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A communal catalogue reveals Earth’s 
multiscale microbial diversity
Luke r. Thompson1,2,3, Jon G. Sanders1, Daniel mcDonald1, Amnon Amir1, Joshua Ladau4, Kenneth J. Locey5, robert J. Prill6, 
Anupriya Tripathi1,7,8, Sean m. Gibbons9,10, Gail Ackermann1, Jose A. navas-molina1,11, Stefan Janssen1, evguenia Kopylova1, 
Yoshiki vázquez-baeza1,11, Antonio González1, James T. morton1,11, Siavash mirarab12, Zhenjiang Zech Xu1, Lingjing Jiang1,13, 
mohamed F. Haroon14, Jad Kanbar1, Qiyun Zhu1, Se Jin Song1, Tomasz Kosciolek1, nicholas A. bokulich15, Joshua Lefler1, 
colin J. brislawn16, Gregory Humphrey1, Sarah m. owens17, Jarrad Hampton-marcell17,18, Donna berg-Lyons19, 
valerie mcKenzie20, noah Fierer20,21, Jed A. Fuhrman22, Aaron clauset19,23, rick L. Stevens24,25, Ashley Shade26,27,28, 
Katherine S. Pollard4, Kelly D. Goodwin3, Janet K. Jansson16, Jack A. Gilbert17,29, rob Knight1,11,30 & The earth microbiome 
Project consortium*

A primary aim of microbial ecology is to determine patterns and 
 drivers of community distribution, interaction, and assembly amidst 
complexity and uncertainty. Microbial community composition has 
been shown to change across gradients of environment, geographic 
distance,  salinity, temperature, oxygen, nutrients, pH, day length, 
and biotic factors1–6. These patterns have been identified mostly by 
 focusing on one sample type and region at a time, with insights extra
polated across environments and geography to produce generalized 
 principles. To assess how microbes are distributed across environments 
 globally—or whether microbial community dynamics follow funda
mental ecological ‘laws’ at a planetary scale—requires either a massive 
monolithic crossenvironment survey or a practical methodology for 
coordinating many independent surveys. New studies of microbial 
environments are rapidly accumulating; however, our ability to extract 
meaningful information from across datasets is outstripped by the rate 
of data  generation. Previous metaanalyses have suggested robust gen
eral trends in community composition, including the importance of 
 salinity1 and animal association2. These findings, although derived 
from relatively small and uncontrolled sample sets, support the util

ity of metaanalysis to reveal basic patterns of microbial diversity and 
suggest that a scalable and accessible analytical framework is needed.

The Earth Microbiome Project (EMP, http://www.earthmicrobiome.
org) was founded in 2010 to sample the Earth’s microbial communities 
at an unprecedented scale in order to advance our understanding of the 
organizing biogeographic principles that govern microbial commu
nity structure7,8. We recognized that open and collaborative  science, 
including scientific crowdsourcing and standardized methods8, would 
help to reduce technical variation among individual studies, which 
can overwhelm biological variation and make general trends difficult 
to detect9. Comprising around 100 studies, over half of which have 
yielded peerreviewed publications (Supplementary Table 1), the EMP 
has now dwarfed by 100fold the sampling and sequencing depth of 
 earlier metaanalysis efforts1,2; concurrently, powerful analysis tools 
have been developed, opening a new and larger window into the distri
bution of microbial diversity on Earth. In establishing a scalable frame
work to catalogue microbiota globally, we provide both a resource for 
the exploration of myriad questions and a starting point for the guided 
acquisition of new data to answer them. As an example of using this 

Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited 
understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols 
and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences 
about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds 
of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use 
of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene 
sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. 
The result is both a reference database giving global context to DNA sequence data and a framework for incorporating 
data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.
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tool, we present a metaanalysis of the EMP archive, tracking individual 
sequences across diverse samples and studies with standardized envi
ronmental descriptors, investigating largescale ecological patterns, 
and exploring key hypotheses in ecological theory to serve as seeds 
for future research.

A standardized and scalable approach
The EMP solicited the global scientific community for environmen
tal samples and associated metadata spanning diverse environments 
and capturing spatial, temporal, and/or physicochemical covariation. 
The first 27,751 samples from 97 independent studies (Supplementary 
Table 1) represent diverse environment types (Fig. 1a), geographies 
(Fig. 1b), and chemistries (Extended Data Fig. 1). The EMP encom
passes studies of bacterial, archaeal, and eukaryotic microbial  diversity. 
The analysis here focuses exclusively on the bacterial and archaeal 
components of the overall database (for concision, use of ‘microbial’ 
will hereafter refer to bacteria and archaea only). Associated meta
data included environment type, location information, host taxonomy  
(if relevant), and physico chemical measurements (Supplementary  
Table 2). Physicochemical measurements were made in situ at the time 
of sampling. Investigators were encouraged to measure temperature 
and pH at minimum. Salinity, oxygen, and inorganic nutrients were 
measured when possible, and investigators collected additional meta
data pertinent to their particular investigations.

Metadata were required to conform to the Genomic Standards 
Consortium’s MIxS and Environment Ontology (ENVO) standards10,11. 
We also used a lightweight application ontology built on top of ENVO: 
the EMP Ontology (EMPO) of microbial environments. EMPO was 
 tailored to capture two major environmental axes along which micro
bial betadiversity has been shown to orient: host association and 
 salinity1,2. We indexed the classes in this application ontology (Fig. 1a) 
as levels of a structured categorical variable to classify EMP samples as 
hostassociated or freeliving (level 1). Samples were categorized within 
those classes as animalassociated versus plantassociated or saline 
 versus nonsaline, respectively (level 2). A finer level (level 3) was then 
assigned that satisfied the degree of environment granularity sought 
for this metaanalysis (for example, sediment (saline), plant rhizos
phere, or animal distal gut). We expect EMPO to evolve as new studies 

and sample types are added to the EMP and as additional  patterns of 
betadiversity are revealed.

We surveyed bacterial and archaeal diversity using amplicon 
sequencing of the 16S rRNA gene, a common taxonomic marker for 
bacteria and archaea12 that remains a valuable tool for microbial  ecology 
despite the introduction of wholegenome methods (for  example, 
shotgun metagenomics) that capture genelevel functional diversity13. 
DNA was extracted from samples using the MO BIO PowerSoil DNA 
extraction kit, PCRamplified, and sequenced on the Illumina platform. 
Standardized DNA extraction was chosen to minimize the potential 
bias introduced by different extraction  methodologies; however, extrac
tion efficiency may also be subject to interactions between sample 
type and cell type, and thus extraction effects should be considered 
as a  possible confounding factor in interpreting results. We amplified 
the 16S rRNA gene (V4 region) using primers14 shown to recover 
sequences from most bacterial taxa and many archaea15. We note that 
these primers may miss newly discovered phyla with alternative riboso
mal gene structures16, and subsequent modifications not used here have 
shown improved efficiency with certain clades of Alphaproteobacteria 
and Archaea17–19. We  generated sequence reads of 90–151 base pairs 
(bp) (Extended Data Fig. 2a, Supplementary Table 1), totaling 2.2 
 billion sequences, an average of 80,000 sequences per sample.

Sequence analysis and taxonomic profiling were done initially using 
the common approach of assigning sequences to operational taxonomic 
units (OTUs) clustered by sequence similarity to existing rRNA data
bases14,20. While this approach was useful for certain analyses, for many 
sample types, especially plantassociated and freeliving communities, 
onethird of reads or more could not be mapped to existing rRNA 
databases (Extended Data Fig. 2b). We therefore used a referencefree 
method, Deblur21, to remove suspected error sequences and provide 
singlenucleotide resolution ‘subOTUs’, also known as ‘amplicon 
sequence variants’22, here called ‘tag sequences’ or simply ‘sequences’. 
Because Deblur tag sequences for a given metaanalysis must be the 
same length in each sample, and some of the EMP studies have read 
lengths of 90 bp, we trimmed all sequences to 90 bp for this meta 
analysis. We verified that the patterns presented here were not adversely 
affected by trimming the sequences (Extended Data Fig. 3). As we show, 
90bp sequences were sufficiently long to reveal detailed patterns of 
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Figure 1 | Environment type and provenance of samples. a, The EMP 
ontology (EMPO) classifies microbial environments (level 3) as freeliving 
or hostassociated (level 1) and saline or nonsaline (if freeliving) or 
animal or plant (if hostassociated) (level 2). The number out of 23,828 
samples in the QCfiltered subset in each environment is provided. EMPO 

is described with examples at http://www.earthmicrobiome.org/protocols
andstandards/empo. b, Global scope of sample provenance: samples come 
from 7 continents, 43 countries, 21 biomes (ENVO), 92 environmental 
features (ENVO), and 17 environments (EMPO).
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community structure. Because exact sequences are stable identifiers, 
unlike OTUs, they can be compared to any 16S rRNA or genomic data
base now and in the future, thereby promoting reusability22.

Microbial ecology without OTU clustering
While earlier largescale 16S rRNA amplicon studies adopted OTU 
clustering approaches in part out of concern that erroneous reads would 
dominate diversity assessments23, patterns of prevalence (presence–
absence) in our results suggest that Deblur error removal produced 
ecologically informative sequences without clustering. After rarefying 
to 5,000 sequences per sample, a total of 307,572 unique sequences 
were contained in the 96 studies and 23,828 samples of the ‘QCfiltered’ 
Deblur 90bp observation table. Among studies, more than half (57%) 
of all obtained sequences were observed in two or more studies, but 
only 5% were observed in more than ten studies; the most prevalent 
sequence was found in 88 of 96 studies (Extended Data Fig. 4a). Among 
samples, although most sequences (86%) were observed in two or more 
samples, only 7% were observed in more than 100 samples (Extended 
Data Fig. 4b). As expected, the most prevalent sequences were also the 
most abundant (Extended Data Fig. 4c).

Our analyses were carried out using a modest sequencing depth of 
5,000 observations per sample after Deblur and rarefaction. To inves
tigate how prevalence estimates were affected by sequencing depth, 
we focused on four major environment types for which we had the 
greatest number of samples with more than 50,000 observations (soil, 
saltwater, freshwater, and animal distal gut). The relationship between 
average tag sequence prevalence and sequencing depth differed among 
these environments (Extended Data Fig. 4d) but was generally positive, 
suggesting that our global analysis underestimated true prevalence. 
Animalassociated microbiomes were a notable exception, with an 
upper bound on prevalence apparently imposed by host specificity 
when all host species were considered (Extended Data Fig. 4e); this 
bound disappeared when considering only humanderived samples 
(Extended Data Fig. 4f). Although contamination remains an issue in 
microbiome studies24, most of the very highly abundant and prevalent 
sequences here had higher mean relative abundances among samples 
than among notemplate controls (Supplementary Table 3), suggesting 
that they did not originate from reagents.

Matches between our sequences and existing 16S rRNA gene 
 reference databases highlight the novelty captured by the EMP. Exact 
matches to 46% of Greengenes25 and 45% of SILVA26 rRNA gene 
databases were found in our dataset, indicating that we ‘recaptured’ 
nearly half of the reference sequence diversity with just under 100 
environmental surveys. These matches accounted for 10% and 13%, 
 respectively, of the tag sequences in our dataset, indicating that large 
swathes of microbial community diversity are not yet captured in full
length sequence databases. The failure of many sequences to be mapped 
in referencebased alignments to Greengenes and SILVA 97% identity 
OTUs (Extended Data Fig. 2b) supports this observation.

Patterns of diversity reflect environment
We used a structured categorical variable of microbial environments, 
EMPO, to analyse diversity in the EMP catalogue in the context of 
lessons from previous investigations1,2. We observed environment 
dependent patterns in the number of observed tag sequences (alpha 
diversity), turnover and nestedness of taxa (betadiversity), and 
predicted genome properties (ecological strategy). Derived from a 
more standardized methodology, our dataset confirms the previous 
finding2 that host association is a fundamental environmental factor 
that differentiates microbial communities (Fig. 2c, Extended Data  
Fig. 2d). We build on this pattern by showing that there is less rich
ness in hostassociated communities than in freeliving communi
ties (Fig. 2a), with the noted exception of plant rhizosphere samples, 
which resemble freeliving soil communities in both richness (Fig. 2a) 
and composition (Fig. 2c). Our findings also confirm the major com
positional distinction between saline and nonsaline communities1  

(Fig. 2c). The effect sizes of environmental factors on alpha and 
betadiversity generally showed large contributions of environment 
type and (for hostassociated samples) host species to both types of 
diversity (Extended Data Fig. 5a, b).

The ability to identify sample provenance using only a microbial 
community profile has applications ranging from criminal forensics 
to mistaken sample identification; these applications will require 
large curated datasets, such as the EMP. Supervised machine learning 
demonstrated that samples could be distinguished as being animal 
associated, plantassociated, saline freeliving, or nonsaline freeliving 
with 91% accuracy based solely on community composition, and to 
finescale environment with 84% accuracy (Extended Data Fig. 5c–e). 
The most commonly misclassified samples were soil, nonsaline surface 
and  aerosol, and animal secretion. In many of these cases, misclassi
fication can be attributed to the limitations of EMPO. As additional 
samples are classified, classification can be improved by iteratively and 
empirically redefining categories using machine learning. Conversely, 
with continuous factors, such as salinity, categorical definitions  cannot 
perfectly capture intermediate values. High classification success  
to environment type was supported by sourcetracking analyses 
(Extended Data Fig. 5f, g), with the exception of plant rhizosphere 
samples, owing to their similarity to soil samples.

Predicted average community copy number (ACN) of the 16S rRNA 
gene was another metric found to differentiate microbial communities 
in both hostassociated and freeliving communities (Fig. 2d). ACN 
can be predicted from 16S rRNA amplicon data27; this method has 
been used, for example, to link the taxonomic groups associated with 
copiotrophic and oligotrophic behaviours in soils to high and low rRNA 
gene copy numbers, respectively28. Approximately half the dataset 
 centred on an ACN of 2.2 (freeliving and plantassociated samples) and 
the other half on an ACN of 3.4 (animalassociated samples) (Fig. 2d).  
Greater pergenome rRNA operon copy number has been found to be 
associated with rapid maximum growth rates29, which may provide a 
selective advantage when resources are abundant, such as in animal 
hosts. While ACN is an estimate rather than a measurement of average 
rRNA copy number and is subject to potential biases in the underlying 
reference database, the distributions we observed are consistent with 
16S rRNA copy number reflecting differences in ecological strategies 
among environments.

A resource for theoretical ecology
The coordinated accumulation of data across studies allows investiga
tions of patterns within (alphadiversity) and among (beta diversity) 
microbial communities at scales that vastly exceed what could be 
measured in any individual study. Patterns of alphadiversity in 
meta analyses have revealed global trends that have been key to the 
 development of major ideas in macroecological theory, but fundamental  
patterns have been more difficult to discern in microbial ecology. For 
example, a nearly ubiquitous tendency towards greater diversity in the 
tropics is evident in macroecology30, but there is substantial variation 
among studies examining latitudinal trends of microbial diversity31–33. 
The large EMP dataset analysed here reveals a weak but significant 
trend towards increasing diversity at lower latitudes in nonhost 
associated environments (Extended Data Fig. 5h). An effect of latitude 
was apparent both within and across studies, consistent with global 
trends in latitudinal microbial diversity being an emergent function of 
locally selective environmental heterogeneity34. However, substantial 
studytostudy variation in richness highlights the caveats inherent in 
metaanalysis; more coordination of sample collections from similar 
environments across larger gradients is necessary to better address this 
question.

The EMP has the potential to link global patterns of microbial 
diversity with physicochemical parameters—if appropriate  metadata 
are provided by researchers. Microbial community richness has been 
found to correlate with environmental factors, including pH and 
 temperature3,33,35,36. For example, richness has been shown to increase 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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up to neutral pH36 and often to decrease above neutral pH3,35 in soil 
communities. Richness has been shown to increase with tempera
ture up to a limit and then to decrease beyond that limit in seawater 
 (maximum at about 19 °C)33 and to increase with temperature in soil 
(up to at least around 26 °C)36. However, general relationships of rich
ness to temperature and pH remain unresolved37. Here, across  samples 
from nonhostassociated environments where pH or temperature were 
measured (mostly freshwater and soil environments), richness was 
greatest near neutral pH (around 7) and relatively cool temperatures 
(about 10 °C) (Fig. 2b). We observed apparent upper bounds on richness 
with both temperature and pH that were best fit by twosided exponen
tial (Laplace) curves. Thus, the present dataset suggests that maximum 
microbial richness occurs within a relatively narrow range of interme
diate pH and temperature values. These patterns, while robust in the 
context of the EMP dataset, necessarily reflect only the subset of sam
ple types for which variables were measured (Supplementary Table 2);  
they should therefore be interpreted with caution. Understanding 
universal relationships between richness and environmental factors 
will require information from more studies with detailed and carefully 
collected physicochemical metadata.

Beyond measured physical covariates, the breadth of environments 
in the EMP catalogue allows a detailed exploration of how microbial 

diversity is distributed across environments. Diversity among commu
nities (betadiversity) is driven by turnover (replacement of taxa) and 
nestedness (gain or loss of taxa resulting in differences in richness)38. If 
turnover dominates, then disparate communities will harbour unique 
taxa. If nestedness dominates, then communities with fewer taxa will 
be subsets of communities with more taxa. We tested for nestedness 
using a 2,000sample subset with even representation across environ
ments and studies. Given the contrasting environments and geographic 
separation among the many studies in the EMP, we expected different 
environments to contain unique sets of taxa and to show little nest
edness. However, we found that communities across environments 
were significantly nested (Fig. 3a, b; P <  0.05) in comparison to null 
models (Fig. 3c), accounting for the observed patterns of richness. At 
coarse taxonomic levels, an average of 84% of phyla, 73% of classes, and 
58% of orders that occurred in less diverse samples also occurred in 
more diverse samples. Nestedness was observed even when the most 
prevalent taxa were removed and was robust across randomly chosen 
subsets of samples (Extended Data Fig. 6). These patterns could have 
resulted from several mechanisms, including ordered extinctions39 
and the filtering of complex communities over time40, differential  
dispersal abilities41 and cascading source–sink colonization processes 
that assemble nested subsets from more complex communities, or by 
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Figure 2 | Alpha-diversity, beta-diversity, and predicted average 16S 
rRNA gene copy number. a, Withincommunity (alpha) diversity, 
measured as number of observed 90bp tag sequences (richness), in 
n =  23,828 biologically independent samples as a function of environment 
(perenvironment n shown in Fig. 1a), with boxplots showing median, 
interquartile range (IQR), and 1.5 ×  IQR (with outliers). Tag sequence 
counts were subsampled to 5,000 observations. Yellow line indicates the 
median number of observed tag sequences for all samples in that set of 
boxplots. Freeliving communities of most types exhibited greater richness 
than hostassociated communities. b, Tag sequence richness (as in a) 
versus pH and temperature in n =  3,986 (pH) and n =  6,976 (temperature) 
biologically independent samples. Black points are the 99th percentiles 
for richness across binned values of pH and temperature. Laplace (two
sided exponential) curves captured apparent upper bounds on microbial 
richness and their peaked distributions better than Gaussian curves. 

Greatest maximal richness occurred at values of pH and temperature 
that corresponded to modes of the Laplace curves. Maximum richness 
exponentially decreased away from these apparent optima. c, Between
community (beta) diversity among in n =  23,828 biologically independent 
samples: principal coordinates analysis (PCoA) of unweighted UniFrac 
distance, PC1 versus PC2 and PC1 versus PC3, coloured by EMPO levels 2 
and 3. Clustering of samples could be explained largely by environment.  
d, 16S rRNA gene average copy number (ACN, abundanceweighted) 
of EMP communities in n =  23,228 biologically independent samples, 
coloured by environment. EMPO level 2 (left): animalassociated 
communities had a higher ACN distribution than plantassociated 
and freeliving (both saline and nonsaline) communities. Right: soil 
communities had the lowest ACN distribution, while animal gut and saliva 
communities had the highest ACN distribution.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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the tendency of larger habitat patches to support more rare taxa with 
lower prevalence42. Notably, finer taxonomic groupings showed less 
nestedness (Fig. 3c), indicating that the processes that underlie nested 
patterns of turnover are likely to reflect conserved aspects of micro
bial biology, and not to result from the interplay of diversification and  
dispersal on short timescales.

These global ecological patterns offer a glimpse of what is possible 
with coordinated and cumulative sampling—in addition to the specific 
questions addressed by individual studies, context is built and easily 
queried across studies. They also necessarily highlight the inherent 
limitations to decentralized studies, especially regarding the collection 
of comparable environmental data. Future studies will be able to use 
the current EMP data as a starting point for more explicit tests of broad 
ecological principles, both to identify gaps in current knowledge and 
to more confidently plan large directed studies with sufficient power 
to fill them.

A more precise and scalable catalogue
An advantage of using exact sequences is that they enable us to observe 
and analyse microbial distribution patterns at finer resolution than is 
possible with traditional OTUs. As an example, we applied a Shannon 
entropy analysis to tag sequences and higher taxonomic groups 
to measure biases in the distribution of taxa. Taxa that are equally 
likely to be found in any environment will have high entropy and low 
 specificity, whereas taxa found only in a single environment will have 
low entropy and high specificity (note that we use ‘specificity’ solely to 
denote distributional patterns, not to imply adaptation or causality).  
Tag sequences exhibited high specificity for environment, with 
 distributions skewed towards one or a few environments (low Shannon 
entropy); by  contrast, higher taxonomic levels tended to be more evenly 
distributed across environments (high Shannon entropy, low speci
ficity) (Fig. 4a). Entropy distributions across all tag sequences at each 
taxonomic level show that this pattern is general (Fig. 4b). Seeking a 
more precise measure of the divergence at which a taxon is specific for 
environments, we next investigated how entropy changes as a function 
of phylogenetic distance. We calculated entropy for each node of the 

phylogeny and visualized it as a function of maximum tiptotip branch 
length (Fig. 4c). While entropy decreased gradually at finer phyloge
netic resolution, it dropped sharply at the tips of the tree. We conclude 
that environment specificity is best captured by individual 16S rRNA 
sequences, below the typical threshold defining microbial species (97% 
identity of the 16S rRNA gene).

The EMP dataset provides the ability to track individual sequences 
across the Earth’s microbial communities. Using a representative subset 
of the EMP (Extended Data Fig. 7a), we produced a table of sequence 
counts and distributions, including among environments (EMPO) and 
along environmental gradients (pH, temperature, salinity, and oxygen). 
From this we generated ‘EMP Trading Cards’, which promote explora
tion of the dataset and here highlight the distribution patterns of three 
prevalent or environmentcorrelated tag sequences (Extended Data  
Fig. 7b, Supplementary Table 3). The entire EMP catalogue can be que
ried using the Redbiom software, with commandline (https://github.
com/biocore/redbiom) and webbased (http://qiita.microbio.me)  
interfaces to find samples based on sequences, taxa, or sample meta
data, and to export selected sample data and metadata (instructions at 
https://github.com/biocore/emp). User data generated from the EMP 
protocols can be readily incorporated into this framework: because 
Deblur operates independently on each sample21, additional tag 
sequences can be added to this dataset from new studies  without repro
cessing existing samples. Future combinations of datasets  targeting the 
same genomic region but sequenced using different methods may be 
admissible but would require considerations to account for methodo
logical biases.

The growing EMP catalogue is expected to have applications for 
research and industry, with tag sequences used as environmental 
 indicators and representing targets for cultivation, genome  sequencing, 
and laboratory study. In addition, these tools and approaches, although 
developed for bacteria and archaea, could be expanded to all domains 
of life43. To achieve greater utility for the EMP and similar projects, 
we must continually improve metadata collection and curation, 
 ontologies, support for multiomics data, and access to computational 
resources.
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Figure 3 | Nestedness of community 
composition. a, Presence–absence of phyla 
across samples, with phyla (rows) sorted by 
prevalence and samples (columns) sorted 
by richness. Shown is a subset of the EMP 
consisting of n =  2,000 biologically independent 
samples with even representation across 
environments and studies. With increasing 
sample richness (left to right), phyla tended to 
be gained but not lost (P <  0.0001 versus null 
model; NODF (nestedness measure based on 
overlap and decreasing fills) statistic and 95% 
confidence interval =  0.841 ±  0.018). b, As in a  
but separated into nonsaline, saline, animal, 
and plant environments (P <  0.0001, respective 
NODF =  0.811 ±  0.013, 0.787 ±  0.015, 
0.788 ±  0.018 and 0.860 ±  0.021). c, Nestedness 
as a function of taxonomic level, from phylum 
to tag sequence, across all samples and within 
environment types. Also shown are median 
null model NODF scores (±  s.d.). NODF 
measures the average fraction of taxa from 
less diverse communities that occur in more 
diverse communities. All environments at 
all taxonomic levels were more nested than 
expected randomly, with nestedness higher at 
higher taxonomic levels (for example, phyla).
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Conclusions and future directions
Here we have used crowdsourced sample collection and standardized 
microbiome sequencing and metadata curation to perform a global 
metaanalysis of bacterial and archaeal communities. Using exact 
sequences in place of OTUs and a learned structure of microbial envi
ronments, we have shown that agglomerative sampling can reveal 
basic biogeographic patterns of microbial ecology, with resolution 
and scope rivaling data compilations currently available for ‘macrobial’ 
 ecology44,45. Our results point to key organizing principles of micro
bial communities, with lessrich communities nested within richer 
communities at higher taxonomic levels, and environment  specificity   
becoming much more evident at the level of individual 16S rRNA 
sequences.

The EMP framework and global synthesis presented here represent 
value added to the scientific community beyond the substantial contri
butions of the constituent studies (Supplementary Table 1). However, 
as with any metaanalysis in which data are gathered primarily in 
 service of separate questions rather than a single theme46, conclusions 
should be viewed with caution and form starting points for future 
 hypothesisdirected investigations. There is a need to span gradients 
of geography (for example, latitude and elevation) and chemistry (for 
example, temperature, pH, and salinity) more evenly—assisted by tools 
for more comprehensive collection and curation of metadata—and to 
track environments over time. In addition, biotic factors (for example, 
animals, fungi, plants, viruses, and eukaryotic microbes) not meas
ured in this study have important roles in determining community 
 structure4–6. The scalable framework introduced here can be expanded 
to address these needs: new studies to fill gaps in physicochemical space, 
amplicon data for microbial eukaryotes and viruses, and wholegenome 
and wholemetabolome profiling. At a time when both academic and 

governmental agencies increasingly recognize the value of  communal 
biodiversity monitoring efforts47,48, the EMP  provides one  example of 
a logistically feasible standardization framework to maximize inter
operability across diverse and independent studies, in particular 
using stable identifiers (exact sequences) to enable enduring utility 
of environmental sequence data. Given current global sequencing  
efforts, the use of coordinated protocols and submission to this and 
other public databases should allow rapid accumulation of new data, 
providing an ever more diverse reference catalogue of microbes and 
microbiomes on Earth.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Marie Curie, Evolution Paris Seine, Paris, France. 18National University of Mongolia, Ulaanbaatar, 
Mongolia. 19Pacific Northwest National Laboratory, Richland, Washington, USA. 20Wildlife 
Conservation Society and Bronx Zoo, New York, New York, USA. 21San Diego Zoo Institute for 
Conservation Research, Escondido, California, USA. 22University of Utah, Salt Lake City, Utah, 
USA. 23Manchester Metropolitan University, Manchester, UK. 24University of New South Wales, 
Sydney, New South Wales, Australia. 25Northern Arizona University, Flagstaff, Arizona, USA. 
26UiT-The Arctic University of Norway, Tromsø, Norway. 27University of Waikato, Hamilton,  
New Zealand. 28University of Pennsylvania, Philadelphia, Pennsylvania, USA. 29University of 
Waterloo, Waterloo, Ontario, Canada. 30Institute of Soil Science, Chinese Academy of Sciences, 
Nanjing, China. 31Environment and Climate Change Canada, Saskatoon, Canada. 32University of 
Minnesota, Saint Paul, Minnesota, USA. 33GreenViet Biodiversity Conservation Center, Da Nang, 
Viet Nam. 34Icahn School of Medicine at Mount Sinai, New York, New York, USA. 35Colorado 
State University, Fort Collins, Colorado, USA. 36National University of Ireland, Galway, Ireland. 
37University of Maryland, College Park, Maryland, USA. 38Instituto Venezolano de 
Investigaciones Cientificas (IVIC), Venezuela. 39University of Wisconsin, Madison, Wisconsin, 
USA. 40Bangor University, Bangor, Gwynedd, UK. 41College of William and Mary, Williamsburg, 
Virginia, USA. 42Oregon State University, Corvallis, Oregon, USA. 43Beijing Zoo, Beijing, China. 
44Purdue University, West Lafayette, Indiana, USA. 45Stony Brook University, Stony Brook,  
New York, USA. 46University of Northern British Columbia, Prince George, British Columbia, 
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MEthOdS
Study design. This effort was possible because of a unified standard workflow 
that leveraged existing sample and data reporting standards to allow biomass and 
metadata collection across diverse environments on Earth. After sample  collection, 
all samples were processed following the same protocols. A standard DNA 
 extraction protocol (http://www.earthmicrobiome.org/protocolsand standards/
dna extractionprotocol) was implemented to ensure that trends observed were 
due either to the biological system or to biases in extraction potential for  organisms 
from  different environmental matrices, and not due to inherent biases in the 
extraction protocol. To avoid known issues that arise when multiple  amplicon 
strategies are combined49, we also standardized PCR primers, amplification 
 strategy, and sequencing50. More recent studies not included in this metaanalysis 
adopted additional primer modifications to allow recovery of key taxa in marine 
and soil samples17–19. Data reporting standards, including the MIxS (minimal 
information about any sequence) metadata standard developed by the Genomic 
Standards Consortium10 and the Environment Ontology (ENVO)11,51, enabled 
interoperability, data analysis, and interpretation between samples from disparate 
environments, collected using many different techniques through unconnected 
programs of investigation.

To transfer our knowledge of microbial environments to the broader  community, 
we engaged with the developers of ENVO to ensure that the basic,  salient features 
of microbial environments (hostassociated or freeliving, and respectively within 
those, animal or plantassociated, and saline or nonsaline materials) were rep
resented either in this ontology or in those with which it interoperates. For ease 
of application, we gathered these contributions into an  application ontology, the 
EMP Ontology (EMPO) (Fig. 1a). The EMP  community will continue to work 
with ontology engineers to shape ENVO and other  ontologies around the EMPO 
application ontology. EMPO will be maintained as a logical subset of ENVO and 
integrated into the ENVO release cycle to maximize  interoperation.

Metadata curation was automated using Pandas (http://pandas.pydata.org). The 
size of the dataset also required extensive software development to support analysis 
at this scale, leading to tools including the data and analysis portal Qiita (https://
qiita.microbio.me), the BIOM format52, new ‘OTU picking’ methods Deblur21 
and a subsampled openreference procedure53, a scalability improvement of Fast 
UniFrac phylogenetic inference software54, speed improvements to sequence 
insertion tree method SEPP55, and speed and feature improvements to Emperor 
ordination visualization software56 (http://biocore.github.io/emperor).
Sample collection. The global community of microbial ecologists was invited to 
submit samples for microbiome analysis, and samples were accepted for DNA 
extraction and sequencing provided that scientific justification and highquality 
sample metadata were provided before sample submission. Standardized  sampling 
procedures for each sample type were used by contributing investigators. Samples 
were collected fresh and, where possible, immediately frozen in liquid nitrogen 
and stored at –80 °C. Detailed sampling protocols are described in publications 
of the individual studies (Supplementary Table 1). Bulk samples (for  example, 
soil,  sediment, faeces) and fractionated bulk samples (for example, sponge coral 
surface tissue, centrifuged turbid water) were taken using microcentrifuge 
tubes. Swabs (BD SWUBE dual cotton swabs or similar) were used for biofilm 
or  surface samples. Filters (Sterivex cartridges, 0.2 μ m, Millipore) were used for 
water  samples. Samples were sent to laboratories in the United States for DNA 
extraction and sequencing: water samples to Argonne National Laboratory, soil 
samples to Lawrence Berkeley National Laboratory (pre2014) or Pacific Northwest 
National Laboratory (2014 onward), and faecal and other samples to the University 
of Colorado Boulder (pre2015) or the University of California San Diego (2015 
onward).
Metadata curation and EMP ontology. Metadata were collected in compliance 
with MIMARKS10, EBI (https://www.ebi.ac.uk/ena), and Qiita (https://qiita. 
microbio.me) standards, as described in the EMP Metadata Guide (http://www.
earthmicrobiome.org/ protocolsandstandards/metadataguide). QIIME mapping 
files (metadata) were downloaded from Qiita, merged, and refined using Python 
with Pandas, generating qualitycontrolled mapping files. Mapping file columns 
are described in Supplementary Table 2. Mapping files for the full EMP dataset and 
subsets (see below) are available at ftp://ftp.microbio.me/emp/release1/ mapping_
files/. The EMP Ontology (EMPO) for microbial environments was devised to 
facilitate the present analysis while preserving interoperability. Coordinated by 
the ENVO team, annotations from ENVO11,51, UBERON (metazoan anatomy)57, 
PO (plant ontology)58, FAO (fungal anatomy ontology, http://purl.obolibrary.org/
obo/fao.owl), and OMP (ontology of microbial phenotypes)59 were mapped to 
our EMPO levels 2 and 3 (empo_2 and empo_3). Additionally, the free living or 
hostassociated lifestyles were captured in level 1 categories (empo_1). Descriptions 
of empo_3 categories are provided at http://www.earthmicrobiome.org/ protocols
andstandards/empo. The W3C Web Ontology Language (OWL) document is 
available at http://purl.obolibrary.org/obo/envo/subsets/envoEmpo.owl. Map data 

were derived from the opensource project MatPlotLib package Basemap, which 
distributes map data from Generic Mapping Tools data (http://gmt.soest.hawaii.
edu) released under the GNU Lesser General Public License v3.
DNA extraction, amplicon PCR, sequencing, and sequence pre- processing. 
DNA extraction and 16S rRNA amplicon sequencing was done using EMP  standard 
protocols (http://www.earthmicrobiome.org/protocolsand standards/16s)14. 
In brief, DNA was extracted using the MO BIO PowerSoil DNA extraction kit 
(Carlsbad, CA), chosen because of its versatility with diverse sample types (rather 
than high yields with any given sample type). Amplicon PCR was performed on 
the V4 region of the 16S rRNA gene using the primer pair 515f–806r50 with Golay 
errorcorrecting barcodes on the reverse primer. Although any primerbased 
method necessarily undersamples diversity, a recent analysis of 16S rRNA genes 
captured in shotgun metagenomic sequences indicates that this primer pair is 
among the best available for sampling both bacteria and noneukaryotic archaea15. 
Amplicons were barcoded and pooled in equal concentrations for sequencing. 
The amplicon pool was purified with the MoBio UltraClean PCR Cleanup kit 
and sequenced on the Illumina HiSeq or MiSeq sequencing platform; the same 
sequencing primers were used with both platforms, and previous work has shown 
that conclusions drawn from 16S rRNA amplicon data are not dependent on which 
of these sequencing platforms is used50. Sequence data were demultiplexed and 
minimally quality filtered using the QIIME 1.9.1 script split_libraries_fastq.py60 
with Phred quality threshold of 3 and default parameters to generate perstudy 
FASTA sequence files.
Tag sequence and OTU picking and subsets. Sequence data were errorfiltered 
and trimmed to the length of the shortest sequencing run (90 bp) using the Deblur 
software21; the resulting 90bp Deblur BIOM table was used for all analyses unless 
otherwise noted. Deblur tables trimmed to 100 bp and 150 bp were also  generated 
and provided, which contain greater sequence resolution but fewer samples. 
Deblur observation tables were filtered to keep only tag sequences with at least 25 
reads total over all samples. For comparison to existing OTU tables, traditional 
closedreference OTU picking was done against 16S rRNA databases Greengenes 
13.825 and SILVA 12326 using SortMeRNA61, and subsampled openreference 
OTU picking53 was done against Greengenes 13.8. These unfiltered tables and the 
filtered and subset tables described below are available at ftp://ftp.microbio.me/
emp/release1/otu_tables.

A total of 97 studies and 27,742 samples are included in the present study and in 
the unfiltered BIOM tables. The QCfiltered subset used in core diversity  analyses 
(Fig. 2) contains 96 studies and 23,828 samples, and it was subset further for some 
analyses. In the provided BIOM tables (ftp://ftp.microbio.me/emp/release1/otu_
tables/ and https://zenodo.org/record/890000), the ‘release1’ set contains all sam
ples in the 97 studies that have at least one sequence per sample; this set includes 
controls (blanks and mock communities). The ‘qc_filtered’ set, from which the 
subsets are drawn, has samples with ≥  1,000 observations in each of four observa
tion tables: closedreference Greengenes, closedreference SILVA, openreference 
Greengenes, and Deblur 90bp; controls (empo_1 = =  ‘Control’) are excluded. 
Subsets were then generated which give equal (as possible) representation across 
environments (EMPO level 3) and across studies within those environments. The 
subsets  contain 10,000, 5,000, and 2,000 samples (nested subsets). In each subset 
the samples must have ≥  5,000 observations in the Deblur 90bp observation table 
and ≥  10,000 observations in each of the closedreference Greengenes, closed 
reference SILVA, and openreference Greengenes observation tables. Note that 
Deblur removes approximately onethird to onehalf of sequences owing to sus
pected errors, which is consistent with a sequence length of ~ 90–150 bp and an 
average error rate of 0.006 per position62.
Comparison against reference databases. To compare the unique sequence 
 diversity in this study to that in existing databases, sequences from the complete 
Deblur 90bp observation table were compared to the set of unique fulllength 
sequences from Greengenes 13.8 and the noneukaryotic fraction of Silva 128 data
bases using the opensource sequence search tool VSEARCH63 in global alignment 
search mode, requiring 100% similarity across the query sequence and allowing 
multiple 100% reference matches.
Prevalence as a function of sequencing depth. The QCfiltered Deblur 90bp 
observation table was additionally filtered to samples that had at least 50,000 
sequences (observations). We chose to focus on four environment types (EMPO 
level 3) where there were many hundreds of samples with more than 50,000 
sequences: soil (n =  2,279), saltwater (n =  478), freshwater (n =  1,508), and animal 
distal gut (n =  695) environments. For each environment, the observation tables 
were randomly subsampled to 50, 500, 5,000, and 50,000 sequences per sample. The 
prevalence of each tag sequence was determined as the number of nonzero occur
rences across samples divided by the total number of samples. We then plotted a 
histogram of tag sequence prevalence at each sampling depth. In order to control 
for potential study bias, we ran the same analysis on a subset of the observation 
tables where 30 samples were randomly sampled from each study (studies with 
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fewer than 30 samples with >  50,000 sequences were discarded). To investigate 
how mean tag sequence prevalence changes with increasing sequencing depth 
across environments, we calculated the average mean tag sequence prevalence 
across three replicate rarefactions. We plotted the average and standard deviation 
in mean prevalence across replicate subsamples over a subsampling gradient (that 
is, 50, 100, 500, 1,000, 5,000, 10,000 and 50,000 sequences per sample).
Greengenes insertion tree. Deblur tag sequences were inserted into the 
Greengenes reference tree using SEPP55, which uses a divideandconquer 
 technique to enable phylogenetic placement on very large reference trees. The 
SEPP method uses HMMER64 internally for aligning each Deblurred sequence to 
a reference Greengenes alignment (gg_13_5_ssu_align_99_pfiltered.fasta) with 
99% threshold for clustering (resulting in 203,452 tag sequences) and dividing 
the reference alignment to subsets with a thousand sequences each. It then uses 
pplacer65 to insert the sequences into the reference Greengenes tree (99_otus.tree), 
dividing it into subsets of size 5,000. The branch lengths on the Greengenes tree 
were recomputed using RAxML66 under the GTRCAT model before the placement. 
The pipeline used, including the reference trees and alignments can be found at 
ftp://ftp.microbio.me/emp/release1/otu_info/greengenes_sepp_pipeline, and the 
bash script is available at https://github.com/biocore/emp/blob/master/code/03
otupickingtrees/deblur/run_sepp.sh.
Fast UniFrac. Unweighted and weighted UniFrac were computed using the 
Cythonized67 implementation of Fast UniFrac54 in scikitbio68. Fast UniFrac by 
itself was not scalable for the EMP dataset owing to an intermediary data  structure 
required by the algorithm, which scales in space by O(NM), where N is the  number 
of nodes in the phylogeny and M is the number of samples. A workaround was 
designed and implemented in scikitbio (skbio.diversity.block_beta_diversity) 
which computes partial distance matrices as opposed to all  samples pairwise, 
 enabling large reductions within the intermediary data structure by shrinking 
M and, in tandem, shrinking N to only the relevant nodes of the phylogeny. 
This decomposition also allows a classic mapreduce parallel approach with 
low perprocess space requirements. Further space and time reductions were 
obtained through the implementation and use of a balancedparentheses tree 
 representation69 (https://pypi.python.org/pypi/iow).
Core diversity analyses: alpha- and beta-diversity. Alphararefaction was 
 computed using single_rarefaction.py in QIIME 1.9.160 using as input the Deblur 
90bp BIOM table and rarefaction depths of 1,000, 5,000, 10,000, 30,000, and 
100,000. Alphadiversity was computed using scikitbio 0.5.0 with the input Deblur 
90bp BIOM table rarefied to 5,000 observations per sample, and alphadiversity 
indices were observed_otus (number of unique tag sequences), shannon (Shannon 
diversity index70), chao1 (Chao 1 index71), and faith_pd (Faith’s phylogenetic 
 diversity72, using the Greengenes insertion tree). Fast UniFrac54 was run on the 
Deblur 90bp table using the aforementioned approach and the corresponding 
insertion tree. Principal coordinates were computed using QIIME 1.9.1.
Effect size calculations of alpha- and beta-diversity. A version of the mapping 
file (metadata) was compiled containing the predictors to be tested: study_id, 
host_scientific_name (a proxy for host taxonomy), latitude_deg, longitude_deg, 
envo_biome_3 (a proxy for biome or environment), empo_3 (a proxy for  sample 
type or environment generally), temperature_deg_c, ph, salinity_psu, and nitrate_
umol_per_l (a proxy for nutrient levels generally). Predictors chosen were those 
expected to be less redundant with other predictors not chosen, with the excep
tion that there was substantial overlap between study ID and many of the other 
predictors—because independent studies typically focused on limited sample 
types from constrained geographic ranges, it is expected that study ID serves 
as a proxy for a wide range of other measured and unmeasured environmental 
 variables (see Extended Data Fig. 5b). Categories for each predictor were chosen 
as  follows: numerical data were first converted to categories using quartiles; then 
each  category was required to be found in at least 0.3% of all samples (corre
sponding to 75 samples); categories that were less common than this were ignored. 
Note that some predictors in our data have complex nonlinear relationships that 
multivariate statistical analyses using quartiles may miss, such as the unimodal 
upper constraintbased richness relationships of temperature and pH. We then 
tested the effect size of each predictor versus the number of observed tag sequences 
(alpha diversity) and weighted and unweighted UniFrac distances (betadiversity). 
Effect size was calculated using a Python implementation of the mixeddirectional 
false discovery rate (mdFDR)73,74. mdFDR reduces the false discovery rates by 
 penalizing the multiple pairwise comparisons within each metadata category 
and the multiple metadata category comparisons. mdFDR has four steps. First, 
it performs a pairwise comparison (Mann–Whitney U for alphadiversity, and 
PERMANOVA for betadiversity) of each group within each category. Second, for 
each category we calculate a pooled P value based on the P values of all pairwise 
comparisons for any given category. Third, we apply the Benjamini–Hochberg 
 procedure to the pooled P values and remove nonsignificant metadata categories. 
Finally, we estimate the effect size of those categories found to be significant in 

step 3 and that have a pairwise comparison P value greater than (R/m ×  qi) ×  α, 
where R is the number of categories that were found significant, m is the number of 
categories that are being compared (the original number of categories in the input 
mapping file), qi is the number of pairwise comparisons in each given category, 
and α is the control level for FDR. The effect size for a given metadata column 
is calculated as the difference of means of each pairwise comparison divided by 
pooled standard deviation. To further assess the combined effect size of predictors 
with nonredundant explanatory power on alpha and betadiversity, the non 
redundant predictors were selected by forward stepwise redundancy analysis with 
the R package vegan75 ordiR2step function. This analysis provides an estimate of 
the relative contribution of each nonredundant predictor to the combined effect 
size and their independent fraction to the community variation.
Average community 16S rRNA gene copy number. The closedreference obser
vation table (Greengenes 13.8) was run through the PICRUSt 1.1.0 command 
 normalize_by_copy_number.py script76, which divides the abundance of each 
OTU by its inferred 16S rRNA gene copy number (that is, copy number is inferred 
from the closest genome representative for a Greengenes 16S rRNA gene reference 
sequence). Samples with more than 10,000 sequence reads were summed (that is, 
OTU abundances were summed within each sample) in both the copynumber 
normalized and original observation tables. The weighted average community 16S 
rRNA gene copy number (ACN) for each sample was calculated as the raw sample 
sum divided by the normalized sample sum.
Covariation of richness with latitude, pH, and temperature. Measurements of 
alphadiversity were compared to absolute latitude using a linear mixedeffects 
model incorporating study ID as a random variable and the interaction of envi
ronment and latitude as fixed effects; this was performed on a dataset filtered 
to include only studies comprising samples that spanned at least 10° of absolute 
 latitude. Correlation of richness with pH and temperature were fitted with a Laplace 
distribution. The Laplace distribution is a continuous probability distribution that 
simultaneously captures exponential increase and exponential decrease around 
a modal value (μ). This distribution is also referred to as the double  exponential 
or twosided exponential because it represents two  symmetrical exponential 
 distributions backtoback. The Laplace is particularly useful for  testing the 
biological hypothesis that a system is under strong selection to take a particular 
value (μ) and that small deviations from μ produce an exponential decrease, for 
example, in diversity. We tested this hypothesis with regards to how tag sequence 
richness (S) relates to pH and temperature. We used the upper 99th percentile of  
tag sequence richness across narrow ranges of pH (100 bins) and temperature  
(120 bins),  meaning that our question pertained to the relationship of maximum 
tag sequence richness (Smax) to pH and temperature. We compared our expecta
tions of exponential decrease in maximum S against the fit to a Gaussian curve, 
which can also predict a steep symmetrical decrease with small deviations from μ.
Random forest classification of samples. Random forest classification models 
were trained on the 2,000sample subset of the Deblur 90bp observation table 
to test classification success of samples into the environmental categories from 
which they came. The R packages caret77 and randomForest78 were used. Five 
repeats of tenfold crossvalidation were used to evaluate the classification accuracy. 
Confusion matrices were computed to measure the agreement between prediction 
and true observation. The models were then used to classify the other remaining 
samples in the full QCfiltered subset.
SourceTracker analyses. SourceTracker79 uses a Bayesian classification model 
together with Gibbs sampling to predict the proportion of tag sequences from 
a given set of source environments that contribute to sink environments. We 
applied SourceTracker 2.0.1 (http://github.com/biota/sourcetracker2) to define 
the degree to which tag sequences are shared among environmental samples, using  
the 2,000sample subset of the Deblur 90bp observation table (~ 20% of each 
 sample type) as source samples to train the model, and the remainder as sink 
samples to test the model. Additionally, we used leaveoneout crossvalidation to 
predict the sample type of each source sample when that sample type is excluded 
from the model, in order to evaluate the homogeneity of source samples and 
 independence of each source type. Source and sink samples were rarefied to 1,000 
sequences per sample before feature selection and testing.
Nestedness of taxonomic composition. Nestedness captures the degree to which 
elements of a large set are contained within progressively smaller sets. We used 
the NODF statistic80 to quantify nestedness of the samplebytaxa matrix. The 
rows of this matrix correspond to specific taxa grouped at particular taxonomic 
levels (for example, phylum, class, etc.), while the columns correspond to  particular 
 samples. After sorting the matrix from greatesttoleast according to row and 
 column sums, we quantified two aspects of the NODF statistic. The first is a ‘row’ 
version of NODF that quantifies the degree to which ranges of less prevalent taxa 
are subsets of the ranges of more prevalent taxa. The second is a ‘column’ version 
of NODF that quantifies the degree to which less diverse communities are subsets 
of more diverse communities. We employed two null models to better interpret the 
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observed values of the NODF statistic. The first is based on a random shuffling of 
occurrences within each row, holding row sums constant (fixed rows, equiprobable 
columns), while the second is based on a random shuffling of occurrences within 
each  column, holding column sums constant (equiprobable rows, fixed columns)81. 
The results from both of these null models were qualitatively consistent, so we only 
report findings using the equiprobable rows, fixed columns model, as it is more 
consistent with rarefaction of the observation tables. We considered null models 
at each taxonomic level (phylum, class, order, family, genus), and for all of the 
samples and each subset of the samples at EMPO level 2. To compute standardized  
effect scores (SES), we used analytical results based on the hypergeometric 
 distribution to find the expectation and variance of the NODF statistic under both 
models. SES values were generally very large (> 2); we used Wald tests to compute 
approximate P values.
Environment distribution of taxa and Shannon entropy. For each Deblur tag 
sequence B, sample s in the set of all EMP samples S, and sample type (EMPO level 3)  
category E, define

=
∈ ∈ ∧ ∈
∈ ∈

W B
s S B S s E

s S B s
( )

:
:

(1)E

as the fraction of total appearances of tag sequence B in sample type category E  
(with N possible values). For a given cluster of tag sequences T (phylogenetic 
subtree or taxonomic group, for example, Firmicutes), we then calculate cluster 
distribution vector as

= …W W WT T T( ) ( ( ), , ( )) (2)E EN1

where WE combined for all tag sequences in the sequence cluster is given by

=
∈

W WT B( ) mean( ( )) (3)E
B T

E

Clusters of tag sequences were defined in two ways: first, by partitioning using 
the taxonomic lineage information for the tag sequences; second, by maximum 
tiptotip branch length for nodes on the phylogenetic tree. To calculate entropy 
of environment distribution as a function of taxonomic level (for example, 
 phylum), the mean of Shannon entropies for all taxonomic groups belonging to 
that  taxonomic level was calculated (weighted by the number of tag sequences in 
each  taxonomic group). To calculate the entropy as a function of the phylogenetic 
subtree group width, cluster Shannon entropy was calculated for all subtrees, as well 
as the  maximum tiptotip distance for each subtree. To ascertain whether changes 
in entropy between taxonomic and phylogenetic levels were expected given the 
observed distribution of environment entropy among tag sequences, a null model 
was calculated by randomly permuting the Deblur tag sequence taxonomy associa
tions (for the entropy versus taxonomy analysis) or the phylogenetic tip placement 
(for the entropy versus phylogeny analysis). To reduce the effect of discretization 
on the entropy calculation in both analyses, clusters of tag sequences were included 
in the analysis only if they had a minimum of 20 tag sequences. For unique tag 
sequences (that is, a branch length threshold of 0.0), sequences were required to 
be found in a minimum of 10 samples. To calculate the approximate branch length 
corresponding to each taxonomic level, we found the lowest common ancestor 
for each group and calculated the maximum tiptotip distance in that subtree.
EMP trading cards. We started with a BIOM table of 90bp Deblur tag sequences 
(16S rRNA gene, V4 region), rarefied to 5,000 observations per sample, containing  
2,000 samples evenly distributed across environments and studies (Extended 
Data Fig. 7a). From this we calculated the following: the number, fraction, and 
rank of samples in which a tag sequence is found; the abundance, fraction, and 
rank of observations represented by that tag sequence; the taxonomy of the tag 
sequence from Greengenes; and the list of all the samples in which the tag sequence 
is found. This summary is located at ftp://ftp.microbio.me/emp/release1/otu_ 
distributions/. Additionally, for each tag sequence with a trading card in Extended 
Data Fig. 7b or http://www.earthmicrobiome.org/tradingcards, we identified 
sequences in RDP (http://rdp.cme.msu.edu)82 matching 100% along the 90bp 
region of the 16S rRNA gene. Trading cards at  http:// www.earthmicrobiome. 
org/tradingcards are those with prevalence or abundance in the top 10 of all tag 
sequences or the most  abundant tag sequence for each environment having a 
 distribution Shannon entropy <  1, a proportion of that environment ≥  25%, and 
total  observations ≥  1,000.
Redbiom database service. A metadata and feature search service containing the 
EMP data is available through Redbiom. Redbiom is a caching layer for BIOM 
table and sample metadata, where by default it allows users to interact with the 
public portion of Qiita (which includes all of the EMP studies). This service allows 
users to find samples on the basis of sample details (for example, all soil samples 
with pH <  7), to find samples on the basis of features they contain (for example, 
all samples in which Greengenes ID 131337 exists), to find features on the basis of 

taxonomy (for example, all samples in which genus Pyrobaculum exists), to extract 
sample data into BIOM tables, and to extract sample metadata. Installation of the 
commandline client and usage instructions are available at https://pypi.python.
org/pypi/redbiom; examples of commandline queries are provided at https://
github.com/biocore/redbiom. A graphical user interface for Redbiom is available 
at https://qiita.microbio.me.
Code availability. Code for reproducing sequence processing, data analysis, and 
figure generation is provided at https://github.com/biocore/emp and is archived at 
https://zenodo.org with DOI 10.5281/zenodo.1009693. Redbiom code is available 
at https://github.com/biocore/redbiom and is archived at https://zenodo.org with 
DOI 10.5281/zenodo.1009150.
Data availability. Perstudy sequence files and sample metadata are available from 
EBI (http://www.ebi.ac.uk/ena) with accession numbers in Supplementary Table 1.  
Perstudy sequence files, sample metadata, and observation tables and informa
tion are available from Qiita (https://qiita.microbio.me) using the study IDs in 
Supplementary Table 1. EMPwide sample metadata, observation tables and infor
mation (trees and taxonomies), alpha and betadiversity results, and observation 
summaries for trading cards are available at ftp://ftp.microbio.me/emp/release1; 
these files plus the Redbiom database at time of publication are archived at https://
zenodo.org with DOI 10.5281/zenodo.890000.
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Extended Data Figure 1 | Physicochemical properties of the EMP 
samples. Pairwise scatter plots of available physicochemical metadata 
are shown for temperature, salinity, oxygen, and pH, and for phosphate, 
nitrate, and ammonium. Histograms for each factor are also shown; the 
number (n) of samples having data for each factor is provided at the  

top of each histogram. Samples are coloured by environment, and only  
QCfiltered samples are included. In sample metadata files, environmental 
factors are named in our recommended format, with analyte name and 
units combined in the metadata field name.
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Extended Data Figure 2 | Sequence length, database effects, and 
beta-diversity patterns. a, Median sequence length per study after 
quality trimming. Original EMP studies used 90bp reads, which were 
replaced by 100bp reads for the majority of studies, and have since 
been replaced by 150–151bp reads. For most analyses presented in this 
manuscript, we used the Deblur algorithm and trimmed tag sequences 
to 90 bp. This allowed inclusion of older studies with shorter read 
lengths. b, Comparison of Greengenes and SILVA rRNA databases for 
referencebased OTU picking. Fraction of reads in n =  23,828 biologically 
independent samples—separated by environment (perenvironment n 
shown in Fig. 1a)—mapping to Greengenes 13.8 and SILVA 123 (97% 
identity OTUs) with closedreference OTU picking. Boxplots show 
median, IQR, and 1.5 ×  IQR (with outliers). The fraction of reads mapping 
was similar between Greengenes and SILVA in each environment but 

slightly higher with SILVA for every environment. c, Alphadiversity in 
closedreference OTUs picked against Greengenes 13.8 and SILVA 123, 
with sequences rarefied to 100,000, 30,000, 10,000, and 1,000 sequences 
per sample, displayed as boxplots showing median, IQR, and 1.5 ×  IQR 
(with outliers). The sample set for all calculations contained n =  4,667 
biologically independent samples having at least 100,000 observations in 
both Greengenes and SILVA OTU tables. Alphadiversity metrics were 
higher with SILVA closedreference OTU picking than with Greengenes.  
d, Betadiversity among all EMP samples using principal coordinates 
analysis (PCA) of weighted UniFrac distance. Principal coordinates PC1 
versus PC2 and PC1 versus PC3 are shown coloured by EMPO levels 
2 and 3. As with unweighted UniFrac distance (Fig. 2c), clustering of 
samples using weighted UniFrac distance could be explained largely by 
environment.
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Extended Data Figure 3 | Sequence length effects on observed diversity 
patterns. The effect of trimming from 150 bp (the approximate starting 
length of some sequences) to 90 bp (the trimmed length of all sequences 
in this metaanalysis) was investigated by comparing alpha and beta
diversity patterns. All samples, at each sequence length, were rarefied to 
5,000 sequences per sample. a, Alphadiversity distributions of n =  12,538 
biologically independent samples displayed as histograms of observed tag 

sequences coloured by environment (EMPO level 3). Among these samples 
with sequence length ≥  150 bp, the distributions are largely preserved 
when trimming from 150 to 100 to 90 bp. b, Procrustes goodnessoffit 
between the 90bp (grey lines) and 150bp (black lines) Deblur principal 
coordinates (unweighted UniFrac distance) for n =  200 randomly chosen 
samples coloured by environment (EMPO level 2). Betadiversity patterns 
between the two sequence lengths are similar.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Article reSeArcH

Extended Data Figure 4 | Tag sequence prevalence patterns. Note that 
for this metaanalysis, the input observation table was filtered to keep 
only tag sequences with at least 25 observations total over all samples and 
then rarefied to 5,000 observations per sample. a, Perstudy endemism 
visualized as a histogram of tag sequences binned by the number of  
studies in which they are observed (right: linear scale; left: log scale).  
b, Persample endemism visualized as a histogram of tag sequences binned 
by the number of samples in which they are observed (right: sample 
counts up to 92 samples and the number of tag sequences in linear scale; 
left: all tag sequences with bin widths of 100 samples and number of tag 
sequences in log scale). c, Abundance (total observations in rarefied table) 
versus prevalence (number of samples observed in) of n =  307,572 tag 
sequences. Both axes are log scale. The most prevalent tag sequences were 
also the most abundant. d, Prevalence as a function of sequencing depth 

in n =  2,279 soil, n =  478 saltwater, n =  1,508 freshwater, and n =  695 
animal distal gut samples having at least 50,000 sequences per sample. 
Shown are the average and s.d. of mean prevalence across triplicate 
rarefied subsamples of 50, 100, 500, 1,000, 5,000, 10,000, and 50,000 
sequences per sample. Average prevalence increases with sequencing 
depth, and the straightline relationship on the log–log axis is suggestive 
of a power law. e, Histograms of tag sequence prevalences at each sampling 
depth. The histograms show the distribution moving towards higher 
prevalences with increasing sequencing depth. Gut data lacked tag 
sequence prevalences >  0.7 owing to the inclusion of very different host 
species; see f. f, Histograms as in e but on a subset of the observation tables 
where 30 samples were randomly sampled from each study. Restricting to 
human gut samples only, the full range of prevalences found in the other 
environments is observed.
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Extended Data Figure 5 | See next page for caption.
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Extended Data Figure 5 | Environmental effect sizes, sample 
classification, and correlation patterns. a, Effect sizes of predictors 
on alpha and betadiversity. Maximum pairwise effect size (difference 
between means divided by standard deviation) between categories of 
each predictor plotted for observed tag sequences (alphadiversity) and 
unweighted and weighted UniFrac distance (betadiversity). Response 
variables (alpha and betadiversity) were derived from the QCfiltered 
subset of the 90bp Deblur table containing n =  23,828 biologically 
independent samples. Numeric predictor variables were converted to 
quartiles (categorical predictors). Categories within each predictor 
had a minimum of 75 samples per category. b, Cumulative variation 
explained by the optimal model of stepwise redundancy analysis (RDA) 
of predictors: study ID, EMPO level 3, ENVO biome level 3, latitude, and 
longitude (predictors with values for less than half of samples, including 
host scientific name, were excluded). Environment (EMPO level 3) and 
biome (ENVO biome level 3) explained as much variation as study ID 
when study ID was excluded from the RDA. c, Confusion matrix for 
random forest classifier of samples to environment (EMPO level 3).  
The classifier was trained on the 2,000sample subset, which was then 
tested on the remaining samples (QCfiltered samples minus 2,000sample 
subset). Squares are coloured relative to 100 classification attempts for 
each true label. Overall success rate was 84%, with the most commonly 
misclassified sample environments being Surface (nonsaline), Animal 
secretion, Soil (nonsaline), and Aerosol (nonsaline). d, Receiver 

operating characteristic (ROC) curve for classification of samples to 
environment (EMPO level 3). The AUC (area under curve) indicates the 
probability that the classifier will rank a randomly chosen sample of the 
given class higher than a randomly chosen sample of other classes.  
e, Classification success, using a random forest classifier, to EMPO  
levels 1–3, ENVO material, ENVO feature, and ENVO biome levels 1–3.  
f, Microbial source tracking: mean predicted proportion of tag sequences 
from each source environment (EMPO level 3) that occurs in each sink 
environment. The model was trained on a subset of samples (~ 20% of 
each environment), and tested to predict tag sequence source composition 
in all remaining samples. Aerosol (nonsaline), Surface (saline), and 
Hypersaline samples were not included in this analysis because there were 
insufficient sample numbers. g, Microbial source tracking: which other 
environments a sample type most resembles. The model was trained on 
all source environments except one using a leaveoneout crossvalidated 
model, and then used to classify each sample included in that group. 
Hence, the predicted classification proportion of environment X to 
environment X is zero. h, Correlation of microbial richness with latitude. 
Richness of 16S rRNA tag sequences per sample across EMPO level 2 
environmental categories as a function of absolute latitude. Samples from 
studies that span at least 10° latitude are highlighted in colour, with linear 
fits displayed perstudy as matching coloured lines. Samples from studies 
with narrower latitudinal origins are shown in grey. The global fit for all 
samples per category is indicated by a dashed black line.
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Extended Data Figure 6 | NODF scores of nestedness across samples 
by taxonomic level. The NODF statistic represents the mean, across 
pairs of samples, of the fraction of taxa occurring in less diverse samples 
that also occur in more diverse samples. A raw NODF of 0.5 would 
mean that for any pair of samples, on average 50% of the taxa in the 
less diverse sample would occur in the more diverse sample. a, NODF 
(raw) and NODF standardized effect size in the 2,000sample subset by 
taxonomic level. Results are shown first for all tag sequences and then for 
tag sequences found in < 10%, <  5%, and < 1% of samples. By removing 
the most prevalent tag sequences before analysis (and rarefying only after 
this step), it was possible to rule out artefacts associated with potential 

contamination. NODF (raw) is highest at the phylum level and decreases 
at finer taxonomic levels, and this trend is observed even when the 
most prevalent tag sequences are removed (removing those occurring 
in ≥  10%, ≥  5%, or ≥  1% of samples). The decreasing trend is likely to be 
partially due to finer taxonomic groups having lower prevalence (and 
lower matrix fill, among other factors) than coarser taxonomic groups, 
as standardized effect sizes of the NODF statistic are essentially constant 
across taxonomic levels. b, When five alternate 2,000sample subsets are 
randomly drawn (with replacement) from the full (QCfiltered) EMP 
dataset, the trends in NODF (raw) and NODF standardized effect size 
remain largely unchanged.
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Extended Data Figure 7 | Subsets and EMP trading cards. a, Subsets of 
the EMP dataset with even distribution across samples and studies. Shown 
are all EMP samples included in this manuscript (release 1), the QC
filtered subset, and subsets of 10,000, 5,000, and 2,000 samples. The latter 
three contain progressively more even representation across environments 
and studies, providing a more representative view of the Earth 
microbiome and a more lightweight dataset. Top, histograms of samples 
per environment (EMPO level 3) for each subset. Bottom, histograms of 
studies per environment (EMPO level 3) for each subset. b, EMP trading 
cards: distribution of 16S rRNA tag sequences across the EMP. Trading 
cards highlight the power of the EMP dataset to help define niche ranges 
of individual microbial sequence types across the planet’s microbial 
communities. Cards show distribution of 16S rRNA tag sequences in 
a 2,000sample subset of the EMP (rarefied to 5,000 observations per 
sample) having even distribution by environment (EMPO level 3) and 
study. Taxonomy is from Greengenes 13.8 and Ribosomal Database 
Project (RDP), with the fraction of exact RDP matches by lineage and 
species name shown in parentheses. The pie chart and point plot show the 

relative distribution of environments in which the tag sequence is found 
(left points) versus the environment distribution of all 2,000 samples 
(right points). The coloured scatter plots indicate tag sequence relative 
abundance (normalized to the shared y axis) as a function of metadata 
values (no points shown indicates that metadata were not provided for 
that category). For comparison, grey curves with rug plots indicate kernel 
density estimates of metadata values across all samples in the set of 2,000 
(not just samples where the tag sequence was found). Three examples are 
shown. Left, a prevalent sequence enriched in soil and plant rhizosphere 
is from the class Acidobacteria, aptly named as this sequence is found at 
highest relative abundance in lowpH samples. Middle, the sequence  
most specific for animal surface (also enriched in animal secretion) is 
annotated as Pasteurella multocida, a common cause of zoonotic infections 
following bites or scratches by domestic animals, such as cats and dogs83. 
Right, the sequence most specific for animal proximal gut belongs to  
S247, a family highly localized to the gastrointestinal tracts of 
homeothermic animals and predominantly found in herbivores and 
omnivores, but not in carnivores84.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Two subsets of the EMP dataset were used for analyses presented in this paper. Fo
r analysis of total diversity across the dataset (alpha- and beta-diversity in Figs. 
2-3), we used the full set of 24,910 samples that passed minimal quality controls 
(QC-filtered) as described in the methods. For Figs. 4-6 and supplementary 
figures as noted, we used a 2000-
sample subset containing samples picked randomly and evenly across 17 habitats a
nd then evenly across studies in each sample type.

2.   Data exclusions

Describe any data exclusions. To generate the QC-filtered subset, samples were removed if they had fewer than 
a predetermined number of observations in the OTU/Deblur tables (see methods). 
Study no. 1799 was excluded from the QC-filtered subset because of concerns 
about contamination. For the effect size calculation (ED Fig. 5), categories within 
each predictor had a minimum of 75 samples per category, and predictors with 
values for less than half of samples were excluded. For ED Table 3, sequences 
annotated as chloroplast were excluded before statistics were computed.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

The experimental findings were reliably reproduced. For the purposes of this meta-
analysis, having multiple samples from multiple studies for each habitat type 
constituted replication. Many studies within the meta-analysis had dedicated 
biological replicates. Nestedness results were reproduced using 5 additional 
randomly-selected 2000-sample subsets.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

For creating subsets of samples, samples were drawn randomly, evenly across 
habitat types and studies. Results were reproduced using 5 additional randomly-
selected 2000-sample subsets.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Investigators were blinded; allocation to groups (subsets) was done entirely 
computationally and randomly.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Code for reproducing sequence processing, data analysis, and figure generation is 
provided at github.com/biocore/emp and is archived at zenodo.org with DOI 
10.5281/zenodo.XXXXXX. Redbiom code is available at github.com/biocore/
redbiom and is archived at zenodo.org with DOI 10.5281/zenodo.XXXXXX. (Zenodo 
DOIs will be provided in proof stage, as discussed with the editor.)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Animal subjects are described in the original studies where animal-associated 
samples were collected. IACUC protocol numbers can be provided if necessary.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Human subjects are described in the original studies where human-associated 
samples were collected. IRB protocol numbers can be provided if necessary.
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