
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

5-2022

Enumerating Switching Isomorphism Classes of Signed Graphs Enumerating Switching Isomorphism Classes of Signed Graphs

Nathaniel Healy
William & Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

 Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation Recommended Citation
Healy, Nathaniel, "Enumerating Switching Isomorphism Classes of Signed Graphs" (2022). Undergraduate
Honors Theses. William & Mary. Paper 1830.
https://scholarworks.wm.edu/honorstheses/1830

This Honors Thesis -- Open Access is brought to you for free and open access by the Theses, Dissertations, &
Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1830?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Enumerating Switching Isomorphism Classes of Signed Graphs

A thesis submitted in partial fulfillment of the requirement for
the degree of Bachelor of Science in Mathematics from

_ William & Mary

by

Nathaniel Healy

Accepted for ------'Ho
---'--'-

..:..;N'--
o-"R....:....::...S ______ _

(Honors, High Honors, Highest Honors)

Enumerating Switching Isomorphism Classes

of Signed Graphs

Nathaniel Healy

May 2022

Abstract

Let Γ be a simple connected graph, and let {+,−}E(Γ) be the set of signatures of Γ. For σ

a signature of Γ, we call the pair Σ = (Γ, σ) a signed graph of Γ. We may define switch-

ing functions ζX ∈ {+,−}V (Γ) that negate the sign of every edge {u, v} incident with ex-

actly one vertex in the fiber X = ζ−1
X (−). The group Sw(Γ) of switching functions acts

on the set of signed graphs of Γ and induces an equivalence relation of switching classes

in its orbits; there are 2|E(Γ)|−|V (Γ)|+1 such classes. More interestingly, we may define a

group SwAut(Γ) = Sw(Γ)⋊Aut(Γ) whose action on signed graphs combines both switching

functions and graph automorphisms. We may also define switching automorphism groups

SwAut(Σ) as subgroups of SwAut(Γ) that preserve individual signed graphs. The orbits of

SwAut(Γ) on signed graphs represent the equivalence classes of signed graphs that are equiv-

alent under some combination of switching and permuting vertices. We call these classes

switching isomorphism classes, and their enumeration for an arbitrary graph is nontrivial.

Following observations of Zaslavsky [19],[20], we offer algorithms for the enumeration of

switching isomorphism classes, and thus provide a means for counting such classes for arbi-

trary graphs. We also calculate a formula for the number of switching isomorphism classes

of certain species of Generalized Petersen graphs, and provide data for the number of these

classes for other graphs for which no formula is yet known. Finally, we include the abstract

switching automorphism groups of all switching isomorphism classes for select graphs, as

determined by our program.

1

Acknowledgment

I should like to thank my advisor Dr. Eric Swartz for the guidance he provided me throughout

my research and without whom this work would not be possible. He introduced to me an

entire subject of mathematics which has captured my interest and which I hope to continue

to explore.

2

Contents

1 Preliminary Theory of Graphs and Groups 5

1.1 Basics of Graph Theory . 5

1.2 Graph Automorphisms . 7

1.3 Group Actions . 8

1.3.1 Orbits and Stabilizers . 10

1.3.2 Graph Coloring . 10

2 Signed Graphs and Switching Automorphisms 13

2.1 Signed Graphs . 13

2.2 Switching . 15

2.3 Switching Automorphism Groups . 19

2.4 Previous Work . 22

3 Enumeration Algorithms 24

3.1 First Attempt . 24

3.1.1 The Algorithm . 26

3.2 An More Efficient Approach to Enumeration 36

3.2.1 The Algorithm . 43

4 Switching Classes of Certain Generalized Petersen Graphs 47

4.0.1 Prism Graphs . 51

3

4.0.2 Generalized Petersen graphs for k2 ̸≡ ±1 (mod n) 56

4.0.3 Generalized Petersen graphs for k2 ≡ −1 (mod n) 57

5 Selected Results 73

5.1 Switching Automorphism Groups . 73

5.2 Switching Isomorphism Classes . 77

6 Future Research 80

A Algorithm 1 82

B Algorithm 2 100

Bibliography 104

4

Chapter 1

Preliminary Theory of Graphs and

Groups

1.1 Basics of Graph Theory

It is important that we prepare a set of preliminary definitions.

Definition 1.1. A graph is an algebraic structure that can be considered in several equivalent

ways. Most abstractly, a graph can be defined as some set S and a symmetric relation R

defined on S. For our purposes, we will consider a geometric representation: we can define an

undirected graph Γ as consisting of two sets, a vertex set V (Γ) and an edge set of unordered

pairs E(Γ) ⊆ V (Γ)2.

Thus, a graph is a set of vertices and a set of edges connecting some (potentially none,

or all) of these vertices. The sets V (Γ) and E(Γ) correspond to S and R respectively. Below

is an example of a graph with labeled vertices.

1

3

2

4 5

5

Definition 1.2. For a graph Γ and vertices u, v ∈ V (Γ), a path from u to v is a sequence

(r1, r2, ..., rn) of vertices

{ri | 1 ⩽ i ⩽ n} ⊆ V (Γ)

such that r1 = u, rn = v, each ri is distinct, and {ri, ri+1} ∈ E(Γ) for 1 ⩽ i ⩽ n− 1.

Definition 1.3. A graph is called connected if we can always find some path between any

two vertices.

The graph above is not connected because there is no path between vertex 5 and vertex

4.

Definition 1.4. A simple graph is one without any loops; that is, without any edges from

some vertex v to itself. This is equivalent to the condition that {v, v} ̸∈ E(Γ) for any

v ∈ V (Γ).

The graph above is not simple because {1, 1} is an edge (loop). A finite, simple connected

graph is naturally any graph Γ that is both connected and simple such that |V (Γ)| ∈ N. It

is these graphs that will concern us, so from now on general statements regarding graphs

will consider only finite, simple connected graphs. Below is an example.

1

3

2

4 5

Definition 1.5. A cycle is a set of vertices

{ri | 1 ⩽ i ⩽ n} ⊆ V (Γ)

such that each (r1, r2, ..., rn) is a path and {r1, rn} ∈ E(Γ).

6

1.2 Graph Automorphisms

In general, a homomorphism is a function between two algebraic structures that preserves

some fundamental element of each structure. The essential structure of a graph is its edge

set, and so it is natural to define a graph homomorphism as some function that preserves

edges.

Definition 1.6. Formally, for two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2), a graph homo-

morphism ϕ is a function ϕ : V1 → V2 such that

{u, v} ∈ E1 =⇒ {uϕ, vϕ} ∈ E2

Intuitively, edges are mapped to edges. A graph isomorphism is a graph homomorphism

that is also a bijection. If a graph isomorphism exists between two graphs, we call them

isomorphic graphs. Isomorphic graphs have the same size vertex sets and the same relation

structure upon said vertex sets and so can be considered, for most purposes, equivalent

graphs. We call them equivalent up to isomorphism, and graph isomorphism is an equivalence

relation.

Definition 1.7. A graph automorphism is a graph isomorphism from a graph to itself. That

is, a graph automorphism of Γ is a function ψ : V (Γ) → V (Γ) such that

{u, v} ∈ E(Γ) ⇐⇒ {uψ, vψ} ∈ E(Γ).

Lemma 1.8. The set of all automorphisms of Γ forms a group under function composition.

Proof. Let Γ be a graph. First, note that the identity function id, which maps every vertex

to itself, is an automorphism of Γ, since

{u, v} ∈ E(Γ) ⇐⇒ {id(u), id(v)} ∈ E(Γ).

7

Thus Aut(Γ) is nonempty. Next, suppose that f, g ∈ Aut(Γ). The function g is a bijection,

and so it has an inverse g−1. Suppose that {u, v} ∈ E(Γ). Then

g−1 (f ({u, v})) = g−1 ({f(u), f(v)}) .

We know that {f(u), f(v)} ∈ E(Γ), and since the inverse of an isomorphism is an isomor-

phism, and since the composition of isomorphisms is also an isomorphism,

g−1 (f ({u, v})) = {g−1 (f (u)) , g−1 (f (v))} ∈ E(Γ),

and so Aut(Γ) is a group of automorphisms. QED

1.3 Group Actions

A group action is a powerful way to apply the structure of a group to a set.

Definition 1.9. Let G be a group and Ω be a set. A group action A is a function

A : Ω×G→ Ω such that for all ω ∈ Ω and g, h ∈ G,

A(ω, 1) = ω,

A(A(ω, g), h) = A(ω, gh).

With a specific group action A in mind, we can use the notation ωg := A(ω, g). Then

the above parameters are equivalent to

ω1 = ω,

(ωg)h = ωgh.

We shall use these notations interchangeably.

8

Lemma 1.10. A group action A : Ω × G → Ω is equivalent to a group homomorphism

ϕ : G → Sym(Ω) given by gϕ : ω 7→ ωg. Also, conversely, given a homomorphism ψ : G →

Sym(Ω), there exists a group action B : Ω×G→ Ω defined by B(ω, g) = ω(gψ).

Proof. Let g, h ∈ G. Then

(gh)ϕ : ω 7→ ωgh

(gh)ϕ : ω 7→ (ωg)h .

Now, gϕ : ω 7→ ωg and hϕ : ωg 7→ (ωg)h, and so gϕhϕ : ω 7→ (ωg)h. Thus (gh)ϕ = gϕhϕ and ϕ

is a homomorphism.

Suppose instead we have some homomorphism ψ : G→ Sym(Ω). Then for ω ∈ Ω,

ω1G = ω(1ψG) = ω1Sym(Ω) = ω,

since homomorphisms map identities. Also, for g ∈ G,

(ωg)h = (ω(gψ))h = (ω(gψ))(h
ψ)

= ωg
ψhψ = ω(gh)ψ = ω(gh),

which satisfies the axioms of a group action. QED

We note that the set of automorphisms Aut(Γ) naturally acts on V (Γ) and E(Γ) by

permuting vertices.

9

1.3.1 Orbits and Stabilizers

Definition 1.11. Suppose that a group G is acting on some set Ω, and that ω ∈ Ω. Then

the orbit of ω under the group action is defined to be

ωG = {ωg | g ∈ G}.

Intuitively, an element’s orbit is the set of all elements that it can be mapped to by the

group. There is a very powerful result regarding the number of orbits of a group action,

called the Cauchy-Frobenius Theorem, that we will use to great effect.

Theorem 1.12. Let G be a finite group acting on the set X. If |X/G| denotes the number

of orbits of this action and fixg(X) ⊆ X is the set of elements in X fixed by g, then

|X/G| = 1

|G|
∑
g∈G

|fixg(X)|.

Proof. See Lemma 2.2.4 in Godsil, Royle [8], QED

An analogous concept to orbits is the stabilizer of ω, defined by:

Gω = {g ∈ G | ωg = ω}.

The stabilizer, as the name suggests, of ω is the set of all elements in the group that do not

move ω.

1.3.2 Graph Coloring

With the geometric interpretation of graphs in mind, it is intuitive to imagine painting each

edge a different color.

Definition 1.13. Formally, we can define some set C as a set of colors, say, C := {red, blue, green}.

An edge coloring function for the graph Γ is a function f : E(Γ) → C.

10

The image of each edge with regards to f is the color of the edge under this coloring.

Note that a similar definition can be constructed for vertex coloring functions. Since C has

no structure — it is just a set — there is not much more for us to say about graph coloring

in general without adding some constraints, such as forbidding adjacent edges to be colored

similarly, or considering only isomorphically-distinct colorings.

Lemma 1.14. Suppose that G acts on the set Ω, and let CΩ be a set of coloring functions

for Ω. Then there is a natural induced group action from G on CΩ defined by

f g(ω) = f(ωg
−1

)

for ω ∈ Ω, g ∈ G, and f ∈ CΩ.

Proof. It suffices to demonstrate that both group action axioms hold. First, note that

f 1(ω) = f(ω1) = f(ω).

Next, for g, h ∈ G,

(f g)h(ω) = f g(ωh
−1

)

= f(ωh
−1g−1

)

= f(ω(gh)−1

)

= f (gh)(ω).

QED

Specifically, there is a group action of Aut(Γ) on the set of (edge or vertex) colorings of

a graph Γ. To that end we present here Polya’s Enumeration Theorem, an application of

Theorem 1.12 that we can use to determine the number of orbits of vertex-colored graphs

under the graph’s automorphism group.

11

Theorem 1.15. Let Γ be a graph and CV (Γ) be the set of vertex coloring functions of Γ.

Next, let c(π) be the number of cycles, including fixed points, of π in Aut(Γ). Note that c(π)

is equivalent to the number of orbits of ⟨π⟩ in Sym(|V (Γ)|). Then if |CV (Γ)/Aut(Γ)| is the

number of orbits of Aut(Γ) on CV (Γ):

|CV (Γ)/Aut(Γ)| = 1

|Aut(Γ)|
∑

π∈Aut(Γ)

|C|c(π).

Proof. See Tucker [18]. QED

Theorem 1.15 will prove useful in Chapter 4. More immediately, we shall see that if we

add some group structure to C, we can make some additional interesting observations.

12

Chapter 2

Signed Graphs and Switching

Automorphisms

It should be noted that the general theory of signed graphs and switching contained herein,

as well as much of its notation, is derived from Zaslavsky [21].

2.1 Signed Graphs

Definition 2.1. A signed graph is a graph wherein each edge is assigned a sign—either

positive + or negative −. This initial definition is equivalent to a coloring, as for a signed

graph Γ we define a function

σ : E(Γ) → {+,−}

that signs every edge. A graph Γ paired with some such signature σ is a signed graph denoted

Σ = (Γ, σ). We will use the notation Σ− and Σ+ to denote the negative and positive edges

of a signed graph Σ respectively.

There are 2|E(Γ)| signed graphs of Γ, since each can be identified with a subset of E(Γ),

namely the set of all the negative edges. However, if we add certain group actions to a signed

graph, there are ways in which certain signed graphs are equivalent. First, let us define a

13

group action A of Aut(Γ) upon signatures σ. Let

A : {+,−}E(Γ) × Aut(Γ) → {+,−}E(Γ),

such that for ϕ ∈ Aut(Γ) and σ ∈ {+,−}E(Γ),

{u, v}σϕ = {uϕ−1

, vϕ
−1}σ,

and equivalently,

{uϕ, vϕ}σϕ = {u, v}σ.

We will ensure that this is indeed a group action. First,

{u, v}σ1

= {u, v}σ.

Next, letting ϕ, ψ ∈ Aut(Γ), we have

{u, v}(σϕ)ψ = {uψ−1

, vψ
−1}σϕ

= {uψ−1ϕ−1

, vψ
−1ϕ−1}σ

= {u(ϕψ)−1

, v(ϕψ)
−1}σ = {u, v}σϕψ .

Thus A is indeed a group action. The orbit of a signature under this action is the set of all

signed graphs of Γ that can be reached by permuting Σ by Aut(Γ), ensuring that negative

edges are mapped to negative edges and positive edges are mapped to positive edges. If

there exists some ϕ ∈ Aut(Γ) such that for Σ1 = (Γ, σ1), Σ2 = (Γ, σ2), σ1
ϕ = σ2, then we

say that Σ1 and Σ2 are isomorphic as signed graphs. An example of two isomorphic signed

graphs is below; here and elsewhere, negative edges are dotted. Note that the second graph

can be achieved by reflecting the first across the lower-left to upper-right diagonal, and that

the signed graph is mapped along, via the action defined above.

14

Two isomorphic signed graphs

2.2 Switching

There is another interesting group action that we can define on a set of signed graphs of Γ.

Definition 2.2. Let {+,−}V (Γ) be the set of all functions from the vertices of Γ to {+,−}.

We call these switching functions of Σ.

The reason for this name will become clear later. Much like the signatures we discussed

earlier, these map parts of a graph to signs, but in this case we are mapping vertices, not

edges. We typically denote elements of {+,−}V (Γ) as ζX , where X ⊆ V (Γ) is the set of

vertices that ζX takes to −. It turns out that we can define a group operation on these

functions in {+,−}V (Γ). Let ζX , ζY ∈ {+,−}V (Γ) for X, Y ⊆ V (Γ). Then define ∗ by

ζX ∗ ζY = ζX△Y ,

where △ refers to symmetric difference. The inverse of ζX is ζX itself. Then

ζX ∗ (ζY)−1 = ζX△Y .

Since subsets are closed under symmetric difference, ∗ indeed induces a group structure.

Moreover, every element in this group is its own inverse, and so ({+,−}V (Γ), ∗) is an elemen-

tary abelian 2-group. From now on, we shall denote it by {+,−}V (Γ).

This group has a very interesting action on signed graphs, or more precisely, on signatures

15

of signed graphs. First we will define it formally, by

B : {+,−}E(Γ) × {+,−}V (Γ) → {+,−}E(Γ),

such that for σ ∈ {+,−}E(Γ) and ζX ∈ {+,−}V (Γ), under the induced homomorphism Bh,

{u, v}σζX = uζX{u, v}σvζX .

Again we shall check that this is a true group action. It will be useful to realize that {+,−},

the codomain of our signatures σ and ζX , itself is a group isomorphic to Z2, with + identified

with 0 and − with 1. Note that the identity of {+,−}V (Γ) is ζ+ := ζ∅ and

{u, v}σ
ζ+

= uζ+{u, v}σvζ+ = (+){u, v}σ(+) = {u, v}σ.

Also, for X, Y ⊆ V (Γ),

{u, v}(σζX)ζY = uζY uζX{u, v}σvζXvζY

= uζX△Y {u, v}σvζX△Y

= {u, v}σ
ζX△Y

= {u, v}σζX∗ζY ,

so B is a group action. For Σ = (Γ, σ), we shall sometimes use the notation ΣζX to refer

to (Γ, σζX). There is an intuitive, geometric interpretation of this action: switching a vertex

on a signed graph turns all of the negative edges incident with the vertex positive, and

turns all of the positive edges incident with the vertex negative (hence, “switching”). If two

adjacent vertices are switched, the shared edge retains its sign because it is first switched

and then switched back. Generalizing, a switching function ζX switches all edges that are

incident with vertices in X, except for those edges that are shared by elements of X. One

16

can imagine grasping the vertices in X and pulling them away from the remaining vertices

in X = V (Γ) − X—the edges that remain as strands between the two sets of vertices are

switched. All others are unchanged. In the example below, the vertex 2 is switched between

the two graphs, with dashed lines negative:

1 2

3 4

1 2

3 4

Definition 2.3. A switching equivalence class containing a signed graph Σ is the set of

signed graphs Π such that there exists some ζX ∈ Sw(Γ) and ΠζX = Σ. Membership in these

classes induces an equivalence relation among signed graphs of Γ.

For any graph Γ, there are certain switching functions ζX that do not switch any edges, and

it happens that these functions are inherent to the graph. That is, they are not particular

to any signed graph of Γ. By definition, these signed graphs form the kernel of the induced

homomorphism Bh : {+,−}V (Γ) → Sym
(
{+,−}E(Γ)

)
of the group action B, since they

leave every signature unchanged. Thus by the first isomorphism theorem, these switching

functions form a normal subgroup of {+,−}V (Γ), which we will call κΓ.

Lemma 2.4. For Γ a simple, connected graph, κΓ = {ζ+, ζ−}, where ζ+ = ζ∅ and ζ− = ζV (Γ).

Proof. First we demonstrate that ζ+, ζ− ∈ κΓ. Letting σ be some signature for Γ,

{u, v}σ
ζ+

= uζ+{u, v}σvζ+ = (+){u, v}σ(+) = {u, v}σ,

{u, v}σ
ζ−

= uζ−{u, v}σvζ− = (−){u, v}σ(−) = {u, v}σ.

Next, let ζX ∈ {+,−}E(Γ) for a nonempty X ⊂ V (Γ). Then there exists some x ∈ X and

y ∈ X, and since Γ is connected, there is a path from x to y. Thus, there exists some edge

{w, z} somewhere along this path such that w ∈ X and z ∈ X, and

{w, z}σζX = wζX{w, z}σzζX = (−){w, z}σ(+) = −{w, z}σ,

17

and so ζX ̸∈ κΓ. QED

Finally, there is a natural group action from Aut(Γ) on {+,−}V (Γ) which we shall here

call C : {+,−}V (Γ) × Aut(Γ) → {+,−}V (Γ), defined by its induced homomorphism

vζX
ϕ

= (vϕ
−1

)ζX .

Equivalently, (vϕ)ζ
ϕ
X = vζX . Note that vζX = − if and only if v ∈ X, and so equivalently,

vζX
ϕ

= vζXϕ .

Again we verify this action follows the axioms of group actions.

vζ
1
X = vζX1 = vζX

For ϕ, ψ ∈ Aut(Γ),

v(ζX
ϕ)ψ = vζ

ψ

Xϕ = vζXϕψ = vζX
ϕψ

.

In summary, we have two main ways in which we can manipulate signed graphs: we can

permute the vertices of Γ under Aut(Γ), which preserves signatures and so is analogous to

rearranging a graph colored with two colors “positive” and “negative”. We also can switch

vertices, turning incident negative edges positive and vice-versa. These actions combined

give us ways in which two signed graphs can be equivalent.

Definition 2.5. Let Σ1 = (Γ, σ1) and Σ2 = (Γ, σ2) be signed graphs of Γ. We say that Σ1

and Σ2 are switching isomorphic if there exists some ϕ ∈ Aut(Γ) and ζ = ζX ∈ {+,−}V (Γ)

such that

{u, v}σ2 = {u, v}σ1ζϕ ,

18

for all {u, v} ∈ E(Γ). We then say

Σ1
∼= Σ2.

Note that σζϕ denotes applying the group actions B and A in turn, and is generally not

equivalent to σζ
ϕ
. Instead, in the group of all actions on {+,−}V (Γ) (which we shall soon

formally define), ζϕ is equivalent to a conjugation of ζ by ϕ:

{u, v}σζ
ϕ

= uζ
ϕ{u, v}σvζϕ =

(
uζ{u, v}σϕ

−1

vζ
)ϕ

= {u, v}σϕ
−1ζϕ

.

The set of signed graphs that are switching isomorphic to Σ form an equivalence class. In a

way, these graphs can be identified with one another, because they are indistinguishable up to

our group actions. Finding all of the switching isomorphism classes of a graph Γ is not trivial,

as testing every possible signed graph under every possible automorphism and switching

combination becomes infeasible with large graphs. See Zaslavsky [21], Sivaraman [17], and

Bagheri, Moghaddemfar and Ramezani [1] for previous work regarding the enumeration of

the switching isomorphism classes of specific graphs.

2.3 Switching Automorphism Groups

For every unsigned graph Γ, we can define its switching automorphism group that contains

all of its symmetries under switching and vertex permutation. We are not yet concerned

about elements of this group preserving any particular signed graph of Γ in any way—they

preserve the structure of Γ itself as it relates to the actions we have described. We denote

this group SwAut(Γ) and can construct it as follows.

We would like SwAut(Γ) to contain within it both switchings and automorphisms. How-

ever, we have noted that for a graph Γ, not all switchings change any signed graph. We want

to remove redundancies from the group {+,−}V (Γ) and consider only “classes” of switchings

that are truly distinct, and so we quotient out κΓ.

19

Definition 2.6. The switching group Sw(Γ) of a graph Γ is defined by

Sw(Γ) = {+,−}V (Γ)/κΓ.

This is the group of switching functions of Γ, and it should be noted that (via the

homomorphism described earlier) this group is isomorphic to some subgroup of the set of

automorphisms of {+,−}E(Γ). Its members ζXκΓ we shall typically write as ζX . We now have

two groups Sw(Γ) and Aut(Γ) that act upon signed graphs, and there is interplay between

them. Recall that we have defined a group action C of Aut(Γ) on switching functions. We

will define an action of Aut(Γ) on Sw(Γ) similarly. For ϕ ∈ Aut(Γ),

ζX
ϕ
= ζXϕ .

We want to construct a switching automorphism group that encodes in its structure the

actions of Sw(Γ) and Aut(Γ). However, switching functions and graph automorphisms do

not necessarily commute in their action on signed graphs, and so we cannot construct a

direct product. Instead we can use the group action we just defined to define a semidirect

product.

Definition 2.7. The switching automorphism group for Γ is the group

SwAut(Γ) = Sw(Γ)⋊λ Aut(Γ),

where λ : Aut(Γ) → Aut(Sw(Γ)) is the homomorphism induced from the group action

ζX
ϕ
= ζXϕ .

20

The group operation ∗ is defined by

(ζX , ϕ) ∗ (ζY , ψ) = (ζX ζY
ϕ−1

, ϕψ) = (ζX ζY ϕ−1 , ϕψ) = (ζX△Y ϕ−1 , ϕψ),

and we note

(ζX , ϕ)
−1 = (ζXϕ , ϕ−1).

We call its elements switching automorphisms and often write (ζX , ϕ) as ζXϕ.

This operation preserves the conjugation of Aut(Γ) on Sw(Γ) that we observed ear-

lier, if we identify these groups with the isomorphic subgroups {(ζ+, ϕ) | ϕ ∈ Aut(Γ)} and

{(ζX , 1) | ζX ∈ Sw(Γ)} respectively. Note that SwAut(Γ) acts on signed graphs of Γ in the

natural way, i.e., combinations of switching functions and graph automorphisms.

Definition 2.8. The orbits of the action of SwAut(Γ) on the set of signed graphs of Γ form

equivalence classes called switching isomorphism classes. Two signed graphs Σ1 and Σ2 are

switching isomorphic (Definition 2.4) if they are in the same switching isomorphism class.

Equivalently, there exists (ζX , ϕ) ∈ SwAut(Γ) such that

ΣζXϕ
1 = Σ2.

We shall thus denote the switching isomorphism classes of Γ by Γ/SwAut(Γ), and for Σ

a signed graph of Γ, [Σ] shall be taken to mean the class in Γ/SwAut(Γ) containing Σ.

Switching automorphism groups are named as such because they contain bijections be-

tween signed graphs of Γ that preserve certain of said signed graphs’ fundamental properties.

However, a switching automorphism need not (and generally, does not) stabilize an arbitrary

signed graph. The switching automorphisms that do preserve a specific signed graph form

their own group.

Definition 2.9. Let Σ = (Γ, σ) be a signed graph of Γ. The signed graph switching

automorphism group SwAut(Σ) ⩽ SwAut(Γ) is the set of all switching automorphisms

21

(ζX , ϕ) ∈ SwAut(Γ) such that σζXϕ = σ.

Sometimes, we shall simply call these “switching automorphism groups” where the con-

text allows it. Intuitively, SwAut(Σ) is the set of all pairs of switchings and automorphisms in

SwAut(Γ) such that performing the switching on Σ and then the automorphism is equivalent,

in terms of the signature, to doing nothing. In this way, it is a group of symmetries of Σ. It is

not generally the case that subgroups of semidirect products are semidirect products of sub-

groups, and so constructing SwAut(Σ) is difficult. It is also worth noting that since elements

of SwAut(Σ) stabilize the sets of negative and positive edges alike, SwAut(Σ) = SwAut(−Σ),

where −Σ has negative edges where Σ has positive ones and vice-versa. Since it is not gener-

ally the case that Σ ∼= −Σ, this means that two signed graphs can be switching inequivalent

yet have the same group of automorphisms. The first of our two algorithms can help us find

all of the signed graph switching automorphism groups for small graphs. Selected results

can be found in Chapter 5.

2.4 Previous Work

Zaslavsky has written extensively about the theory of signed graphs and their automorphisms

[19],[20] and has explicitly determined the switching automorphism groups for the switching

isomorphism classes of the Petersen graph [21]. Bagheri, Moghaddemfar and Ramezani have

enumerated the switching isomorphism classes of the Generalized Petersen graph GP (7, 2)

and complete graph K5 [1], and Sivaraman [17] has enumerated those of the Heawood graph.

A formula is known for the number of switching isomorphism classes for the family of com-

plete graphsKn as they are in direct correspondence with the sets of two-graphs and Eulerian

graphs on n nodes.

More generally, Zaslavsky has noted [20] the potential use of double covering graphs

to enumerate switching isomorphism classes, and Hofmeister [10] has proven a formula for

the number of such covers of arbitrary graphs. Finally, Cameron, has written about the

22

cohomology of both signed [5] and unsigned [3] graph switching, as has Seidel [16].

23

Chapter 3

Enumeration Algorithms

The algorithms we shall discuss were written using GAP [7] and take advantage of its GRAPE

[9] and Digraphs [2] packages.

3.1 First Attempt

Definition 3.1. Let Γ be a simple connected graph. For each switching isomorphism class

[Σ] in Γ/SwAut(Γ), there exists at least one minimal signed graph, which we define as any

signed graph Ψ ∈ [Σ] such that for all Π ∈ [Σ], |Ψ−| ⩽ |Π−|. That is, a minimal signed

graph of a switching isomorphism class has the fewest negative edges of any signed graph in

its class.

Note that minimal signed graphs need not be unique. An example is given below of

switching-isomorphic signed graphs of the cube graph; the signed graph on the left is minimal,

because switching any combination of vertices would increase or keep stable the number of

negative edges. It is not unique because a rotation by 90 degrees would produce a different

signed graph with exactly one negative edge. The signed graph on the right is a non-minimal

representative of the same switching isomorphism class; switching the lower left vertex and

rotating the graph clockwise would produce the signed graph on the left.

24

Two switching-isomorphic signed graphs

Our first algorithm took inspiration from Brendan McKay’s Orderly Algorithm [12] and

intended to produce all possible graph isomorphism-free minimal signed graphs of a given

graph before sorting them for switching isomorphism. The manner in which we determined

switching isomorphs relied upon a known equivalence between switching-isomorphic signed

graphs and graph-isomorphic double covers.

Definition 3.2. A signed graph double cover is an unsigned graph Cσ(Σ) that we may

construct from a signed graph Σ = (Γ, σ) that encodes the negative and positive edges of

Σ without using signed edges, which is easier for a computer program to examine. We

construct Cσ(Σ) as follows. Let Σ = (Γ, σ) be a signed graph of Γ with negative edges the

fiber σ−1(−) ⊆ E(Γ). Then:

V (Cσ(Σ)) = V (Γ)× {+,−},

and {(v1, s1), (v2, s2)} ∈ E(Cσ(Σ)) if and only if

{v1, v2} ∈ E(Γ) and {v1, v2}σ = s1s2.

Intuitively, the vertices of Cσ(Σ) are two “copies” of the vertices of Γ, one “positive” and

one “negative”. For each positive edge {a, b} in Σ, we add an edge between the corresponding

positive pair {(a,+), (b,+)} in the positive copy and another edge between the corresponding

negative pair {(a,−), (b,−)} in the negative copy. For all negative edges {a, b}, we add to

the double cover an edge between (a,−) and (b,+), and likewise between (a,+) and (b,−).

For example, the all positive signed graph corresponds to a double cover that is simply two

25

disconnected copies of Γ:

Cσ(Σ+) ∼= Γ + Γ.

Otherwise, the set of negative edges in Σ correspond to pairs of edges that span the two

copies of the original graph. Below is an example for the (unlabeled) signed double cover of

the cube graph signed graph on the right on the previous page.

T. Zaslavsky has proven [20] a remarkable fact on which the first algorithm rests.

Theorem 3.3. There is a one-to-one correspondence between switching isomorphism classes

of Γ and signed double covers of Γ up to isomorphism. Furthermore, two signed graphs Σ1

and Σ2 of Γ are switching isomorphic if and only if Cσ(Σ1) ∼= Cσ(Σ2) as unsigned graphs.

Since there are computer programs (such as nauty [13]) available to determine whether

two graphs are isomorphic, we now have the means to readily filter a set of signed graphs

for switching isomorphism.

3.1.1 The Algorithm

Algorithm 1 takes an edge set E(Γ) and generates an exhaustive list of candidate signed

graphs for Γ before converting them to signed double covers and filtering them for isomor-

phism. The isomorph-free representatives are then converted back into signed graphs of Γ

(precisely, the corresponding negative edge sets of signed graphs) and output by the program.

The signed graph candidates are generated by iteration on the number of edges, wherein

each signed graph with n negative edges is used as a seed to generate those with n + 1

negative edges by considering what new edges could be added. We choose this method

because it enables us to ignore redundant signed graphs, as the process for finding signed

26

graphs of large graphs (of which there are 2|E(Γ)| total) and sorting their double covers for

isomorphism is time- and memory-intensive. Let Σ be some signed graph of Γ, identified

with its set X ⊆ E(Γ) of negative edges, and consider the set Y = E(Γ) − X of possible

edges that could be added to X to form a new signed graph. The stabilizer of X in Aut(Γ)

acts on the set of such Y and thus induces a set of orbits. If edges Y1, Y2 ∈ Y are within

the same orbit, then there exists some permutation π ∈ Aut(Γ)X such that Y π
1 = Y2 and

thus that (X + Y1)
π = X + Y2. We may conclude that X + Y1 and X + Y2 are equivalent as

potential signed graphs, since they are equivlent under Aut(Γ). This fact enables us to cut

down on the number of signed graphs to process by first calculating the orbits of Aut(Γ)X

on Y and then selecting one candidate edge from each.

The other method we use to profile potential signed graphs for redundancy takes advan-

tage of the existence of a minimal signed graph for each switching isomorphism class. First,

a cut of a graph Γ is a partition of its vertex set V (Γ) into two sets X and X. Given a cut

(X,X), the cutset is the set of edges with one vertex in X and the other in X. Note that

since X = V (Γ)−X, we may define the edge cut ▽X by

▽X = {{u, v} ∈ E(Γ) | u ∈ X, v ̸∈ X}.

With this concept understood we may consider the following, which says that if there exists

set of vertices in Σ whose edge cut contains more negative edges than positive edges, Σ is

not a minimal signed graph.

Lemma 3.4. Let Σ be a signed graph of the graph Γ. If there exists some edge cut ▽X such

that |▽X ∩ Σ−| > |▽X ∩ Σ+|, then Σ is not a minimal signed graph of [Σ].

Proof. Let Σ = (Γ, σ) be a signed graph such that for some X ⊆ V (Γ), |▽X ∩ Σ−| >

|▽X ∩ Σ+|. Let E(X) denote the edges {x, y} such that x, y ∈ X and E(X) denote the

edges {x, y} such that x, y, ̸∈ X. Then we see that E(X), E(X), and ▽X partition E(Γ).

We examine the effects of the switching function ζX on the signs of edges {u, v} in Σ.

27

{u, v}σζX = uζX{u, v}σvζX =

{u, v}σ, uζX = vζX

−{u, v}σ, uζX = −vζX .

Thus the sign of an edge in Σ is changed if and only if the edge is in ▽X. We know that

there are more negative edges in ▽X than positive edges, and so after the switch there are

more positive edges than negative edges.

|▽X ∩ (ΣζX)−| = |▽X ∩ Σ+| < |▽X ∩ Σ−| = |▽X ∩ (ΣζX)+|.

However, as edges outside of ▽X are not switched, Σ and ΣζX have the same number of

negative edges in E(X) ∪ E(X). Thus |(ΣζX)−| < |Σ−|, and since ΣζX ∈ [Σ], Σ is not

minimal by definition. QED

This fact gives us a method by which we can quickly discard certain potential signed

graphs of length n (that is, with n negative edges) as not minimal, and thus necessarily

redundant, if we have collected all possible signed graphs of length m < n.

Determining all possible cuts of a given graph is not trivial, and it would not be practical

to test the minimality of a every new signed graph. However, we can test whether or not

adding the edge e to a signed graph X will make a signed graph that could be switched to

a smaller signed graph by switching less than or equal to k vertices, for some k ⩾ 1. The

more selective we are for new edges e (the higher the k), the longer it will take to compute

whether e is eligible, and so there is a trade-off in increasing k and generating fewer potential

signed graphs. The final code screens new edges with k = 4; that is, for a signed graph X,

it discards all edges e if X + e could be switched to a smaller signed graph by switching

fewer than 5 vertices. This is performed by first ensuring that adding e would not make any

vertex in X incident with more negative (in X) than positive edges and then calculating the

negative-positive “balance” of vertices adjacent to each end of e.

For example, let v be a vertex of e that is incident with n−1 negative edges (not including

e) and n+ 1 positive edges. Suppose we add e to X, making v incident with n positive and

28

n negative edges. If u is adjacent to v along a positive edge, and u too is incident with n

positive and n negative edges, then switching u and v would lessen the number of negative

edges, but switching either individually would not. The algorithm prevents such X + e from

being considered as signed graphs, and more strictly, it examines any 3-path of positive

that begins at a candidate edge e, finds the negative-positive balance of each vertex along

this path, and uses this information to determine whether switching some subset of those 4

vertices would make |X + e| < |X|+ 1, discarding e as a candidate if it would.

On one specific note, consider a graph Γ wherein each vertex is incident with 3 (or

fewer) edges. Then if Σ is a signed graph of Γ such that some vertex v in Σ is incident

with two negative edges, switching v would make those edges negative and the positive edge

incident with v (if one even exists) negative, necessarily reducing Σ to a smaller signed graph.

This demonstrates that in so-called (sub-)cubic graphs, every minimal signed graph must

contain no incident negative edges (subgraphs with non-incident edges are called matchings).

Therefore, when using this algorithm to find signed graphs of (sub-)cubic graphs, we can

automatically discard as a candidate new-edge for a signed graph X any edge e that shares

a vertex with a negative edge in X. We have included as an input to our algorithm the

potential for Γ to be (sub-)cubic; if we indicate that it is, our algorithm will save time by

only considering matchings as potential signed graphs.

Regardless, during the algorithm, the construction of signed graphs continues until no

more edges could be added to any existing signed graphs without violating one of the con-

straints we have discussed. At this point, each signed graph is converted into a signed double

cover. We then take advantage of the computer algebra program GAP [7], its GRAPE pack-

age [9], and the

GraphIsomorphismClassRepresentatives

function, which uses nauty to produce one representative for each isomorphism class of a

list of graphs. Inputting our list of signed double covers produces such representatives. We

can then either convert these back into signed graphs or simply take the length of the list

29

to count how many classes exist. By Theorem 3.3, this number is equal to the number of

switching isomorphism classes.

This program is considerably less efficient than the next in calculating the number of

switching isomorphism classes of an arbitrary graph. However, its advantage is that it in-

volves explicit construction and thus produces an exhaustive set of switching-isomorphic-free

signed graphs. In addition to allowing us to see signed graphs for each switching isomor-

phism class, this enables us to readily calculate the switching automorphism groups for each

class.

Lemma 3.5. Let Σ1,Σ2 be signed graphs of Γ such that Σ1
∼= Σ2; that is, they belong to the

same switching isomorphism class of Γ. Then SwAut(Σ1) ∼= SwAut(Σ2).

Proof. Since Σ1
∼= Σ2, there exists some ζXϕ ∈ SwAut(Γ) such that

ΣζXϕ
1 = Σ2.

We define m : SwAut(Σ1) → SwAut(Σ2) by

(ζAα)
m = (ζAα)

(ζXϕ) = (ζXϕϕ−1)(ζAα)(ζXϕ),

where ζA ∈ SwAut(Σ1), (ζXϕ)
−1 = ζXϕϕ−1, and (ζAα)

(ζXϕ) denotes the action of conjugation

in SwAut(Γ). Now,

Σ
(ζ
Xϕ

ϕ−1)(ζAα)(ζXϕ)

2 = Σ
(ζAα)(ζXϕ)
1 = Σ

(ζXϕ)
1 = Σ2,

and so m is well-defined. Next, suppose ζBβ ∈ SwAut(Σ2). Then

Σ
(ζXϕ)(ζBβ)(ζXϕϕ

−1)

1 = Σ
(ζBβ)(ζXϕϕ

−1)

2 = Σ
(ζ
Xϕ

ϕ−1)

2 = Σ1,

so (ζXϕ)(ζBβ)(ζXϕϕ−1) ∈ SwAut(Σ1) such that ((ζXϕ)(ζBβ)(ζXϕϕ−1))m = ζBβ and m is

30

surjective. Finally, if ζCγ ∈ SwAut(Σ1) such that ζCγ ∈ ker(m), then

(ζCγ)
m = (ζXϕϕ−1)(ζCγ)(ζXϕ) = 1,

(ζXϕ)(ζXϕϕ−1)(ζCγ)(ζXϕ)(ζXϕϕ−1) = (ζXϕ)(ζXϕϕ−1) = 1,

ζCγ = 1.

Therefore, m is a bijection, and so SwAut(Σ1), SwAut(Σ2) are conjugate subgroups and

hence isomorphic subgroups of SwAut(Γ). QED

Thus we need only calculate the switching automorphism group for one representative of

each switching isomorphism class.

Theorem 3.6. Let Γ be a simple, connected graph. Let Σ be a signed graph of Γ and let

Cσ(Σ) be its signed double cover. Let

P = {{(v,+), (v,−)} | v ∈ V (Γ)}

be a partition of the vertices of Cσ(Γ). Finally, let κ ∈ Aut(Cσ(Σ)) be defined by {(v, s)}κ =

{(v,−s)}. Then:

SwAut(Σ) ∼= Aut(Cσ(Σ))P/⟨κ⟩,

where Aut(Cσ(Σ))P denotes the setwise stabilizer of P in Aut(Cσ(Σ)).

Proof. We define a projection δ : V (Cσ(Γ)) → V (Γ) by (v, s)δ = v. Let G = Aut(Cσ(Γ)),

and GP be the setwise stabilizer of P in G. Let f : GP → SwAut(Σ) be defined by

πf = ζXπϕπ,

where Xπ is defined by

Xπ = {v ∈ V (Γ) | ∃u ∈ V (Γ), (v,+)π = (u,−)},

31

and ϕπ is defined by

vϕπ = ((v, s)π)δ.

It is clear that Xπ ⊆ V (Γ), and so ζXπ ∈ Sw(Γ). Next, note that

((v,+)π)δ = ((v,−)π)δ

by the definition of GP . Now,

{(a, s), (b, r)} ∈ E(Cσ(Γ)) =⇒ {a, b} ∈ E(Γ),

and also, since π ∈ GP ,

{(a, s), (b, r)} ∈ E(Cσ(Γ)) ⇐⇒ {(a, s)π, (b, r)π} ∈ E(Cσ(Γ))

=⇒ {((a, s)π)δ, ((b, r)π)δ} ∈ E(Γ)

⇐⇒ {aϕπ , bϕπ} ∈ E(Γ).

Thus ϕπ ∈ Aut(Γ). Finally, let (u, v) ∈ E(Γ) with sign s = {u, v}σ. Then

{(u,+), (v, s)} ∈ E(Cσ(Γ))

{(u,+)π, (v, s)π} ∈ E(Cσ(Γ))

{(uϕπ , uζXπ)(vϕπ , vζXπ s)} ∈ E(Cσ(Γ)).

32

Thus {uϕπ , vϕπ} ∈ E(Γ) and {uϕπ , vϕπ}σ = uζXπ vζXπ s, and so

uζXπ{uϕπ , vϕπ}σvζXπ = {u, v}σ

(uϕ
−1
π)ζXπ{u, v}σ(vϕ

−1
π)ζXπ = {uϕ

−1
π , vϕ

−1
π }σ

{u, v}σ = (uϕ
−1
π)ζXπ{uϕ

−1
π , vϕ

−1
π }σ(vϕ

−1
π)ζXπ

{u, v}σ = u
ζ
(Xπ)ϕπ {uϕ

−1
π , vϕ

−1
π }σvζ(Xπ)ϕπ

{u, v}σ = {u, v}σ
ζXπ

ϕπ

.

Therefore, ζXπϕπ ∈ SwAut(Σ) and f is well defined.

We next want to show that f is a surjective homomorphism. We will first prove f is a

homomorphism. First, let g, h ∈ GP . Then

(gh)f = ζXghϕgh.

Suppose that x ∈ Xgh. Then (x,+)gh = (y,−) for some y, and since GP stabilizes P setwise

by definition, (x,−)gh = (y,+). Now, if x ∈ Xg and x
ϕg ∈ Xh, then

(x,+)gh = (xϕg ,−)h = ((xϕg)ϕh ,+),

and so x ̸∈ Xgh. Furthermore, if x ̸∈ Xg and x
ϕg ̸∈ Xh, then

(x,+)gh = (xϕg ,+)h = ((xϕg)ϕh ,+),

so as before, x ̸∈ Xgh. However, let x ∈ Xg and x
ϕg ̸∈ Xh, so

(x,+)gh = (xϕg ,−)h = ((xϕg)ϕh ,−).

33

Likewise, if x ̸∈ Xg and x
ϕg ∈ Xh, then

(x,+)gh = (xϕg ,+)h = ((xϕg)ϕh ,−).

Therefore, exactly one of x ∈ Xg and xϕg ∈ Xh holds if x ∈ Xgh. If xϕg ∈ Xh, then

x ∈ (Xh)
ϕ−1
g , so we may conclude Xgh = Xg△Xϕg

−1

h . Next, note that as

(v, s)gh = ((v, s)g)h,

we can conclude that

((v, s)gh)δ = (((v, s)g)h)δ,

and thus that

ϕgh = ϕgϕh.

Therefore, by the definition of the binary operation of SwAut(Σ),

(gf)(hf) = (ζXgϕg)(ζXhϕh) = ζ
Xg△(Xh)

ϕ−1
g
ϕgϕh = ζXghϕgh = (gh)f ,

and so f is a homomorphism.

We next will prove f is surjective. Let ζXϕ ∈ SwAut(Σ). Then for all {u, v} ∈ E(Γ),

{u, v}σ = {u, v}σζXϕ = uζXϕ{uϕ−1

, vϕ
−1}σvζXϕ

{uϕ, vϕ}σ = {uϕ, vϕ}σζXϕ = (uϕ)ζXϕ{u, v}σ(vϕ)ζxϕ = uζX{u, v}σvζX ,

34

and equivalently,

{u, v}σ = uζX{uϕ, vϕ}σvζX .

Next, define ξ : V (Cσ(Γ)) → V (Cσ(Γ)) by (v, s)ξ = (vϕ, vζXs).

{(a, r), (b, s)} ∈ E(Cσ(Γ)) ⇐⇒ {a, b} ∈ E(Γ) and rs = {a, b}σ

⇐⇒ {aϕ, bϕ} ∈ E(Γ) and rs = aζX{aϕ, bϕ}σbζX

⇐⇒ {aϕ, bϕ} ∈ E(Γ) and (aζXr)(bζXs) = {aϕ, bϕ}σ

⇐⇒ {(a, r), (b, s)}ξ ∈ E(Cσ(Γ)).

Thus ξ ∈ GP . Note that by the definition of ξ, (v, s)ξ = (v,−s) if and only if vζX = −; that

is, if and only if v ∈ X. Also, (v, s)ξ = (vϕ, vζXs), so ((v, s)ξ)δ = vϕ, and ξf = ζXϕ by the

definition of f . Consequently, f is a surjection.

Finally, let κ ∈ ker(f), so

κf = ζXκϕκ = ζ+ id.

Then ζXκ ∈ ζ+ and so Xκ = ∅ or Xκ = V (Γ). Also, vϕκ = ((v, s)κ)δ = v, and so (v, s)κ =

(v, r) for all v. Thus for all v, we may define κ+ and κ− by

(v, s)κ
+

= (v, s)

(v, s)κ
−
= (v,−s),

corresponding to Xκ = ∅ and Xκ = V (Γ), respectively. Accordingly, ker(f) = {κ+, κ−}. By

the First Isomorphism Theorem,

GP/{κ+, κ−} ∼= SwAut(Σ).

35

QED

Our first algorithm can use this result to great effect. Once signed double cover rep-

resentatives are found for each switching isomorphism class, we may use GAP methods to

determine its automorphism group, the stabilizer of P therein, and its quotient by the group

generated by κ. This enables us to quickly find the abstract group isomorphic to SwAut(Σ)

for Σ a representative in each switching isomorphism class. The code for Algorithm 1 can be

found in Appendix A, and selected examples of its use in determining switching automor-

phism groups can be found in Chapter 5.

3.2 An More Efficient Approach to Enumeration

We shall introduce some new concepts that will help convert the problem of enumerating

switching isomorphism classes to a problem that is easier to conceptualize and compute.

Definition 3.7. Let Γ be a simple connected graph. The cycle space CΓ is the set of

all subgraphs of Γ wherein every vertex is incident with an even number of edges. These

subgraphs are called Eulerian subgraphs. CΓ forms a vector space over F2 with addition

defined as symmetric difference on the edges of the vector cycles.

The elements of cycle spaces can be constructed from all the linear combinations of its

basis cycles. We can find basis cycles for any graph with the help of a special subgraph

known as a spanning tree.

Definition 3.8. For a connected graph Γ, a spanning tree T is a connected subgraph of

Γ such that V (T) = V (Γ) and T contains no cycles. That means given any two vertices

u, v ∈ V (T), there is exactly one path of edges from u to v in E(T). A leaf of a tree is a

vertex of degree 1.

Lemma 3.9. Any spanning tree for a connected graph Γ has |V (Γ)| − 1 edges.

36

Proof. Let T be a spanning tree for Γ. Then T has |V (Γ)| vertices, so it is sufficient to prove

that any tree with n vertices has n−1 edges. We proceed by induction. First, suppose n = 1.

Then clearly T1 has no edges, since an edge requires 2 vertices. Assume that if |V (Tn)| = n,

then |E(Tn)| = n − 1. We consider a tree Tn+1 with n + 1 vertices. There must exist a

vertex that is incident with only one edge. This is because if every vertex were adjacent

to 2 or more edges, then we could create a cycle by choosing any vertex v1, traveling to an

adjacent vertex v2, then from v2 to v3 and so on (which is possible because every vertex is

adjacent to at least 2 others). Eventually a vertex must be repeated, lest the graph have

infinite vertices. So, let v ∈ V (Tn+1) be incident with one edge. Then removing v would only

remove the edge incident with v, so the resulting graph Tn+1 − v would still be connected.

Of course, removing a vertex and edge would not create a cycle, so Tn+1 − v would be a tree

on n vertices. From the induction hypothesis, Tn+1 − v has n− 1 edges, and so we conclude

that Tn+1 had n edges. QED

Definition 3.10. Let T be a spanning tree for the graph Γ, and consider the set S =

E(Γ) − E(T) of edges of Γ that are not in T . For each e ∈ S, there exists one cycle in Γ

that consists of e and edges in T . These cycles are called fundamental basis cycles for CΓ.

Lemma 3.11. Fundamental basis cycles are unique for a given spanning tree, and they

indeed form a basis of CΓ.

Proof. Let T be a spanning tree for Γ, and let {u, v} ∈ S = E(Γ) − E(T). Since T spans

Γ, u, v ∈ V (T), and since T is connected, there exists a path from u to v within T , which

forms a cycle with {u, v}. If there existed another path from u to v within T , then it with

the first path would contain a cycle, contradicting that T was a tree, so the path (and thus

cycle) must be unique.

Let B be the set of all such cycles. Since each contains a unique edge from S = E(Γ)−

E(T) by construction, they are linearly independent under symmetric difference (the additive

operation of CΓ). It remains only to prove that B spans CΓ. Let C ∈ CΓ be an arbitrary

37

Eulerian subgraph of Γ, and let X = E(C) ∩ S be the set of edges in C that are not in T .

Then if we let Cx denote the unique cycle in B containing x,

∑
x∈X

Cx + C ∈ CΓ,

with addition the normal symmetric difference, since each element in the sum is a member

of CΓ and vector spaces are closed. Note that

S ∩

(∑
x∈X

Cx + C

)
= ∅,

because every edge in C not contained in T is eliminated by some cycle inX, by construction.

So
∑

x∈X Cx + C is a subgraph of T . If a tree T contains no cycles (by definition), then

any subgraph of T cannot contain any cycles, so
∑

x∈X Cx + C contains no cycles. So

if
∑

x∈X Cx + C contains any edges, there must be some vertex in
∑

x∈X Cx + C that is

incident with only 1 edge, as we discussed in the proof of Lemma 3.7. However, a vertex

incident with only 1 edge would contradict that
∑

x∈X Cx+C ∈ CΓ, so we can conclude that

this graph had no edges. That is,

∑
x∈X

Cx + C = 0,

for 0 representing the empty Eulerian graph. That is,
∑

x∈X Cx = C, so C can be written

as the linear combination of B. This makes B a basis for CΓ. QED

We note that CΓ has dimension |B| = |E(Γ)| − |V (Γ)|+1, by Lemma 3.7, as it is formed

by the set of edges not included in a spanning tree of Γ.

It is likely unclear what cycle spaces and Eulerian subgraphs have to do with enumerating

the switching isomorphism classes of signed graphs. However, there is a fundamental rela-

tionship between the two concepts. It turns out that signed graphs and switching functions

can be defined using a similar cohomological framework as concepts called Seidel switching

38

and two-graphs, whose own “switching classes” correspond directly with Eulerian graphs (cf.

Cameron [3] and [5]). For our purposes, we are concerned with the following result, which

is essential to our second algorithm.

Proposition 3.12. There is a one-to-one correspondence between switching isomorphism

classes of Γ and Aut(Γ)-isomorphism classes of Eulerian subgraphs of Γ.

This powerful theorem has been demonstrated by Zaslavsky [19], [20] and is achievable

using more general methods of Cameron [3] [5], Hofmeister [10], and Seidel [16]. We shall

prove some preliminary results ourselves that will give context to this theorem.

Let Γ be a simple, connected graph, and fix a spanning tree T . Let X be the set of edges

of Γ not in T .

Lemma 3.13. Every signed graph Σ is switching equivalent to a signed graph Π = (Γ, σ)

such that {u, v}σ = + for all {u, v} ∈ E(T).

Proof. Let Σ = (Γ, σ) be a signed graph of Γ such that |E(T)| = 1 and {u, v} ∈ E(T). If

{u, v}σ = −, then we may switch v such that {u, v}σ
ζ{v}

= +. Next, let Γ be such that

|E(T)| = k, and assume that there is some switching of Σ that will make every edge in T

positive. Then consider Γ such that |E(T)| = k+1. The spanning tree T must contain some

edge incident with a leaf, say e. The tree T ′ with E(T ′) = E(T)−{e} has |E(T ′)| = k edges,

and by the induction hypothesis, we may switch some vertices in V (Γ) to make the edges

of T ′ positive. Then, e is either positive or negative; if negative, switch the leaf incident

with e. This leaves {u, v} positive for all {u, v} ∈ E(T), for any size spanning tree T by

induction. QED

Lemma 3.14. There is a one-to-one correspondence between switching equivalence classes

of Γ and signed graphs (Γ, σ) such that {u, v}σ = + for all {u, v} ∈ E(T).

Proof. Let Σ = (Γ, σ) be a signed graph of Γ. By Lemma 3.13, the switching equivalence

class containing Σ contains a signed graph that signs every edge in T positive.

39

Suppose Σ,Π are switching-equivalent signed graphs of Γ such that T is all positive on

each. By definition, there exists some ζY ∈ Sw(Γ) such that ΣζY = Π, and ζY does not

change the sign of any t ∈ E(T). That is, for every t ∈ T , either both vertices are switched

by ζY , or neither is. Since T is connected, any nontrivial partition of V (T) will induce an

edge cut, and so it must be that either Y = ∅ or V (T) ⊆ Y . But T spans V (Γ), so either

Y = ∅ or Y = V (Γ), and thus ζX = ζ+. Thus Σ = Π, and signed graphs with positive

signs on T are unique for each switching equivalence class. Of course, if two signed graphs

A = (Γ, σA) and B = (Γ, σB), where {u, v}σA = {u, v}σB = + for all {u, v} ∈ E(T), are

equal, they are in the same switching equivalence class, and so there is a bijection between

switching equivalence classes and signed graphs with T positive. QED

Lemma 3.15. We call a cycle balanced if the product of the signs of its edges is positive.

For each switching equivalence class, there is a set of balanced cycles that is unique to the

class, and every member of the class has exactly those balanced cycles.

Proof. From Lemma 3.14, two signed graphs Σ,Π that are not switching equivalent can each

be switched to a graph that is all positive on T , and these two new signed graphs ΣT ,ΠT are

not identical. That is, there is some edge e in E(Γ)−E(T) that is negative on, say, ΣT , and

positive on ΠT . The cycle formed by e and the unique path between its vertices in T is a cycle,

one positive in ΠT but negative in ΣT , and so ΣT and ΠT do not have the same balanced

cycles. Switching does not change the set of balanced cycles, because if a cycle contains a

switched vertex v, then both edges in the cycle that are incident with v change signs, which

does not change the sign of the cycle. Since every member of a switching equivalence class

can be switched to the identical signed graph with all positive T , all members of the class

have the same set of balanced cycles. QED

Lemma 3.16. The set of balanced cycles in a signed graph Σ is determined by the signs of

the edges in X = E(Γ)− E(T) once Σ is switched to make T all-positive.

Proof. As before, let B be the set of cycles formed by each edge e ∈ X and the unique path

40

between the vertices of e in T . Every cycle is an Eulerian subgraph, and so is formed by

some sum of basis cycles in B. If two cycles C1, C2 are added to make another cycle, then

it must be that E(C1) ∩ E(C2) is some path; let it be p. Now, for σ denoting the sign of a

subgraph calculated by multiplying the signs of each edge in the subgraph, we have that

Cσ
1 = (C1 − p)σ · pσ,

Cσ
2 = (C2 − p)σ · pσ.

The sign of C1 + C2 is:

(C1 + C2)
σ = (C1 − p)σ · (C2 − p)σ = (C1 − p)σ · (C2 − p)σ · (pσ)2 = Cσ

1 · Cσ
2 ,

so the sign of any balanced cycle is determined by the product of the signs the basis cycles

that form it. QED

Theorem 3.17. There is a one-to-one correspondence between Γ/Sw(Γ), the set of switching

equivalence classes of Γ, and CΓ, the set of Eulerian subgraphs of Γ.

Proof. Let Ψ be a switching equivalence class of Γ. From Lemmas 3.14 and 3.15, we know

that there exists a unique signed graph Ψ = (Γ, σ) ∈ Ψ such that for {u, v} ∈ E(T),

{u, v}σ = +.

Let Ψ
− ⊆ X be the set of edges {u, v} ∈ X = E(Γ)− E(T) such that

{u, v}σ = −.

That is, Ψ
−
is the set of negative edges in the unique signed graph of Ψ wherein every edge

of T is signed positive. Recall from Lemma 3.11 that each edge x ∈ X forms a cycle Cx with

41

T in CΓ, the set of Eulerian subgraphs of Γ, and these Cx form a basis B of CΓ. Thus

∑
x∈Ψ−

Cx

is some Eulerian subgraph in CΓ. Let Γ/Sw(Γ) refer to the switching equivalence classes of

Γ. Then we define µ : Γ/Sw(Γ) → CΓ by

Ψµ =
∑
x∈Ψ−

Cx,

which formalizes the correspondence we just discussed. We know µ is well-defined since the

representative of Ψ that signs every edge in E(T) positive is unique, and so are the sums of

basis cycles Cx ∈ B.

Next, if E is some Eulerian subgraph of Γ, then

E =
∑
x∈Y

Cx

for some Y ⊆ X, since B is a basis for CΓ. Clearly, σ defined by

{u, v}σ =

−, {u, v} ∈ Y

+, {u, v} ∈ E(Γ)− Y,

forms a signed graph Σ := (Γ, σ). By definition, Σ is positive on every edge in E(T), so Σ = Ω

for Ω the switching equivalence class that contains Σ, and Σ is the unique representative of

Ω that is all-positive on T . Thus, Ωµ = E and µ is surjective.

Finally, suppose we have two switching equivalence classes A and B such that

Aµ = Bµ = E.

42

Since E ∈ CΓ,

E =
∑
x∈Z

Cx

for some Z ⊆ X. As Aµ = Bµ = E, we know A
−
= B

−
, so A = B. If two equivalence classes

share a member, then they must be identical, so A = B and µ is a bijection. QED

We also note that the association of switching equivalence classes with sets of balanced

circles can be observed by noting that the set of positive edges in P := E(Ψ)∩X corresponds

to a set of basis cycles {Cx | x ∈ P} ⊆ B. From Lemmas 3.15, 3.16, the balanced cycles in

B determine uniquely the balanced cycles for all Σ ∈ Ψ.

Theorem 3.18. There is a one-to-one correspondence between switching isomorphism classes

of Γ and Aut(Γ)-isomorphism classes of Eulerian subgraphs of Γ.

Proof. See Zaslavsky [19] and Cameron [5, 3]. QED

The pertinence of this theorem cannot be overstated, as it is now sufficient for us to

enumerate the Eulerian subgraphs of Γ, up to Aut(Γ)-isomorphism, to count its switching

isomorphism classes.

3.2.1 The Algorithm

This program counts the number of Eulerian subgraphs of a given graph up to Aut(Γ)-

isomorphism (we shall often say Eulerian graphs are isomorphic to mean they are isomor-

phic under Aut(Γ) when Γ is understood by context). That is, it determines the number

|CΓ/Aut(Γ)| of orbits of the set CΓ of all such graphs under Aut(Γ). By Theorem 1.12:

|CΓ/Aut(Γ)| =
1

|Aut(Γ)|
∑

π∈Aut(Γ)

|fixπ(CΓ)|.

Since the action on CΓ is a representation of Aut(Γ), each permutation π ∈ Aut(Γ) is a linear

transformation from CΓ to itself, and can be associated with a matrix Mπ over F2 defined in

43

terms of B. Furthermore, fixπ(CΓ) can be identified with the set of vectors in F|B|
2 fixed by

Mπ.

|fixπ(CΓ)| = |{λ ∈ F|B|
2 | λMπ = λ}|

= |{λ ∈ F|B|
2 | λ(Mπ − I) = 0}|

= | ker(Mπ − I)|.

Substituting, we have that

|CΓ/Aut(Γ)| =
1

|Aut(Γ)|
∑

π∈Aut(Γ)

| ker(Mπ − I)|.

The computer algebra system GAP has a function

BasisNullspaceModN(M,n)

that returns a basis for the nullspace of a matrix M over the ring Z/nZ. Generally, if V is

a vector space over Fp with finite dimension dim(V), then

|V | = pdim(V).

Therefore, we have that if Nπ is a basis for the nullspace of Mπ − I, then

| ker(Mπ − I)| = 2null(Mπ−I) = 2|Nπ |,

|CΓ/Aut(Γ)| =
1

|Aut(Γ)|
∑

π∈Aut(Γ)

2|Nπ |.

Computationally, we may calculate |Nπ| as

Length(BasisNullspaceModN(M,2))

in GAP, and if we can calculate Mπ for each π ∈ Aut(Γ), the enumeration of Eulerian

subgraphs will quickly follow. To accomplish this, we first find a spanning tree for Γ and

44

define its fundamental basis cycles B using GAP’s Digraphs package [2]. We then calculate

the image of each such basis cycle under π and write it as a linear combination of B. Note

that it is easy to determine which basis vectors appear in the linear combination defining an

arbitrary C ∈ CΓ by noting which edges in C are not in the spanning tree used to define B.

Once we write the image of each basis cycle as a vector, we form Mπ with such vectors as its

columns. This process is efficient, and typically limited by the order of the automorphism

group of the graph in question. It turns out that we need not create a matrix for every

permutation.

Lemma 3.19. If π and ψ are in the same conjugacy class of Aut(Γ), then |Nπ| = |Nψ|.

Proof. By definition of conjugacy, there exists some γ ∈ Aut(Γ) such that

γπγ−1 = ψ.

Since each permutation is analogous to a matrix in the representation CΓ of Aut(Γ) over F2:

MγMπMγ−1 =MγMπM
−1
γ =Mψ,

MγMπM
−1
γ − I =Mψ − I,

MγMπM
−1
γ −MγM

−1
γ =Mγ(Mπ − I)M−1

γ =Mψ − I.

So Mπ − I and Mψ − I are similar matrices, and they must have the same nullity. By

definition, |Nπ| = |Nψ|. QED

This fact helps us reduce the number of necessary computations. Let Cl(Γ) be the set of

conjugacy classes of Aut(Γ), where Cl(π) refers to the conjugacy class containing π. Since

we have shown |Nπ| is constant across these classes:

|CΓ/Aut(Γ)| =
1

|Aut(Γ)|
∑

π∈Aut(Γ)

2|Nπ | =
1

|Aut(Γ)|
∑

Cl(π)∈Cl(Γ)

|Cl(π)| · 2|Nπ |.

45

This refinement reduces the number of nullity computations we must make from |Aut(Γ)|

to |Cl(Γ)|. This completes the algorithm, and by Theorem 3.18, it calculates the number

of switching isomorphism classes for any graph. Selected results using this program can be

found in Chapter 5, and the code itself is listed in Appendix B.

46

Chapter 4

Switching Classes of Certain

Generalized Petersen Graphs

In this chapter we shall use Theorems 1.12 and 1.15 to derive an explicit formula for the

number of switching isomorphism classes for certain species of a family of graphs called

Generalized Petersen graphs.

Definition 4.1. Let n ⩾ 3 and k < n
2
. Then the Generalized Petersen graph GP (n, k) has

vertices

V (GP (n, k)) = {ui | 1 ⩽ i ⩽ n} ∪ {vi | 1 ⩽ i ⩽ n}.

with edge set defined by

{ui, uj} ∈ E(GP (n, k)) ⇐⇒ j − i ≡ 1 (mod n),

{vi, vj} ∈ E(GP (n, k)) ⇐⇒ j − i ≡ k (mod n),

{ui, vj} ∈ E(GP (n, k)) ⇐⇒ j = i.

Geometrically, GP (n, k) consists of an outer ring of n vertices ui that are each connected

to an inner set of n vertices vi by a series of spoke edges {ui, vi}. Given an inner vertex vi,

we travel k spaces around the inner ring and add the edge {vi, vi+nk}, etc., where +n denotes

47

addition modulo n. Below are examples for GP (3, 1) and GP (5, 2); the latter is the original

Petersen graph that lends its name to the family.

u1

v1

v3

u3

v2

u2

u1

v1

v5 v2u5 u2

v4 v3

u3u4

Theorem 4.2 (Frucht [6]). Let GP (n, k) be a Generalized Petersen graph. Then

Aut(GP (n, k)) ∼=

Dn ⋊ Z2 k2 ≡ 1 (mod n)

Zn ⋊ Z4 k2 ≡ −1 (mod n)

Dn k2 ̸≡ ±1 (mod n),

where Dn denotes (here and elsewhere) the dihedral group of an n-gon. There are seven

exceptions: GP (4, 1), GP (5, 2), GP (8, 3), GP (10, 2), GP (10, 3), GP (12, 5), and GP (24, 5).

Corollary 4.3 (Frucht [6]). For Generalized Petersen graphs GP (n, k), excluding the seven

exceptions, there exists no permutation π ∈ Aut(GP (n, k)) such that {ui, vi}π = {ua, ub} or

{ui, vi}π = {va, vb}. That is, the spoke edges form a single orbit under Aut(GP (n, k)).

Definition 4.4. The 2-colored bracelet number on n points, denoted Bn,2, is the number

of distinct bracelets with n black or white beads, where two such bracelets are considered

indistinct or equivalent if one can be obtained by the other via rotation or reflection (turning-

over). Formally, an n−bracelet is a cyclic graph Cn and a coloring function f : V (Cn) →

{black, white}.

We can imagine a ring of n beads, each colored white or black. The set of actions we can

perform to this bracelet, viz. rotating it by some number or flipping it over, form a group

48

of symmetries, called the dihedral group Dn. Note that the following two bracelets would

not be considered distinct by our definition, as rotating the left bracelet clockwise by three

beads and then flipping vertically (a valid action) produces the bracelet on the right.

We can use Theorem 1.15 to construct an explicit formula for Bn,2.

Lemma 4.5. Let ϕ denote Euler’s totient function. Then

Bn,2 =

1
n

(∑
d|n ϕ(d)2

n
d
−1
)
+ 3 · 2n−4

2 n even

1
n

(∑
d|n ϕ(d)2

n
d
−1
)
+ 2

n−1
2 n odd.

Proof. An n-bracelet can be thought of as the graph Cn with automorphism group Dn,

consisting of rotations ρ and reflections γ. We shall apply Theorem 1.15 to the action of Dn

on 2Cn , the set of 2-coloring functions on the vertices of Cn:

Bn,2 = |2Cn/Dn| =
1

|Dn|
∑
π∈Dn

2c(π).

We note that Dn = R1 ∪R2, where R1 is the set of rotations, including 1, and R2 is the set

of reflections.

Bn,2 =
1

2n

(∑
π∈R1

2c(π) +
∑
π∈R2

2c(π)

)
.

Let ρi ∈ R1 be a rotation such that {uk, vk}ρ1 = {uk+ni, vk+ni}. Then ρi has order n
gcd(i,n)

, and

has a cycle representation consisting of gcd(i, n) cycles of length n
gcd(i,n)

. Let d|n. Then there

are ϕ(n
d
) numbers i ⩽ n such that gcd(i, n) = d. This is because we can multiply d by each

number coprime to n
d
, which produces numbers divisible by d but with no additional prime

49

factors of n. Equivalently, for d|n, there are ϕ(d) numbers i ⩽ n such that gcd(i, n) = n
d
.

This means that for each d|n, there are ϕ(d) distinct i such that ρi contains
n
d
cycles. So,

∑
π∈R1

2c(π) =
∑
d|n

ϕ(d)2
n
d .

If n is even, there are two types of reflections: those whose axes pass through two points

of Cn, and those whose axes pass through none. There are n
2
of each, corresponding to the

number of possible axes. The first species has two fixed points (the points through which

the axis travels) and n−2
2

transpositions, for a total of 2 + n−2
2

= n+2
2

cycles. The second

species fixes no points, and so has n
2
transpositions. Thus for n even:

∑
π∈R2

2c(π) =
n

2

(
2
n+2
2 + 2

n
2

)
= n

(
2
n
2 + 2

n−2
2

)
= 3n · 2

n−2
2 ,

Bn,2 =
1

2n

∑
d|n

ϕ(d)2
n
d + 3n2

n−2
2

 =
1

n

∑
d|n

ϕ(d)2
n
d
−1 + 3 · 2

n−4
2 .

If n is odd, then there is one type of reflection; that which travels through one point. There

are n of these, and each fixes one point and reflects the remaining n−1
2

for a total of n+1
2

cycles. Thus for n odd: ∑
π∈R2

2c(π) = n2
n+1
2 ,

Bn,2 =
1

2n

∑
d|n

ϕ(d)2
n
d + n2

n+1
2

 =
1

n

∑
d|n

ϕ(d)2
n
d
−1 + 2

n−1
2 .

QED

Definition 4.6. Let Bn,2 be a bracelet, and let B′
n,2 be the bracelet achieved by turning every

white bead in Bn,2 black and every black bead white. This is the complement bracelet of Bn,2.

A self-complementary bracelet is one that is equivalent (under rotations and turning-over)

to its complement.

50

Note that self-complementary bracelets must have the same number of black and white

beads and so must be even in length. The example bracelet on page 46 is self-complementary.

Lemma 4.7. Let Sn,2 denote the number of self-complementary bracelets on n beads.

Sn,2 =

1
n

∑
d|n

2
ϕ(2d)2

n
2d

−1 + 2
n−4
2 n even

0 n odd.

Proof. If n is odd, then there cannot be as many black beads as white beads, so no odd

bracelet can be self-complimentary. For the proof of S2n,2, which applies Theorem 1.15, see

Palmer and Robinson [14]. QED

With this terminology we can begin to construct concise formulas for the number of

switching isomorphism classes of GP (n, k). By Theorem 3.18, it is sufficient to count the

number of isomorphism-free Eulerian subgraphs. We know that the dimension of the cycle

space C of any Generalized Petersen graph GP (n, k) is

|E(GP (n, k))| − |V (GP (n, k))|+ 1 = 3n− 2n+ 1 = n+ 1.

Thus any n+1 linearly independent Eulerian subgraphs form a basis for C(GP (n, k)). With

this understanding, we shall prove formulas for the number of switching isomorphism classes

for three species of Generalized Petersen graphs.

4.0.1 Prism Graphs

A Generalized Petersen graph of the form GP (n, 1) consists of two concentric regular n-gons

connected at each vertex. Because of their similarity to the three-dimensional figures, they

are often called prism graphs.

Lemma 4.8. Let Q consist of the n cycles {{ui, ui+n1}, {ui, vi}, {vi, vi+n1}, {ui+n1, vi+n1}},

which are the 4-cycles formed by each pair of adjacent spoke edges. Let O be the outer n-cycle

51

{{u1, u2}, {u2, u3}, ...{un, u1}}. Then B = Q ∪ {O} forms a basis for C, the cycle space of

GP (n, 1).

Proof. Since |B| = n + 1, it is sufficient to prove that the cycles in B are linearly indepen-

dent. Each cycle qi = {{ui, ui+n1}, {ui, vi}, {vi, vi+n1}, {ui+n1, vi+n1}} ∈ Q contains an edge

{ui, ui+n1} that is not contained within any other qj by construction. Since addition in C is

symmetric difference of edges, the cycles in Q are linearly independent. O contains every

such edge {ui, ui+n1}, and so if

f1q1 + f2q2 + · · ·+ fnqn = O,

for fi ∈ F2, then it must be that f1, ..., fn = 1. However, the inner edges {vi, vi+n1} are also

contained in exactly one qi ∈ Q, and so

{{v1, v2}, {v2, v3}, ...{vn, v1}} ⊂ q1 + q2 + · · ·+ qn.

Since {{v1, v2}, {v2, v3}, ...{vn, v1}} ̸∈ O, we know q1 + q2 + · · · + qn ̸= O. So B is linearly

independent. QED

Thus each Eulerian subgraph C ∈ C can be written as some linear combination of B.

We can represent each such combination as a black and white bracelet with n beads, and

a decision to include O or not. Each bead is black if the cycle to which it corresponds

has coefficient 1 in the linear combination of B and white if the coefficient is 0. Below is

an example of an Eulerian subgraph (dashed) of GP (3, 1) and the corresponding bracelet

representation, where we add a center “bead” colored black to denote that we are including

O.

52

Recall that Aut(GP (n, 1)) ∼= Dn ⋊ Z2. Every permutation π ∈ Dn ⋊ Z2 can be written as

δξk for δ ∈ Dn and ⟨ξ⟩ ∼= Z2. For our purposes, this means every permutation of GP (n, 1) is

some combination of a normal bracelet permutation (that is, rotations and reflections) and

then a decision to turn the graph inside-out, or not. Specifically, identifying Dn with its

isomorphic subgroup of Aut(GP (n, 1)):

Aut(GP (n, 1)) ∼= Dn ⋊ ⟨(u1 v1)(u2 v2) · · · (un vn)⟩.

Lemma 4.9. There exists no isomorphism class of C that contains an Eulerian subgraph

with O as a basis vector and an Eulerian subgraph without O as a basis vector.

Proof. Since (Corollary 4.3) the spokes of GP (n, 1) form an orbit, for q ∈ Q, qπ ∈ Q for all

π ∈ Aut(GP (n, 1)). However, the image of O under any permutation in Dn is O, and the im-

age ofO under ξ = (u1v1)(u2v2) · · · (unvn) is the inner cycle I := {{v1, v2}, {v2, v3}, ..., {vn, v1}}.

It is easily verified that

I = q1 + q2 + · · ·+ qn +O.

Letting fi, gi ∈ F2, if
∑

i fiqi +O ∼
∑

i giqi, then(∑
i

fiqi +O

)π

=
∑
i

giqi.

53

So, if π ∈ Dn, then

∑
i

giqi =

(∑
i

fiqi

)π

+Oπ

=
∑
i

hiqi +O,

for some hi ∈ F2. If instead π = δξ, then

∑
i

giqi =

(∑
i

fiqi

)π

+Oπ

=
∑
i

hiqi + I

=
∑
i

(hi + 1)qi +O,

for some hi ∈ F2. Writing the same cycle as two different linear combinations contradicts

the linear independence of B, so we may conclude that
∑

i fiqi ̸∼
∑

i giqi +O QED

We may thus count the equivalence classes in C by considering Eulerian subgraphs with

and without O in turn. Let C ∈ C such that O has coefficient 0 in the construction of C as

a combination of B. This means that C is a linear combination of cycles in Q. Note that

under the action of ξ, qξi = qi, and so Cδξ = Cδ, it is sufficient to determine the number of

isomorph-free Eulerian subgraphs of combinations of C under Dn. As we mentioned, each

such combination is a bracelet, and Dn is the automorphism group of bracelets. There are

thus Bn,2 distinct Eulerian subgraphs in C that do not contain O. Next, let C ∈ C such that

O is included in the construction of C as a sum of cycles in B.

Lemma 4.10. Let
∑

i fiqi +O be a cycle in C. Then
∑

i fiqi +O ∼
∑

i(fi + 1)qi +O.

Proof. The result follows from the proof of Lemma 4.9. QED

Proposition 4.11. Let |GP (n, 1)/SwAut(GP (n, 1))| denote the number of switching iso-

54

morphism classes of the graph GP (n, 1) for n ⩾ 3, n ̸= 4. Then

|GP (n, 1)/SwAut(GP (n, 1))| = 3Bn,2 + Sn,2
2

.

Equivalently,

|GP (n, 1)/SwAut(GP (n, 1))| =

3
n

∑
d|n ϕ(d)2

n
d
−2 + 1

n

∑
d|n

2
ϕ(2d)2

n
2d

−2 + 5 · 2n−4
2 n even

3
n

∑
d|n ϕ(d)2

n
d
−2 + 3 · 2n−3

2 n odd.

Proof. If
∑

i fiqi is a bracelet, then the beads are colored black when fi = 1 and white when

fi = 0. Thus the colors change when fi 7→ fi + 1, and so the bracelet for
∑

i(fi + 1)qi is

the complement of that for
∑

i fiqi. Now, we know that there are Bn,2 distinct beads under

Dn, and thus there are Bn,2 distinct Eulerian subgraphs of the form
∑

i fiqi+O if we do not

consider the permutation ξ. We consider it now.

Let C =
∑

i fiqi + O ∈ C such that the bracelet for
∑

i fiqi is self-complementary. Then

by Lemma 4.10,

Cξ =
∑
i

(fi + 1)qi +O =
∑
i

fiqi +O = C,

and so Cξ = Cδ for δ = 1 ∈ Dn. That is, the image of C under ξ is not a “new” Eulerian

subgraph. Alternatively, if the bracelet representation of C ′ ∈ C is not self-complementary,

then C ′ξ ̸= C ′δ for any δ ∈ Dn. Therefore, C
′ξ and C ′ are equivalent under Aut(GP (n, 1)) but

not under Dn. Since |ξ| = 2, there are half as many isomorphism classes for C ′ =
∑
fiqi+O

where C ′ is not self-complementary, because ξ brings two classes that were disjoint under

Dn together. Naturally, there are Bn,2 − Sn,2 cycles C ′ ∈ C with non-self-complementary

bracelets, so they form Bn,2−Sn,2
2

isomorphism classes. To this we add the Sn,2 isomorphism

classes formed by the self-complementary bracelets, so there are

Bn,2 + Sn,2
2

55

orbits of C under Aut(GP (n, 1)) whose representatives contain O. Recall that there were

Bn,2 orbits of Eulerian subgraphs that did not contain O, and since we’ve proven these cases

disjoint,

|GP (n, 1)/SwAut(GP (n, 1))| = Bn,2 + Sn,2
2

+Bn,2 =
3Bn,2 + Sn,2

2
.

Applying Lemmas 4.5 and 4.7, we can write this more explicitly as

|GP (n, 1)/SwAut(GP (n, 1))| =

3
n

∑
d|n ϕ(d)2

n
d
−2 + 1

n

∑
d|n

2
ϕ(2d)2

n
2d

−2 + 5 · 2n−4
2 n even

3
n

∑
d|n ϕ(d)2

n
d
−2 + 3 · 2n−3

2 n odd.

QED

4.0.2 Generalized Petersen graphs for k2 ̸≡ ±1 (mod n)

From Theorem 4.2, Generalized Petersen graphs of this species have the automorphism group

Dn. That is, we need not be concerned about any permutations that switch the interior and

exterior edges, but rather only rotations and reflections.

Lemma 4.12. Let Q consist of the n cycles

{{ui, vi}, {vi, vi+nk}, {ui+nk, vi+nk}, {ui, ui+n1}, ..., {ui+nk−1, ui+nk}}

Let O be the outer n cycle {{u1, u2}, {u2, u3}, ..., {un, u1}}. Then B = Q∪{O} forms a basis

for C.

Proof. It is sufficient to prove the n + 1 cycles are linearly independent. Since each qi ∈ Q

contains the unique edge {vi, vi+nk}, Q is a linearly independent set. Suppose that

f1q1 + f2q2 + · · ·+ fnqn = O

for some fi ∈ F2. Then {u1, u2} ∈
∑
fiqi, so fj = 1 for some j. But {vj, vj+nk} ∈ qj, and

56

since this edge is unique to qj, it cannot be removed by the addition of any other qi, and so

{vj, vj+nk} ∈
∑
fiqi. This contradicts that

∑
fiqi = O. So B is linearly independent. QED

Proposition 4.13. Let k2 ̸≡ ±1 (mod n). Then |GP (n, k)/SwAut(GP (n, k))| = 2Bn,2,

excluding the special cases. Equivalently,

|GP (n, k)/SwAut(GP (n, k))| =

1
n

∑
d|n ϕ(d)2

n
d + 3 · 2n−2

2 n even

1
n

∑
d|n ϕ(d)2

n
d + 2

n+1
2 n odd.

Proof. As in the previous case, we can represent each C ∈ C as a bracelet denoting the

coefficients of Q paired with a decision to include O or not. Since Aut(GP (n, k)) ∼= Dn, the

only permutations on B are rotations or reflections of Q; O is fixed by every permutation.

We know that there are Bn,2 distinct bracelets on n beads, and for each, we have the choice

to include O or not. Thus, there are 2Bn,2 distinct Eulerian subgraphs in C, and

|GP (n, k)/SwAut(GP (n, k))| = 2Bn,2.

This is equivalent to the formula

|GP (n, k)/SwAut(GP (n, k))| =

1
n

∑
d|n ϕ(d)2

n
d + 3 · 2n−2

2 n even

1
n

∑
d|n ϕ(d)2

n
d + 2

n+1
2 n odd.

by Lemma 4.5. QED

4.0.3 Generalized Petersen graphs for k2 ≡ −1 (mod n)

Recall from Theorem 4.2 that Aut(GP (n, k)) ∼= Zn⋊Z4, and let τ ∈ Aut(GP (n, k)) permute

the interior and exterior vertices (respectively, edges, since spokes are stabilized setwise) of

the graph. Then uπ1 = vm for some 1 ⩽ m ⩽ n. Since u2 is adjacent to u1, then u
τ
2 = vm+nk

57

or uτ2 = vm−nk, whence

uτi = v(i−1)k+m and vτi = u(i−1)k+m,

or

uτi = v(1−i)k+m and vτi = u(1−i)k+m.

We will denote permutations of these forms as τ and τ ′ respectively, and let

iτ = (i− 1)k +m iτ
′
= (1− i)k +m

stand for the action of τ, τ ′ on the spoke edges {ui, vi}.

First, we observe the following facts, which will prove useful:

τ 2 : i 7→ 2− i+ (m− 1)(k + 1),

(τ ′)2 : i 7→ 2− i− (m− 1)(k − 1).

Lemma 4.14. Every spoke edge {ui, vi} is contained within an orbit of size 4 or smaller

under the action by ⟨τ⟩ or ⟨τ ′⟩. Specifically, orbits have size 1, 2, or 4.

Proof. It is sufficient to prove that iτ
4
= i(τ

′)4 = i.

iτ
4

= (iτ
2

)τ
2

= (2− i+ (m− 1)(k + 1))τ
2

= 2− 2 + i− (m− 1)(k + 1) + (m− 1)(k + 1) = i

i(τ
′)4 = (i(τ

′)2)(τ
′)2 = (2−i−(m−1)(k+1))(τ

′)2 = 2−2+i+(m−1)(k+1)−(m−1)(k+1) = i

The second result is a consequence of the Orbit-Stabilizer Theorem. QED

We shall now divide GP (n, k), k2 ≡ −1 (mod n) into cases and perform a series of

calculations to prove similar results for each.

Lemma 4.15. Let GP (n, k) be a Generalized Petersen graph such that k2 ≡ −1 (mod n)

and n is odd. Then under the action of ⟨τ⟩ or ⟨τ ′⟩, one spoke (ui, vi) is fixed, whereas all

58

other spokes are contained within an orbit of size 4, and there are n−1
2

such orbits.

Proof. Every square number k2 ≡ 0 or 1 (mod 4). Since n is odd and k2 ≡ −1 (mod n), it

must be that k2 is even, and so we can conclude that k2 ≡ 0 (mod 4). Thus k is even.

Now, suppose that iτ
2
= i. Then as shown,

i ≡ 2− i+ (m− 1)(k + 1) (mod n)

2(i− 1) ≡ (m− 1)(k + 1) (mod n).

Recall that we defined m as the image of 1 under τ or τ ′. Suppose that m is odd. Then

m− 1 is even.

i− 1 ≡
(
m− 1

2

)
(k + 1) (mod

n

gcd(n, 2)
).

Since n is odd:

i ≡
(
m− 1

2

)
(k + 1) + 1 (mod n).

This is the condition for iτ
2
= i. However, observe what happens to such an i under τ :

iτ ≡
((

m− 1

2

)
(k + 1) + 1

)τ
(mod n)

≡
((

m− 1

2

)
(k + 1) + 1− 1

)
k +m (mod n)

≡
(
m− 1

2

)
(k2 + k) +m (mod n)

≡
(
m− 1

2

)
(k − 1) +m− 1 + 1 (mod n)

≡
(
m− 1

2

)
k +

(
m− 1

2

)
+ 1 (mod n)

≡
(
m− 1

2

)
(k + 1) + 1 (mod n)

≡ i (mod n).

Thus the i for which iτ
2
= i satisfies iτ = i. That is, there is one spoke

(
m−1
2

)
(k + 1) + 1

59

(mod n) that is fixed by τ , and no spoke orbits of size 2 exist. Since every orbit is of size

1, 2, or 4, it must be that all spokes but the one that is fixed are in orbits of size 4. Orbits

are disjoint, and so of the n− 1 moved points, there are n−1
2

orbits of size 4.

Now suppose instead that m is even and again that iτ
2
= i for some i. Recall

2(i− 1) ≡ (m− 1)(k + 1) (mod n).

We add n ≡ 0 to each side:

2(i− 1) ≡ (m− 1)(k + 1) + n (mod n).

Since m is even, m− 1 is odd, as are k + 1 and n, so (m− 1)(k + 1) + n is even.

i− 1 ≡ (m− 1)(k + 1) + n

2
(mod

n

gcd(n, 2)
)

i ≡ (m− 1)(k + 1) + n

2
+ 1 (mod n).

Again we observe the image of this i under τ :

iτ ≡
(
(m− 1)(k + 1) + n

2
+ 1

)τ
(mod n)

≡
(
(m− 1)(k + 1) + n

2
+ 1− 1

)
k +m (mod n)

≡
(
(m− 1)(k + 1) + n

2

)
k +m− 1 + 1 (mod n)

2iτ ≡ (m− 1)(k2 + k) + kn+ 2(m− 1) + 2 (mod n)

≡ (m− 1)(k − 1) + kn+ 2(m− 1) + 2 (mod n)

≡ k(m− 1)− (m− 1) + 2(m− 1) + 2 (mod n)

≡ (m− 1)(k + 1) + 2 (mod n).

60

We add n ≡ 0 (mod n) to make the expression on the right even:

iτ ≡ (m− 1)(k + 1) + 2 + n

2
(mod

n

gcd(n, 2)
)

iτ ≡ (m− 1)(k + 1) + 2 + n

2
≡ i (mod n).

As before, if iτ
2
= i, then iτ = i. There is one fixed point (m−1)(k+1)+2+n

2
(mod n) and no

orbits of size 2. The remaining spokes are the n−1
2

orbits of size 4. The lemma is proven for

τ .

We will now briefly repeat the proof for τ ′. Recall that

i(τ
′)2 = 2− i− (m− 1)(k − 1) (mod n).

Then if i(τ
′)2 = i:

i ≡ 2− i− (m− 1)(k − 1) (mod n)

2(1− i) ≡ (m− 1)(k − 1) (mod n).

Let m be odd, so m− 1 is even.

1− i ≡
(
m− 1

2

)
(k − 1) (mod

n

gcd(n, 2)
)

i ≡ 1−
(
m− 1

2

)
(k − 1) (mod n).

61

We calculate iτ
′
:

iτ
′ ≡

(
1− 1 +

(
m− 1

2

)
(k − 1)

)
k +m (mod n)

≡
(
m− 1

2

)
(k2 − k) +m (mod n)

≡
(
m− 1

2

)
(−1− k) +m− 1 + 1 (mod n)

≡ (−k)
(
m− 1

2

)
+

(
m− 1

2

)
+ 1 (mod n)

≡ 1−
(
m− 1

2

)
(k − 1) (mod n)

≡ i (mod n).

So under τ ′, there is one fixed point and no orbits of size 2 for m odd. Let m be even and

iτ
′2
= i. Then:

2(1− i) ≡ (m− 1)(k − 1) (mod n)

≡ (m− 1)(k − 1) + n (mod n)

i ≡ 1− (m− 1)(k − 1) + n

2
(mod n).

62

And again, we see that this point is fixed:

iτ
′ ≡

(
1− (m− 1)(k − 1) + n

2

)τ ′
(mod n)

≡
(
(m− 1)(k − 1) + n

2

)
k +m (mod n)

2iτ
′ ≡ (m− 1)(−1− k) + kn+ 2m (mod n)

≡ (m− 1)(1− k) + 2 (mod n)

iτ
′ ≡ (m− 1)(1− k) + 2 + n

2
(mod n)

≡ 1− (m− 1)(k − 1) + n

2
(mod n)

≡ i (mod n).

Thus with τ ′ as with τ , for n odd, there is one spoke orbit of size 1 and n−1
4

of size 4. QED

Lemma 4.16. Let n be even and m odd. Then under ⟨τ⟩, ⟨τ ′⟩, there is one spoke orbit of

size 2 and n−2
4

of size 4.

Proof. Since n is even and k2 ≡ −1 (mod n), k2 and k are odd. Suppose that iτ
2
= i. Then

2(i− 1) ≡ (m− 1)(k + 1) (mod n).

Since k + 1 is even, so is (m− 1)(k + 1):

i− 1 ≡ (m− 1)(k + 1)

2
(mod

n

gcd(n, 2)
),

i ≡ (m− 1)(k + 1)

2
+ 1 (mod

n

2
).

Thus there are two spokes that are fixed under τ 2:

i1 =
(m− 1)(k + 1)

2
+ 1 (mod

n

2
), i2 = i1 +

n

2
.

63

Equivalently, switching i1 and i2 if necessary:

i1 =
(m− 1)(k + 1)

2
+ 1 (mod n), i2 = i1 +

n

2
(mod n).

We will consider the images of these points under τ , but first, note the following. We know

that

(k + 1)k = k − 1 (mod n).

Since n is even, we cannot conclude that

(k + 1)k

2
=
k − 1

2
(mod n).

However, we may conclude that

x(k + 1)k = x(k − 1) (mod n),

and similarly that

x(k − 1)k = x(−1− k) (mod n).

for any integer x. This distinction will prove important.

Since k is odd, i and (i− 1)k have different parity, and so i and iτ = (i− 1)k +m have

different parity when m is even. But reduction modulo n preserves parity when n is even.

So we may conclude that i = iτ is only possible when m is odd. That is, if m is even, then

i1 and i2 are not fixed points. We have already shown that they are the only two points of

order 2, and so it must be that they are partners in a transposition. All other spokes must

be in an orbit of size 4, since otherwise they would be fixed under τ 2, and there are n−2
4

such

orbits.

64

We repeat the proof for τ ′. If iτ
′2
= i:

2(1− i) ≡ (m− 1)(k − 1) (mod n).

Since k − 1 is even, we know (m− 1)(k − 1) is even so

i = 1− (m− 1)(k − 1)

2
(mod

n

2
).

Thus there are two points that are fixed under (τ ′)2:

i1 = 1− (m− 1)(k − 1)

2
(mod n), i2 = i1 +

n

2
(mod n).

As m is even, then there are no solutions to i = iτ
′
= (1− i)k +m, since i and 1− i are of

opposite parity (mod n). We conclude that i1, i2 are not fixed but rather in a transposition,

and the remaining spokes are in n−2
4

orbits of size 4. QED

We now examine the final condition, that when n is even and m is odd.

Lemma 4.17. Let n be even and m odd. Then under ⟨τ⟩, ⟨τ ′⟩, there are two fixed spokes

and n−2
4

orbits of size 4.

Proof. m is odd, so m− 1 is even, and so m−1
2

is an integer. As discussed, this means that

(
m− 1

2

)
(k + 1)k ≡

(
m− 1

2

)
(k − 1) (mod n).

Recall from the proof of Lemma 4.16 that there are two solutions to iτ
2
= i, a fact that did

not rely upon the parity of m:

i1 =
(m− 1)(k + 1)

2
+ 1 (mod n), i2 = i1 +

n

2
(mod n).

65

Then

iτ1 ≡ (i1 − 1)k +m (mod n)

≡
(
(m− 1)(k + 1)

2

)
k +m (mod n)

≡
(
m− 1

2

)
(k + 1)k +m (mod n)

≡
(
m− 1

2

)
(k − 1) +m− 1 + 1 (mod n).

The last equality owing to the distinction we made earlier. So

iτ1 ≡
(
(m− 1)(k + 1)

2

)
+ 1 ≡ i1 (mod n).

Thus i1 is fixed under τ , and so must be i2, having no possible partners. All other spokes

are not fixed under τ 2 and must be in orbits of size 4. Finally, recall the two points fixed

under (τ ′)2 for any m:

i1 = 1− (m− 1)(k − 1)

2
(mod n), i2 = i1 +

n

2
(mod n).

Then

iτ
′

1 ≡ (1− i1)k +m (mod n)

≡
(
(m− 1)(k − 1)

2

)
k +m (mod n)

≡
(
m− 1

2

)
(k − 1)k +m (mod n)

≡
(
m− 1

2

)
(−1− k) +m− 1 + 1 (mod n).

We could say that
(
m−1
2

)
(k − 1)k ≡

(
m−1
2

)
(−1− k) (mod n) because m−1

2
was an integer.

iτ
′

1 ≡ (−k)
(
m− 1

2

)
+

(
m− 1

2

)
+ 1 ≡ 1− (m− 1)(k − 1)

2
≡ i1 (mod n).

66

Thus i1 is fixed under τ ′, and so must be i2, having no possible partners. All other spokes

are not fixed under τ 2 and must be in orbits of size 4, and there are n−2
4

such orbits. QED

We now have the machinery to prove the main result for GP (n, k), k2 ≡ −1 (mod n), for

which we will use a more straightforward application of Theorem 1.12. Let B be the basis

for C that was defined in Lemma 4.13. These are the n cycles defined by their interior edge

and the one outer cycle.

Lemma 4.18. Every permutation π ∈ Aut(GP (n, k)) can be written π = ρτ k1 for ρ a rotation

and τ as defined before, with τ1 : 1 7→ 1.

Proof. Recall from Theorem 4.2 that Aut(GP (n, k)) ∼= Zn⋊Z4. Thus there is a subgroup of

order 4 in Aut(GP (n, k)). We have already shown that ⟨τ⟩ ⩽ Aut(GP (n, k)) has order 4 on

the vertices. Also, since k2 ≡ −1 (mod n), we know that 4 ∤ n. So there is no rotation that

generates a subgroup of order 4, and ⟨τ⟩ must be the Z4 for some τ . For simplicity we let it

be τ1. Next, Zn ∩ Z4 = {1}, so Zn cannot contain any elements of ⟨τ1⟩, and only (certain)

rotations can generate Zn ⩽ Aut(GP (n, k)), so we know Zn is the subgroup of rotations. By

properties of semidirect products, every permutation π can be written as the unique product

ρτ k1 for ρ a rotation and τ k1 ∈ ⟨τ1⟩. QED

Finally, consider τ 21 and τ 31 :

iτ
2
1 ≡ ((i− 1)k + 1)τ1 ≡ (i− 1)k2 + 1 ≡ 2− i (mod n),

iτ
3
1 ≡ (2− i)τ1 ≡ (1− i)k + 1 ≡ iτ

′
1 (mod n).

So we conclude that ⟨τ1⟩ = {1, τ1, γ, τ ′1} where γ is a reflection of GP (n, k) across the axis

through {u1, v1}. With all this information we may now apply Theorem 1.12.

Let R1 be the set of rotations in Aut(GP (n, k)), including 1, and let R2 be the set of

reflections. Furthermore, let R3 = R1τ1 and R4 = R1τ
′
1. Then as a consequence of Lemma

67

4.18, Aut(GP (n, k)) = R1 ∪R2 ∪R3 ∪R4 and R1 ∪R2
∼= Dn. Thus

M := |GP (n, k)/SwAut(GP (n, k))| = 1

|GP (n, k)|

 ∑
π∈Aut(GP (n,k))

|fixπ(C)|

M =

1

4n

(∑
π∈R1

|fixπ(C)|+
∑
π∈R2

|fixπ(C)|+
∑
π∈R3

|fixπ(C)|+
∑
π∈R4

|fixπ(C)|

)

M =

(
1

2

)(
1

2n

(∑
π∈R1

|fixπ(C)|+
∑
π∈R2

|fixπ(C)|

))
+

1

4n

(∑
π∈R3

|fixπ(C)|+
∑
π∈R4

|fixπ(C)|

)

M =

(
1

2

)(
1

2n

(∑
π∈Dn

|fixπ(C)|

))
+

1

4n

(∑
π∈R3

|fixπ(C)|+
∑
π∈R4

|fixπ(C)|

)
.

Recall that there are 2Bn,2 distinct combinations of B under Dn, because each distinct

bracelet can be paired with O, or not.

M =

(
1

2

)
(2Bn,2) +

1

4n

(∑
π∈R3

|fixπ(C)|+
∑
π∈R4

|fixπ(C)|

)

M = Bn,2 +
1

4n

∑
π∈R3

|fixπ(C)|+
1

4n

∑
π∈R4

|fixπ(C)|.

It now suffices to determine the number of cycles fixed by ρτ1 ∈ R3 and ρτ ′1 ∈ R4.

Lemma 4.19. For all rotations ρ, ρτ1 = τm1 for some m1, and ρτ
′
1 = τm2 for some m2.

Proof. Let iρ = i+n r for some 1 ⩽ r ⩽ n.

iρτ1 ≡ (iρ)τ1 ≡ (i+ r − 1)k +m ≡ (i− 1)k +m+ rk ≡ iτm+nrk (mod n).

Likewise:

iρτ
′
1 ≡ (iρ)τ

′
1 ≡ (1− i− r)k +m ≡ (1− i)k +m− rk ≡ iτ

′
m−nrk (mod n).

QED

Therefore, we may apply to ρτ1 and ρτ ′1 the structure for τ, τ ′ we discussed in Lemmas

68

4.15-4.17. Namely,

• If n is odd, then ⟨ρτ1⟩ and ⟨ρτ ′1⟩ induce on the set of spoke edges 1 fixed point and n−1
2

orbits of size 4.

• If n is even, then ⟨ρτ1⟩ and ⟨ρτ ′1⟩ induce on the set of spoke edges n−2
2

orbits of size 4,

and either two fixed points (if 1τ , 1τ
′
is odd) or one orbit of size 2.

Suppose that C is some Eulerian subgraph of C that is fixed by ρτ1, and let S ⊂ C be the

spoke edges (if any) that C contains. Then S must be a union of orbits of spokes under

⟨ρτ1⟩, because if {ui, vi} ∈ S, so must be {ui, vi}ρτ1 . The same is true for any C fixed by ρτ ′1.

Lemma 4.20. Let S be some set of spoke edges of GP (n, k) formed as the (possibly empty)

union of 4-orbits under ⟨ρτ1⟩ or ⟨ρτ ′1⟩. Then there are exactly two Eulerian subgraphs that

contain exactly those spoke edges and are fixed by ρτ1 or ρτ ′1.

Proof. We are building Eulerian subgraphs E with spokes S. If S is empty, then the empty

subgraph and the subgraph

C = q1 + q2 + · · ·+ qn +O

which consists of the inner and outer n-cycles, are both fixed. If S is nonempty, let s ∈ S be

the edge {ui, vi} such that i is minimal. Let s+ be the edge {uj, vj} such that j is minimal

in S − {s}, and s− be the edge {uk, vk} such that k is maximal in S. These are the spokes

in S directly clockwise and counterclockwise from s, respectively. Since every vertex in an

Eulerian subgraph has even degree, ui must have degree 2 (it already has one edge), and so

either {ui, ui+n1} ∈ E or {ui, ui−n1} ∈ E. Continuing, either the path

ui...uj = {{ui, ui+n1}, {ui+n1, ui+n2}, ..., {uj−n1, uj}}

or else the path

ui...uk = {{ui, ui−n1}, {ui−n1, ui−n2}, ..., {uk+n1, uk}}

69

is in C. Assume the former is true. Then {uj, uj+n1} ̸∈ C, because otherwise uj would

have degree three. Then if {ul, vl} is the next spoke clockwise from {uj, vj}, we know

{ul, ul+n1} ∈ C, because {ul, ul−n1} cannot be. Continuing this process, we see that the

disjoint paths along O between spoke edges alternate between being include and not included

in C, and this completes evenly, leaving no vertex with odd degree, because |S| is even (and

there are |S| such paths). The set of these paths that are included is decided entirely by our

choice whether ui...uj or ui...uk was included. Note that if C is the graph containing ui...uj,

then C+O is the one including ui...uk, because adding O takes the complement of the outer

path.

Once the edges along O are determined, then in order for C to be fixed, we must add

the images of each path to C. That is, if ui...uj ∈ C, then we must add (ui...uj)
ρτ1 (or

(ui...uj)
ρτ ′1) to C, and repeat for each outer path. Since (ρτ1)

2 is a reflection, the spokes in S

are symmetric across the axis of reflection, and so are the paths between them. So we know

that indeed (ui...uj)
(ρτ1)2 ∈ C given ui...uj ∈ C (likewise for ρτ ′1). Thus the interior paths

va...vb are determined by the two possible choices for outer paths, and there are only two

Eulerian subgraphs fixed. QED

Finally, we rule out the possibility of any fixed Eulerian subgraph containing spokes in

an orbit of size 1 or 2. If n is odd, then there is only one spoke in an orbit of size 1, and

so any subgraph whose set of spokes includes this fixed spoke has an odd number of spokes.

However, it is impossible to add a series of alternating external paths in O between an odd

number of spokes, so if n is odd, any Eulerian subgraph fixed by ⟨ρτ1⟩ or ⟨ρτ ′1⟩ has spokes

created by some union of 4-orbits.

If n is even, then a fixed Eulerian subgraph C cannot contain just one of the two fixed

spokes (for m odd) by a similar logic. So suppose C contains both fixed spokes, or the two

spokes in the 2-orbit (for m even). Since C is fixed under ρτ1 (or ρτ ′1), it is clearly fixed

under the reflection (ρτ1)
2 (or (ρτ1)

2). If we let (ui, vi) be one of the spokes fixed under this

reflection, we know {ui, ui±n1} ∈ C to ensure ui has even degree. However, (ui, ui±n1) is not

70

fixed by the reflection, but rather mapped to (ui, ui∓n1). This contradicts that C was fixed

under (ρτ1)
2 (likewise, (ρτ ′1)

2). Therefore, no Eulerian subgraph containing a spoke in an

orbit of size 1 or 2 can be fixed by any permutation ρτ1 or ρτ ′1. Lemma 4.21 confirms, on

the other hand, that for every union of 4-orbits of spokes, there are two Eulerian subgraphs

fixed under ρτ1 (or ρτ ′1). If n is odd, there are n−1
4

such 4-orbits for each permutation, and

if n is even, there are n−2
4
. Since n ≡ 1, 2 (mod 4) respectively, we can say there are ⌊n

4
⌋

4-orbits for an arbitrary n. That is, there are 2⌊
n
4
⌋ possible unions of these orbits and so

2 × 2⌊
n
4
⌋ Eulerian subgraphs fixed for each permutation. With this, we can now state our

final result.

Proposition 4.21. Let k2 ≡ −1 (mod n). Then |GP (n, k)/SwAut(GP (n, k))| = Bn,2 +

2⌊
n
4
⌋, excluding the special cases. Equivalently,

|GP (n, k)/SwAut(GP (n, k))| =

1
n

∑
d|n ϕ(d)2

n
d
−1 + 3 · 2n−4

2 + 2
n−2
4 n even

1
n

∑
d|n ϕ(d)2

n
d
−1 + 2

n−1
2 + 2

n−1
4 n odd

Proof. We use our recent conclusions on the number of stabilized Eulerian subgraphs to

resolve our sum from earlier:

M = Bn,2 +
1

4n

∑
π∈R3

|fixπ(C)|+
1

4n

∑
π∈R4

|fixπ(C)|

M = Bn,2 +
1

4n

∑
π∈R3

2× 2⌊
n
4
⌋ +

1

4n

∑
π∈R4

2× 2⌊
n
4
⌋.

There are n rotations ρ, and so |R3| = |{ρτ}| = n, and likewise for R4.

M = Bn,2 +
n

4n
2× 2⌊

n
4
⌋ +

n

4n
2× 2⌊

n
4
⌋ = Bn,2 +

2× 2⌊
n
4
⌋

2

|GP (n, k)/SwAut(GP (n, k))| = Bn,2 + 2⌊
n
4
⌋.

71

We can write this explicitly with Lemma 4.5 as:

|GP (n, k)/SwAut(GP (n, k))| =

1
n

∑
d|n ϕ(d)2

n
d
−1 + 3 · 2n−4

2 + 2
n−2
4 n even

1
n

∑
d|n ϕ(d)2

n
d
−1 + 2

n−1
2 + 2

n−1
4 n odd

QED

The automorphism structures of Generalized Petersen graphs GP (n, k) such that k2 ≡ 1

(mod n), k ̸= 1, are significantly more complicated, and we have not yet been able to

construct a similar formula for this final species.

72

Chapter 5

Selected Results

5.1 Switching Automorphism Groups

The switching automorphism groups of the 167 switching isomorphism classes of the
Coxeter graph.

G Number of S.I. Classes [Σ] with SwAut(Σ) ∼= G

1 57

Z2 65

Z3 3

Z2 × Z2 19

S3 4

A4 1

D4 6

D6 6

D7 2

D8 2

PSL(3, 2)⋊ Z2 2

73

The switching automorphism groups of the 7 switching isomorphism classes of the Heawood
graph. Note that Sivaraman [17] first proved there were seven switching isomorphism

classes.

G Number of S.I. Classes [Σ] with SwAut(Σ) ∼= G
Z2 × Z2 1
S3 1
D4 1
D6 1
D7 1
D8 1
PSL(3, 2)⋊ Z2 1

The switching automorphism groups of the 46 switching isomorphism classes of the
Dodecahedron graph.

G Number of S.I. Classes [Σ] with SwAut(Σ) ∼= G
1 4
Z2 18
Z2 × Z2 12
Z2 × Z2 × Z2 2
S3 2
D5 2
D6 2
D10 2
Z2 ×A5 2

74

The switching automorphism groups of the 19 switching isomorphism classes of the Pappus
graph.

G Number of S.I. Classes [Σ] with SwAut(Σ) ∼= G
Z2 6
Z2 × Z2 4
S3 1
S3 × S3 1
D4 2
D6 3
D12 1
(Z3 × Z3)⋊ Z3 1

The switching automorphism groups of the 31 switching isomorphism classes of the
Desargues graph.

G Number of S.I. Classes [Σ] SwAut(Σ) ∼= G
1 2
Z2 6
Z2 × Z2 10
S3 1
D4 4
D5 1
D10 1
Z2 × S5 2
Z2 ×D4 2
Z2 × Z2 × S3 2

75

The switching automorphism groups of the 93 switching isomorphism classes of the Tutte
8-cage.

G Number of S.I. Classes [Σ] with SwAut(Σ) ∼= G
1 19
Z2 44
Z4 1
Z6 1
Z2 × Z2 10
Z4 × Z2 1
S3 1
D4 5
D5 3
D6 1
D8 2
D10 1
Z8 ⋊ (Z2 × Z2) 1
Z2 × (Z5 ⋊ Z4) 1
(Z4 × Z2)⋊ Z2 1
(A6 . Z2)⋊ Z2 1

76

5.2 Switching Isomorphism Classes

Definition 5.1. A complete bipartite graph Kn,n has vertices V (Kn,n) = [n] × [2] and

{(a, b), (c, d)} ∈ E(Kn,n) if and only if b ̸= d.

Here is an example of a complete bipartite graph, specifically K5,5:

TABLE 1

The number of switching isomorphism classes for complete bipartite graphs Kn,n

n |Kn,n/SwAut(Kn,n)|
1 1

2 2

3 3

4 10

5 30

6 242

7 4,386

8 332,513

9 99,976,108

10 112,351,999,472

11 446,983,927,046,926

12 6,198,676,214,116,269,010

13 299,048,546,994,431,406,208,782

14 50,353,545,654,171,448,522,501,436,878

15 29,748,767,946,569,482,487,754,208,177,072,729

16 62,040,859,710,632,592,888,548,097,650,689,577,975,126

17 459,536,316,632,167,030,937,007,189,372,281,636,670,907,163,480

18 12,161,085,637,962,934,969,207,487,980,681,818,705,221,569,753,393,078,738

77

TABLE 2

The number of switching isomorphism classes for Generalized Petersen graphs GP (n, k).
Stars ∗ mark those among the seven graphs with unusual automorphism groups. Note that
the results for GP (5, 2) and GP (7, 2) were previously shown by Zaslavsky [21] and Bagheri,

Moghaddamfar and Ramezani [1], respectively.

(n, k) 1 2 3 4 5 6 7 8 9

1

2

3 6

4 6∗
5 12 6∗
6 21 26

7 27 36

8 48 60 20∗
9 69 92 92

10 122 46∗ 31∗ 156

11 189 252 252

12 346 448 448 448 124∗
13 570 760 760 760

14 1, 049 1, 374 1, 374 1, 374 1, 374

15 1, 836 2, 448 2, 448 1, 320 2, 448 2, 448

16 3, 412 4, 500 4, 500 4, 500 4, 500 2, 448

17 6, 168 8, 224 8, 224 4, 128 8, 224

18 11, 599 15, 370 15, 370 15, 370 15, 370 15, 370 15, 370

19 21, 465 28, 620 28, 620 28, 620 28, 620

20 40, 660 54, 024 54, 024 54, 024 54, 024 54, 024 54, 024 28, 276

78

Definition 5.2. A Kneser graph K(n, k) has vertices V (K(n, k)) = [n]k, the k-subsets of

[n], with {A,B} ∈ E(K(n, k)) if and only if A ∩B = ∅.

TABLE 3

The number of switching isomorphism classes for Kneser Graphs K(n, 2)

n |K(n, 2)/SwAut(K(n, 2))|
2 1

3 1

4 1

5 6

6 3,004,784

7 7,675,719,496,506,999,510,208

8 304,066,575,568,628,741,752,193,615,294,429,683,699,846,121,840,640

9 49,377,088,672,350,181,008,761,955,038,986,869,476,221,461,681,669,243,793,976,362,

336,410,824,461,907,370,412,926,721,324,220,416

10 69,793,411,350,435,141,886,561,557,959,688,801,420,848,352,480,059,778,467,000,352,

890,102,645,541,980,614,440,345,703,829,156,254,428,537,034,046,080,007,006,546,185,

315,088,888,958,473,144,937,186,305,725,800,745,690,726,400

79

Chapter 6

Future Research

There are many potential routes of further research that I hope to pursue. I would like to

study cohomology that I might better understand signed switching from a more abstract and

foundational perspective as constructed by Cameron [3], [5]. This would also permit me to

understand more completely the relationship between signed switching and Seidel switching

[16], two-graphs, equiangular lines, and Eulerian graphs, which may provide inspiration for

new approaches to enumeration. On that note I plan to research the methods by which

the formula for the number of switching classes of complete graphs Kn was discovered, and

investigate whether or not it may be applicable to other graphs, such as Kn,n. Finally, I plan

to research oligomorphic permutation groups, as I believe they are related to signed graphs

and there exist methods for studying their orbits [4], and matroids, as I understand that

others have applied their theory to the study of signed graphs and cycle spaces [17].

Most immediately, I would like to optimize Algorithm 1, so that it may be able to

compute specific minimal signed graphs, and thus switching automorphism groups, for more

complicated graphs. One likely improvement would be an implementation of the theory

learned in the design of Algorithm 2; namely, the fact that with a spanning tree fixed, we need

only consider signatures whose negative edges are found outside of the tree. Additionally,

I would like to explore whether or not existing graph cut programs could be exploited to

80

better screen potential minimum signatures for redundancy.

81

Appendix A

Algorithm 1

LoadPackage("grape");

grapher := function(E)

local G;

G := Graph(Group(()), [1..VertexCount(E)], OnPoints,\\

function(x,y) return [x,y] in E or [y,x] in E; end);

return G;

end;

Deg := function(X, v)

local i, x;

x := 0;

for i in X do

if v in i then

x := x+1;

fi;

od;

82

return x;

end;

Mood := function(X,E, v)

local x,i,j;

x := 0;

for i in X do

if v in i then

x := x-1;

fi;

od;

for j in Difference(E, X) do

if v in j then

x := x+1;

fi;

od;

return x;

end;

Friends := function(X,E,v)

local x, i;

x := [];

for i in Difference(E,X) do

if i[1] = v then

Add(x, i[2]);

elif i[2] = v then

Add(x, i[1]);

83

fi;

od;

return x;

end;

VertexCount := function(E)

local i, AllVertices;

AllVertices := [];

for i in E do

Add(AllVertices, i[1]);

Add(AllVertices, i[2]);

od;

return Length(DuplicateFreeList(AllVertices));

end;

UpperObjects := function(X, E, cube)

local Uppers, i, Cands, Stab, S, A, Orbs, o;

Uppers := [];

S := grapher(E);

A := AutomorphismGroup(S);

Stab := Stabilizer(A, X, OnSetsSets);

Orbs := Orbits(Stab, Eligibles(X,E, cube), OnSets);

for o in Orbs do

Add(Uppers, Union(X, [o[1]]));

od;

return Uppers;

end;

84

scan_step := function(X, E, G, cube)

local C, Uppers, upper, fprimeimage, y, c, orbs, reps, o, negs,\\

u,s,v,sigs,graphcovers,iso_free,r;

C := [];

Uppers := UpperObjects(X, E, cube);

if not Uppers = [] then

for upper in Uppers do

if not upper = [] then

Add(C, upper);

fi;

od;

return C;

else

return [];

fi;

end;

scan := function(X, E, G, cube)

local counter, i, A, C, c, s, remain, graphcovers, iso_free,negs,u,v,r;

remain := true;

counter := 1;

C:=[];

C[1] := [X];

while remain do

C[counter + 1] := [];

remain := false;

85

for c in C[counter] do

s := scan_step(c, E, G, cube);

if not s = [] then

remain := true;

Add(C[counter + 1], s);

fi;

od;

C[counter + 1]:=Concatenation(C[counter + 1]);

orbs := Orbits(G, AsSet(C[counter+1]), OnSetsSets);

reps := [];

for o in orbs do

Add(reps, o[1]);

od;

graphcovers := [];

for c in reps do

Add(graphcovers, Covers(E, VertexCount(E), c));

od;

iso_free := GraphIsomorphismClassRepresentatives(graphcovers);

C[counter+1] := [];

for l in iso_free do

negs := [];

for edge in UndirectedEdges(l) do

if edge[1]>VertexCount(E) and edge[2] <= VertexCount(E) then

Add(negs, AsSet([edge[1]-VertexCount(E), edge[2]]));

elif edge[2]>VertexCount(E) and edge[1] <= VertexCount(E) then

Add(negs, AsSet([edge[2]-VertexCount(E), edge[1]]));

fi;

86

od;

Add(C[counter+1], DuplicateFreeList(negs));

od;

counter := counter + 1;

od;

A:=[];

for i in [1..counter] do

A:=Union(A, C[i]);

od;

return A;

end;

Covers := function(e, v, m)

local Negs, i, j, k, AllEdges, PosEdges, Strands, Edges;

Negs := [];

for i in m do

Add(Negs, i);

Add(Negs, [i[1] + v, i[2] + v]);

od;

AllEdges := [];

for j in e do

Add(AllEdges, j);

Add(AllEdges, [j[1]+v, j[2] +v]);

od;

PosEdges := Difference(AllEdges, Negs);

Strands := [];

for k in m do

87

Add(Strands, [k[1], k[2] + v]);

Add(Strands, [k[1]+v, k[2]]);

od;

Edges := Concatenation(PosEdges, Strands);

return Graph(Group(()), [1..2*v], OnPoints, function(x,y)\\

return [x,y] in Edges or [y,x] in Edges; end);

end;

SIClasses := function(X, E, cube)

local x, i, S, A,s;

S := grapher(E);

A := AutomorphismGroup(S);

x := [];

s := scan(X, E, A, cube);

for i in s do

Add(x, Covers(E, VertexCount(E), i));

od;

return Length(GraphIsomorphismClassRepresentatives(x));

end;

SIClassReps := function(X, E, cube)

local x, i, S, A;

S := grapher(E);

A := AutomorphismGroup(S);

x := [];

for i in scan(X, E, A, cube) do

Add(x, Covers(E, VertexCount(E), i));

88

od;

return GraphIsomorphismClassRepresentatives(x);

end;

Eligibles := function(X,E, cube)

local Candidates, Rejects, V;

if cube = 1 then

Candidates:=Difference(E,X);

Rejects:=[];

V := DuplicateFreeList(Union(X));

for i in Candidates do

if not Intersection(V, i) = [] then

Add(Rejects, i);

fi;

od;

return Difference(Candidates, Rejects);

else

Candidates := [];

Rejects := [];

for i in Difference(E,X) do

if Deg(E,i[1]) - Deg(X, i[1]) > Deg(X, i[1]) + 1 and\\

Deg(E, i[2]) - Deg(X, i[2]) > Deg(X, i[2]) + 1 then

Add(Candidates, i);

fi;

od;

for i in Candidates do

if not i in Rejects then

89

for c in Difference(Friends(X,E,i[1]), [i[2]]) do

for d in Difference(Friends(X,E,c), [i[1], i[2]]) do

for x in\\

Difference(Friends(X,E,i[1]), [i[2], c, d]) do

y := AsSet([x, d]);

if y in Difference(E,X) then

if AsSet([c,x]) in Difference(E,X) then

if AsSet([d,i[1]]) in Difference(E,X)\\

then

if Mood(X,E,i[1])+Mood(X,E,x)+ \\

Mood(X,E,c)+ Mood(X,E,d) - 14 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[1]]) in E then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 12 < 0\\

then

Add(Rejects, i);

fi;

fi;

elif not AsSet([c,x]) in E then

if AsSet([d,i[1]]) in Difference(E,X)\\

then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 12 < 0\\

then

90

Add(Rejects, i);

fi;

elif not AsSet([d,i[1]]) in E then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

fi;

fi;

elif not y in E then

if AsSet([c,x]) in Difference(E,X) then

if AsSet([d,i[1]]) in Difference(E,X)\\

then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 12 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[1]]) in E then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

fi;

elif not AsSet([c,x]) in E then

91

if AsSet([d,i[1]]) in Difference(E,X)\\

then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[1]]) in E then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 8 < 0\\

then

Add(Rejects, i);

fi;

fi;

fi;

elif y in X then

if AsSet([c,x]) in Difference(E,X) then

if AsSet([d,i[1]]) in Difference(E,X)\\

then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[1]]) in E then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 8 < 0\\

92

then

Add(Rejects, i);

fi;

fi;

elif not AsSet([c,x]) in E then

if AsSet([d,i[1]]) in Difference(E,X)\\

then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 8 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[1]]) in E then

if Mood(X,E,i[1])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 6 < 0\\

then

Add(Rejects, i);

fi;

fi;

fi;

fi;

od;

od;

od;

fi;

if not i in Rejects then

for c in Difference(Friends(X,E,i[2]), [i[1]]) do

93

for d in \\

Difference(Friends(X,E,c), [i[1], i[2]]) do

for x in \\

Difference(Friends(X,E,i[2]), [i[1], c, d]) do

y := AsSet([x, d]);

if y in Difference(E,X) then

if AsSet([c,x]) in Difference(E,X) then

if AsSet([d,i[2]]) in Difference(E,X)\\

then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 14 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[2]]) in E then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 12 < 0\\

then

Add(Rejects, i);

fi;

fi;

elif not AsSet([c,x]) in E then

if AsSet([d,i[2]]) in Difference(E,X)\\

then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 12 < 0\\

then

94

Add(Rejects, i);

fi;

elif not AsSet([d,i[2]]) in E then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

fi;

fi;

elif not y in E then

if AsSet([c,x]) in Difference(E,X) then

if AsSet([d,i[2]]) in Difference(E,X)\\

then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 12 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[2]]) in E then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

fi;

elif not AsSet([c,x]) in E then

95

if AsSet([d,i[2]]) in Difference(E,X)\\

then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[2]]) in E then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 8 < 0\\

then

Add(Rejects, i);

fi;

fi;

fi;

elif y in X then

if AsSet([c,x]) in Difference(E,X) then

if AsSet([d,i[2]]) in Difference(E,X)\\

then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 10 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[2]]) in E then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 8 < 0\\

96

then

Add(Rejects, i);

fi;

fi;

elif not AsSet([c,x]) in E then

if AsSet([d,i[2]]) in Difference(E,X)\\

then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 8 < 0\\

then

Add(Rejects, i);

fi;

elif not AsSet([d,i[2]]) in E then

if Mood(X,E,i[2])+Mood(X,E,x)+\\

Mood(X,E,c)+Mood(X,E,d) - 6 < 0\\

then

Add(Rejects, i);

fi;

fi;

fi;

fi;

od;

od;

od;

fi;

od;

fi;

97

return Difference(Candidates, Rejects);

end;

Groups := function(X,E, cube)

local groups, covers, P, n, i, k, K, a, A, S, F;

groups:=[];

covers := SIClassReps(X,E, cube);

P := [];

n := VertexCount(E);

for i in [1..n] do

Add(P, [i, i+n]);

od;

k := MappingPermListList([1..n],[n+1..2*n]);

K := Group(k);

for a in covers do

A := AutomorphismGroup(a);

S := Stabilizer(A, P, OnSetsSets);

F:=FactorGroup(S,K);

Add(groups, F);

od;

return List(groups, StructureDescription);

end;

Signings := function(X,E,cube)

local S, sigs, n, strands, edges, x, s;

S := SIClassReps(X,E,cube);

sigs := [];

98

n := VertexCount(E);

for s in S do

strands:=[];

edges := UndirectedEdges(s);

for x in edges do

if x[1] <= n and x[2] > n then

Add(strands, AsSet([x[1], x[2]-n]));

fi;

od;

Add(sigs, DuplicateFreeList(strands));

od;

return sigs;

end;

99

Appendix B

Algorithm 2

LoadPackage("grape");

LoadPackage("digraphs");

grapher := function(E)

local G;

G := Graph(Group(()), [1..VertexCount(E)], OnPoints,\\

function(x,y) return [x,y] in E or [y,x] in E; end);

return G;

end;

digrapher := function(E)

local G;

G:=Digraph(Group(()), [1..VertexCount(E)], OnPoints,\\

function(x,y) return [x,y] in E or [y,x] in E; end);

return G;

end;

100

cyclebuilder := function(edge, tree)

local path, x,i;

path := DigraphPath(tree, edge[1], edge[2])[1];

x := [];

for i in [1..Length(path)-1] do

if path[i] < path[i+1] then

Add(x, [path[i], path[i+1]]);

else

Add(x, [path[i+1], path[i]]);

fi;

od;

Add(x, edge);

Sort(x);

return x;

end;

basisbuilder := function(E)

local G, T, TrueT, t, seeds, cycles, s;

G := digrapher(E);

T := UndirectedSpanningTree(G);

TrueT := [];

for t in DigraphEdges(T) do

if t[1]<t[2] then

Add(TrueT, t);

fi;

od;

seeds := Difference(E, TrueT);

101

cycles := [];

for s in seeds do

Add(cycles, cyclebuilder(s, T));

od;

return [cycles, seeds];

end;

factor := function(S, B, c)

local x, i;

x:=[];

for i in S do

if i in c then

Add(x, 1);

else

Add(x, 0);

fi;

od;

return x;

end;

Counter := function(G, B, S)

local lengths, g, M, c, image, f;

z:=0;

C:=ConjugacyClasses(G);

for x in C do

M := [];

g := Representative(x);

102

for c in B do

image := OnSetsSets(c, g);

f := factor(S, B, image);

Add(M, f);

od;

TransposedMatDestructive(M);

n := DimensionsMat(M)[1];

K := IdentityMat(n)-M;

z := z+Size(x)*2^Length(BasisNullspaceModN(K,2));

od;

answer := z/Order(G);

return answer;

end;

SICounter := function(E)

local A,B,S;

A := AutomorphismGroup(grapher(E));

B := basisbuilder(E)[1];

S := basisbuilder(E)[2];

return Counter(A,B,S);

end;

103

Bibliography

[1] Y. Bagheri, A.R. Moghaddemfar, F. Ramezani, Concerning some properties of signed

graphs associated with particular graphs, Discrete Applied Mathematics., 279 (2019).

[2] J. De Beule, J. Jonušas, J. D. Mitchell, M. Torpey, M. Tsalakou, W. A. Wilson, Digraphs

- GAP package, Version 1.5.2, Mar 2022, https://digraphs.github.io/Digraphs.

[3] P. J. Cameron, Cohomological aspects of two-graphs, Mathematische Zeitschrift., 157

(1977), 101-119.

[4] P. J. Cameron, Oligomorphic permutation groups (1990).

[5] P. J. Cameron, A. L. Wells, Signatures and signed switching classes, Journal of Combi-

natorial Theory., 40 (1986), 344-361.

[6] R. Frucht, J. E. Graver, and M. E. Watkins. The Groups of the Generalized Petersen

Graphs, Mathematical Proceedings of the Cambridge Philosophical Society 70 (1971) no.

2, 211.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1 ; 2021,

https://www.gap-system.org.

[8] C. Godsil, G. Royle, Algebraic graph theory, Springer-Verlag Graduate Texts in Mathe-

matics., (2001), 22.

[9] L. H. Soicher, The GRAPE package for GAP, Version 4.8.3, 2019, https://

gap-packages.github.io/grape.

104

https://digraphs.github.io/Digraphs
https://www.gap-system.org
https://gap-packages.github.io/grape
https://gap-packages.github.io/grape

[10] M. Hofmeister, Counting double covers of graphs, Journal of Graph Theory., 12 (1988),

no. 3, 437-444.

[11] C. L. Mallows, N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are

equal in number, SIAM Journal of Applied Mathematics., 28 (1975), no. 4, 876-880.

[12] B. D. McKay, Isomorph-free exhaustive generation, Journal of Algorithms., 26 (1998),

306-324

[13] B.D. McKay, A. Piperno, Practical Graph Isomorphism, II, Journal of Symbolic Com-

putation., 60 (2014), 94-112.

[14] E. M. Palmer, R.W. Robinson, Enumeration of self-dual configurations, Pacific Journal

of Mathematics., 110 (1984), no. 1, 203-221.

[15] L. Rodriguez, Automorphism groups of simple graphs, (2014).

[16] J. J. Seidel, A survey of two-graphs, Geometry and Combinatorics., (1991), 146-176.

[17] V. Sivaraman, Some topics concerning graphs, signed Graphs and matroids, Ohio State

University, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center,

http://rave.ohiolink.edu/etdc/view?acc_num=osu1354645035.

[18] A. Tucker, Applied combinatorics, John Wiley and Sons., (2002), 364.

[19] T. Zaslavsky, Characterizations of signed graphs, Journal of Graph Theory., 5 (1981),

401-406.

[20] T. Zaslavsky, Signed graphs, Discrete Applied Mathematics. 4 (1982), 47-74.

[21] T. Zaslavsky, Six signed Petersen graphs, and their automorphisms, Discrete Mathe-

matics. 312 (2012), 1558-1583.

105

http://rave.ohiolink.edu/etdc/view?acc_num=osu1354645035

	Enumerating Switching Isomorphism Classes of Signed Graphs
	Recommended Citation

	Coversheet Signed

