valid for r ~ 50ao. We will make the approximation that
in the region r-50ao and 0 close to Of, these returning
waves are nearly equal to a constant times (l((, () );„„us-C f lIlc~

ing the closed-form expression (4.23a). It must follow
that the returning waves have partial-wave expansion
(4.23b) (times the same constant). These waves continue
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to propagate inward toward the nucleus, where Eq.
(4.22c) provides the appropriate expression.

V. FORMULAS FOR THE ABSORPTION SPECTRUM

The physical picture described in paper I and in the In-
troduction to this paper is well expressed in the formula
(2.16b) (see also Fig. 1). The initial atomic state

~ P, ) is

modified by the dipole operator associated with the laser
field to give

i DP; ). The operator 6+ propagates these
waves outward at fixed energy. At small distances from
the nucleus, 6+

~
Dg; ) is described by a quantum

partial-wave expansion (Sec. IVC). Around 50ao the
partial-wave expansion is joined into a semiclassical
wave, which propagates along trajectories, as described in
Sec. III. Some of the trajectories, and their associated
waves, eventually turn back toward the nucleus. Around
50ao the returning semiclassical waves must be joined to
a quantum partial-wave expansion. This joining is ac-
complished using the approximation that the returning
waves are similar to cylindrically modified Coulomb
waves described in Sec. IVD. Finally, the incoming
waves overlap with (Df; ~, giving an interference pat-
tern in the absorption spectrum. In this section we com-
bine all the formulas derived earlier to derive an expres-
sion for the absorption spectrum.

6+(q, q', E)=Gd;, (q, q', E)+6+,(q, q', E) . (5.1)

To evaluate the direct part, we notice that the diamag-
netic term is negligible close to the nucleus. Therefore
the direct term is just the ordinary Coulomb Green's
function G+(q, q';E) which was given in Eqs. (4.9)—(4.11).

A. The Green's function is separated into "direct"
and "returning" contributions and the direct part

is speci@ed

The Green's function 6+(q, q';E) represents the waves
at q which arise from a source at q'. Since G+ sits be-
tween (DP; and

~
Df; ), the relevant source points q'

all lie within a few bohrs of the nucleus. Two types of
waves arrive at q. First, there are waves which propagate
directly from q' to q without ever leaving the vicinity of
the nucleus. Second, there are waves that propagate out-
ward from q', travel to the ends of the classically allowed
region, are turned back by the magnetic field, return to
the vicinity of the nucleus, and finally arrive at q'. The
distinction between the two types is unambiguous.
Therefore we can write

From this result and the formula

2m, (E E—, )
Df(E)= — Im(DQ,

~
6d;, +6+„, ~Df, ),.

1TA2

(5.2)

it follows that the direct contribution to G+ gives the ab-
sorption spectrum that would occur in the absence of a
magnetic field.

B. The returning part is speci6ed

Now we need (Df,
~

6+,
~
DP; ). We assume that

is one of the strongly bound, compact states of
small n and small I. Such states extend only a few bohrs
from the nucleus. We will actually construct 6+,

~
Dg; ),

or, more precisely, we will construct

g„,(q) = f6+, (q, q', E)D(q')1(, (q')dq'

for q in the same small region close to the nucleus.
To calculate P„,(q}, the following reasoning is used.

Gd+,
~
DP, ) is a wave that propagates outward from the

vicinity of the nucleus where
~
DP, ) is substantial. At

r =50ao, these outgoing quantum waves are joined to
semiclassical waves correlated with trajectories. With
each trajectory that returns to the sphere r =50ao, there
is an associated returning semiclassical wave function.
At this distance the returning semiclassical wave function
is similar to a cylindrical Coulomb-scattering wave func-
tion ()(, () defined in Sec. IVD. This wave continues to

C,

propagate inward according to formulas given there.
Thus a returning wave is correlated with each closed or-
bit, and the full returning wave g„,(q) is the sum of such
returning waves.

1. The direct part produces an outgoing wave

With the source points q' only a few bohrs from the
nucleus, let us now evaluate the outgoing waves arising
from Gd;, ——G,+ at points q around 50 bohr from the nu-

cleus. In this region the diamagnetic field can still be
neglected, asymptotic formulas for radial functions can
be used, and the semiclassical approximation becomes ac-
curate.

We use the partial wave expansion for 6+(q, q', E),
with the zero-energy radial functions, Eqs. (4.4)—(4.5},
and we use the asymptotic approximation for the outgo-
ing Hankel function (4.6) to obtain

i(8r) J2( ) ((gr')
Gd+, (q, q', E =0)- i (m. )' 2— g Y&' (O', P') Y& (8,$), e '"+

1, m r

It is convenient to regard this Green's function as a superposition of cylindrical functions Gd;,
'+

Gd+, (q, q', E =0)= g Gd;,
'+ (r, g;r'O'P')e™~,

(5.3)

(5.4a)

G' '+ (r, g'r'8'P') = —i (m )' 2
J2/+) ((8r')' ') i(8r)

Yy (g y }
2(+)

Y (g y ())
—i()+314)7r

1) tmt
g ))/2 (ill r

(5.4b)
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When Gd+, acts upon
~
Df), it gives an outgoing wave

g,„,(q) =IG~+, (q, q'; E)D (q')f;(q')d q' . (s.sa)

This outgoing wave can also be decomposed into cylindri-
cal waves,

g,'„t'(r, 8)=fGz;, '+ (r, 8;r'O'P')D(q')g, (q')dq' .
(5.5b)

2. The outgoing wave is joined to a semiclassical wave

pe=0

p~ ——mfi .

(5.6)

Then from the boundary rb we propagate a field of out-
going classical trajectories. Outside rb the cylindrical
wave functions 4,'„,'(q) are obtained from Eq. (3.6).

3. The semiclassical wave returns

We now wish to continue this wave into the region
where the diamagnetic field cannot be neglected, using
the semiclassical approximation. To do this, we define a
boundary radius rb which is large enough that the semi-
classical approximation is valid, but small enough that
the diamagnetic term can be neglected. (For B-a few
tesla, any distance between 30ao and 100ao is accepted;
we took rb =50ttp. ) We regard each cylindrical com-
ponent ql,'„,'(q) as an "initial wave" on the surface r =r&,
and we propagate each of these waves outward using the
semiclassical method described in Sec. III.

The value of the wave function ql', „t'(q) on the initial
surface is determined from Eq. (5.5b). The initial
momentum can be taken to be

1/2

p, = 2m, E+——1 Py

2m, r

(r, 8,$)=e' ~A2 (r, 8)
mk

Xexp[iS2 (r, 8)t'ai ij, —nl2]
mk 1/2

rb sin8; (r, 8)X—
r sinO

Xf,™t'(r&,8; (r, 8)) . (5.7a)

The last factor is the outgoing wave function on the in-
mk

itial surface, evaluated at the point 8; (r, 8), where the
trajectory that goes to the point (r, 8) originates. [Initial-
ly the pencil of rays is so narrow that we can practically

mk mk
say that 8; (r, 8)=8, , the initial point of the
(m, k }th closed orbit. ]

When the (m, k )th pencil of rays returns to the initial
sphere, it carries with it the wave function (5.7a}. We
now make an approximation for the returning wave.

For this purpose let us temporarily distinguish between
the initial sphere, r =r;, and the final sphere, r =rf (later
they will be set equal). In the vicinity of the final sphere,
the returning wave in (5.7a) is approximately a cylindrical
Coulomb wave of the type described in Sec. IV D 3, and
given quantitatively by Eq. (4.23a). In this approxima-
tion, Eq. (5.7) is equal to a constant times Eq. (4.23a).
This constant can be found by evaluating both formulas

mk
at the point (rf 8f ), at which the (m, k )th closed orbit
enters the final sphere. Let us simplify the notation in
(5.7a) by defining

tories outside this pencil miss the sphere.
Associated with this pencil of rays is a wave function,

which is calculated following the rules stated in Sec. III.
This wave function also bears the labels (m, k ) associat-
ed with the central closed orbit in the group of rays. If

mk mk
S2 (r, 8) and A2 (r, 8) are the two-dimensional
characteristic function and classical-amplitude function
associated with the (m, k )th pencil of rays, then the as-
sociated wave function is given by

The trajectories propagate outward to large distances
and are turned back by the magnetic field. Later, at vari-
ous times, some of them return to cross the sphere rb.
Each group of returning trajectories is identified by a cen-
tral trajectory that enters the sphere with pe ——0. That
central trajectory is called a closed orbit (If m =0 th. e
closed orbit returns exactly to the nucleus. For m&0 it
does not reach the nucleus, but still it serves to identify
the group of returning trajectories. )

The closed orbits can be labeled by two indices
(m, k )—we speak of the k -th closed orbit in the sub-

space in which I., =mk. Each such closed orbit is sur-
rounded by a pencil of nearby rays. The penci1 of rays is
the family of trajectories that initially are close enough to
the closed orbit that each trajectory in the family returns
to cross the final sphere almost simultaneously. Trajec-

x"'
r;

1/2
mk

sinO, .
y(m)(r 8 m

)

sinO&

mk mkm K mkm
=exp(imP) A z expi S2 /& ——p2

(5.7b)

(5.7c)

(5.7d)

Our final approximation asserts that for r close to r and O close to Of f
(5.7e)
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mk
where N is a constant, evaluated at (r&, 8I ) using Eq. (4.23a),

1/2
mk

f nO
'-

N=f„, (rI, 8&,ttt)/(tti, e );„,(rI, 8&,$)= A2 expi(S2 /A p— tr!2)g „,(r, , 8, )

slnOf
—1

1 1 1 —i(8r )'"
( l )me™/2 e f

(2 vr) (sin8/)' (rI sin8I }'/ (5.7$

The same constant multiplies the partial-wave expansion
(4.22c), giving the partial-wave expansion of the return-
ing wave close to the nucleus,

In the following formulas we no longer distinguish be-
tween r, and rf ', they are taken to be equal, and they are
denoted rb.

mk J2, +, ((8r)' ')
q„,-(r, 6,y) = y a, Y, (8,0)

1 p
1/2

where

(5.8a)

4. The returning part is the sunt of returning waues

In the vicinity of the nucleus, the full returning wave

g«t(r, 8, ttt) is the sum of contributions arising from each
closed orbit,

i(8r )'" mk
(r )

i/2 sin8 ( I )Ie —itt/2e f Ye (8 m 0)lm f f 1m f t/«t(r, 6,$)= g P,«(r, 8,$) .
m, k

(5.9a)

X & 2 exp[i (S2 /A t op —)]
I

mk 1/2

Pout "i ~ 6i
sinO&

(5.8b}

There are two ways to test the accuracy of this approx-
imation. (I) Compute the returning wave as a function of
rI and 8& using Eq. (5.7) and compare it to the cylindri-
cally modified zero-energy Coulomb wave (4.23a); (2)
evaluate the coefficients a1 at various values of the final
radius rf and see if they are independent of rf. In Ap-
pendix B, we shall show that by these tests the approxi-
mation is accurate to within a few percent. In addition,
we can show analytically that within these approxima-
tions, a1 is independent of r,- and rf.

tI(„t(q) =IG+, (q, q', E)D(q')t}/;(q')dq', (5.9b)

with

mk
We now combine Eqs. (5.8), which express g«t in terms
of f,„„with Eq. (5.5b), which expresses g,„t in terms of
Gd;,

+
~
DP; ). We combine the resulting expression with

Eq. (5.4b), which gives an explicit fortn for Gd+, .
The result is a formula for f„t(r,6,$) which applies in

the small region close to the nucleus, where
~ g„„)over-

laps with (Df; ~. In that formula P„t(r,8,$) is ex-
pressed in terms of a linear integral operator acting on
~Dg, ). This linear integral operator is by definition
G+, (q, q';E =0) for q and q' close to the nucleus.

The formula so obtained [by combining Eqs. (5.9a),
(5.5b), and (5.4b)] is

J2i +, ((8r'}' )
G+«t(q q'E)= g g di, i, Yi",m(6' P')

m, km 1&,12(& ~m ~)

J2i +i((8r)' )

Y, (8,$) 1/2 (5.9c)

where

d, ,
m =( —I )

'+ ' 2" tr' r ' (sin8 sin8 )' Yi' (6I,0) Yi
I 2

i (3/4)7T 2l (8 d . mkm mk
&&e

" / ' e ' exp[i(S2 "/A' —
—,tmiM )] . (5.9d)

At last we have an expression for 6+, that holds in the necessary region. Now we only need its matrix elements to
obtain the oscillator-strength density.
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C. Formulas for the oscillator-strength density are given

1. The direct term gives the smooth background

As stated in Sec. IV, we assume that the initial state is
a hydrogenic wave function given by Eq. (4.1). The di-

pole operator acts upon it to produce a new linear com-
bination of Y&

's given by Eq. (4.3) [the coefficients b/

are given in Eq. (4.2)].
Let Dfo(E) represent that part of the oscillator-

strength density that arises from the direct part of the
Green's function,

Df0(E) = [—2m, (E E; )/M —] Im(DQ;
~

G g;„~ DQ; ) .

The direct part of 0 + is simply the outgoing zero-energy
Coulomb Green's function given in Eqs. (4.9)—(4.11).
From those equations, together with Eq. (4.12), one ob-
tains

4m, E;
Df (E=0)=— g ~

b/ I(n, l, l')
~

I', m

(5.10)

The oscillator-strength density is given as a function of
energy by a smooth background plus a sum of oscillatory
contributions, each associated with a closed orbit of the
system,

Df(E)=Dfo(E)+ g C „(E)sin f T „(E')dE'
m, k

As in Eq. (4.3) the sum over 1' includes only 1'=1—1 and
1+1. Equation (5.10), representing the smooth back-
ground to the oscillator-strength density, is the result
that would be obtained in the absence of a magnetic field.

2. Each returning wave contributes an oscillation

From (5.9), (4.3), and (4.12), straightforward algebra gives

Df, (E)= g Im
m, k

2m, (E E,)—
m62

X g d, , b/' b/ I(n, l 1, )

I' 2

X I(n, l, lz) (5.12}

We define the quantity in large parentheses to be

i hrrtlt (E)
C k (E)e

with C k (E) real and positive. Using the expression for
mk

d&, , Eq. (5.9b), in (5.12), and collecting sums over 1,
1 2

and l2, we obtain

Let Df, (E) represent the contribution to the oscillator
strength that arises from the returning part of the
Green's function,

Dfi(E)=[ 2m—,(E E, )/—M ]1m(DQ,
~

0+~,
~
DtP; ) .

(5.11)

C k «) exp[i~ k (E}]= ' (E —E, )2""~'"r,-'"[sine, sine ]'"W
m

(5.13a)

where

P(8)= g ( —1) 'I(n, l, li )b/ Y& (8,0) .
I

1&m I m

1

(5.13b)

It follows that the oscillator-strength density can be
written in the form

property of the k -th family of orbits, and it will not
change with small changes of energy. Compared to the
preceding relatively weak dependence on energy, the ac-
tion S2 along a closed orbit changes very rapidly. In Ap-
pendix C, it is proved that the action along a closed orbit
satisfies

Df (E)=Dfo(E)+ g C & (E) sinb, k (E) .
m, k

(5.14)
BS2(E) = T(E), (5.15)

How do these quantities vary as a function of energy?
All of the significant energy dependence is contained in

mk
the coefficient d& &, defined in Eq. (5.9b). This quantity

I 2

is determined from the k -th closed orbit having
mkI., =mfi that goes out from polar angle 0,. and returns

mk
to polar angle 8f . As the energy changes, the initial
and final angles associated with the closed orbit will
change. This wi11 produce a small change in the spherical
harmonics Y& (8;™,0) and a small change in the classi-

mk
cal amplitude A z . The Maslov index is a topological

where T(E) is the travel time along the closed orbit. We
can therefore write the oscillator-strength density around
E =Oas
Df(E)=Dfo(E)+ g C k (E}

m, k

Xsin f T k (E)dE/fi
0

(E =Q) . (5.16)

Furthermore, since Dfo(E), C i, (E), and T k (E) are
rN m
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nearly constant over a small range of energy, we have (for
E close to zero),

Df (E)=Df0(E =0)

+ g C k (E=0)sin[T k (E=0)E/fi
m, k

+6 k (E =0)] .

(5.17)

We have arrived at the formula for the spectrum.
Readers who have arrived with us may wish to celebrate
by looking again at Fig. 3 of paper I, where the first
successes of this formula are shown: the coefficients
C k are compared with the Fourier transform of the ob-

served absorption spectrum.

APPENDIX A: A FORMULA FOR THE INTEGRAL
I(n, l, l'}

Here we shall derive a general formula for the integral

, Jl(+)((«)' )
I(n, l, l')= f R„I(r)r, dr .

0
(A 1)

n —1

R„I(r)=e ""g akr",
k=0

(A2)

the integral I (n, 1,1 ) is a linear combination of integrals

J„.+,((8r)' '}
0 T

for k going from 3 to (n +2),

(A3)

Since the radial function R„I(r) is a product of e " "and
a polynomial of order (n —1),

VI. CONCLUSION: ALGORITHM FOR
COMPUTING THE OSCILLATOR-STRENGTH DENSITY

N+2
I(n, l, l')= g ak 3F(n, k, l') .

k=3
(A4)

If the initial state and laser polarization are specified,
then the absorption spectrum near the ionization thresh-
old can be calculated by the following procedure.

(i) Evaluate the expansion coefficients bi' for Dg, —
the product of the dipole operator D and the initial state

f;—according to (2.2b), (4.2), and (4.3).
(ii) Calculate the radial overlap integral I(n, l, l') for

1'=1k 1 as in (4.12). Some of these integrals are listed in
Table I.

(iii) Calculate the smooth background term in the spec-
trum using Eq. (5.10).

(iv} Find all the closed orbits at energy E =0 with
period T less than a desired value T,„ in each subspace
of m that appears in the expansion of Dg, in (4.3). For
any m, an orbit is said to be closed if it begins radially
outward on the sphere r =rb, and ends radially inward
on the same sphere. For each such closed orbit, compute
the amplitude factor A2, action S2, Maslov index, and
period T.

(v) From (5.13}, evaluate the oscillation amplitude
C~k and phase 5 k .

m m

(vi) The spectrum near the ionization threshold is then
given by (5.16).

Obvious modifications of this procedure can be made to
obtain a spectrum around any energy E other than the
threshold.

Now we use formula (11.4.28) of Ref. 7,

e ' ' r" 'J, (br)dr
0

I (2 v+ —,'lu)( —,'b/a)"
M ( —,

' v+ —,
' p, v+ 1, —b /4a ~

)
2a "I'(v+ 1)

[Re(p+ v) )0, Rea )0],
where the notation M(a, b, z) stands for the confiuent hy-
pergeometric function, which has a Taylor expansion

az (a)zz (a)„z"
M(a, b, z)=1+ +,+ . +,+

b)z2! (b)„n!

with the Pochhammer symbol

(a)„=a(a+1)(a+2) (a+n —1), with (a)o——1 .

The result for F(n, k, 1') is

F(„1 1) 2'+ „+'+ ( +1+
I (21'+2)

XM(k+1'+1, 21'+2, 2n) . —(A6)

To evaluate F(n, k, I'), we first make a change of vari-
able x =(8r}'~ in the integral; then

F(nk 1')= „, f e " ~ x "Jll+(x)dx .
4y 8'

(A5)
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APPENDIX B: TESTS OF THE APPROXIMATION
FOR RETURNING WAVES

Equation (5.7e) asserts that the semiclassical returning
wave, described by Eqs. (5.7a)—(5.7d) is approximately
equal to a constant times the incoming part of a cylindri-
cally modified zero-energy Coulomb wave, which is given
by Eq. (4.23a). Here we display results of tests of the ac-
curacy of this approximation.
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A. Direct comparison

We have numerically computed the returning semiclas-
sical wave associated with the family of trajectories sur-
rounding closed orbit number 2 (the orbit shown in Fig.
I). To compute this returning wave we took the initial
state to be 2s. We have also numerically computed the
modified Coulomb wave (4.23a). The "constant" N in Eq.
(5.7e) was evaluated by comparing the two waves at the
point rf ——50a„8f——53.8315'.

The two wave functions are compared on two slices
through configuration space: on the circle r =50ao with
angle varying, and on the line 8=8f with radius varying.
Results are shown in Fig. 4. The open and closed circles
are the semiclassical returning wave, while the solid lines

are the modified Coulomb wave (4.23a). The agreement
between the two is very good.

B. Dependence of a& on boundary radius

If Eq. (5.7e) were exact rather than an approximation,
then the coefficients a& defined in Eqs. (5.8a) and (5.8b)
would be independent of the boundary radius rf. We
varied the boundary radius between 30 and 100ao, and
obtained the results shown in Table II. The phase of a,o
changes negligibly with rf, and the amplitude changes by
about 3%. This should be a good measure of the accura-
cy of the returning-wave approximation for this group of
trajectories, and it makes us believe that our amplitudes
C k are accurate to within a few percent.

0.
APPENDIX C: ACTION AND TIME THEOREM

Consider a trajectory with energy E, going from q' to
q". When the energy is changed from E, to energy E2
which is close to E„ the trajectory going from q' to q"
will follow a different but nearby path [see Fig. 6(c) of
Ref. I]. How are the actions along the two paths related' ?

Theorem. We have

I IIE q, q

=T(E), (Cl)

-002
30

I

50 70
r/a,

q=q(t, E,q', q"), p=p(t, E,q', q") .

The action along the trajectory is defined as

(C2)

where T(E) is the time needed to go from q' to q".
Proof. The trajectory going from q' to q" at energy E

can be written as

003— (b)

S(q', q",E)=f p(&, E,q', q") Bq(t, E,q', q")
(C3)

where, in (C3), t' and t" are the times that the particle ar-
rives at q' and q". Taking derivatives of (C3),

t1 1

t)S I
t" t)p t)q t) q Bq t)t

(C4)

a partial integration of the second term gives us

I

20
I I

40 60
8 (degrees)

I

80 100
TABLE II. Expansion coefficient a».

FIG. 4. Test of the returning-wave approximation. The
closed and open circles are, respectively, the real and imaginary
parts of a returning wave as calculated by the semiclassical
method. The solid lines represent the real and imaginary parts
of g, z= (r, 8). These are compared (a) as a function of r at the

Sxed angle 8=Of ——53.8315' and (b) as a function of 8 at the
Sxed radius r =50aQ. The complex constant was chosen so that
the two wave functions would exactly match at the point
r =50aQ, 0=Of.

rf (aQ)

30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

Amplitude of a,Q

1.723
1.734
1.744
1.753
1.761
1.769
1.776
1.783

Phase of a,Q

344.794
344.795
344.795
344.796
344.796
344.796
344.796
344.797
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T

BS r" Bp Bq
BE= BE Bt

Bq Bp Bq
BE Bt

'+P BE,,
Br'

B8o

B8
B8,

Bq Bt+' at eE,

Then using Hamilton's equation in (C5),

BS
BE

Bp BH BH Bq
~

~ ~

BE Bp Bq BE

t= t=T E

If the two end points q' and q" are fixed,

q(t', E,q', q")=q', q(t",E,q', q")=q",
then at the end points

Bq Bq Bt

BE B BE

(C5)

(C6)

(C7)

(C&)

(Dla)

8=8(t, 8o) .
We have from the first one,

(D lb)

However, because usually we do not use a fixed time step
in our numerical integration, we do not have the data for
neighboring trajectories at the same time. In our case we
launch a family of trajectories at t =0 from the initial cir-
cle, and each of these trajectories is propagated with a
varied time step size according to the location of the elec-
tron. Trajectories are stopped on the final circle
rf ——const. Trajectories in this family do not arrive at the
final circle at the same time. Let us express the desired
quantities in terms of other quantities which are readily
obtained from the computation.

From running the trajectories, we could, in principle,
obtain two functions,

r =r(t, 8o),

E,q', q"
(C9)

In particular, in the present case

BS B e
BB 4m, c

APPENDIX D: PRACTICAL FORMULA FOR
EVALUATING SEMICLASSICAL WAVE AMPLITUDE

(C 10)

When computing the semiclassical amplitude A of the
returning wave according to (3.9) and (5.7a), the deriva-
tives of r and 8 with respect to the initial angle 80 are
evaluated at a fixed time,

(QED).
By the same tnethod, Eq. (Cl) can be shown to apply

also to periodic trajectories. In the case of a periodic tra-
jectory, as the energy changes, the entire periodic orbit
may shift, such that the starting and ending points
change with energy. Nevertheless, the theorem still
holds.

In a similar way, one can show that if the Hamiltonian
contains a parameter A, , then the action integral on an or-
bit varies as

dr = d8o+ dt .Br Br
(D2)

On the final circle r is a constant, so that we obtain

Br

B8o

Br Bt
Bt &, B8,

(D3)

The quantities on the right-hand side of this equation are
naturally evaluated by the program: the first factor is the
radial velocity at the final surface, and the second factor
is the final-time difference between adjacent trajectories
divided by the initial-angle difference.

Similarly, from (Dlb), we have

d8= dt + d8o,
B8 B8
Bt e, B8,

which, on the final circle, is

(D4)

B8
B8o

B8
B8o

B8 Bt
Bt so B8o

(D5)

Equations (D3) and (D5) are used in our calculation of
mk
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