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Closed-orbit theory and the photodetachment cross section of H2 in parallel electric
and magnetic fields

Aaron D. Peters and Charles Jaffe´
Department of Chemistry, West Virginia University, Morgantown, West Virginia 23506

John B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

and JILA, University of Colorado, Boulder, Colorado 80309-0440
~Received 3 June 1996; revised manuscript received 31 January 1997!

In this paper we obtain a simple analytic formula for the photodetachment cross section of H2 in parallel
electric and magnetic fields. The three-dimensional semiclassical approximation predicts oscillations in the
spectrum and correlates these oscillations with closed classical orbits. The cylindrical symmetry of the Hamil-
tonian produces some interesting effects. In particular, at boundary energies the semiclassical approximation
fails as a focused cusp approaches the origin.@S1050-2947~97!03306-4#

PACS number~s!: 32.80.Gc

I. INTRODUCTION

Experimental measurements of the photodetachment cross
section of H2 in strong static electric fields were made by
Bryantet al. @1#. For energies above the threshold energy the
resulting cross section was found to be a smooth background
upon which was superposed sinusoidal oscillations. Theoret-
ical discussions of the measurements have been given by a
number of authors@2,3#. The oscillations arise as an interfer-
ence effect because the outgoing electron can move against
the electric force and then return to the atom. It was shown in
Ref. @3# that the cross section could be expressed in the fol-
lowing way:

s~E!5s0~E!1C~E!sinF~E!,

wheres0 is the cross section in the absence of any external
fields andC(E) andF(E) are called the recurrence strength
and recurrence phase associated with the returning orbit.

Theoretical calculations@4,5# show that analogous oscil-
lations occur for photodetachment in crossed electric and
magnetic fields, and that the oscillations are again associated
with closed orbits. Quantum calculations have shown that
very strong oscillations are present in parallel fields@6#, but
the relationship to closed orbits was not made clear. Our
original motivation in the present paper was to complete this
subject by calculating the closed orbits and the resulting
spectral oscillations for photodetachment of an electron from
H2 in parallel electric and magnetic fields. This is a system
in which the recurrences are simple, strong, relatively easy to
observe, and easy to understand.

We found results which go far beyond this topic, and
which are connected with many other problems of current
interest. We know from study of nonlinear dynamics that
even when long-time motion is chaotic, short-time motion
remains relatively simple and predictable. Periodic orbits
play a central role: in Poincare´’s words, they offer ‘‘the only
opening through which we might try to penetrate the fortress
~chaos! which has the reputation of being impregnable.’’
This classical statement holds also in quantum mechanics,
wherein the periodic-orbit theory of Gutzwiller, Balian and

Bloch, and Berry and Tabor@7# provides a general theoreti-
cal framework for studying quantum manifestations of clas-
sical chaos. Besides producing oscillations in absorption
spectra@8#, periodic orbits produce scars in wave functions
@9#, oscillations in the density of states@10#, and real-time
recurrences that have been observed in many atoms and mol-
ecules@11#. @Similar phenomena are observed in microwaves
in cavities @12~a!#, in microjunctions@12~b!#, and they are
calculated to be consequences of certain models in nuclear
physics@12~c!#.#

Bifurcations of periodic orbits are of particular interest. A
bifurcation is defined as the creation of new periodic orbits
as a fixed parameter of the system is varied~such as the total
energy or the magnetic field strength!. New periodic orbits
may be created as a stable-unstable pair, or they may split
out of a periodic orbit that is already present in the system.
Bifurcations are readily observable because they create new
recurrences in absorption spectra. Very detailed studies of
bifurcations of closed orbits of electrons in atoms in static
electric and/or magnetic fields are given in Refs.@13–16#.

Partly stimulated by these observations, the mathematical
theory of bifurcations of periodic orbits in Hamiltonian sys-
tems is moving forward again. There is a huge literature on
bifurcation theory, but only a tiny part of that literature deals
with the particular structures of bifurcations of periodic or-
bits in Hamiltonian systems@17#. Meyer @18# showed that
such bifurcations typically fall into one of five characteristic
patterns, and later, each of these patterns was seen in the
diamagnetic Kepler system. Two different characteristic se-
quences of bifurcations have been identified. Conservative
systems are known to have their own type of period-doubling
sequence; perhaps more important, a different sequence of
bifurcations was predicted and partially described math-
ematically by Churchill, Pecelli, and Rod@19#, and calcu-
lated and observed by Mainet al. @20,14#.

Much more remains to be learned. Bifurcations under
variation of more than one parameter are being studied, the
effects of symmetries and symmetry breaking are being ex-
amined, and the behavior of systems with three or more de-
grees of freedom is under scrutiny.

At a bifurcation, observed recurrences are especially
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strong. In fact, semiclassical theory predicts that the recur-
rence amplitude diverges at every bifurcation, because a bi-
furcation is correlated with a focus of classical orbits. We
have seen many such cases in atomic spectra. This is a deep
problem for periodic-orbit theory, because every stable peri-
odic orbit produces such focusing effects, which in turn lead
to vanishing denominators in the periodic-orbit sum. Anad
hoc repair was suggested by Gutzwiller@21#, and further
examination of the problem was given in@22#. However,
there remains a need for a general theory to repair diver-
gences in recurrence spectra caused by bifurcations of closed
orbits. In this set of papers we develop such a theory for two
cases.

Electron detachment from a negative ion in the presence
of static parallel electric and magnetic fields is a key model
which opens the door to the solution of these problems. This
model has the following properties.~1! It is exactly soluble
@23#. ~2! It admits a simple structure of closed orbits and
their associated recurrences, and it possesses an orderly se-
quence of bifurcations.~3! At each bifurcation a certain geo-
metrical structure, a cylindrically focused cusp, passes
through the origin. This causes the semiclassical approxima-
tion to fail. ~4! The failure is repaired by a simple diffraction
function, a Fresnel integral. The integral provides a uniform
approximation which is always finite and which behaves cor-
rectly in all the known limits.~5! The focused cusp is suffi-
ciently similar to the structures found in excitation of neutral
atoms that it guided us in the derivation of appropriate for-
mulas for those more difficult cases@24~a!#. ~6! Finally, the
model accurately represents a system on which experimental
measurements can test the predictions.

A brief summary of this work was presented already
@24~b!#, and here we give the details of the theory. We divide
our presentation into two parts. In this paper we give the
semiclassical treatment. The general relationship between the
closed orbits and the photodetachment cross section is given,
the closed orbits are described, and the photodetachment
cross section is shown, divergences included. In the follow-
ing paper@25~a!# we analyze the focused cusp and derive an
integral representation of the wave function near the cusp.
This uniform wave function gives a corrected formula for the
photodetachment cross section. We compare that formula
with exact quantum calculations@25~a!#, and find good
agreement. Experimental measurements on this system are
not yet available.

On the other hand, experimental measurements on excita-
tions of neutral atoms in electric fields are available, and
recurrences associated with bifurcations of closed orbits have
been measured. Calculations show that similar cusp struc-
tures arise in such systems. We expect therefore that a simi-
lar treatment may give a quantitative description of those
recurrences. An important difference arises, however: for ex-
citation of neutral atoms we have to take account of the
effect of the Coulomb field on the outer electron. The prob-
lem is addressed in the third paper@25~b!#. We find good
agreement between theory and measurements.

II. THE PHOTODETACHMENT CROSS SECTION

In this section we will closely follow the arguments pre-
sented in the paper by Peters and Delos@5#, who studied

photodetachment of H2 in crossed electric and magnetic
fields. The active electron is initially loosely bound to the
hydrogen atom by a short-range, spherically symmetric po-
tential. The Hamiltonian governing this electron is

H5
1

2m S pp21
Lz
2

r2D 1vLLZ1
1

2
mvL

2r21
1

2m
pz
21eF0z

1Vb~r !, ~2.1a!

wheree is the absolute value of the electron charge,vL is
the Larmor frequency

vL5
eH0

2mc
, ~2.1b!

F0 and H0 are the applied electric and magnetic field
strengths,Vb(r ) is the effective atomic potential energy that
binds the active electron to the hydrogen atom, andLz
5(xpy2ypx) is thez component of the angular momentum.
Since its conjugate variable, the azimuthal anglef, is an
ignorable coordinate,Lz is a constant of the motion, which
we take to be zero.

The binding energy of the electron isEb5\2kb
2/2m,

whereEb is approximately 0.754 eV and the mass of the
electron is denoted bym. The valence electron absorbs a
photon of energyEp5Eb1E and its quantum wave propa-
gates outward in all directions. Within the atomic region the
electron moves on a straight line at constant speed. As it
enters the external region the trajectories ‘‘feel’’ the effects
of the imposed electric and magnetic fields and the semiclas-
sical wave is distorted. The photodetachment cross section is
proportional to an oscillator-strength densityDf (E) and is
given by

s5
2p2

mc
e2\Df ~E!. ~2.2a!

It has been shown that the oscillator-strength density can be
put in the form

Df ~E!52
2mEp
p\2 Im^DC i uĜ~1 !uDC i&. ~2.2b!

The outgoing free-particle Green’s function is denoted by
Ĝ(1). The dipole operatorD is equal to the projection of the
electron coordinate onto the direction of polarization of the
laser field.

Equation~2.2! can be interpreted in the following way.
The initial state is modified by the laser field to give the
source function uDC i&. The outgoing Green’s function
propagates these waves outward at a fixed energy. Asymp-
totically the outgoing wave is proportional toeikr /kr. At
5a0–10a0 this asymptotic quantum wave is joined to a semi-
classical wave. The semiclassical wave is constructed from
classical trajectories which propagate through the external
region. The trajectories are eventually turned around by the
parallel electric and magnetic fields and some are returned to
the origin. At around 10a0 the returning semiclassical wave
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is very nearly a cylindrical plane wave, so we join
it to a quantum-mechanical cylindrical plane wave:
J0(krr)exp(ikzz). This cylindrical wave is expanded in
spherical partial waves and this expansion is used to calcu-
late the overlap with the source function^DC i u. Of all the
possible classical trajectories it will only be the returning
orbits which form any substantial overlap with the initial
state.

We show in Appendix A that Eq.~2.2! can be reduced to
a very simple formula, which relates the photodetachment
cross section to closed orbits of the electron: the photode-
tachment cross section is given by the formula

s5s01(
j
Cj~E!sinF j~E!. ~2.3!

s0 is the photodetachment cross section in the absence of
fields. The other terms are oscillatory contributions arising
from the returning orbits~the recurrences!. The summation is
over all closed orbits that begin and end at the nucleus. The
phaseF j (E) of the oscillations is given by

F j~E!52Sj~E!/\1f j1m j

p

2
. ~2.4!

Sj (E) is the classical action for the returning orbit evaluated
at its return time. The returning orbit passes through caustics
and foci on its way back to the origin and at each such
‘‘singular point’’ the phase undergoes a change ofp/2. The
Maslov indexm j is equal to the total number of singular
points ~including their multiplicity! through which the elec-
tron passes on its journey. The semiclassical wave and its
trajectories return to a spherical surface located arr5r ret a
few bohrs from the origin. The Maslov index is calculated
along the trajectory that ends at this surface. The semiclassi-
cal wave is joined to a quantum wave which is then propa-
gated in to the origin. For parallel fields this wave is a cy-
lindrical plane wave with a focus at the origin. This focus
gives rise to an additional phase shift given byf j . The
action, Maslov index, and phase will be found to be indepen-
dent of the polarization.

The coefficientsCj (E), or therecurrence amplitudes, are
given by

Cj~E!5s06ux~u j !u2
u f out

~1 ! j u

u f ret
~2 ! j u

uJj~ t0!u1/2

uJj~ t ret!u1/2
. ~2.5!

This formula contains both ‘‘classical’’ and ‘‘quantum’’ fac-
tors. The recurrence amplitudes are proportional to the ‘‘di-
rect’’ photodetachment cross sections0 . x~u,f! is another
quantum factor; it represents the angular distribution of out-
going waves. We assume that the initial bound state of the
electron is ans state, and that the light is linearly polarized
on thez axis; it follows thatx(u,f)5cosu/A4p. The angle
u j is the initial and final direction of thej th returning orbit.
The quantityuJj (t0)/Jj (t ret)u1/2 is related to the classical den-
sity of the returning wave. The ratio@ f out

(1) j / f ret
(2) j # is the ratio

of outgoing quantum wave to the returning quantum wave on
the boundary sphere.

The only important difference between the present devel-
opment and that given in Ref.@5# arises because of the cy-
lindrical symmetry that exists for parallel fields. In crossed
fields, the returning waves are appropriately described by
plane waves, whereas for parallel fields, they are cylindrical
waves that propagate in to the origin while simultaneously
moving down thez axis. These waves are described by
Bessel functions, Eq.~A17!, and their overlap with the initial
state is found from the partial-wave expansion of these cy-
lindrical waves~rather than the partial-wave expansion of a
plane wave as in Ref.@5#!.

III. THE CLASSICAL MOTION

In this section we discuss the classical quantities which
appear in the photodetachment cross section given above.
The initial conditions for the electron trajectories follow
from the fact that upon detachment the electron emerges
from the boundary sphere at (uout,fout) moving radially out-
ward with a speed such thatmv2/25Ep2Eb[E. Outside
this boundary sphere, the atomic potential energyVb(r ) can
be neglected. Thez component of the angular momentum is
zero, and the Hamiltonian separates into motion along thez
axis and motion in the perpendicularx-y plane. Accordingly
thezmotion is uniform acceleration, and the motion inr and
f is circular cyclotron motion. The azimuthal motion in
f(t) is ignorable:

z~ t !52
1

2

eF0
m

t21
1

m
A2mEcosuoutt,

r~ t !5
1

mvL
A2mEsinuoutusinvLtu,

f~ t !5vLt1fout. ~3.1!

Notice we have expressed the initial momentapz0 andpr0
as

functions of the total energy and the polar angleuout; this
polar angle defines the direction of the initial velocity of the
electron. The absolute value sign onusinvLtu occurs because
r can only be positive.~However, we will draw our pictures
with r both positive and negative.!

The equation of motion forz(t) is the motion of an elec-
tron in an electric field. If the initial momentumpz0
5A2mEcosuout is negative, thenz(t) is less than zero for all
time and consequently there will be no returning orbits. On
the other hand, if the initial momentumpz0 is positive the

electron initially moves in the positivez direction against the
electric field and consequently returning orbits will exist for
certain initial conditions. For a given energy the maximum
distance reached along thez axis is given by the expression
zmax5(E/eF0)cos

2uout. ~For the electric field strength consid-
ered here typical values ofzmax for uout50 are between
13106 and 33107 a.u.! The time at which the electron re-
turns to thex-y plane is easily shown to be

t ret
z 5

2A2mE

eF0
cosuout. ~3.2!
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The motion inr is that of a harmonic oscillator, and rep-
resents cyclotron motion in the magnetic field. The period of
the motion is the cyclotron time,

tc5p/vL52p/vc . ~3.3!

The electron returns to thez axis whenever t5t ret
r

5np/vL , which is equivalent ton cyclotron times. The
maximum distancermax is equal to (A2mE/mvL)sinuout.
Typical values range from 106 to 107 atomic units.

We see from the above comments that for returning orbits
the initial polar angleuout and therefore the magnitudes of
pz0 andpr0

, must be such that when the electron returns to

thex-y plane in itsz(t) motion it also returns to thez axis in
its r(t) motion, i.e.,t ret

z 5t ret
r .

It follows that one returning orbit always exists: it lies on
the positivez axis; the electron is affected only by the force
of the electric field and this force returns it to the origin. At
very low energies this is the only orbit that can exist. The
return time forr motion is the fixed cyclotron time, indepen-
dent of the energy and independent of the radius of the mo-
tion. However, the return time forz motion cannot exceed

t i~E!52~2mE/eF0!
1/2, ~3.4!

which at smallE may be much less than the cyclotron time.
Therefore, for energies such thatt i(E),p/vL , the only
possible returning orbit lies on the positivez axis.

If we increase the electron’s energy, the return time of the
parallel orbit also increases until, at the first ‘‘bifurcation
energy,’’ it is exactly equal to one cyclotron time. At this
point, a new returning orbit is created. Increasing the energy
further, the return time of the parallel orbit continues to in-
crease. However, by ‘‘aiming’’ the electron at a different
angle, we put less energy into thezmotion and more into the
r motion. Above the first bifurcation energy there always
exists an initial direction that divides the energy between the
two modes in such a way that thez return time equals ther
return time,p/vL . Thus the orbit goes up and down inz
while simultaneously executing a single circle in (x,y).

We may say that the new orbit is created out of the par-
allel orbit, and it moves away as the energy is increased. This
phenomenon is what we define as abifurcation of an orbit
closed at the origin.

As we increase the energy further, a second ‘‘bifurcation
energy’’ occurs, at which the return time of the parallel orbit
is exactly twice the cyclotron period. At this point another
new returning orbit is created, which undergoes two cyclo-
tron circles in (x,y) while simultaneously moving up and
down in z. Increasing the energy still further takes us
through a discrete set of bifurcation energies, where at each
such energy one new orbit is created. Thej th new orbit has
a return time equal toj cyclotron times, so at any energy, the
total number of returning orbits is equal to the smallest inte-
ger greater thant i(E)/tc wheret i(E) is the return time of the
parallel orbit andtc is the cyclotron time.

We need to know exactly what happens to the whole fam-
ily of outgoing trajectories at a bifurcation. In Fig. 1 we
show families of trajectories in the (r,z) plane for various
energies. As stated earlier, each family is defined by the con-
dition that the electron begins at the origin with fixed speed

moving in any direction. For low energies we have the fam-
ily of trajectories depicted in Fig. 1~a!. We see from the
figure that although the electron is confined in itsr motion it
is ultimately swept away from the region near the origin by
the electric field. There is one returning orbit for this energy,
the parallel orbit, and its trajectory has been emphasized in
the figure.

Caustics, or boundaries between classically allowed and
forbidden regions, are apparent. These are known as ‘‘fold
caustics’’; in the upper part of the figure, the parallel orbit
touches a fold at the top of its motion. Caustics are signifi-
cant because semiclassical approximations diverge at a caus-
tic. The approximations can be repaired locally by certain
diffraction integrals~such as Airy functions!, and these re-
pairs produce additional phase shifts in semiclassical formu-
las ~the Maslov index was invented to keep track of these
phase shifts!.

In the lower part of the figure, caustics come together to
form an upward-pointing cusp, whose tip is located atz'
223103 a.u. Sincef is an ignorable coordinate this cusp is
actually a three-dimensional structure, which we call a fo-
cused cusp, obtained by rotating the two-dimensional cusp
through 2p. This focused cusp is ‘‘unusual.’’ General prin-
ciples based upon catastrophe theory assert that only certain
structures of caustics commonly occur. For a ‘‘typical’’ or
‘‘generic’’ two-dimensional family of trajectories only two
kinds of caustics occur: folds and cusps. In three dimensions
other types can be present~swallowtails, butterflies, and el-
liptic umbilics!, but a focused cusp is not on the generic list.
The reason is obvious: this focused cusp is present because
of the cylindrical symmetry of our system. ‘‘Generic’’ sys-
tems have no such special symmetries, and therefore do not
admit such phenomena. On the other hand, what is nonge-
neric in mathematics can be very common in physics. In-
deed, our motivation for studying this phenomenon arises
because we have already found many similar examples in
other systems@25~b!#. The present case is the simplest one of
its type.

Most important, the focused cusp is directly connected
with the bifurcations of the parallel orbit. As we increase the
energy this cusp rises towards the origin, and there exists an
energy at which the tip of the cusp precisely touches the
origin @Fig. 1~b!#. This energy is the first bifurcation energy,
where a new closed orbit is created.

In Fig. 1~c! we show the family of trajectories at an en-
ergy above the first bifurcation energy but below the second,
whereEb51,E,Eb52 . The new orbit created at the first
boundary energy is shown along with the initial parallel or-
bit. One sees that this new orbit touches a caustic atrmax and
returns to a focus at the origin. The cusp which was previ-
ously located below thex-y plane in Fig. 2 has now risen to
a position where its tip is located at approximatelyz'
13.23103 a.u. The parallel orbit goes up from the origin,
touches the caustic at its highest point, and then passes
through this cusp on its way back down. At the caustic, the
Maslov index increases by 1, as usual, but at the focused
cusp, it increases by 2.

Another cusp atz'24.23103 a.u. has appeared. As we
increase the energy to the second bifurcation energyEb52
this cusp touches the origin@Fig. 1~d!#, and the second new
orbit is created.
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FIG. 1. The family of electron trajectories going out from the origin with fixed speed, and withpz positive. In every caseH052T and
F05100 V/cm. The trajectories are projected into cylindrical coordinates@r(t),z(t)#, but they are drawn such thatr(t) alternates positive
and negative@the absolute value in Eq.~3.1! is omitted#. The units are 103 bohrs. Note the changes of scale at~d! and ~f!. ~a! At low
energies, only the parallel orbit returns to the origin.~b! At the first bifurcation energy a cusp touches the origin and the neighbors of the
parallel orbit also return very close to the origin.~c! The first ‘‘snake’’ (j51) has bifurcated out of the parallel orbit, and another cusp is
approaching the origin from below.~d! At the second bifurcation energy that cusp touches the origin and~e! the ‘‘balloon’’ ( j52) appears.
~f! Above the third bifurcation energy another snake (j53) has been created and~g! above the fourth is the double balloon (j54).
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Increasing the energy beyondEb52'22.59 cm21 the sec-
ond cusp moves upward through the origin and in Fig. 1~e!
we see that there are now two cusps on the positivez axis
and one cusp in the lower plane. All three returning orbits
are depicted, including the one new orbit, which is the sym-
metric balloon-shaped orbit. Along this trajectory the elec-
tron leaves the origin and reflects off the caustic on the right,
passes through a focus at thez axis, and, reflecting off the
left caustic, returns to the origin. Each of the two caustics
and the focus contribute 1 to the Maslov index.

The ‘‘snake’’ orbit has grown longer in length, but still
touches only one caustic. The parallel orbit, on the other
hand, now passes through two cusps, one on its outward
journey, and one on the returning journey; as before, each
cusp contributes two and the caustic at the top contributes
one to the Maslov index.

As we increase the energy above the energy above the
third boundary energyEb523 @Fig. 1~f!# we find three cusps
located on the positivez axis and one more new orbit. This
new orbit is another ‘‘snake’’ orbit, and it touches caustics or
foci five times before returning to the origin. Increasing the
energy beyond the fourth boundary energyEb54 we see the
creation of the second ‘‘balloon’’ orbit@Fig. 1~g!#. It passes
through two more caustics and two more foci than the first
balloon orbit. At this high energy the parallel orbit in Fig.
1~g! now touches four focused cusps and one caustic.

In summary,~1! at the lowest energies, there is one and
only one orbit that returns to the origin, the parallel orbit, and
as the energy is increased there is a sequence of boundary
energies at which new orbits bifurcate from it.~2! The nth
boundary energy occurs when the return time of the parallel
orbit equalsn cyclotron times.~3! Between thenth and (n
11)st bifurcation energies there aren off-axis closed orbits
labeled by an indexj51,. . . ,n. In (r,z) coordinates they
have the shape of ‘‘snakes’’ forj odd and ‘‘balloons’’ for
j even.~4! At the bifurcation a focused cusp passes through

the origin. In the immediate vicinity of this cusp, the semi-
classical approximation for the wave function diverges, and
has to be repaired.~5! At the bifurcation, the Maslov index
of the parallel orbit increases by 2; the Maslov index of the
newly created orbit equals the Maslov index of the parallel
orbit just before the bifurcation. Therefore above thenth
bifurcation the Maslov index of the parallel orbit is (2n
11). That for thej th of off-axis orbit is always (2j21).

Further details and the analytic description of the phe-
nomena discussed above are given in Appendix B.

IV. THE PHOTODETACHMENT CROSS SECTION

Now we combine the results of the preceding sections to
obtain the photodetachment cross section in parallel fields.
We recall from Sec. II that the photodetachment cross sec-
tion is given by Eqs.~2.3!–~2.5!; it is the no-field cross sec-
tion plus a sum of oscillatory terms. Each oscillatory term
arises from a closed orbit. The closed orbits were described
in Sec. III. However, we also need several more pieces of
information for Eqs.~2.4! and ~2.5!: the classical density
~ratio of Jacobians! associated with each closed orbit, the
polar angleu j for each orbit, the ratio of outgoing to return-
ing waves, the classical action, and the additional phase
f j . These are derived in Appendix B, and combined into the
final formula for the cross section.

Let us collect the relevant quantities that will appear in
the answer. They are the Larmor frequency@Eq. ~2.1b!#, the
return time on the parallel orbit,

t i~E;F0!52~2mE!1/2/eF0 , ~4.1!

the label of each returning orbit,j , as indicated in Fig. 1; the
maximum number of returning orbitsb ~besides the parallel
orbit!, given in Eq.~B8!; the polar angle for each returning
orbit @Eq. ~B7!#, the action integral for each returning orbit
@Eq. ~B26b!#,

Sj~E;F0 ,H0!5
~2mE!1/2

meF0
cosu j~12 1

3 cos
2u j !, ~4.2!

the ‘‘direct’’ detachment cross section in the absence of
fields,sdir5s0 , given in Eq.~A10!; and one more quantity,

N~E;H0!5E/2\vL5E/\vC , ~4.3!

which is equal to the energy of the detached electron divided
by the spacing between Landau levels, or approximately the
number of Landau levels that can be exited at the given
energy.

In terms of these quantities, the oscillatory part of the
photodetachment cross section for linearz-polarized radia-
tion is

s5sdir1(
j50

b

s ret
j , ~4.4a!

s ret
j5052sdir

3

4
uN~E;H0!sin@vLt i~E;F0!#u21

3sin@Sj50~E;F0!/\2m0p/2#, ~4.4b!

FIG. 2. Semiclassical calculation of photoabsorption cross sec-
tion near the detachment threshold in parallel fieldsF0

5100 V/cm, H052T. The cross section has oscillations super-
posed on a smoothly rising background. In the semiclassical calcu-
lation each bifurcation is strongly marked by a diverging cross sec-
tion. Cross section is in units of bohrs2, energy is in units of
cm21.
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s ret
jÞ05sdir

3

&
@N~E;H0! j #

21/2cos2u j

3sinSSj~E;F0 ,H0!/\2m j

p

2
2

p

4 D . ~4.4c!

Accordingly, the recurrence amplitudes are

C05
3
4sdiruN~E,H0!sin@vLt i~E;F0!#u21, ~4.5a!

CjÞ05
3

&
sdiruN~E,H0! j u21/2cos2u j . ~4.5b!

The quantity cos2uj in Eq. ~4.4c! comes from the angular
distribution of outgoing waves forz-polarized light. Thej in
the denominator is related to the intensity of the returning
wave associated with thej th orbit. For largerj , the orbits
travel longer before returning, and~this being a regular sys-
tem! on the average the classical density falls off inversely
with the time duration of the orbit. The quantityusinvLtiu21

in Eq. ~4.4b! comes from the classical density in the vicinity
of the parallel orbit. The neighbors of the parallel orbit are
oscillating about it with the cyclotron motion of the electron,
and they come together in a cusped focus at regular intervals.
The quantityN(E;H0) was explained above; since it appears
in the denominator, we may say that the size of the oscilla-
tions associated with the parallel orbit is ‘‘of order\,’’ while
those associated with other orbits are ‘‘of order\1/2. ’’

The extra termf j5p/4 appearing in the phase of Eq.
~4.4c! arises from the fact that the returning quantum wave
Eq. ~A17! has an additional phase which arises from the
asymptotic expansion for the Bessel function. It is connected
with the fact that returning waves associated with off-axis
orbits are approaching a cylindrical focus. For the parallel
orbit, r is always zero; we do not use the asymptotic formula
for the Bessel function and so we find thatf j50. The re-
turning wave associated with the parallel orbit is~except near
the bifurcations! a simple downward-moving plane wave,
not a circular wave.

Let us see the consequences of this formula. In Fig. 2 we
show the photodetachment cross section calculated from Eq.
~4.4!. ~We used a Sun workstation, but a programmable cal-
culator is sufficient.! The cross section has smoothly rising
background with small oscillations. At the lowest energies,
the only recurrence is associated with the parallel orbit, so
the ripples are small and simple. Each bifurcation energy is
clearly marked by a divergence in the semiclassical formula.
At energies above each bifurcation, a new closed orbit pro-
duces a new set of ripples that beats against all the others.

This is made more clear in Fig. 3, where we show the
oscillatory part of the cross section, subtracting the smooth
background. The uppermost curve comes from a fully quan-
tum calculation@4,6#. Below it is the complete semiclassical
result, and the contribution of each individual orbit. As was
found in other cases@5,8,13–16#, the semiclassical result is
in excellent agreement with the full quantum result at all
energies that are not very close to a bifurcation.

A corrected semiclassical approximation that holds near
the bifurcations will be given in the following paper@25~a!#.
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APPENDIX A: DERIVATION OF EQS. „2.3…–„2.5…

1. The initial wave function and dipole operator

We use the following approximation for the initial state of
the active electron:

C i~r !5B0

e2kbr

r
[

1

A4p
R~r !. ~A1!

FIG. 3. Oscillatory part of the photoabsorption cross section
based on quantum formulas given in Ref.@4#. Oscillatory part of
photoabsorption cross section based on semiclassical formulas.
Contributions arising from each individual orbit are shown below.
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B0 is a ‘‘normalization’’ constant@3# and the appropriate
value is 0.315 52 in a.u. The constantkb is related to the
binding energy of the active electronEb5\2kb

22m.
When the dipole operator (D5axx1ayy1azz) acts on

the initial state it produces ap wave,

uDC i&5rR~r !x~u,f!, ~A2!

and we consider only linearz-polarized radiation, so

x~u,f!5x~u!5
1

A4p
cosu. ~A3!

2. The Green function, outgoing waves, and the direct
contribution to the cross section

In the photodetachment process we may say that the laser
prepares a ‘‘source function’’uDC i& the detached electron
@see Eqs. ~2.2b! and ~A2!#. The Green function
Ĝ(1)(q,q8;E) propagates the electron from the source point
at q8 to the field point atq. Since the initial state is localized
in coordinate space, the relevant source points and field
points all lie within a few bohrs of the nucleus, i.e., within
the atomic region.

The Green function propagates the disturbance from the
source point atq8 to the field point atq along two or more
paths. The first path is associated with waves which propa-
gate fromq8 to q without ever leaving the atomic region. We
refer to this as the direct path. Additionally, there are waves
which propagate outward from the source point atq8 and
enter the external region where they interact with the labo-
ratory fields. The electric and magnetic fields turn these
waves around and some return to the vicinity of the nucleus
where they arrive at the field pointq. We refer to these as
returning paths. With this in mind we write the Green func-
tion in the following way:

Ĝ~1 !~q,q8;E!5Ĝdir
~1 !~q,q8;E!1Ĝret

~1 !~q,q8;E!. ~A4!

From Eq.~2.2! it follows that the cross section can be sepa-
rated in a similar manner, i.e.,s5sdir1s ret.

Since the atomic potential has a short range the waves
quickly propagate outside the influence of the atom and
through a region (3a0<r<100a0) where neither the atomic
potential nor the applied fields have any significant effect.
We conclude that the appropriate Green function which
propagates these waves is the free-particle Green function
given by

G~1 !5(
l ,m

gl
E~r ,r 8!Yl ,m~u,f!Yl ,m* ~u8,f8!, ~A5!

where

gl
E~r ,r 8!5F22im

\2 Gk j l ~kr,!hl
~1 !~kr.!. ~A6!

We define the radial dipole integral

I l ~k![E
0

`

j l ~kr8!r 83R~r 8!dr8 ~A7!

and for l 51 we have@3,5#

I l 51~k!5B0A4p
2k

~kb
21k2!2

. ~A8!

The outgoing wave can now be evaluated and we find it to be
equal to

Ĝ~1 !uDC i&5
22im

\2 khl 51
~1 ! ~kr !I l 51~k!x~u!. ~A9!

The amplitude of this outgoing wave is proportional to the
radial dipole integral, and its angular distribution is given by
the functionx~u!.

With these results it is possible to evaluate the direct con-
tribution to the photodetachment cross section:

sdir5s05
8pme2Ep

3\3c
kI1

2~k! ~A10a!

5
64p2e2

3\c
B0
2 k3

~kb
21k2!3

. ~A10b!

s0 is the no-field cross section: Since the external fields only
affect the large scale motion of the electron~motion in the
external region! the direct contribution to the cross section is
the same as if there were no fields present.

3. Returning waves and spectral oscillations

a. The direct part produces an outgoing wave

Equation~A9! gave an expression for this outgoing wave,
and at fairly large distances the asymptotic form of the Han-
kel function can be used to obtain

Ĝdir
~1 !uDC i&'

2im

\2 kI l 51~k!x~u! f out
~1 !~kr !, ~A11!

where we have defined the quantity

f out
~1 !~kr ![

eikr

kr
. ~A12!

b. The outgoing wave is joined to a semiclassical wave, which
propagates to large distances

To construct the semiclassical wave function we start
from a spherical surface centered at the origin with radius
r out'10a0 . The spherical anglesuout andfout are chosen as
two coordinates spanning this initial surface (q0). If the out-
going wave evaluated on this surface is written as

C~q0!5~Ĝ~1 !uDC i&) r5rout
~A13!

then the semiclassical approximation to the waveC~q! out-
side this surface is given by

C~q!5(
j

C~q0!Aj~q!ei @Sj ~q!/\2m jp/2#, ~A14!

where
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Sj~q!5E
q0

q

p dq, ~A15!

Aj~q!5FJ~ t50,qj
0!

J~ t,qj
0! G1/2,

J~ t,qj
0!5detF ]q~ t,qj

0!

]~ t,qj
0! G .

The classical action is given bySj (q), the JacobianJ(t,qj
0)

measures the divergence of adjacent trajectories from a cen-
tral trajectory, andm j is the Maslov index. The summation is
over all trajectories which arrive at the pointq from different
pointsq0 on the initial surface.

c. The semiclassical wave returns

As the trajectories are turned around by the electric and
magnetic fields, Eq.~A14!, describes their associated wave
function. Certain of the orbits return to the initial sphere, and
there is a discrete set of trajectories that return exactly to the
origin. Each such closed orbit passes through the initial
sphere with coordinates$r ret,u ret

j ,f ret
j % and the kinetic mo-

mentum of the returning electron at that point ismvW ret
j

[\kW ret. Around each such closed orbit, or central trajectory,
there is a family of trajectories which also returns to the
sphere. These trajectories stay close to the central trajectory
and the ratio of Jacobians measures the classical density as-
sociated with this family of trajectories.

The returning wave function associated with each return-
ing family evaluated on the sphere defined byr ret is therefore
given by Eqs.~A11!–~A14!.

C ret
j ~r ret,u ret,f ret!5F2im\2 kI l 51~k!x~uout

j ! f out
~1 !~krout!G

3U Jj~ t0!Jj~ t ret!
U1/2ei @Sj ~ tret!/\2m jp/2#. ~A16!

Inside the sphere, the external fields can be neglected, and
the waves are approximately free waves of the appropriate
symmetry.@We can still neglectVb(r ) for r.1a0 .#

In our earlier study of perpendicular electric and magnetic
fields, the returning quantum wave was approximated by a
plane wave. For parallel electric and magnetic fields, on the
other hand, the returning wave near the origin must be cy-
lindrically symmetric, and so will be approximated by a
Bessel function. In this case then

f ret~r,z!'
1

A2p
J0~kr

retr!
1

A2p
eikz

retz. ~A17!

At moderate distances, the Bessel function can be separated
into incoming and outgoing parts, and the incoming part of
f ret(r,z) must match the semiclassical returning wave~A16!:

C ret
j ~r !'Nj f ret

~2 ! j~r,z!. ~A18!

The normalization factorNj can be determined by letting
r→r ret and combining Eqs.~A16!–~A18!,

Nj5F2im\2 kI l 51~k!x~uout
j !GU f out~1 ! j

f ret
~2 ! jUU Jj~ t0!Jj~ t ret!

U1/2
3exp@ iSj /\2f j2m jp/2#. ~A19!

Sj (E) is the action integral evaluated over the full closed
orbit starting and ending at the origin. We have placed an
absolute value on the ratiof out

1 j / f ret
2 j , and put its relevant

phase into exp(2ifj). If the approximations we have made
are valid thenNj will be independent of the radius of the
final spherer ret. We will find this to be the case, and in
particular when we take the limit thatr out5r ret→0 the prod-
uct of the two ratios

Rj5U f out~1 ! j

f ret
~2 ! jUU Jj~ t0!Jj~ t ret!

U1/2 ~A20!

approaches a finite value. This limit will have to be evaluated
separately for the parallel orbit and for the off-axis orbits. It
will be evaluated in Appendix B 4.

d. The returning wave overlaps the initial state

The expansion of the cylindrical plane wave, Eq.~A17!,
in spherical harmonics can be obtained from Greene@26# and
is given by

C ret
j ~r !5Nj(

l
2i l j l ~kr !Yl ,m50~u,f!Yl ,m50* ~uk

ret
j ,fk

ret
j !,

~A21!

where $uk
ret
j ,fk

ret
j % are angles defining the direction ofkret

j ,

the direction in which the returning wave is propagating. We
would like to express this in terms of the anglesu ret and
f ret or the direction from which the returning trajectory
comes. Sinceu ret5p2uk

ret
j andf ret5p1fk

ret
j ,

C ret
j ~r !5Nj(

l
2~2 i ! l j l ~kr !Yl ,m50~u,f!

3Yl ,m50* ~u ret
j ,f ret

j !. ~A22!

The oscillatory contribution to the cross section (s ret) can
now be calculated by evaluating the overlap of the returning
wave with the function^DC i u, and taking the imaginary
part,

s ret5
8pe22mEp

c\3 kI l 51
2 (

j
uRj ux~uout

j !x* ~u ret
j !sinF j

5s06(
j

uRj ux~uout
j !x* ~u ret

j !sinF j , ~A23!

where

F j52Sj /\1f j1m jp/2.

We have arrived at Eqs.~2.3!–~2.5!.
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APPENDIX B:
RETURNING ORBITS—QUANTITATIVE THEORY

Here we give a quantitative analysis of the returning or-
bits. In particular, we will derive:~i! A formula for the
boundary energies at which the new orbits appear.~ii ! A
formula for the Jacobian which gives the classical density
associated with the trajectories and therefore the amplitude
of the returning wave. We will also verify our observations
concerning the number of singular points along a trajectory,
and will calculate the Maslov index for the two classes of
trajectories.~iii ! A formula for the classical action on an
orbit. This determines the phase of the returning wave.

1. Hamiltonian equations of motion

Starting from our Hamiltonian in cylindrical coordinates,
with Lz50, @Eq. ~3.1!#, we can eliminate unnecessary pa-
rameters by using the scale change

q85m
vL
2

eF0
q, ~B1a!

p85
vL

eF0
p, ~B1b!

H85F 1m S eF0vL
D 2G21

H, ~B1c!

t85vLt, ~B1d!

which gives

H5 1
2pr

21 1
2r21 1

2pz
21z, ~B2!

where we have dropped the primes and all variables are now
in dimensionless form.

As stated previously, the initial speed is a constant and the
initial direction is given by the polar angleuout. The initial
momentum is proportional to this velocity, i.e.,pr(t)
5dr(t)/dt and pz(t)5dz(t)/dt. With this in mind we re-
write Eqs.~3.1! in their dimensionless form,

z~ t !52
1

2
t21A2Ecosuoutt,

~B3!

r~ t !5A2Esinuoutsint.

We can also relate the polar angleuout to the initial energy
and momenta by

sinuout5
pr0

A2E
,

cosuout5
pz0

A2E
. ~B4!

2. Initial conditions for closed orbits and the boundary orbits

In this section we will give quantitative conditions for
returning orbits, determine how many closed orbits exist at
each energy, and determine the bifurcation energies where
new orbits are created.

From Eq. ~B3! there can be no returning orbits foruout
>p/2. Looking at Eq.~B3! we see that the time for the
electron to return to thex-y plane (z50) is given by

t ret
z 52A2Ecosuout→

2A2mE

eF0
cosuout. ~B5!

Here and below formulas after the arrow are in real units
~unscaled variables!. If the angleuout is equal to zero the
trajectory travels along thez axis,r(t)50, and it returns to
the origin at the timet ret

z 52A2E ~scaled units!. This is the
parallel orbit.

Consider now the other orbits that return to the origin.
Their z return time must be the same as theirr return time,

t ret
z 5t ret

r 5np→np/vL , ~B6!

so for a given energyE, Eq. ~B5! specifies the initial polar
angle for a returning orbit,

cosu j[cosuout5
jp

2A2E
→

~eF0 /vL! jp

2A2mE
5

jp

vLt i~E;F0!
,

~B7!

wherej is a positive integer from 1 to somejmax. This maxi-
mum integer is given by

b[ jmax5IntF2A2Ep G→IntF 1p 2A2mE

~eF0 /vL!
G

5Int@vLt i~E;F0!/p# ~B8!

and Int~a! means ‘‘the largest integer less than or equal to
a.’’ For each given energy there areb off-axis orbits to-
gether with the parallel orbit.

What are the bifurcation energies? From Eq.~B8!

Eb5
1

8
~bp!2→

1

8m FeF0vL
bpG2, ~B9!

where againb is an integer labeling the bifurcation.
In Fig. 4 we graphically display the results of the preced-

ing two sections. For energies between zero and the first
bifurcation energyEb51'1.23 we have one returning orbit,
the parallel orbit withuout

j5050 or the vertical axis. As the
total energy is increased throughEb51 a new orbit separates
from the horizontal axis, its initial polar angle increasing
towardsp/2 with increasing energy. As the energy increases
to approximately 4.94 scaled units the second bifurcation
energyEb52 is reached, and another new returning orbit is
created out of the parallel orbit.
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3. The Jacobian

The ratio of Jacobians appears in the semiclassical wave
function as an amplitudeAj (q) and represents the diver-
gence of adjacent trajectories in time. As this ratio decreases,
the probability density of the wave function is spread out
over a larger area. Near the caustics or foci where neighbor-
ing trajectories converge to one another the ratio of Jacobi-
ans increases, eventually becoming infinite at the singular
point. At these points the semiclassical approximation fails.

Here we will calculate the Jacobian by evaluating the ex-
pression

J~ t !5
]~x,y,z!

]~ t,uout,fout!
. ~B10!

The coordinates$t,uout,fout% are the coordinates for the
family of trajectories, i.e., for the Lagrangian manifold. The
intrinsic coordinates of the initial spherical surface centered
about the origin with radiusr out are$uout,fout%, which define
the initial direction of motion of the electron. We relate the
three-dimensional Jacobian to a two-dimensional Jacobian
by

J~ t,uout,fout!5r~ t !J2~ t,uout!, ~B11!

where

J2~ t,uout!5
]~z,r!

]~ t,uout!
. ~B12!

The two-dimensional determinant given in Eq.~B12! is
evaluated using the equations of motion@see Eq.~B3!# and
the result is

J2~ t,uout!52EF S cosuout2 1

A2E
t D sint cosuout

1t cost sin2uoutG ~B13a!

or in dimensional form

J2~ t,uout!5
2E

mvL
F S cosuout2 eF0

A2mE
t D sinvLt cosuout

1vLt sin
2uoutcosvLtG . ~B13b!

Equation~B13! represents the Jacobian for any trajectory at
any arbitrary time, i.e., the trajectory is not necessarily a
closed orbit.

The prefactorr(t) in Eq. ~B11! goes to zero at the begin-
ning and end of any closed orbit, and it is always exactly
zero for the parallel orbit. Therefore this quantity must be
handled with care. We will obtain the classical density for
the parallel orbit by taking the limit asuout→0. The classical
density of the other orbits really diverges asr→0, and the
semiclassical approximation fails. Therefore the semiclassi-
cal wave function must be joined to a Bessel function, which
remains finite asr→0.

4. The ratio of Jacobians andA„q…

Let us construct the ratio of Jacobians fort5t0 and t
5t ret. Consider the Jacobian whent0 is small (vLt0!1). In
this case, expanding the trigonometric functions of Eq.~B13!
and keeping only the lowest order, we find

J~ t0 ,uout
j !5r0~2E!t05A2Er02sinuoutj →~2E/m!1/2r 0

2sinuout
j ,

~B14!

where we have used the fact thatt05r 0 /v0 and v0 is the
initial velocity of the emerging electron.

For the parallel orbit,u out
j 50 andt ret5A2E. We evaluate

J by assumingu out
j is small but nonzero; then att ret, Eq.

~B13! reduces to

J~ t ret,uout
j50!52~2E!3/2sinuout

j50sin2~2A2E!. ~B15a!

@The factor sinuout
j50 will cancel the corresponding factor in

Eq. ~B14!.#
For the other orbits, sincet ret5 jp, the Jacobian reduces

to

J~ t ret,u out
jÞ0!5~21! j2~2E!3/2~r retsin

2uout
j !cosu out

j .
~B15b!

The amplitude of the wave function involves the ratio of
Jacobians att5t0 and t5t ret. Actually, however, referring
back to Eq.~A20!, the ratio we need also involves the out-
going and returning quantum waves,

uRj u5U f out~1 ! j

f ret
~2 ! jUU Jj~ t0!Jj~ t ret!

U1/2, ~B16!

FIG. 4. Initial angle of each bifurcated orbit as a function of
energy.
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where the outgoing and returning waves are, respectively,
given in Eqs.~A12! and ~A17!, both of which are to be
evaluated on the boundary sphere. This ratio must be consid-
ered separately for the parallel orbit or the off-axis orbits.

First we consider the parallel orbit. Sincer(t) equals zero
for all time, the Bessel function in Eq.~B16! should be set
equal to one, and the returning quantum wave is approxi-
mated by a plane wave directed down thez axis,

f ret
~2 ! j505e2 ikz/2p. ~B17!

After substituting Eqs.~B15! we have for the limit r 0
5r ret→0 of Eq. ~B16! that

lim
r0 ,r ret→0

uRj50u5S 2p

k DU 1

A2Esin2A2EU ~B18a!

→S 2p

k D U vL

~2E/m!1/2sin@2vL~2mE!1/2/eF0#
U

~B18b!

→
2p

k

vL

~2E/m!1/2usinvLt i~E;F0!u
.

~B18c!

This expression is finite at allE except when the sin passes
through zero. That happens at the bifurcation energies, where
the focused cusp touches the origin, and the semiclassical
approximation fails. Examining also the phases, we see that
for the parallel orbit,f050.

For the off-axis orbits we use the asymptotic approxima-
tion to the zero-order Bessel function (kr@1)

J0~krr!'S 2

pkrr D 1/2 cos~krr2p/4! ~B19!

and extract the incoming wave,

f ret
~2 ! j5~2p!23/2~krr!21/2e2 ikrreikzzeip/4. ~B20!

@Here, as in Eqs.~B17! and~B19!, we are using the conven-
tion that kr.0 and kz,0, so that this represents a wave
approaching the atom from positiver andz.#

Using our expressions for the Jacobian of the off-axis
orbits evaluated att ret, and using the fact thatkr5k sinuret
5k sinuout, we find that the ratio~B16! reduces to

lim
r0 ,r ret→0

uRjÞ0u5
23/2p

k1/2 U p

2A2Ecosuoutj U1/2523/2p

k1/2
j21/2,

~B21!

where we have used Eq.~B7! to evaluate cosuout
j . Multiply-

ing numerator and denominator by\1/2 and converting back
to unscaled units, this quantity becomes

lim
r0 ,r ret→0

uRjÞ0u→2pS \vL

E D 1/2 1

j 1/2
. ~B22!

The additionalp/4 in Eqs.~B19! and ~B20! implies thatf j
5p/4 for all off-axis orbits.

5. The Maslov index

Caustics and foci are singular points where the Jacobian
goes to zero and hence the coefficientAj (q) goes to infinity.
Typically, as the electron passes through either a caustic or
focus, the Maslov index increases by one. More precisely,
however, the Maslov index not only includes the number of
singular points along the trajectory but also takes account of
the multiplicity of the singular point. For example, if the
Jacobian should have a second-order zero, then the Maslov
index would increase by two instead of one.

Consider the time dependence of the Jacobian associated
with the parallel orbit. From Eqs.~B11! and ~B13a! we find
that

J~ t,u out
j50!5~2E!3/2 sinu out

j50 sin2 tF12
1

A2E
tG .

~B23!

The factor sinuout
j50 vanishes in the limituout→0 , but this can-

cels. The factor sin2 t is a second-order zero at each cusp.
Therefore every time the parallel orbit passes through a cusp
the Maslov index increases by two. If the energy lies be-
tween two bifurcation energiesEb,E,Eb11 , then bp
,t ret,(b11)p, so the parallel orbit passes throughb cusps
on its journey back to the origin. This is the result we ob-
tained earlier by inspection of Fig. 1.

J also vanishes whent5A2E, and the term in square
brackets in Eq.~B23! is zero. The electron has reached the
caustic at the top of its motion. For a given total energy it is
clear that the parallel orbit will pass throughb second-order
cusps and one caustic; the Maslov index is equal to (2b
11).

We now examine the time dependence of the Jacobian for
the off-axis orbits. In this case the zeros of the Jacobian
occur whenever the expression

J~ t,u out
j !5r~ t !2EF S cosu out

j 2
1

A2E
t D sint cosuoutj

1t cost sin2u out
j G ~B24!

is equal to zero. The factorr(t) is equal to zero at the cy-
clotron times so the electron will pass through (j21) such
foci on its journey back to the origin. This does not include
the one focus that is at the origin~we always calculate the
Maslov index of the returning semiclassical wave before it
gets to the origin!. The Jacobian also goes to zero at the
caustics, when the bracketed expression is equal to zero. Af-
ter a slight rearrangement we obtain the following transcen-
dental equation for the timestcauat which the electron passes
through a caustic:

cottcau5cot2uout
j F 1

A2E
1

~cosu out
j !

2
1

tcau
G . ~B25!
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Examining Eq.~B25! and inspecting Fig. 1 we see that for
the off-axis orbits the electron will pass throughj caustics.
We find therefore that the off-axis returning orbits pass
through~j21! foci and j caustics; the Maslov index is equal
to ~2 j21!. This result is consistent with the pictures in Sec.
III.

6. The classical action

The classical actionS(q) appears in the phase of the
semiclassical wave function and is defined in Eq.~A15!. The
integrals are evaluated using Eq.~B3! and the expressions
for the conjugate momenta in the paragraph following Eq.
~B2!. The integrals are straightforward and lead to

S~ t ret
j ,u out

j !5~2E!3/2cosu out
j F12

1

3
cos2u out

j G .
~B26a!

This expression is valid for both the parallel orbits and the
off-axis orbits. In the dimensional form the classical action is

S~ t ret
j ,u out

j !5
~2mE!3/2

meF0
cosu out

j F12
1

3
cos2u out

j G .
~B26b!

7. Returning waves and photodetachment cross section

We combine the results of all the preceding into formulas
for the semiclassical returning waves and for the cross sec-

tions. Equations~A18! and ~A19! are the returning waves,
with appropriate ratios evaluated in Eq.~B18b! or ~B22! for
the parallel or other orbits, respectively. The resulting wave
functions are

C ret
j505S 2im\2 D kI l 51~k!x~uout

0 !expi SS0 /\2m0

p

2 D

3H ~vL /k!

~2E/m!1/2usinvLt i~E;F0!u
e2 ikz ~B27a!

S \vL

jE D 1/2J0~kr
j r!eikz

j z. ~B27b!

The contributions of these returning waves to the cross
sections come from Eq.~A23!.

s ret
j505s0

12pvL /k

~2E/m!1/2usinvLt i~E;F0!u
ux~u50!u2

3sinS 2S01m0

p

2 D , ~B28a!

s ret
jÞ05s012pS \vL

jE D 1/2ux~u j !u2sinS 2Sj1m j

p

2
1

p

4 D .
~B28b!

Using \k5(2mE)1/2, and using Eq.~A3! for x(u), we ar-
rive at Eqs.~4.4! and ~4.5!.
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