
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

4-2022

The Enumeration of Minimum Path Covers of Trees The Enumeration of Minimum Path Covers of Trees

Merielyn Sher
William & Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

 Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons

Recommended Citation Recommended Citation
Sher, Merielyn, "The Enumeration of Minimum Path Covers of Trees" (2022). Undergraduate Honors
Theses. William & Mary. Paper 1809.
https://scholarworks.wm.edu/honorstheses/1809

This Honors Thesis -- Open Access is brought to you for free and open access by the Theses, Dissertations, &
Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1809?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

The Enumeration of Minimum Path Covers of

Trees

Merielyn Sher

Advisor: Dr. Charles Johnson

Department of Mathematics

College of William & Mary

Williamsburg, VA

April, 2022

Abstract

A path cover of a tree T is a collection of induced paths of T that are

vertex disjoint and cover all the vertices of T. A minimum path cover

(MPC) of T is a path cover with the minimum possible number of paths,

and that minimum number is called the path cover number of T. A

tree can have just one or several MPC’s. Prior results have established

equality between the path cover number of a tree T and the largest pos-

sible multiplicity of an eigenvalue that can occur in a symmetric matrix

whose graph is that tree. We hope to gain insights into the different ways

that maximum multiplicity occurs among the multiplicity lists of T by

enumerating its MPC’s. The overall strategy is to divide and conquer.

Given any tree T , several techniques are introduced to decompose T into

smaller components. Then, the number of MPC’s of these smaller trees

can be calculated and recombined to obtain the number of MPC’s for

the original tree T .

1

Acknowledgements

I would like to express my sincere gratitude to Professor Charles John-

son for his continuous support and guidance through my undergraduate

career of study and research. I would also like to thank Professor Eric

Swartz and Professor Weizhen Mao for serving on my committee and

providing valuable feedback.

2

1 Introduction

Let A = (aij) be an n× n symmetric matrix. The graph of A, denoted G(A), is the

simple undirected graph on n vertices with an edge {i, j} if and only if i ̸= j and aij ̸= 0.

We use S(G) to denote the set of all symmetric matrices whose graph is G.

Example 1.1. Here, G is a tree on 6 vertices. A ∈ S(G), and aij ̸= 0.

1 2

3

4

5

6

G

A =



1 2 3 4 5 6

1 a11 a12 0 0 0 0

2 a21 a22 a23 a24 0 0

3 0 a32 a33 0 0 0

4 0 a42 0 a44 a45 a46

5 0 0 0 a54 a55 0

6 0 0 0 a64 0 a66


Our goal is to further understand the list of possible multiplicities of eigenvalues that

occur for matrices in S(G) and how they might be related to the combinatorial features of

G. Specifically, we focus on the case where G is a tree, and there has been extensive

amount of research done on this topic. Notation-wise, given a tree T , let degT (v) denote

the degree of a vertex v in T , which is the number of neighboring vertices of v. Let A be a

matrix in S(T). Then, for a vertex v in T , A(v) denotes the principal submatrix of A

resulting from deleting the row and column indexed by v. For a subtree Ti of T , A[Ti]

denotes the principal submatrix of A that includes only the rows and columns indexed by

the vertices in Ti. A fundamental theorem on this subject is the Parter-Wiener theorem,

and we include a generalization for it here [1].

Theorem 1.2. Let T be a tree and let A be a matrix in S(T). Suppose that there is a

vertex v of T and a real number λ such that λ ∈ σ(A) ∩ σ(A(v)), where σ(A) denotes the

spectrum of A. Then

1. there is a vertex u of T such that mA(u)(λ) = mA(λ) + 1, where mA(λ) and mA(u)(λ)

are the respective algebraic multiplicity of λ in A and A(u);

3

2. if mA(λ) ⩾ 2, then the prevailing hypothesis is automatically satisfied and u may be

chosen so that degT (u) ⩾ 3 and so that there are at least three components T1, T2, and

T3 of T − u such that mA[Ti](λ) ⩾ 1, i = 1, 2, 3; and

3. if mA(λ) = 1, then u may be chosen so that degT (u) ⩾ 2 and so that there are two

components T1 and T2 of T − u such that mA[Ti](λ) = 1, i = 1, 2.

A vertex v in T meeting the requirements of Theorem 1.2 is called a Parter vertex of T for

λ.

The multiplicity list of a n× n matrix is a simple partition of n in which the parts

are the multiplicities of the distinct eigenvalues. A multiplicity list is ordered when the

multiplicities are ordered by the numerical values of the underlying eigenvalues. It is

unordered when we list the multiplicities in descending order based on their own values.

For example, for a matrix A on 8 vertices that has eigenvalues {-3, -1, -1, 1, 2, 2, 2, 5}, its
ordered multiplicity list is {1, 2, 1, 3, 1}, and its unordered list is {3, 2, 1, 1, 1}. We

sometimes write an unordered multiplicity list in its abbreviated form, that is, we remove

all 1’s from the list. Given a graph G, its catalog is the set of all unordered multiplicity

lists of the matrices in S(G). One major constraint on the catalog of S(G) is the maximum

multiplicity, M(G), that is, the largest possible multiplicity that occurs for eigenvalues of

matrices in S(G). The example here is drawn from Appendix A of [2], which is a database

that records the catalogs for trees on fewer than 12 vertices.

Example 1.3. Given a tree T on 9 vertices,

its catalog with all 1’s removed is {3 3; 3 2 2; 3 2; 3; 2 2 2; 2 2 ; 2}, and M(T) = 3.

Remarkable results have been obtained for trees on the relationship between their

maximum mutiplicity and certain combinatorial features [2].

For a tree T , a residual path maximizing set is a collection of q vertices of T , whose

removal from T leaves a forest of p paths such that p− q is a maximum, and we use ∆(T)

to denote the maximum value. A path cover of a tree T is a collection of induced paths of

T that are vertex disjoint and cover all the vertices of T . A minimum path cover (MPC)

of T is defined as a path cover with the minimum possible number of paths. The path

4

cover number of T , denoted P (T), is the number of paths in an MPC. A significant result

is introduced in [3], in which a four-way equality between M(T), P (T),∆(T), and

n−mr(T) is established, where n denotes the number of vertices of T and mr(T) denotes

the minimum rank among matrices in S(T).

Theorem 1.4. [3] For each tree T on n vertices,

M(T) = P (T) = ∆(T) = n−mr(T).

This allows us to obtain M(T) directly from T . Since the proof for M(T) = P (T) is

completed through showing their respective equality to ∆(T), and the algorithms recorded

in [2] for computing P (T) is also through first identifying ∆(T), a more intuitive

understanding of the direct relationship between M(T) and P (T) is desired.

In Example 1.3, notice that M(T) = 3 occurs in four different multiplicity lists. We are

interested in characterizing the different ways M(T) can occur for matrices in S(T).
Because it has been established that M(T) = P (T), a natural starting point and the main

focus of this thesis is to investigate the different ways that P (T) occurs for a given tree T ,

from which we then attempt to describe the multiple occurrences of M(T).

Let P(T) denote the set of all MPC’s of T , and let N(T) denote the number of distinct

MPC’s of T . So, N(T) = |P(T)|. A tree can have just one or several MPC’s. The value of

N(T) is more closely related to the specific organization of vertices and edges in T than the

number of vertices in T . For example, for a path T , N(T) = 1 regardless of its length.

N(T) increases drastically when the structure of T gets more complicated, as shown in the

following example. Therefore, when enumerating N(T), the main strategy here is to divide

and conquer.

Example 1.5. T1 shown below has 19 distinct MPC’s, and T2 has a unique MPC.

P (T1) = 4;N(T1) = 19 P (T2) = 2;N(T2) = 1

We first introduce some background definitions and observations in Section 2 that

associate certain properties of vertices and edges in a tree T with N(T). Demonstrated in

more detail in Sections 3 and 4, we characterize trees based on the structures of their

5

vertices and edges and classify trees into different categories. Different techniques are

discussed for different classes of trees that decompose a complex tree into smaller

components {T1, T2, · · · , Tk} with rules to obtain N(T) through recombining the values of

N(Ti)’s. Section 5 deals with trees that cannot be further decomposed using the methods

included in the previous two sections. A new algorithm is introduced to inductively

enumerate N(T) for such trees. Section 6 provides a complete algorithm, which combines

techniques introduced in previous sections, that calculates N(T) for any given tree T . An

example is also included.

6

2 Background Observations

In a tree T , a high degree vertex (HDV) is one of degree at least 3. Otherwise, the

vertex is of low degree. A pendent vertex of T is a vertex of degree 1. A tree is linear

if all its HDV’s lie on a single induced path. Otherwise it is nonlinear. The Hi-graph,

H(T), of T is the subgraph induced by its HDV’s. H(T) is a forest with one or more

components (each of which is a tree). The incremental degree of a vertex v, δ(v), is the

difference between its degrees in T and in H(T). A high-incremental degree (HID)

vertex in H(T) is one of incremental degree at least 2; otherwise it is of low-incremental

degree (LID). It is sometimes helpful to have all vertices in H(T) labeled with their

respective incremental degrees, and we call this a labeled Hi-graph, denoted HL(T).

Example 2.1. Given T , its Hi-graph and labeled Hi-graph are shown on the right.

T
H(T)

02

2

2

HL(T)

It is also helpful to characterize how edges are used in different MPC’s of T when

calculating N(T). For a tree T with N(T) = 1, each of its edges is either included in the

MPC or not. For a tree T with multiple MPC’s, they differ from one another by including

different sets of edges. We distinguish 3 statuses for edges in T .

Definition 2.2. An edge is absent if it is used in no MPC of T . An edge is required if it

is used in all MPC’s. An edge is discretionary if it occurs in some but not all MPC’s.

We will look at ways of identifying edge statuses and their contributions to our

knowledge of N(T) both here and in later sections.

Lemma 2.3. Any edge between two low degree vertices is required.

Proof. Shown below is the general structure of two adjacent low degree vertices v1 and v2

in a tree T . T1 and T2 represent the subtrees connected respectively to v1 and v2 in T . One

or both of them can be empty.

T1 v1 v2 T2

7

We will complete the proof by contradiction. Let C1 be an MPC of T . Assume that the

edge (v1, v2) is not used in C1. Then, the two paths in C1 that respectively contain v1 and

v2 also terminate at v1 and v2. Through merging these two path into one by including

(v1, v2) and thus connecting v1 and v2, we construct a new path cover for T , C2. All the
other paths in C2 are the same as in C1. The new path cover, C2, covers all the vertices in T

and contains one fewer path than C1. Since we assumed C1 to be an MPC, a contradiction

is reached. Therefore, (v1, v2) must be included in all MPC’s of T .

Edge subdivision is the process where a new degree-2 vertex is positioned along an

existing edge.

T1 T2e subdivide e−−−−−−→
T1 v T2e1 e2

Lemma 2.4. If T ′ is obtained by subdividing a required edge in T , then N(T ′) = N(T).

Proof. Suppose the edge e in the illustration above is required in T , we will first show that

after subdividing e, the resulting edges e1 and e2 are both required in the new tree T ′.

Since we can always construct a path cover for T ′ from an MPC of T by including e1, v,

and e2 in the path that originally includes e and keeping other paths unchanged, we have

P (T ′) ⩽ P (T). Without loss of generality, assume that e1 is not required in T ′. Then, for

an MPC of T ′, CT ′ , that does not use e1, either e2 is used and v is included in a path that

goes into T2 or it is not used and v2 is included in the MPC as a singleton. If e2 is used in

CT ′ , we can construct a corresponding path cover CT for T that preserves the paths in CT ′

except that the path that originally terminates at v now terminates at the vertex in T2 that

is connected to e. If e2 is not used in CT ′ , we can also construct a corresponding path cover

CT for T that preserves all the paths in CT ′ excluding v as a singleton. For both cases,

|CT | ⩽ |CT ′ | ⩽ P (T), meaning CT is a minimum path cover of T . However, we assumed e to

be required. A contradiction is reached. Therefore, e1 and e2 are both required in T , which

means that e1, v, and e2 must be included in the same path in every MPC of T ′, making

them equivalent to e, a single edge, in T . Therefore, we have N(T ′) = N(T).

Corollary 2.5. For a tree T , the value of N(T) is independent of the lengths of the paths

induced by the low degree vertices in T .

Theorem 2.6. If for two trees, T1 and T2, HL(T1) is isomorphic to HL(T2), then

P (T1) = P (T2), and N(T1) = N(T2).

Proof. If HL(T1) is isomorphic to HL(T2), the only possible difference between T1 and T2 is

the lengths of the paths induced by the low degree vertices in them. All other aspects of

the two structures are the same. Then, by Corollary 2.5, N(T1) = N(T2).

8

Example 2.7. Here, even though T1 and T2 are two different trees, they share the same

labeled Hi-graph and N(T1) = N(T2) = 9.

T1

T2

3 3

HL(T1)&HL(T2)

Remark 2.8. For a tree T , an LID vertex cannot be a pendent vertex of H(T).

Furthermore, a vertex of incremental degree 0 in H(T) must have at least 3 pendent arms.

Otherwise, they would not have been included in the Hi-graph.

By Theorem 2.6, N(T) is entirely determined by its labeled Hi-graph. Therefore, while

the examples and the proofs here often use trees with degenerate pendent paths for the

sake of simplicity, the results can always be generalized to all trees with the same labeled

Hi-graph.

2.1 Trees with a Unique MPC

We will deviate slightly before delving into the different techniques for enumerating

MPC’s. One problem that we have been interested in is to characterize all trees that have

a unique MPC. However, among trees that have a unique MPC, there still exist a variety of

structures. Both linear and nonlinear trees can have a unique MPC, as shown in the

following example. Using the techniques developed in the remaining sections, it can be

determined whether a given tree T has a unique MPC. However, we have not been able to

directly describe all trees with a unique MPC using overt combinatorial features of T .

9

Example 2.9. For trees T1, T2, and T3, N(T1) = N(T2) = N(T3) = 1.

P (T1) = 1, P (T2) = 3, and P (T3) = 4. The dashed edges are absent, and all the other edges

are required.

T1 T2
T3

Remark 2.10. A tree T has a unique MPC if and only if every edge in T is either required

or absent.

3 Trees with Multiple-Component Hi-graphs

The Hi-graph of a tree T has two or more components when there are one or more

low-degree vertices on a single path between two of the HDV’s. We will call such a path,

induced by the low-degree vertex or vertices between two HDV’s in the original tree, a

hyphen.

Remark 3.1. By Lemma 2.3 and Corollary 2.5, the edges in a hyphen are required and the

value of N(T) is independent of the lengths of the hyphens.

Here we will first consider the case in which H(T) is composed of two disjoint

components. Note that in this case, there is exactly one hyphen in T . We consider the

hyphen as a shared boundary between the two neighboring components. The two HDV’s

connected by the hyphen are denoted v1 and v2, respectively. The process of hyphen

decomposition is defined as follows: we first separate the two components by removing

the edge between the hyphen and v2, with the resulting tree that contains v1 denoted T1;

Similarly, T2 is obtained by removing the edge between the hyphen and v1 and selecting the

part that includes v2. Note that after the separation, both T1 and T2 include the hyphen.

Below is a tree with a two-component Hi-graph with each component being a singleton of

incremental degree 3. The hyphen is labeled, and the process of hyphen-decomposing T

into T1 and T2 is displayed.

3 3

H(T)

10

v1 v2

Hyphen

Twwww�

v1

T1

v2

T2

Hyphen Hyphen

It is easier to enumerate N(T1) and N(T2) than to directly calculate N(T). In fact, we

will show that N(T) is the product of the two.

Lemma 3.2. Suppose that the Hi-graph of a tree T has two components. The hyphen in T

is always included in a single path in every MPC of T1 and T2.

Proof. Since T1 and T2 are named arbitrarily, we will only present the proof for T1.

When the hyphen is a degenerate path, the statement is trivially true.

When the hyphen is composed of two or more vertices, every vertex in it is of low

degree. Therefore, by Lemma 2.3, every edge in the hyphen is required, meaning the

hyphen must be included in a single path in every MPC of T1. The same argument applies

to T2.

Lemma 3.3. Let C1 and C2 be two MPC’s of T1 and T2, respectively. Then C1 and C2 can

be merged into a path cover of T by taking the two paths in C1 and C2 that both contain the

hyphen and merging them into one path. Note that two such paths must exist by Lemma

3.2. The other paths in C1 and C2 are unchanged by the merge. The resulting path cover is

an MPC of T .

Proof. An example of merging MPC’s of T1 and T2 is shown below. We will complete the

proof by contradiction. Suppose that the resulting path cover of T is not an MPC. Thus,

the number of paths in it, k, is greater than P (T). We have

k = |C1|+ |C2| − 1 > P (T).

Because the edges in the hyphen are required in T , the reverse of the merging process can

be applied on an MPC of T to obtain two path covers for T1 and T2. We apply the

11

reverse-merging on an MPC of T , and the total number of paths in these two path covers is

P (T) + 1. But we have |C1|+ |C2| > P (T) + 1, suggesting that at least one of C1 and C2 is

not minimum. A contradiction is reached. Therefore, the resulting path cover of T from

merging C1 and C2 is an MPC of T .

v1

T1

v2

T2

Hyphen Hyphen

v1 v2

Hyphen

T

We now consider the relationship between P(T1), P(T2), and P(T), the sets of MPC’s

of T1, T2, and T .

Theorem 3.4. There exists a bijection between P(T1)×P(T2) and P(T).

Proof. Let C1 and C2 be two MPC’s of T1 and T2, respectively. We will first construct a

function f that maps from P(T1)×P(T2) to P(T).

Define f : P(T1)×P(T2) → P(T). The function f merges C1 and C2 in the same way

as described in Lemma 3.3. Let C ∈ P(T) be the resulting MPC. We then have

f(C1, C2) = C for C1 ∈ P(T1), C2 ∈ P(T2), C ∈ P(T).

For C1, C ′
1 ∈ P(T1) and C2, C ′

2 ∈ P(T2), if (C1, C2) = (C ′
1, C ′

2), we show that

C = f(C1, C2) = f(C ′
1, C ′

2) = C ′. Given the merging procedure described above, it is

impossible for two sets of identical MPC’s of T1 and T2 to become distinct MPC’s of T

after the merge. Therefore, f is well-defined.

Now show that f is a bijection. We first prove that f is injective by showing that if

C1 ̸= C ′
1 or C2 ̸= C ′

2, then C ̸= C ′. This is true by the merging process described above. Let

f−1 be defined as the reverse merging process. An MPC of T gets split up into MPC’s of

T1 and T2. T1 is the component that contains v1 after the removal of the edge between the

hyphen and v2; Similarly, T2 is the component that contains v2 after the removal of the

edge between the hyphen and v1. Then, for each C(i) ∈ P(T), we get f−1(C(i)) = (C(i)
1 , C(i)

2),

with (C(i)
1 , C(i)

2) ∈ P(T1)×P(T2). Therefore, f is surjective.

Because f is both injective and surjective, it is a bijection.

Corollary 3.5. Let T be a tree with a two-component Hi-graph, and let T1 and T2 be the

results of hyphen-decomposing T . Then, N(T) = N(T1)N(T2).

12

Proof. As is shown in Lemma 1.3, there exists a bijection between P(T1)×P(T2) and

P(T). The cardinalities of the two sets are the same. Hence,

N(T1) ·N(T2) = |P(T1)||P(T2)| = |P(T1)×P(T2)| = |P(T)| = N(T).

We generalize Corollary 3.5 to trees with Hi-graphs of k components and k − 1

hyphens. For this type of tree, hyphen-decomposition can be applied at each of the k − 1

hyphens in a sequential order to decompose T into k parts.

Algorithm 3.6. Given a tree T with a k-component Hi-graph and k − 1 hyphens,

1. Identify all the hyphens and assign indices 1, 2, · · · , k − 1 to them. The order of the

assignment does not matter as long as each hyphen is assigned exactly once.

2. Starting from i = 1, while i ⩽ k − 1,

(a) decompose the component that includes the i-th hyphen into two subparts through

applying hyphen-decomposition at the i-th hyphen, and

(b) increment i by 1.

3. When Step 2 is completed, we have decomposed T into k subparts.

Theorem 3.7. Suppose that the Hi-graph of a tree T consists of k disjoint components. If

Algorithm 3.6 is applied and T is hyphen-decomposed into k disjoint components,

T1, T2, · · · , Tk, then

N(T) =
k∏

i=1

N(Ti).

Proof. This is a direct result of Corollary 3.5 and the construction of Algorithm 3.6.

Example 3.8. For the tree T shown below that has a three-component Hi-graph, v1 and v2

are identified as the two hyphens. We then apply hyphen decomposition to T and get T1,

T2, and T3 as the resulting components. By Theorem 3.7,

N(T) = N(T1)N(T2)N(T3) =

(
3

2

)
×
(
4

2

)
×
(
5

2

)
= 180.

v1 v2

T1 T2

T

T3

13

In this example, the resulting components are all stars. We will describe the calculation of

N(T) for trees with a connected Hi-graph in the next section.

4 Trees with Single-Component Hi-graphs

We are now able to calculate N(T) for a tree T with a Hi-graph of multiple components

when given N(Ti)’s for all its components resulting from hyphen decomposition. In this

section, we will look only at trees with a connected Hi-graph and show how to enumerate

N(T).

First, there are certain simple trees of which we can calculate N(T) without having to

decompose further. An example is generalized stars.

Definition 4.1. A generalized star (g-star) is a tree with at most one HDV.

Proposition 4.2. Let T be a g-star with d arms. Then,

P (T) = d− 1 and N(T) =

(
d

2

)
.

Proof. In order to minimize the number of paths used in a path cover for T , one of the

paths includes two of the arms as well as the central vertex. The other (d− 2) arms are

included as disjoint paths in the MPC. Therefore, P (T) = d− 1. Because there are
(
d
2

)
ways to select two arms to lie on the same path in an MPC, N(T) =

(
d
2

)
.

For a tree T with a single-component Hi-graph that is not a g-star, there are ways to

decompose it into smaller pieces, T1, T2, · · · , Tk, enumerate N(Ti) for each piece, and then

calculate N(T) given rules for recombination. Absent-edge decomposition, a process

defined in Lemma 4.3, plays an important role when decomposing such trees.

Lemma 4.3. Absent-edge decomposition is the process where a tree T is decomposed into

smaller components T1, T2, · · · , Tk through the removal of all of its absent edges. Then,

P (T) =
k∑

i=1

P (Ti) and N(T) =
k∏

i=1

N(Ti).

Proof. The absent edges of T are, by definition, not used in any MPC of T . Through

removing all of them, an MPC of T can be viewed as a union of the MPC’s of

T1, T2, · · · , Tk. Therefore, P (T) =
∑k

i=1 P (Ti). The choice of which MPC of P(Ti) to use

for constructing an MPC for T is independent across different Ti’s. Thus, we can write

P(T) as the product of P(T1),P(T2), · · · ,P(Tk),

N(T) = |P(T)| = |P(T1)||P(T2)| · · · |P(Tk)| =
k∏

i=1

N(Ti).

14

Example 4.4. For the tree below, e1 and e2 are absent. Therefore, we apply absent-edge

decomposition and decompose T into T1, T2, and T3. By Theorem 2.3,

P (T) =
3∑

i=1

P (Ti) = 1 + 2 + 1 = 4 and N(T) =
3∏

i=1

N(Ti) = 1 ·
(
3

2

)
· 1 = 3.

e1 e2

T1 T2 T3

Our goal now is to identify all absent edges in a given tree.

4.1 Identifying Absent Edges

We first use H(T) and incremental degrees to directly identify some absent edges for a

tree T .

Proposition 4.5. In a tree T , an edge between two HID vertices is an absent edge.

Proof. Suppose that in a tree T with a connected Hi-graph, there is one or more pairs of

adjacent HID vertices. We complete the proof by contradiction.

Assume that in T , the edge between two adjacent HID vertices, v1 and v2, is used in an

MPC C. We use (v1, v2) to denote the edge and l to denote the path in C that contains v1,

v2, and (v1, v2). Suppose that δ(v1) = d1 and δ(v2) = d2, with d1, d2 ≥ 2, and that

P (T) = k. Because H(T) is connected, v1 and v2 have d1 and d2 pendent paths in T .

T1 v1

T2

v2 T3

The tree shown above demonstrates a sample structure of T . The nodes denoted as Ti’s

represent the HDV’s (besides v1 and v2) adjacent to either v1 or v2 and the subtrees

connected to them. In order to minimize the number of paths used, l must include one

15

neighboring edge at v1 and one at v2 besides (v1, v2). These two edges at v1 and v2 can

either connect them with a pendent path or an adjacent HDV depending on the overall

structure of T . Either way, there is at least one pendent path left at each vertex that is

included in C separately. A new MPC, C ′, can be constructed from C. The process is as

follows.

The path, l, first gets split into two by removing (v1, v2) from C. Then, we connect the

path that contains v1 to one of its “available” pendent paths and apply the same to v2.

During this process, the total number of paths increases by 1 when (v1, v2) is removed and

decreases by 2 when v1 and v2 are respectively connected to the two pendent paths that

were originally separate paths in C. Therefore, |C ′| = k + 1− 2 = k − 1 < P (T). We have

now reached a contradiction. Therefore, (v1, v2) is absent in T .

Not all absent edges are between two HID vertices. In order to identify the rest of

them, we reduce a tree to a smaller one without changing the statuses of the edges with the

help of pendent g-stars. A pendent g-star in a tree T is a g-star induced by a

peripheral HDV and its pendent paths. An HDV v is peripheral if and only if there is

exactly one branch of T at v that contains all the other HDVs in T.

Lemma 4.6. In a tree T , an edge connecting a pendent g-star to the rest of T is never

required.

Proof. Let e be an edge connecting a pendent g-star of incremental degree d to the rest of

T , T2. Assume that e is a required edge. Then, in every MPC of T , there is always a path

that includes e, the central HDV of the pendent g-star, as well as one of its pendent paths

in order to minimize the number of paths used. Suppose that in an MPC of T , other than

the path that uses e, there are k paths that cover the rest of T2. Then,

P (T) = k + 1 + (d− 1) = k + d.

We now construct a new path cover for T , where we use the same set of paths to cover

T2, except that the path that originally included e now terminates at the vertex in T2

neighboring e. This means that there are still (k + 1) paths covering T2. We then need

(d− 1) paths to cover the pendent g-star by including two of its pendent paths and the

central vertex in the same path and the rest of the pendent paths as separate ones. This

new path cover of T uses (k + 1 + d− 1) = k + d paths, which is equal to P (T). We have

reached a contradiction, meaning that e must not be a required edge.

16

T2

T ′

..
. e

Proposition 4.7. Removing a pendent g-star from a tree T does not change the statuses of

the rest of the edges in T .

Proof. A pendent g-star is arbitrarily selected to be removed from T along with e, the edge

that connects it with the rest of T . The resulting tree is denoted T2. v denotes the vertex

in T ′ that is the immediate neighbor of e. By Lemma 4.6, e can only be absent or

discretionary.

If e is an absent edge, none of the original MPC’s uses e. It is obvious that removing it

does not change the statuses of edges in T2.

Now suppose that e is discretionary. We can then partition P(T), the set of all MPC’s

of T, into two subsets, one with all the MPC’s that use e and the other with MPC’s that

do not use e. Suppose that the selected pendent g-star has incremental degree k. For the

subset that does not include e, removing e does not affect the structures of the MPC’s, and

thus the edges in T2 have the same status as in T . In this case, we write

P (T) = P (T2) + (k − 1).

For the subset of P(T) where e is always used, the path that includes e in each of the

MPC’s also goes through a pendent path of the pendent g-star to minimize the number of

paths used. Let T ′ denote the subtree of T induced by e, T2, and the pendent path. Then,

each MPC in P (T) is consisted of k − 1 paths as well as an MPC in P (T ′). Thus,

P (T) = (k − 1) + P (T ′) = P (T2) + (k − 1). We then get P (T ′) = P (T2).

If there is an MPC in P (T ′) where e is not used, the aforementioned pendent path

must be included as a separate path. We get P (T ′) = P (T2) + 1 as a result, which is

contradictory to the result in the previous paragraph. This suggests that e must be a

required edge in T ′. Therefore, when the pendent g-star and e is removed from T , the

statuses of the edges left remain unchanged.

The internal tree, I(T), of a tree T is the subtree induced by the vertices and edges in

T when all of its pendent g-stars as well as the edges connecting them to the rest of T are

removed.

Corollary 4.8. For a tree T and its internal tree I(T), the edges that are included in both

trees share the same statuses.

17

For a tree T where no absent edge can be immediately identified, we can now reduce it

to a smaller tree by removing a pendent g-star and check if Proposition 4.5 is applicable.

The following algorithm results in identifying all absent edges for a tree T .

Algorithm 4.9. A tree T is given.

1. Let Eabsent = {} denote the set of absent edges in T and set F = T .

2. Let T1, · · · , Tm denote the disjoint components in F . While there exists a connected

component in F that has more than one HDV:

(a) For Ti ∈ F , if Ti has only one HDV, we remove Ti from F since it does not

include an absent edge. Otherwise, Ti has two or more HDV’s. We update F

and proceed to the next step.

(b) Let E denote the set of all edges in F . Iterate over all edges in E. If an edge ei

is between two HID vertices in the connected tree Ti that it belongs to, set

F = F − ei and add ei to Eabsent.

(c) Apply the following steps to each of the T ′
is. Initially, Ti is at the 0th iteration

and is represented using T
(0)
i .

i. During the t-th iteration, every edge in T
(t)
i is checked for whether it is

absent. In order to determine the status for an edge eij of T
(t)
i , remove all

pendent g-stars of T
(t)
i as well as the edges that connect the pendent g-stars

to the rest of T
(t)
i . However, if eij is in a pendent g-star itself, that pendent

g-star does not get removed.

ii. T (i)(t+1) is obtained after removing all the pendent g-stars of T
(t)
i . F is

updated accordingly when newly identified absent edges are removed. Repeat

the entire process in Step 2 on T (i)(t+1) until the initial condition becomes

unsatisfied.

3. At the completion of the previous steps, all absent edges in T are included in Eabsent.

In the worst case scenario, Algorithm 4.9 has complexity O(n!). Since we need to remove

all pendent g-stars and iterate over all the edges to identify which of them are absent for

each recursive step, each iteration has linear performance. This process is then applied

recursively at each of the resulting trees, which gives us a performance of factorial time.

Example 4.10. Determine whether e is an absent edge for the following tree T .

18

e

We first attempt to identify any edge that is between two HID vertices. Since there is no

such edge in T , we proceed to Step 2(c) of Algorithm 4.9.

Since our goal is to identify whether e is absent, all pendent g-stars of T as well as the

edges that connect them to the rest of T are removed. The resulting tree is shown below.

Since it still includes more than one HDV, we repeat Step 2 of Algorithm 4.9 on the

updated tree and find that e is now between two HID vertices. We conclude that e is an

absent edge in the original tree T . In fact, e is the only absent edge in T , which can be

verified by applying the algorithm thoroughly on T .

e

5 Prime Trees

In this section, we will present an algorithm to enumerate N(T) for trees that cannot

be further decomposed using hyphen decomposition or absent-edge decomposition.

Definition 5.1. A tree T is prime if H(T) is connected and there are no absent edges in

T .

Lemma 5.2. For a prime tree T , an edge e connecting a pendent g-star to the rest of T is

discretionary.

Proof. Since T is a prime tree, e must not be absent. By Lemma 4.6, e must not be

required. Therefore, e is a discretionary edge.

Lemma 5.3. Let T be a prime tree with one or more pendent g-stars. If an edge e

connects a pendent g-star of incremental degree k to the rest of T , and if T ′ is the resulting

19

subtree after removing any k − 1 pendent paths of the pendent g-star from T , then e is a

required edge in T ′.

Proof. Included in the proof for Proposition 4.7.

Algorithm 5.4. In order to enumerate MPC’s for a prime tree T , we first identify an edge

e connecting a pendent g-star, T1, with the rest of T . By Lemma 5.2, e is discretionary.

We then consider partitioning P(T) into two subsets where e is either always used or never

used. For the subset PN(T), where e is not used, consider the two trees T1 and T2 as the

result of removing e from T . We have |PN | = N(T1)×N(T2).

Now consider the subset PU(T), where e is always used. In this case, in order to

minimize the number of paths used, for every MPC in PU(T), the path that includes e

must also go through the central vertex of T1 as well as one of its pendent paths. We

construct a subtree T ′ through removing (k− 1) pendent paths of the pendent g-star from T .

There are
(

k
k−1

)
= k ways of doing so. For each of the k ways, we only count the number of

MPC’s of T ′ that use e to be consistent with our setup. By Lemma 3.3, e is required in T ′,

so N(T ′) is exactly the number of MPC’s of T ′ that use e. The resulting trees, regardless of

which (k − 1) paths are removed, are all automorphic to one another and thus have the

same number of MPC’s, N(T ′). Therefore, |PU | = k ·N(T ′).

Finally, we have

N(T) = |P(T)| = |PN(T)|+ |PU(T)| = N(T1) ·N(T2) + k ·N(T ′).

T2

T ′

T1

..
. e

Since T1, T2, and T ′ are all on fewer vertices than T , the values N(T1), N(T2), and

N(T ′) can also be known inductively with the same algorithm.

Example 5.5. Calculate N(T) for the following prime tree T .

20

T ′

T2T1

e

|PN(T)| = N(T1) ·N(T2) = 1 · 3 = 3; |PU(T)| = k ·N(T ′) = 2 · 1 = 2;

N(T) = |P(T)| = |PN(T)|+ |PU(T)| = 3 + 2 = 5.

6 A General Algorithm

Algorithm 6.1. Given a tree T ,

1. Apply hyphen decomposition using Algorithm 3.6 to decompose T into components

with connected Hi-graphs.

2. For each of the resulting components, identify all absent edges and apply absent-edge

decomposition.

3. For each of the resulting components, repeat Step 1 and 2 since new hyphens and

absent edges may arise after the decomposition processes. Keep a record of every

decomposition applied and the components involved for Step 5. When all the resulting

components become prime, go to Step 4.

4. Use Algorithm 5.4 to calculate the number of MPC’s for prime trees inductively.

5. Use the values obtained from Step 4 and recombine them one step at a time using

Theorem 3.7 and Lemma 4.3 to eventually obtain N(T).

Similar to Algorithm 4.9, this is a recursive process where we recursively reduce the size

of a tree and compute the number of MPC’s for the resulting components at each recursive

step. Therefore, Algorithm 6.1 in general has factorial complexity.

In Appendix A, the complete code that implements Algorithm 6.1 is provided.

Example 6.2. Solve N(T) for the following tree T using Algorithm 6.1.

21

hyphen

1. Apply hyphen decomposition on T and obtain TL and TR. Since TR is a g-star, we use

Proposition 4.2 and get N(TR) =
(
3
2

)
= 3. By Theorem 3.7,

N(T) = N(TL)N(TR) = 3N(TL).

TL TR

absent edge

2. Apply absent-edge decomposition on TL and obtain TLL and TLR. By Lemma 4.3,

N(TL) = N(TLL)N(TLR). We now have

N(T) = 3N(TLL)N(TLR).

22

TLL TLR TRhyphen hyphen

3. Repeat steps 1 and 2 in Algorithm 6.1 for each of the resulting components. Two hyphens

are identified, for which hyphen decomposition is applied. No new absent edge is found.

TLL1

TLL2 TLR1

TLR2 TR

4. Hyphen-decomposing TLL and TLR results in four components, TLL1, TLL2, TLR1, and

TLR2. The function for N(T) becomes

N(T) = 3N(TLL)N(TLR) = 3N(TLL1)N(TLL2)N(TLR1)N(TLR2).

Notice that TLL1, TLL2, TLR1, and TLR2 are all isomorphic to the tree in Example 5.5.

All the components are now prime trees. Thus,

N(TLL1) = N(TLL2) = N(TLR1) = N(TLR2) = 5.

Finally, we have

N(T) = 3N(TLL1)N(TLL2)N(TLR1)N(TLR2) = 3× 54 = 1875.

23

Appendix A Code to Enumerate N(T)

This appendix contains code in Python that calculates N(T) for trees. Here, trees are

represented using dictionaries. For a tree T , each of its vertices is labeled and serves as a

key in the dictionary for T . The values of the key that represents a vertex v are the

neighboring vertices of v. N(T) for a tree T can be calculated by calling the function

count mpc(graph) and providing it with a Graph object (T) as the parameter.

To run the algorithm, copy all the code included in this appendix and save it as a

[filename].py file. Then, type “python [filename].py” in the terminal of a computer and

press enter as long as Python is installed. The code has been tested to correctly calculate

N(T) for 12 trees of different sizes and structures. One caveat is that it returns N(T) = 1

for an empty tree. Two testing trees, the 10-vertex nonlinear tree in Example 2.1 and the

tree in Example 6.2, are currently included in the code. More instructions are provided

later in this appendix on how to create new testing trees and calculate the corresponding

N(T).

import copy

import operator as op

from functools import reduce

’’’ Code partially adopted from https :// python -course.eu/applications -

python/graphs -python.php ’’’

class Graph(object):

def __init__(self , graph_dict=None):

""" initializes a graph object;

If no dictionary is given ,

an empty dictionary will be used """

if graph_dict == None:

graph_dict = {}

self._graph_dict = graph_dict

keeps a record of the next integer name to assign when creating

new vertices

max_v_int = -1

for v in self._graph_dict.keys():

if v.isdigit ():

24

num = int(v)

if num > max_v_int:

max_v_int = num

self._next_new_v = max_v_int + 1

get all HDV’s of the tree

self._HDVs = []

for vertex in graph_dict:

if self.is_HDV(vertex):

self._HDVs.append(vertex)

get all pendent HDV’s of the tree

p_HDV = self._all_pendent_HDVs ()

self._pHDVs = p_HDV.keys()

self._pHDV_edges = p_HDV.values ()

def get_dict(self):

""" returns the dictionary representation of the graph """

return self._graph_dict

def vertex_degree(self , vertex):

""" returns the degree of the given vertex """

degree = len(self._graph_dict[vertex])

return degree

def vertex_neighbors(self , vertex):

""" returns all the neighboring vertices of a vertice """

return self._graph_dict[vertex]

def is_HDV(self , vertex):

""" identifies whether a vertex is of high degree """

if self.vertex_degree(vertex) >= 3:

return True

return False

def get_HDVs(self):

""" returns all HDV’s of the graph """

return self._HDVs

25

def incremental_deg(self , vertex):

""" returns the incremental degree of a vertex """

if self.is_HDV(vertex):

higraph_deg = 0

for neighbor in self._graph_dict[vertex]:

if self.is_HDV(neighbor):

higraph_deg += 1

return self.vertex_degree(vertex) - higraph_deg

else:

return -1

def is_HID(self , vertex):

""" checks if a vertex is HID """

if self.incremental_deg(vertex) >= 2:

return True

return False

def _all_pendent_HDVs(self):

""" returns all pendent HDV’s of the graph """

p_hdvs = dict()

for hdv in self._HDVs:

hdv_num = [] # count HDV neighbors

for neighbor in self.vertex_neighbors(hdv):

if self.vertex_degree(neighbor) != 1:

hdv_num.append(sorted([hdv , neighbor]))

if len(hdv_num) <= 1:

p_hdvs[hdv] = hdv_num

return p_hdvs

def get_pendent_HDVS(self):

return self._pHDVs

def remove_pendent_gstar(self , p_hdv):

""" returns a new graph_dict where the pendent g-star

with p_hdv as its center is removed """

26

new_graph_dict = copy.deepcopy(self._graph_dict)

if p_hdv in self._pHDVs:

for neighbor in self.vertex_neighbors(p_hdv):

if self.vertex_degree(neighbor) == 1:

new_graph_dict.pop(neighbor)

else:

new_graph_dict[neighbor].remove(p_hdv)

new_graph_dict.pop(p_hdv)

else:

print("The given vertex " + str(p_hdv) + " is not a pendent

HDV.")

return new_graph_dict

def remove_v_and_neighbors(self , vertex):

""" removes the given vertex and all its neighbors from the graph

"""

for neighbor in self.vertex_neighbors(vertex):

try:

self._graph_dict.pop(neighbor)

except KeyError:

continue

try:

self._graph_dict.pop(vertex)

except KeyError:

continue

def remove_all_pendent_gstars(self , excl_phdv = None):

""" removes all pendent g-stars from the graph """

new_graph_dict = copy.deepcopy(self._graph_dict)

for p_hdv in self._pHDVs:

if p_hdv != excl_phdv:

for neighbor in self.vertex_neighbors(p_hdv):

if self.vertex_degree(neighbor) == 1:

new_graph_dict.pop(neighbor)

else:

new_graph_dict[neighbor].remove(p_hdv)

27

new_graph_dict.pop(p_hdv)

return new_graph_dict

def edges(self , vertice):

""" returns a list of all the edges of a vertice """

return self._graph_dict[vertice]

def all_vertices(self):

""" returns the vertices of a graph as a set """

return set(self._graph_dict.keys())

def all_edges(self):

""" returns the edges of a graph """

return self.__generate_edges ()

def add_pendent_vertex(self , v):

""" Add a pendent vertex at the given v is not in

self._graph_dict

"""

new_v = str(self._next_new_v)

self._graph_dict[v].add(new_v)

self._graph_dict[new_v] = [v]

self._next_new_v += 1

def add_edge(self , edge):

""" assumes that edge is of type set , tuple or list;

between two vertices can be multiple edges!

"""

edge = set(edge)

vertex1 , vertex2 = tuple(edge)

for x, y in [(vertex1 , vertex2), (vertex2 , vertex1)]:

if x in self._graph_dict:

self._graph_dict[x].add(y)

else:

self._graph_dict[x] = [y]

def remove_edge(self , edge):

self._graph_dict[edge[0]].remove(edge[1])

self._graph_dict[edge[1]].remove(edge[0])

28

def remove_vertex(self , v):

""" remove the given vertex """

for n in self.vertex_neighbors(v):

self._graph_dict[n].remove(v)

self._graph_dict.pop(v, None)

def __generate_edges(self):

""" A static method generating the edges of the

graph "graph". Edges are represented as sets

with one (a loop back to the vertex) or two

vertices

"""

edges = []

for vertex in self._graph_dict:

for neighbour in self._graph_dict[vertex]:

edge = sorted([neighbour , vertex])

if edge not in edges:

edges.append(edge)

return edges

def __iter__(self):

self._iter_obj = iter(self._graph_dict)

return self._iter_obj

def __next__(self):

""" allows us to iterate over the vertices """

return next(self._iter_obj)

def __str__(self):

res = "vertices: "

for k in self._graph_dict:

res += str(k) + " "

res += "\nedges: "

for edge in self.__generate_edges ():

res += str(edge) + " "

return res

def ncr(n, r):

calculate the result of n choose r

code from https :// stackoverflow.com/questions/4941753/is-there -a-

math -ncr -function -in -python

29

r = min(r, n-r)

numer = reduce(op.mul , range(n, n-r, -1), 1)

denom = reduce(op.mul , range(1, r+1), 1)

return numer // denom

def remove_pendent_gstar(graph , p_hdv):

new_graph = Graph(graph.remove_pendent_gstar(p_hdv))

return new_graph

def remove_all_pendent_gstars(graph , excl_phdv = None):

new_graph = Graph(graph.remove_all_pendent_gstars(excl_phdv))

return new_graph

def get_all_hyphens(graph):

hyphen_num = 0

for v in graph.all_vertices ():

search for degree -two vertices

if graph.vertex_degree(v) == 2:

num_neighbor_HDV = 0 # number of neighboring HDV’s

n = list(graph.vertex_neighbors(v))

if len(n) == 2:

if graph.is_HDV(n[0]) and graph.is_HDV(n[1]):

graph.remove_vertex(v)

graph.add_pendent_vertex(n[0])

graph.add_pendent_vertex(n[1])

hyphen_num += 1

elif graph.is_HDV(n[0]):

graph.remove_edge(sorted([n[1], v]))

hyphen_num += 1

elif graph.is_HDV(n[1]):

graph.remove_edge(sorted([n[0], v]))

hyphen_num += 1

else:

print("Vertex " + v + " is not of low degree and thus is

30

not part of a hyphen.

")

return graph , hyphen_num

def get_all_absent_edges(graph):

""" recursively return all absent edges of the given graph """

absent_edges = []

first get all edges between two HID vertices

for edge in graph.all_edges ():

if graph.is_HID(edge[0]) and graph.is_HID(edge[1]):

absent_edges.append(edge)

graph.remove_edge(edge)

if len(graph.get_pendent_HDVS ()) > 1:

without_neighbor_HID = Graph(graph.get_dict ())

identify other absent edges by recursively removing pendent g-

stars

smaller_g = remove_all_pendent_gstars(without_neighbor_HID)

sub_absent = get_all_absent_edges(smaller_g)

absent_edges = sub_absent + absent_edges

for v in graph.get_pendent_HDVS ():

without_neighbor_HID = Graph(graph.get_dict ())

identify other absent edges by recursively removing pendent

g-stars

smaller_g = remove_all_pendent_gstars(without_neighbor_HID ,

excl_phdv=v)

sub_absent = get_all_absent_edges(smaller_g)

absent_edges = sub_absent + absent_edges

return absent_edges

def count_mpc(graph):

""" count the number of MPC’s for any given tree """

hdvs = graph.get_HDVs ()

if 1 == 1:

31

graph , hyphen_num = get_all_hyphens(graph)

absent_e = get_all_absent_edges(graph)

for e in absent_e:

try:

graph.remove_edge(e)

except KeyError:

continue

while len(absent_e) != 0 or hyphen_num != 0:

graph , hyphen_num = get_all_hyphens(graph)

absent_e = get_all_absent_edges(graph)

for e in absent_e:

graph.remove_edge(e)

graph = Graph(graph.get_dict ())

create a deep copy of the graph passed to this function

new_graph = Graph(copy.deepcopy(graph.get_dict ()))

cur_N_T = 1

for v in graph.get_HDVs ():

paths do not matter

deg_one_num = deg_one_n(graph , v)[0]

if the vertex is the center of a star

directly calculate its N(T) and multiply it to cur_NT

then remove the star from the forest

if len(deg_one_num) == graph.vertex_degree(v):

cur_N_T = cur_N_T * ncr(len(deg_one_num), 2)

new_graph.remove_v_and_neighbors(v)

new_graph = Graph(new_graph.get_dict ())

if len(new_graph.get_pendent_HDVS ()) >= 1:

for v in list(new_graph.get_pendent_HDVS ())[0]:

new_T1 = remove_pendent_gstar(new_graph , v)

for_T2 = Graph(copy.deepcopy(new_T1.get_dict ()))

g1 , N_T1 = count_mpc(new_T1)

deg_one_num , hdv_num = deg_one_n(new_graph , v)

32

if len(hdv_num) == 1:

for_T2.add_pendent_vertex(hdv_num[0])

g2 , N_T2 = count_mpc(for_T2)

N_T_pstar = ncr(len(deg_one_num), 2)

net_N_T = N_T_pstar * N_T1 + N_T2 * len(deg_one_num)

cur_N_T = cur_N_T*net_N_T

return new_graph , cur_N_T

""" return all neighbors of degree one of the given vertex in the given

graph """

def deg_one_n(graph , v):

deg_one_neighbor = []

hdv_neighbor = []

for n in graph.vertex_neighbors(v):

if graph.vertex_degree(n) == 1:

deg_one_neighbor.append(n)

else:

hdv_neighbor.append(n)

return deg_one_neighbor , hdv_neighbor

The segment shown below includes the two dictionaries that respectively represent the

10-vertex nonlinear tree in Example 2.1 and the tree in Example 6.2. New trees can be

added to the code using a similar format. A current limitation of the code is that it

requires the label of a vertex to either be a single letter (e.g. ‘a’) or a stringified

nonnegative integer (e.g. ‘20’). After the dictionary for a new tree, new dict, is included in

the code, use new tree = Graph(new dict) to instantiate it as a Graph object. We then call

the function that calculates N(T) using the line “N T = count mpc(new tree)[1]”. The

variable N T then gives us N(T) for the new tree.

if __name__ == "__main__":

the 10-vertex nonlinear tree

g_10 = { "a" : {"b"},

"b" : {"a", "c", "d"},

"c" : {"b"},

"d" : {"b", "h", "e"},

"e" : {"d", "f", "g"},

"f" : {"e"},

33

"g" : {"e"},

"h" : {"d", "i", "j"},

"i" : {"h"},

"j" : {"h"}

}

the tree given in Example 6.2 in the thesis

thesis_ex = { "a" : {"b"},

"b" : {"a", "c", "d"},

"c" : {"b"},

"d" : {"b", "h", "e"},

"e" : {"d", "f", "g"},

"f" : {"e"},

"g" : {"e"},

"h" : {"d", "i", "p"},

"i" : {"h", "j", "m"},

"j" : {"i", "l", "k"},

"k" : {"j"},

"l" : {"j"},

"m" : {"i", "n", "o"},

"n" : {"m"},

"o" : {"m"},

"3" : {"2"},

"2" : {"x", "3", "4"},

"4" : {"2", "5"},

"x" : {"p", "y", "2"},

"5" : {"4", "6", "7"},

"6" : {"5"},

"7" : {"5", "8"},

"8" : {"7"},

"y" : {"x", "z", "1"},

"z" : {"y"},

"1" : {"y"},

"p" : {"x", "q", "h"},

"q" : {"p", "r", "u"},

"r" : {"q", "s", "t"},

"s" : {"r"},

"t" : {"r"},

"u" : {"q", "v", "w"},

"v" : {"u"},

"w" : {"u"},

}

instantiate the two trees as Graph objects

graph_10 = Graph(g_10)

34

thesis_tree = Graph(thesis_ex)

test the complete algorithm count_mpc ()

t1, n1 = count_mpc(graph_10)

print("The number of MPC’s of the 10-vertex nonlinear tree in Example

1.5 is: ", n1)

t2, n2 = count_mpc(thesis_tree)

print("The number of MPC’s of the tree in Example 6.2 is: ", n2)

Below is the output of the code:

The number of MPC’s of the 10-vertex nonlinear tree in Example 1.5 is: 19

The number of MPC’s of the tree in Example 6.2 is: 1875

35

Bibliography

[1] C. R. Johnson, A. Leal-Duarte, and C. M. Saiago, “The Parter-Wiener theorem:

Refinement and generalization,” SIAM Journal on Matrix Analysis and Applications,

vol. 25(2), pp. 352–361, 2003.

[2] C. R. Johnson and C. M. Saiago, Eigenvalues, Multiplicities, and Graphs. Cambridge

University Press, 2018.

[3] C. R. Johnson and A. Leal-Duarte, “The maximum multiplicity of an eigenvalue in a

matrix whose graph is a tree,” Linear and Multilinear Algebra, vol. 46, pp. 139–144,

1999.

[4] L. Hogben and C. R. Johnson, “Path covers of trees,” unpublished note.

[5] C. R. Johnson and C. M. Saiago, “Estimation of the maximum multiplicity of an

eigenvalue in terms of the vertex degrees of the graph of a matrix,” Electronic

Journal of Linear Algebra, vol. 9, pp. 27–31, 2002.

[6] C. R. Johnson, A. Leal-Duarte, and C. Saiago, “Inverse eigenvalue problems and lists

of multiplicities of eigenvalues for matrices whose graph is a tree: The case of

generalized stars and double generalized stars,” Linear Algebra and its Applications,

vol. 373, pp. 311–330, 2003.

[7] C. R. Johnson, A. Leal-Duarte, C. M. Saiago, B. D. Sutton, and A. J. Witt, “On the

relative position of multiple eigenvalues in the spectrum of an hermitian matrix with

a given graph,” Linear Algebra and its Applications, vol. 363, pp. 147–159, 2003.

[8] C. R. Johnson and C. M. Saiago, “The trees for which maximum multiplicity implies

the simplicity of other eigenvalues,” Discrete Mathematics, vol. 306(23),

pp. 3130–3135, 2006.

[9] C. R. Johnson, A. Leal-Duarte, and C. M. Saiago, “The structure of matrices with a

maximum multiplicity eigenvalue,” Linear Algebra and its Applications, vol. 429(4),

pp. 875–886, 2008.

[10] C. R. Johnson, A. A. Li, and A. J. Walker, “Ordered multiplicity lists for eigenvalues

of symmetric matrices whose graph is a linear tree,” Discrete Mathematics, vol. 333,

pp. 39–55, 2014.

[11] I.-J. Kim and B. L. Shader, “Smith normal form and acyclic matrices,” Journal of

Algebraic Combinatorics, vol. 29(1), pp. 63–80, 2009.

36

	The Enumeration of Minimum Path Covers of Trees
	Recommended Citation

	tmp.1652411295.pdf.mi0Am

