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Semiclassical treatment of a half-cycle pulse acting
on a one-dimensional Rydberg atom

C. D. Schwieters and J. B. Delos
Physics Department, The College of William and Mary, Williamsburg, Virginia gSI87

and Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology,
Boulder, Colora, do 80809

(Received 11 August 1994)

The final-state distribution of hydrogen, acted upon by a 2-cycle pulse, has been calculated
semiclassically for a proposed one-dimensional experiment. This work was motivated by the recent
experimental realization of half-cycle pulses by Jones, You, and Bucksbaum [Phys. Rev. Lett. 70,
1236 (1993)] in which preliminary studies of ionization and state redistribution for hydrogenlike
atoms were carried out. To simplify the situation theoretically, an experiment is proposed in which
an additional weak static electric field is imposed and approximately one-dimensional states are
selected. Within this one-dimensional approximation the transition probability to various n states
(n is the principal quantum number) has been calculated as a function of the amplitude of the
balf-cycle pulse, using a semiclassical formula due to Miller [Adv. Chem. Phys. 25, 69 (1974)]. A

complete derivation of this formula and a discussion of approximations are made in the following
paper. We have found that an even number of trajectories contributes to the transition probability
and leads to observable interference effects. In addition, we find that bifurcations of these trajectories
can occur, resulting in more complicated interference structures.

PACS number(s): 03.65.Sq, 34.50.Fa, 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Many studies of the effects of ultra-high-intensity laser
pulses on atoms have been carried out in recent years,
and it is found that qualitatively new phenomena occur
that are not predicted by perturbation theory when the
radiation force is comparable to the binding Coulomb
force [1]. Concoinitant with the increase of the intensity
of laser pulses has been a reduction in the pulse length.
Recently, Jones et al. [2] have demonstrated a kind of
limit of this pulse shortening by creating half-cycle pulses
(HCP's) whose time profile looks approximately like the
sine function with an argument from 0 to m.

Since the experimental demonstration of the HCP, sev-
eral groups have performed quantum and classical simu-
lations of the ionization probability and the probability
of bound-bound transitions in Rydberg atoms under the
action of such pulses [3—5]. These studies and prelimi-
nary experiments suggest a complex interference struc-
ture for the probability of transitions to energy-resolved
final states.

In this paper we propose an experiment for which the
atomic dynamics can be modeled as approximately one
dimensional. For this model we calculate the probability
of bound-bound transitions using a semiclassical method.
The formulas give us a clear understanding of the rather
complicated oscillatory behavior of the probability spec-
trum. Preliminary experiments have demonstrated the
feasibility of the proposed experiment, but a detailed
comparison with experiment is not yet possible.

In the current study, a static electric field is assumed
to be present in addition to the H(. P. The highest- and

lowest-energy Stark states in this static field are elon-
gated along the field axis and quite localized about this
axis. Since the HCP gives a force that is directed along
this same axis, we may neglect the transverse motion,
and thereby reduce the problem to one-dimensional mo-
tion. This approximation has been used in the past to
describe other experiments [6].

The goal of the current study is to calculate the prob-
ability of transition from one "blue" (high-energy) Stark
state to another, or from one "red" (low-energy) Stark
state to another, caused by a HCP.

Because the static-Geld case is integrable, it is partic-
ularly convenient to express the results in action and an-

gle variables. The role of action and angle variables and
general canonical transformations in quantum mechanics
has a long history, but the theory is still not fully under-
stood. However, in spite of the lack of rigorous basis in
a fully quantum &amework, action and angle variables
are known to be useful for expressing the results of semi-
classical approximations for separable and approximately
separable systems. In the next section, we quote the re-
sult obtained by the method of Miller [7] when applied to
the calculation of transition coefficients a = (n'og(tI)).
This formula yields the correct result, although it lacks a
rigorous formulation. In Sec. III, we discuss the predic-
tions of transition probabilities. We show that in most
cases a simple oscillatory pattern arises because there are
two classical orbits that go &om each initial state to each
final state. We also find an interesting situation in which
two additional classical orbits Rom initial state to final
state are created. This is a bifurcation of an orbit, and
the simple semiclassical approximation fails at this point,
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so it must be replaced by an improved formulation. We
give a rigorous justification for the formulas in a com-
panion paper [8].

.( E) =( ~[E —Vo( )])"'

Vp{z) = —Z ~e /z+ ezXg, (6)

II. THE TRANSITION PROBABILITY IN
ACTION AND ANGLE VARIABLES

The Hamiltonian for a one-dimensional hydrogen atom
in parallel static and time-varying fields is

1 2
2

H = —p' —Z.&—+ ez[X, + X,(t)].
2p z

Equation (1) is derived and its range of validity is dis-
cussed in the companion paper. The single active elec-
tron of mass p is assumed to be moving on the positive
z axis, where it experiences a nuclear charge of Z,g, a
weak static field Xq, and the HCP %2(t)

P2 sin(~~t), 0 ( t & t„=—,
0, t(0, t&t„. (2)

In the current study, the length of the HCP, t„, was taken
as 1/2 the orbital period of the initial (unperturbed) sys-
tem.

A positive value of Xq corresponds to the blue (high-
energy) state, while a negative value of Xq corresponds
to a red {low-energy) state with a lowered barrier to ion-
ization. For either case, T2 can have either sign: T2 ) 0
means that the electric force of the HCP is towards the
nucleus, while T2 ( 0 means that it is away. In any case,
the electron is confined to the positive z axis: when it
hits the Coulomb singularity it goes back in the direc-
tion &om which it came. In principle, the behavior of
the electron depends upon both the sign of Ti and the
sign of T2. However, in our calculations, we take Ti suf-
ficiently small that it does not affect the orbit during the
pulse: its only role is to define the initial and final states
as red or blue (linear) Stark states.

Equation (1) contains a hitherto unrecognized correc-
tion [8]. In previous applications of this one-dimensional
approximation, the nuclear charge Z ~ was taken to be
unity. Our analysis in the companion paper shows that
zero-point motion in the (otherwise ignored) degree of
&eedom transverse to the z axis leads to a small correc-
tion, and we should take Z,~ = Z —P/2e2, where P is a
separation constant.

In the semiclassical approximation, we compute trajec-
tories of the electron under this Hamiltonian, and then
connect those trajectories to quantum states. For this
purpose we define action and angle variables using the
time-independent part of the Hamiltonian (i.e., W2 ——0)

and u(E) is 2vr divided by the orbital period. Semiclas-
sical quantization picks out I = (n —1/2)h, where n is
a positive integer, as allowed values of action, i.e., the
red or blue Stark state with principal quantum number
n corresponds to a periodic orbit on the z axis having
(n —1/2)h units of action.

The set of all points on this periodic orbit is repre-
sented by a line of constant action I = ID having any
phase angle between zero and 2vr [solid curve in Fig.
1(b)]. This line is called the "initial Lagrangian mani-
fold. "

The eHect of a time-dependent electric field is to
deform this line into a smooth curve, the "final La-
grangian manifold. ." Examples of time-evolved manifolds
are shown as the dotted and dashed lines in Fig. 1(b).
This curve does not evolve after the time-dependent field
has been turned ofF.

It is best to plot Iy, the final action after the pulse,
versus the initial angle at the time the pulse is turned
on, 00, and this is shown as the dotted and dashed lines
in Fig. 1(a). This curve also remains constant after the
external perturbation has been turned oK; it represents at
any time after the pulse the final action of the trajectories
whose initial phase was 8p. Obviously, Iy(8p) must be
a smooth function, and it must be periodic in 00 with
period 2'.

We wish to calculate the probability amplitude for
transition &om a Stark state having principal quantum
number n0 to one having principal quantum number ny.
To do this we identify those values of 8p (called 8g) such
that Iy(8p) = (nt —1/2)h. In Figs. 1(a) and 1(b), these
values of Oo can be read &om the intersections of the
dashed and dotted lines with the desired value of final
action. Then the semiclassical formula for this transition
coefficient can be written as [7]

5 ). t' BIy(8p)).
J e.=e.

i '~ dI(t)x exp — —0(t) —E(t) dt) .
0 dt

The sum is over the classical paths that start at (I = I(),
8p ——8q) and end with I(tt) = Iy. The argument of
the exponential is a classical action integrated along each
such path. The square root in the preexponential factor
is defined to have the phase convention

( )
—1/2

~ ~

—1/2 +i(tt/4) Zgn a

where

1I = — p, (z;E)dz,2'

18 = p(u(E) dz —u)(E)t,
pz 'I

(4)

The amplitude of each contribution to the transition
coefficient is /5/(2m') ~BI/BOp~ / . Hence, when the
slope of the curve of Iy versus 80 is large, the transi-
tion amplitude is small, while at the extrema where the
slopes go to zero, this primitive semiclassical approxima;
tion breaks down and the amplitude goes to infinity.

There are two contributions to the phase of the tran-
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sition coefficient: one due to a classical actior integrated
along the trajectory in action and angle variables and the
other an additional "Maslov" contribution from Eq. (7).
Since the transition probability is the square modulus of

0
22

O

the transition coefficient, phase differences between dif-
ferent trajectories which contribute to a given transition
probability are the quantities which have physical signif-
icance. The integral quantity in Eq. (7) is independent
of path, so the difference between two contributions for
If ——I corresponds to areas traced out between the fi-
nal time manifold [the dotted and dashed lines in Fig.
1(b)] and the straight line I = I = 5(n —1/2). The sign
of the slope of I(t'I) versus Oe alternates at consecutive
intersections so that the Maslov part of the phase differ-
ence is always e+' ~ . We give a complete semiclassical
derivation of Eq. (7) in the companion paper.

20— III. RESULTS

18 r-

16
00 0.5 1.0 1.5 2.0

In this section we show and discuss some results for
hydrogen acted upon by a HCP using the procedure out-
lined in the previous section.

80 (units of 7r)

A. Interference effects in excitation

l
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FIG. 1. Manifolds for Is ——19.5, ~X2~ = 1 x 10 a.u. (a)
These curves represent I(ty) (the final action) versus Oo, the
initial angle. The thin straight line curve is the manifold
of initial conditions, while the evolved manifold for Tq ) 0
(W2 & 0) is shown by the dashed (dotted) curve. (b) Here
I(ty) is plotted versus O(ty), the angle at the end of the
pulse. (c) The initial (solid) and evolved (dashed) manifolds
in (p„z) coordinates for Pq ) 0.

Figure 1 contains plots of action. versus angle for the
initial manifold as well as plots of the manifold after in-
teracting with two different HCP's. In this case the initial
state corresponds to n = 20, Xi small, ~X2~ = 1 x 10
a.u. , and the pulse length is half of the (n = 20) Kepler
period. As mentioned before, the initial manifold for
n = 20 is a horizontal line at I = 19.5 which contains the
initial conditions for all the trajectories. When the HCP
is applied to the system, the manifold is distorted. Plots
of II versus Oe are shown for both P2 ) 0 (dashed curve)
and P2 ( 0 (dotted curve)in Fig. 1(a), while II(8I) is
plotted in Fig. 1(b). The corresponding initial manifold
and time-evolved manifold for T2 & 0 are plotted in Fig.
1(c) for comparison.

Since the final curve II(8o) must represent a periodic
function, in general there will be an even number of orbits
from the initial state to any given final state. In Fig. 1(a)
both final time curves intersect any given value of action
either zero or two times. There are isolated points with
one intersection and zero slope at the maxima or minima
of II(Oo), and the primitive semiclassical approximation
fails at those points.

The spectrum of transition probabilities corresponding
to the two final time curves in Figs. 1(a) and 1(b) are
shown in Fig. 2 along with their purely classical counter-
parts. Equation (7) can be calculated for a continuous
range of values of n (not just integers), and this is also
shown in Fig. 2. One can see that interference between
the two trajectories leads to oscillations in the transition
probabilities. For this pulse, only states with small Ln
are populated, but the initial state does not retain the
largest population after the pulse for either sign of W2.
Note that Eq. (7) will iiot predict the transition probabil-
ities due to tunneling: there is an abrupt discontinuous
change to zero transition probability for values of action
larger or smaller than those spanned by the manifold
I&(8o).

In Fig. 3, we examine one peak in the transition prob-
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FIG. 2. Spectrum of transition probabilities for I„=19.5,
= 1 x 10 . Semiclassical probabilities are plotted as

sticks and the purely classical probability is shown as dot-
ted curves. Results for T2 ) 0 are shown above the axis
while those for T2 & 0 are shown below the axis. The solid
curves represent semiclassical transition probabilities at non-

quantized values of action.

ability spectrum and vary the magnitude of T2. Specifi-
cally, we show the survival probability in the initial state
n = 20 for X2 & 0 (force away Rom the nucleus). The
fields considered here are very strong: for comparison,
the static Geld that would fully ionize the n = 20 state
over the barrier is about —4 x 10 a.u. Accordingly, the
survival probability in the initial state is small: around
5%. Of course, for small Xs the survival probability gets
large (it should go to 1), and the semiclassical formula
[Eq. (7)] breaks down. The oscillations again arise from
the fact that precisely two initial angles lead to Iy = Ip.

Figure 4 shows the survival probability for np ——80
for both signs of the HCP, whose duration is 1/2 the
n = 80 orbital period. It is seen that these two spectra
are similar over a large range of T2. In this case the static

9~ (10 a.u.)

FIG. 4. Same as Fig. 3, except that the initial and final
states correspond to n = 80. In addition, the spectrum for
T2 ) 0 is plotted as the dashed curve.

electric Geld strength for ionization is —1.5 x 10
Jensen [5] has applied the strong correspondence prin-

ciple discussed by Percival and Richards [9] to this prob-
lem. It gives an analytic expression for the transition
probability and for the survival probability in terms of
Bessel functions. The formula is more accurate than Eq.
(7) for small %2 (it correctly gives P,„,„;„~= 1 when
X2 ~ 0), but it is less accurate than Eq. (7) for large
T2 or large changes in n because it is based on an as-
sumption that the orbit is only slightly disturbed by the
pulse. The formula predicts that the survival and transi-
tion probabilities are independent of the sign of %2 and
depend only on the magnitude of Ib,nI: the transition
probability for 20 to 16 should be equal to that from 20
to 24. Our calculations show that both of these predic-
tions are reasonably accurate when P2 and IAnI are not
too large. Jensen's result is plotted in Figs. 3 and 4 as
the dotted curve and shows reasonably good agreement
with our results in the plotted range.

0.3
I I [ I I l I

0.3

02—

0
01—

0.2—

a5

0
0.1

0.0
~ ~

~ a~1 ~ ~ t

0 1 2 3 4 5 6 7 8 9 10

9'2 (10 a.u. )

FIG. 3. The survival probability of the no ——20 -+ ny ——20
transition. Plotted is the spectrum for X2 & 0 (solid curve)
and the result due to Jensen [5] using the strong correspon-
dence principle (dotted curve).

0.0 I I

0 1 2 3 4 5 6 7 8 9 10

92 (10 a.u. )

FIG. 5. The uniform (dotted curve) and primitive (solid
curve) semiclassical n = 20 -+ n = 20 survival probability for
T» 0.
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B. A Bifurcation
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00 0.5 1 0 1 5
80 (units of m)

20

FIG. 6. Plots of If versus Op for Ws ) 0: (a)
= 3.5 x 10 (below bifurcation), (b) Xs = 4.1 x 10

(at bifurcation), and (c) X2 ——4.5 x 10 (above bifurcation).

Arguments given in the Appendix of the companion paper
consider the question of whether the one-dimensional (1D)
approximation is reliable in this case. We give arguments
which show that this approximation should be valid for Tq
2.6 x 10 a.u. and we present 2D calculations which show
that it is at least qualitatively correct for stronger 6elds.

We discovered an interesting phenomenon w'hen we
considered the case X2 ) 0 (force toward the nucleus).
Figure 5 shows the survival probability for np ——nf ——20
for this case. For small T2 the survival probability is siIIl-
ilar to that found in Fig. 3, but around T2 ——3 x 10
a.u. the survival probability becomes very small; then
it rises again. The primitive semiclassical approximation
(solid curve) gives a singularity near X2 = 4.1 x 10
a.u. , and then it rises to about 0.15 near T2 ——7 x 10
a.u. A uniform semiclassical approximation, discussed
in the next section, eliminates the singularity, but leaves
the peak at T2 ——7 x 10 a.u.

This phenomenon is investigated further in Fig. 6. We
see that, as X2 increases, the curve II(8p) develops a
local cubic structure near Op = 0.9': for small T2 the
curve has two intersection points with the line Iy ——19.5,
for large W2 it has four such intersections, and at a critical
value of T2, the curve has an inflection point with zero
slope at Iy ——19.5. At this critical field strength, two
new classical orbits that begin and end at I = 19.5 are
created. We call it, therefore, a bifurcation of an open
orbit from the initial to the final action.

A peculiar feature of the bifurcation illustrated in Fig.
6 is that the two new trajectories are created exactly at
Ip ——If ——19.5. This is "strange" because, even if we And
the kind of bifurcation indicated by the graphs in Fig. 6,
there is no reason to think that the zero-slope point will
exactly coincide with the initial state. This coincidence
indicates that we need to look deeper.

To understand this phenomenon, we need to examine

the orbits in real space. In Fig. 7 we show the unper-
turbed linear orbit as a loop. For very small (positive)
T2 the the trajectories are not significantly perturbed
away &om the zero-HCP loop. Contributions to the sur-
vival probability spectrum consist of those orbits which
begin and end with the same energy: all energy taken
away &om the electron by the HCP must be returned, or
vice versa. Thus, initially there are only two trajectories
which contribute to the survival probability, as shown in
Fig. 7(a). Due to the time-symmetric nature of the HCP,
the orbits are at turning points at the middle point of
the pulse, t = tqg2, and are symmetric in time and space
about these points:

z(t, /, —t) = z(t, /, + t),
p (tl/2 t) P (tl/2 + t)

The trajectory which is at the nucleus at t = tqy2 we call
zq(t; X2) while that which is at the outer turning point
we call z2(t; X2).

Consider z2, the dashed trajectory in Fig. 7. At the
instant the pulse begins, the electron is at the marked
point, and it is moving upward, away from the nucleus.
As the pulse turns on, the electron is decelerated until
it reaches a turning point somewhat below the unper-
turbed loop, and then it is accelerated as it comes back
downwards. The speed and phase of the electron and the
shape and strength of the pulse are precisely such that
the electron reaches the outer turning point of its orbit
exactly when the pulse reaches a maximum.

What happens if the initial phase of the electron is
changed' A small increase in ep will cause the trajecto-
ries to spend less time on the right (energy-losing) side
and more on the left side, where energy is gained, so
that dIf /dOp is positive. This is consistent with Fig.
6(a). Now consider what happens if we increase X2 by a
small amount b&2. The trajectory whose initial position
on the manifold is at z = z2(t = 0; X2) will initially be
decelerated more than z2(t; X2) and will thus reach the
outer turning point before tzy2. Therefore, we must have
z2(t = 0; Xq + hPq) ( z2(t = 0; X2). Eventually, for large
enough Xq, z2(t = 0;X2) will reach the nucleus. Then
matters become more complicated [Fig. 7(d)j. For larger
values of T2 the electron has its energy initially increased
(while on the left side) and then decreased after it passes
the nucleus and before it reaches t = tzy2. At some still
larger value of T2, the energy lost by a trajectory starting
at Op + LOp spending less time on the right side of the
nucleus will be larger than that gained on the left side,
and the slope of de/d8p will pass through zero. The
value of %2 at which this occurs depends on the exact
shape of the HCP. For values of T2 larger than this crit-
ical value z2 spawns two daughter trajectories, z~ q and
z~ ~, neither of which retain the symmetry about t = tz/2
of the HCP. Instead, these trajectories are related to each
other by the symmetry z2 q(tq/2 —t) = z2 2(tq/2 + t).

We have shown that the symmetry about tz/2 of our
form for the HCP is responsible for the bifurcation occur-
ring at If ——Ip. I aboratory realizations of HCP's do not
possess this symmetry and therefore the bifurcation will
occur at some value of action somewhat diferent than Ip
in experiments.
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Schematic of Trajectories

)f p
e)

FIG. 7. Schematic sketches of trajectories for diferent values of Tz ) 0. The thin loop is the unperturbed trajectory,
while the dashed and dotted curves denote the two trajectories which contribute to the survival probability spectrum below
bifurcation. The numbers on panel (a) indicate the conventions used for 00. Larger 00 corresponds to smaller z(t = 0) for
p ( 0 and larger z(t = 0) for p ) 0. The strength of the perturbation is successively larger in each panel until the bifurcation
occurs and two daughters [shown in panels (f) and (g)] are born. Note that this is just a schematic: in real phase space p, is
discontinuous at the nucleus.

IV. UNIFORM APPROXIMATION

In the region near the bifurcation, the primitive semi-
classical approximation used in the previous section
breaks down, as reBected in the singularity of the solid
curve in Fig. 5. The quantum formula for the transition
coefBcient is an integral, a = (n~g(ty)), and in the com-
panion paper we show that this integral is approximately
equal to

7r
a = f (Oo) exp —j(8o) —i y, d8o, —

2

for larger values of n) the resonance would move closer to
the classical singularity. (One must also remember that
the transition coeKcient is a sum of interfering terms
&om the bifurcating trajectory and a nonbifurcating tra-
jectory, and this also shifts the maximum. )

In the bifurcation treated here and illustrated in Fig. 5,
two new trajectories were created out of one. For transi-
tions for which An g 0, other bifurcations occur whereby
two orbits are created &om none. These types of bifur-
cations can also be treated. using uniform semiclassical
methods. In general, there is a sequence of bifurcations
as T2 is increased, only one of which is illustrated in the
current study.

where f(oo) and g(Oo) are functions that can be ob-
tained from the final Lagrangian manifolds, Iy(8o) and
8f(Oo). If Eq. (11) is evaluated using the stationary-
phase approximation, the primitive semiclassical approx-
imation [Eq. (7)] is obtained. At the points of bifurcation,
a higher-order approximation is needed. Connor [10), fol-
lowing work of others [ll], has introduced a systematic
method of applying uniform methods to the evaluation
of integrals of the form in Eq. (11).

Results of this uniform calculation are shown in Fig. 5
as the dotted curve. It is seen that the singularity in the
primitive semiclassical survival probability is replaced by
a smooth curve of low probability in the uniform calcu-
lation. One usually expects classical singularities to be
replaced by a peak in the quantum probability of Gnite
amplitude; for example, in a harmonic oscillator, there
is a large but finite quantum probability near a classical
turning point. However, the quantum maximum is dis-
placed somewhat &om the classical singularity. In the
present case, the quantum probability has a maximum
amplitude at T2 —7 x 10, while the bifurcation oc-
curs at W2 = 4.1 x 10 . One would expect that for
smaller values of h, (which under classical scaling occur

V. CONCLUSION

In this paper we have proposed an experiment in which
one-dimensional hydrogen in some initial pure state is
subjected to a HCP and the transition probability to dif-
ferent 6nal states is measured. . We calculate the expected
results using the semiclassical formula of Miller. Because
there is always an even number of classical paths leading
&om an initial quantum state to a final state, we con-
clude that interference between these trajectories leads
to an oscillatory spectrum. In addition, we found that
the contributing trajectories can bifurcate, resulting in a
discernible signature in the spectrum. Finally, while we
treated only the red and blue Stark states of hydrogen in
this study, this method can be extended in a straightfor-
ward manner to deal with arbitrary states of hydrogen.
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