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Abstract

Data Science Program
Bachelors of Science

The Pandemic From Above: Estimating COVID-19 Cases Using Deep

Learning and Satellite Imagery

by John HENNIN

Monitoring the spread of an outbreak of disease (such as COVID-19) is an im-
portant component of any coordinated pandemic response. Across the globe,
our ability to conduct such monitoring - especially at early stages of the COVID-
19 pandemic - was highly limited due to a lack of public reporting mechanisms.
Today, the process of case data collection remains expensive and, in some re-
gions, is subject to political considerations. Researchers have turned to some
techniques leveraging Google Trends and Twitter data to overcome limitations
in public data sources. Here, we provide another approach which leverages
satellite information to provide estimates of case counts. Visible features in im-
agery - such as vehicles in parking lots, or temporary structures at hospitals -
should convey some information about underlying disease spreads. We explore
the use of a ResNet50V2-LSTM hybrid model that is trained on satellite infor-
mation, seeking to predict case counts across counties in the USA using imagery
alone. Using solely this imagery, this model produced an overall rate of error of
4.55%. We discuss advantages and drawbacks of this approach, and how some

future directions may aid us in overcoming contemporary limits.
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Chapter 1

Thesis

1 Introduction

The speed and accuracy at which we currently collect Covid-19 case surveillance
data directly impacts how effectively we can target and prevent the spread of
the disease (The Centers for Disease Control and Prevention, 2021). In more de-
veloped countries, this has proven to be a costly and overly complex process,
as multiple entities across various levels of jurisdiction are hastily collaborating
to aggregate, anonymize, and release case data to both the public and policy-
makers (Komenda, 2020; The Centers for Disease Control and Prevention, 2021).
In less developed countries, this process is either nonexistent or overwhelm-
ingly inaccurate (Milan and Treré, 2020). This has led to demand for supple-
mentary alternatives that can deliver Covid-19 case estimates in a cost-effective
and timely manner.

In order to fulfill this need, some researchers have been utilizing proxy data
sources such as Google Trends and Twitter for their modeling (Sulyok, Ferenci,
and Walker, 2021; Gharavi, Nazemi, and Dadgostari, 2020). These methods have
demonstrated success when applied to select more developed countries as case
studies (Skiera et al., 2020; Nindrea, 2020). However, there are considerable
limitations to these approaches. For example, there are a number of nations that
lack accurate Google Trend and Twitter data, driven by government restrictions,
severe political bias, or very limited accessibility to Internet services (Ensafi and
Crandall, 2015; Timoneda and Vera, 2021; Kemp, 2022).

To effectively estimate Covid-19 case counts on a comprehensive global level,
researchers need to source data that has universal coverage, regardless of the
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myriad of unique federal restrictions or developmental challenges that each na-
tion may face. With this challenge in mind, this study proposes utilizing publicly
available high-resolution satellite imagery and a computer vision-based deep
learning model ensemble to estimate Covid-19 cases. With this technique, we
are able to employ inexpensive, timely, and accessible data collection that cov-

ers the entire globe to satisfy the urgent nature of a pandemic.

FIGURE 1.1: Images collected from the Sentinel-2 MSI Mission,
10m resolution.

We chose to pursue computer vision-based modeling, specifically transfer
learning convolutional neural networks (CNNs), as recent literature has demon-
strated increasing confidence in the success of these models when trained on
satellite imagery. These models have been applied to a wide variety of con-
texts, such as estimating road-quality, school tests scores, and daily economic
consumption (Brewer et al., 2021; Runfola, 2021; Jean et al., 2016). It does so
through a process unique to the CNN called convolution, where the model con-
volves a filter over an image and uses the products as potential abstractions of
informative features, such as distinct lane markings in the road-quality exam-

ple. The weights associated with these abstractions are adjusted as the model
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trains. On top of the CNN, we investigate the use of a recurrent neural network
(RNN), which is a deep learning model that incorporates a temporal dimension
to better inform estimations. This RNN method is supported by recent stud-
ies that explored applications such as detecting floods, classifying land cover,
and tracking urban development (Rahnemoonfar et al., 2018; Ienco et al., 2017;
Papadomanolaki et al., 2019). Within this study, the model will estimate the
Covid-19 case counts for a single period of time and a specific region, then use
this estimation in its prediction for the same region during the next period of

time.

FIGURE 1.2: Images of same location in Adams County, lowa taken
90 days apart starting from 09-30-2020.

It is worth noting that the typical scope of the RNN studies in the context
of satellite imagery is largely limited to recognizing changes in physical geo-
graphic structures, whether that be bodies of water, forest cover, or buildings.
By applying the RNN method to the novel context of disease surveillance, we
hope to demonstrate the substantial potential of this modeling technique, as well
as highlight a relationship between the geographical structure within a high-
resolution satellite image and the underlying characteristics of the represented
population.

In this piece we validate the aforementioned approach using the United States
as a case study. We compare the merits of a basic CNN, a transfer learning CNN
model, and then the final transfer learning CNN-RNN stacked ensemble for this
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context. Finally, we discuss possible applications of our final model both within

the current Covid-19 pandemic, as well as any future pandemics that may arise.

2 Data and Methods

2.1 Covid-19 Case Data

For the Covid-19 case data, we used a US county-level dataset provided by The
New York Times (The New York Times, 2021) and supplemented any missing
counties with the Johns Hopkins University Covid-19 Global data repository
(Dong, 2020). Both data sources collaborated with departments of health at ei-
ther the state or county level, which led to certain counties being excluded be-
tween them and made it necessary to cross-reference the data. At the time the
data was collected for modeling, it contained 264,075 daily observations of 3006
counties from 01/27/2020 to 10/01/2021 and included measures of confirmed
cases and deaths attributed to Covid-19.
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FIGURE 1.3: Quarterly case counts plotted against daily case
counts (daily data has been scaled for visualization purposes).

To help the model generalize, it is necessary to normalize the cases by buck-
eting them into larger time periods. This process smooths out dramatic spikes in
county-specific case counts. We aggregated the data by summing all confirmed
cases for each county within 90 day periods. As seen in figure 2.1, the daily trend

line in Covid-19 cases was apparently preserved by the quarterly aggregation.
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2.2 Imagery Data

We are using satellite imagery data collected by the Sentinel 2 project (Monitor-
ing, 2020, 2021), under which two satellites, SENTINEL-2A and SENTINEL-2B,
image the globe every 5 days. For each observation in the case data, three (RGB)
bands are downloaded with the Google Earth Engine API (Gorelick et al., 2017).
The region covered is 5km?, with the most populated city within each US county
at its center. The most populated city of the county serves as a proxy for the re-
maining area of the region. Additionally, by bringing the city to the forefront,
we are avoiding the case in which our imagery is mostly comprised of farm-
land or nature and now the model is more likely to capture key features, such
as hospitals, temporary structures that may be associated with hospitals, and
general activity metrics such as large volumes of cars on roads. Each band has
a spatial resolution of 10m, which means each pixel in an image corresponds
to a 10 meter by 10 meter area on the ground. The granularity advantage of
Sentinel 2 imagery is especially apparent when compared to similar contempo-
rary missions, such as the Landsat 8 (launched 2013) and Landsat 9 (launched
2021) satellites each with a maximum resolution capacity of 30m and 15m, re-
spectively (Science, 2013; Science, 2021). This unique high resolution allows for
sophisticated sub-pixel analysis, which is especially important in the analysis of
population-based behaviors such as disease spread.

For example, recent literature has demonstrated significant changes in the
pixel values of parking lots depending on the amount of cars within the lot (Liu,
2021; Vincent and Besson, 2019). Within our context, if a hospital parking lot
is captured in an image, the change in pixel values may indicate how busy the
hospital is, which in turn could be indicative of the state of the disease spread.
This potential relationship between physical changes in a region and the number
of Covid-19 cases within the same region is what we aim to establish by using
the 10m satellite imagery offered by Sentinel 2.

2.3 ResNet50V2 Transfer Learning Approach

Aggregating our data from daily to quarterly reduced the number of observa-
tions from 264,075 to 23,368. In order to effectively train and validate the model,

we allocated 75% of the observations to a training set and the remaining 25% to
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~——————— Convolutional Block

@ InputLayer . ZeroPadding2D . Conv2D @ MaxPooling2D @ BatchNormalization

@ Activation @ Add

FIGURE 1.4: ResNet50V2 input and first convolutional block archi-

tecture. Made using NN architecture visualization package Visu-

alKeras (Gavrikov, 2020). The "Add" layer adds the outputs from
the last MaxPooling2D and Conv2D layers.

a validation set. Therefore, our model would have to train on 17,526 observa-
tions, which is a relatively small dataset for CNNs and could cause inadequate
training. Research has shown that a strategy called transfer learning can help
mitigate this issue (Brewer et al., 2021; Barman et al., 2019). In computer vi-
sion, transfer learning is the use of a CNN that has been pre-trained on another
dataset. The advantage of this is the ability to parameterize the weights on a
much larger dataset than your own in order to utilize the pre-trained model’s
elementary ability to identify significant features in an image such as shapes or
edges. The final layer of the CNN is then adjusted for the user’s specific mod-
eling needs, whether it be classification for a number of classes or a regression
estimation.

For the purposes of this study, we started with a ResNet50V2 model (He et
al., 2016) pretrained on the ImageNet dataset which contains 1.28 million train-
ing images of 1000 different classes (Deng et al., 2009). We resized each image
to 256 pixels by 256 pixels for three RGB color bands and rescaled the pixel val-
ues by inverse the maximum pixel value of 255. Since the weights were trained
using a dataset for classification, we had to explicitly set the model parameters
for regression. At this stage, the model was ready to estimate the number of

Covid-19 cases for a region given its satellite image.
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2.4 ResNet50V2 to LSTM Approach

ResNet50Vv2

ResNet50V2

Features

Satellite Imagery

[23368x256x256] [2935x7x2048]
(7 timesteps per county)

[ 53272.
448349,
1730692.
- 4048670.
4675154,
5336682.
3474834.]

Dense Layer

Dense Layer

LSTM Layer "_
Dense Layer
Dense Layer

-

(o]
L]

1 case estimate for
128 7 timesteps for
256 each county

@
=

FIGURE 1.5: ResNet50V2-LSTM Architecture. As before, the fea-
tures from the ResNet50V2 have been reshaped for visualization
purposes.

Disease case counts at an instance in time is often not an independent figure.
Typically, there is some correlation between the number of cases at one point
in time and the number of cases at another point in time for the same area,
whether it be due to a relatively fixed population size, the simultaneous spread
of the disease to new people and the recovery of the previously diseased, etc.
Therefore, it is helpful to consider previous confirmed case figures in the process
of estimating future cases. Sequential relationships like the one described are
often modeled with a special type of neural network called a Recurrent Neural
Network (RNN). RNNs can serve a number of functions, such as estimating
the emotional sentiment of a Tweet, generating sheet music based on previous
works, and detecting outliers in data (Yuan and Zhou, 2015; Dua et al., 2020;
Williams et al., 2002).
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For our intent, we chose to use an Equal Unit Size Many-to-Many LSTM
RNN (from now on referred to as LSTM), which is trained on multiple inputs
and returns the same number of outputs, where each output recursively informs
the estimation for the following input. Since our imagery data consists of be-
tween 5-7 images of the same location across periods of 90 days, we can input
a set of these images and an LSTM would return a set of equal size containing
estimated case counts, one for each image. For example, if the first image cor-
responds to a count of 200 confirmed cases but the model estimated 250, when
the model is trained on the second image in the set it now considers the sec-
ond image’s pixel data, the previous image’s correct case count of 200, and the
magnitude of error.

Unfortunately, this isn’t as simple as taking the image data and sending it
through an LSTM. First, passing every pixel into a LSTM would result in tremen-
dous levels of noise, as individual pixels are generally not representative of fea-
tures of interest. One pixel does not generally represent one car, or one structure;
rather, it is groups of pixels we are interested in. Second, passing a raw image
forward through an LSTM would require flattening it into a 1D array, which
would degrade the spatial relationship between the pixels that help character-
ize an image. Thus, researchers have found it useful to combine a CNN and
LSTM for sequential images. Notable examples include another Twitter senti-
ment analysis model that first predicts the text in a screenshot of a Tweet and
automatic image caption generators (Basiri et al., 2021; Adnan et al., 2021).

We chose to combine the aforementioned ResNet50V2 model with a LSTM
sequential model. By removing the last layer of the ResNet50V2 model, we can
extract the image features from the penultimate step in the forward pass. For
each image there are 2048 feature values that contain an abstract representation
of the original image. These features may represent intensities (i.e., more bright
objects in an image), or shapes (i.e., more sharp edges); the specific nature of the
features represented in contingent on the model training. By using these features
within the LSTM, we attempt to capture the key features that are most impor-
tant for predicting COVID-19, while still retaining the capabilities provided by
a LSTM structure.



Chapter 1. Thesis 9

o X
I‘~ - -
' " V" L A " e
' . --‘)‘."J-i:'n-“\u-"b‘.‘.- d-0 e XN
- LRt Tl - - ‘v
o0 -~ d -%..* R = - " v »
. Sail T | L . k

FIGURE 1.6: Above are three random images from the dataset. Be-
low these are two dimensional representations of their correspond-

ing 2048 features.
3 Results
Results
X o MAE  MAEas % of ¥
Actual 587088.03 2453954.29
ResNet50V2 385382  876439.25 132092.86 25.53
ResNet50V2 & LSTM | 560379.44  346318.7  26708.63 4.55

TABLE 1.1: Model test results compared to statistics of actual data.

3.1 Results: ResNet50V2 Transfer Learning Approach

The standalone ResNet50V2 model achieved an overall mean absolute error of
132,092.86 (0 = 876,439.25). As a percentage of the mean case count, the model
scored 25.53%.

3.2 Results: ResNet50V2 to LSTM Approach

The ResNet50V2 to LSTM model resulted in an overall mean absolute error
(MAE) of 26,708.63 (0 = 346,318.7). The MAE as a percentage of the mean case
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count (587,088.03, o = 2,453,954.29) is only 4.55%. Notably, the standard devi-
ation of the ResNet50V2 predictions was slightly more comparable to the ac-
tual case data standard deviation, but the ResNet50V2 to LSTM model achieved
a significantly better MAE and MAE as a percentage of the mean case count.
Therefore, the addition of the temporal dimension seems to greatly improve the

accuracy of our model’s predictions.

Avg. Actual Confirmed Cases Avg. ResNet50V2-LSTM Predictions

Mexico

© 2022 Mapbox © OpenStreetMap Riexio © 2022 Mapbox © OpenStreetMap

Mean Absolute Error

i

a Cases

0| S 10,000,000

© 2022 Mapbox © OpenStreetMap /axico

FIGURE 1.7: Mappings of average case counts per county (up-
per left), average ResNet50V2-LSTM prediction per county (upper
right), and the mean absolute error between them (lower left).

From 1.7 and 1.8, the average actual confirmed cases can vary significantly
from county to county. The Southwest region, specifically Los Angeles county
and the counties adjacent to it, had the greatest average 90-day aggregated ac-
tive case counts, at about 10 million. Counties in the state of Florida, along the
Northeast coast, and in the Midwest region all had similar counts to this 10 mil-
lion mark. As you can see from the upper right map, the predictions made by
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Avg. Actual Confirmed Cases
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FIGURE 1.8: Mappings of average case counts per county (top) and
average ResNet50V2-LSTM prediction per county (bottom) broken
down by quantiles to better display variation.

our model did not effectively capture these extreme cases. Now looking at the
Mean Absolute Error map, we see that Los Angeles county, shaded the darkest
in the bottom left of the map, is the most notable example of this discrepancy, as
the MAE for the county is about the same as its average actual confirmed cases
tigure.

The remaining majority of the counties have 90-day aggregated active case
counts of between 0 to 1,000,000. The final model’s predictions of these counties
are much more accurate than the predictions of the outliers, as we can see from
a much smaller MAE in the lower left map. However, the model seems to gen-
eralize in its predictions for these counties as they are on a significantly different
scale than the outliers.

In 1.9 we see the value of the LSTM addition to the ResNet50V2 base model.
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FIGURE 1.9: Line plot of actual case trend line, ResNet50V2 trend
line, and ResNet50V2-LSTM trend line.

The ResNet50V2 alone predicts about the same total case counts across our 7
quarterly timestamps. This does not mean that the ResNet50V2 model is pre-
dicting the same value for each observation. In fact, the standard deviation for
the ResNet50V2 model is more than two times the standard deviation for the
tinal hybrid model (see 1.1). Instead, the plot demonstrates that the ResNet50V2
predictions are not influenced by time. The ResNet50V2-LSTM model is able to
incorporate the temporal dimension of the disease spread data. Consequently,
the trend of the predictions for this model is much more representative of the

actual case trend line.

4 Discussion

As you can see from 1.1, the final model’s standard deviation is very small com-
pared to the standard deviation of the case data. This means the model tends to
make estimations more close to the mean. In potential future implementations,
to avoid the bias due to an imbalanced scale in data, multiple models that cover
different stages in pandemic may help provide more variance in estimates. This
would enable it to account for unique situations like spikes in cases or significant
drops in cases following an effective vaccination. This tactic would also allow
for more granular training data, such as imagery every 5 days as opposed to our
model’s 90 days rate, since the data no longer spans the entirety of a pandemic.
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Additionally, it should be expanded to more countries than the United States to
further improve the variety of case counts and imagery. The biggest bottleneck
in this study was the time it took to download the imagery, but for the purposes
of future implementations that is a small issue. If the model is built in anticipa-
tion of future pandemics, the temporal expense of downloading imagery can be
afforded so long as the entire process of data collecting and then model training
finishes before the new pandemic begins.

In practice, the early stage model would be trained on early stage Covid-
19 data and would manifest as a similar form to the final ResNet50V2-LSTM
model of this study. In accordance, the later stage models would be trained
on data from their respective time periods. However, for these models, as the
anticipated pandemic unfolds and more information besides the immediately
available satellite imagery becomes available, there is room for improvement in
accuracy.

As a pandemic progresses, important public health variables gradually be-
come widely available, like vaccination rates when a vaccine is created, certain
regional mandates such as wearing masks, or the R-naught (Rg) value which
measures how many people are expected to be infected by one contagious per-
son. With this in mind, the predictions of the aforementioned later stage ResNet50V2-
LSTM models could be sent through an additional basic regression model that
could factor in these extra variables. Not only is cost effective and timely satel-
lite imagery data still utilized with this method, but epidemiological variables
could easily be incorporated to suit the data availability of the target region.

Often the difficulty in justifying computer vision modeling techniques to
public health experts is the very novelty of the technique. It is difficult to iden-
tify the key features in an image that help inform the model’s predictions. Con-
sequently, there is an inherent clash between the lack of transparency in com-
puter vision modeling and public health experts that are trying to identify key
data that may be utilized in containing its spread. The amalgamation of our
ResNet50V2-LSTM model and a regression model with key public health vari-
ables could function as a justifiable compromise and bridge the gap between
computer vision and typical public health pandemic response techniques. Addi-
tional exploration into model explainability techniques which can help to iden-
tify key drivers in imagery could also be of high value.
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A benefit of a satellite-based approach is that it can be employed before some
of these public health figures are publicly available or in practice. If it is so early
in a pandemic that there are no measures in place—such as social distancing, a
vaccine, mask mandates—then a model that is trained on those variables will be
ineffective. The model of this study, trained on satellite imagery data during the
Covid-19 pandemic, circumvents that issue and could be effective in the early
days of future pandemics, where public information used for epidemiological
modeling is not available to practitioners.

It is possible that the model is mostly estimating the size and presence of
population centers, rather than inherently Covid-19 cases, or this is at least con-
sidered in the estimation process. In further exploration, diversifying the train-
ing data by expanding the geographic scope to more rural areas could help ease
the model’s potential dependency on these population centers. Additionally, an
expansion to both more distinctly rural and urban areas would help the model
account for high and low extremes such as Los Angeles and Loving County, re-
spectively. As noted in 3.2, the model’s current form has difficulty adequately
capturing the extremes. This is because a significant majority of the confirmed
case training data is close to the mean. Diversifying the training data with a ge-
ographic expansion and, consequently, increasing the standard deviation, will
help the model capture those extremes.

With a modeling context as omnipresent as the Covid-19 pandemic, it seems
necessary to address the potential socioeconomic biases that influence the esti-
mation process. We theorized that the model may utilize physical features such
as hospitals, temporary structures that may be associated with hospitals, and
general activity metrics such as large volumes of cars on roads. However, in
less wealthy but possibly highly populated counties, these features may be less
common as there could be a deficiency in funding, even if the case counts are
relatively the same. Further, the case counts may even be higher in these areas,
as they could lack the necessary resources to help prevent the spread of the dis-
ease. In this case, the model would be biased to predict higher case counts for
wealthier counties.
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5 Conclusion

In this piece, we aimed to utilize deep learning for estimating Covid-19 cases
in contexts when alternative surveillance modeling techniques are limited by
inaccurate or unavailable data. We chose satellite imagery as a data source un-
affected by censorship, polarized political climates, nor regional technological
capabilities. We then compared the merits of a CNN model against a CNN-
LSTM hybrid model, using the United States as a case study. The CNN model
estimated the imagery alone, but the CNN-LSTM model was able to consider
the imagery temporally. As a result, the CNN-LSTM model had a much lower
loss, achieving 4.55% MAE as a percent of the mean. The model has success-
fully demonstrated that Covid-19 cases can be estimated using satellite imagery,
but we believe further development and testing is necessary before the model is
generalizable for other pandemics.
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