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Extracting Classical Trajectories from Atomic Spectra

M. R. Haggerty,1,* Neal Spellmeyer,2 Daniel Kleppner,2 and J. B. Delos1
1Physics Department, College of William and Mary, Williamsburg, Virginia 23187

2Research Laboratory of Electronics, George R. Harrison Spectroscopy Laboratory, and Department of Physics,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

(Received 18 December 1997)

We describe how to reconstruct individual classical trajectories from spectroscopic data. The ac
dipole moment of a trajectory can be found from the effect of an oscillating field on the spectrum.
The inverse Fourier transform of such data yields the component of the electron trajectory along the
direction of the oscillating field. We demonstrate the method by experimentally extractingzstd for two
electron trajectories that influence the Stark spectrum of Rydberg lithium. Within the experimental
resolution, the reconstructed orbits agree well with classical predictions. [S0031-9007(98)06988-9]

PACS numbers: 32.60.+ i, 03.65.Sq, 05.45.+b

The classical behavior of a dynamical system is ex-
pected to be derivable from its underlying quantum
structure, and new methods of connecting classical and
quantum approaches continue to be developed. Periodic
orbit theory [1] and its variants allow one to learn about
the actions and stabilities of classical orbits from a sys-
tem’s quantum density of states (though it is typically
used the other way around). There are only a few meth-
ods that can be used to find the trajectories themselves—
their position as a function of time—and the methods are
either indirect [2] or require knowledge of the quantum
wave functions in addition to the spectrum [3,4]. We
present here the results of a new study in which semi-
classical methods are used to reconstruct a trajectory from
experimental spectroscopic data.

When we speak of the “classical trajectory of an elec-
tron,” we mean, of course, the path the electron would
follow if it obeyed the laws of classical mechanics. In
quantum mechanics an electron is not a localized object
moving along a path. Nevertheless, a classical path is sig-
nificant even in the quantum world—in semiclassical theo-
ries we use classical paths to construct wave functions and
spectra. We demonstrate here that the process is invert-
ible: under appropriate conditions such classical paths can
be reconstructed from observed quantum spectra.

Rydberg atoms in external fields are an excellent labo-
ratory for studying semiclassical methods experimentally.
Their spectra can be interpreted with a variation of the
periodic orbit theory known as closed orbit theory [5,6].
Closed orbit theory relates fluctuations in the atomic pho-
toabsorption spectrum to the system’s classical closed or-
bits (orbits that begin and end at the nucleus). A spectrum
taken under conditions obeying classical scaling laws can
be Fourier transformed to yield a “recurrence spectrum,”
in which each closed orbit appears as a peak in a plot of
intensity vs action [7]. This procedure establishes the ex-
istence and action of the closed orbits, and provides some
information about their stabilities and initial directions.
From the change in peak positions when experimental pa-

rameters are changed, it is also possible to learn about the
periods and average electric dipole moments of the orbits
[8]. However, the orbits themselves (the electron position
as a function of time) have hitherto been experimentally
inaccessible.

The idea that the shape of an orbit could be deduced
from spectroscopic data arose from a study of recurrence
spectra of Rydberg atoms in a static electric field, per-
turbed by an additional weak time-dependent electric field
[9]. The oscillating field was observed to reduce the
strengths of recurrences systematically. The effect was
explained by generalizing closed orbit theory to time-
dependent systems. Most intriguingly, the pattern of the
weakening depends on the Fourier transform of the classi-
cal orbits of the electron in thestaticsystem. But suppose
the static part of the Hamiltonian (e.g., the configuration
of electric and/or magnetic fields) was not known. Would
it be possible to use oscillating field experiments to mea-
sure the Fourier transform of the motion for a range of fre-
quencies, take the inverse Fourier transform, and thereby
learn about the shape of the orbit?

We present here the results of a new study which shows
that this is indeed possible. By doing spectroscopy in an
oscillating field, we gain new information that allows us to
reconstruct a trajectory directly—without measuring the
wave function and without relying on detailed knowledge
of the static Hamiltonian. We describe this new method
and use it to reconstruct two electron orbits important to
the Stark spectrum of lithium. Within the limits of the ex-
periment, the measured orbits are in excellent agreement
with the orbits predicted by classical simulation.

We use cw laser spectroscopy to study the Rydberg
spectrum of lithium in a constant electric fieldF  Fẑ,
perturbed with a weak oscillating fieldF1  F1ẑ cossvtd.
The experimental setup is similar to that used in an
earlier study of recurrence spectra in a static field [10].
The oscillating field is coupled through a static field
plate, and its strength is calibrated by measuring the
sideband structure on a low-lying Rydberg state. While
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the atoms are in the combined fields, we measure the
laser photoexcitation rate from the3s state to final states
corresponding to the principal quantum numbers around
n  125 andm  0.

The system can be described by the Hamiltonian
for hydrogen because the large-scale structure important
to these experiments is unaffected by the lithium core
electrons [10]. The Hamiltonian obeys a classical scaling
law and can be written

H̃ 
p̃2

2
2

1
r̃

1 z̃f1 1 f̃ cossṽ t̃dg  F21y2Estd , (1)

where the tildes denote scaled quantities:r̃ ; F1y2r,
p̃ ; F21y4p, and t̃ ; F3y4t [9]. Because of the scaling
law, the unperturbed classical dynamics depends only
on the scaled energye ; E0F21y2, where E0 is the
initial energy of the electron, measured relative to the
field-free ionization threshold. The classical dynamics
of the perturbed system depends one and also on the
scaled parameters̃f ; F1yF and ṽ ; vF23y4 which
characterize the oscillating field.

We measure scaled spectra of this system by recording
the photoabsorption spectrum as a function ofw ; F21y4

while the laser energy, the static and rf field amplitudes,
and the rf frequency are varied simultaneously so as to
maintaine, f̃, and ṽ constant. The magnitude squared
of the Fourier transform of a scaled spectrum with respect
to w is called a recurrence spectrum. Such a spectrum
exhibits a peak at the scaled actionS̃k ; F1y4Sk of each
classical closed orbitk of the electron. Examples of
recurrence spectra are shown in Fig. 1.

FIG. 1. A series of experimental recurrence spectra taken at
e  22.05 and ṽ  1.4, with 19 different oscillating electric
field strengths. The recurrences atS̃  7.23 correspond to the
2y3 orbit, those atS̃  10.68 to the 3y4 orbit. The lines are
fits of the data to Eq. (2). The fits yield̃T2y3jZ̃2y3j  0.417
and T̃3y4jZ̃3y4j  0.221 (classical calculation gives0.437 and
0.219, respectively). The data were recorded from248.8 #
w # 260.6.

References [9,11] investigate the effect of an oscillating
field on a recurrence spectrum by considering how the
oscillating field perturbs the classical orbits of the static
system. Based on general semiclassical arguments, it can
be shown that the recurrence spectrum of a static system
perturbed by a weak oscillating field is similar to that of
the static system alone, except that the recurrence strength
(i.e., the height of the peak) associated with orbitk is
reduced by the factor

aksF1d ; J2
0 fF1TkjZksvdjyh̄g . (2)

Tk is the period of theunperturbedorbit k, andZksvd is
its complex ac dipole moment. The combinationTkZk is
given by

TkZksvd ;
Z Tky2

2Tky2
zkstde2ivt dt , (3)

wherezkstd describes thez motion of the electron along
the unperturbed closed orbit as a function of time, leaving
the atom at time2Tky2 and returning at timeTky2. (The
z motion is singled out by the polarization of the os-
cillating field.) Note that Eq. (2) applies even when the
frequency of the rf field is comparable to or exceeds the
frequencies of the classical orbits.

For the present case these formulas can be written in
scaled variables, and the argument of the Bessel function
becomesf f̃T̃kjZ̃ksṽdjw̄g, wherew̄ is the average value of
F21y4. We determinẽzkstd from experimental data with
the following procedure: (i) Measure recurrence spectra
at a series of increasing values off̃, at a fixed frequency
ṽ (see Fig. 1). (ii) Select the recurrence peak correspond-
ing to the classical orbit of interest, measure its height as a
function of f̃, and from these results obtain experimental
values ofaks f̃d at that frequency. (iii) ObtaiñTkjZ̃ksṽdj
by fitting these data to the scaled version of Eq. (2).
(iv) Repeat the entire process for successive values ofṽ.
(v) Insert the missing complex phase information to de-
rive T̃kZ̃ksṽd from its modulus (this step is explained be-
low). (vi) Fourier invert Eq. (3) to obtaiñzkstd. The x
andy components of the orbit could be reconstructed by
performing additional experiments with other oscillating
field polarization directions [12].

A major difficulty is the loss of the complex phase
of Z̃ksvd. Physically, this phase indicates when an
electron must leave the atom (relative to the phase of
the oscillating field) in order for the trajectory to be
maximally perturbed. That information is not available
because the experiment averages the absorption over
many cycles of the rf field.

Fortunately, in our system it is possible to recover
the phase. All of the closed orbits of hydrogen in a
static electric field are time-reversal symmetric about their
midpoints—that is,̃zks2td  z̃kstd. For orbits with this
time-reversal symmetry,̃Zk is real, and we subsequently
denote itZ̃R

k sṽd.
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It remains only to determine this real function from its
absolute value. We find its sign atṽ  0 by noting that
Z̃R

k s0d is the orbit’s static dipole moment, which can be
found from the unscaled relationTkZR

k s0d  2≠Sy≠F.
FromS  SsE, Fd  S̃sedF21y4, it can be shown that

T̃kZ̃R
k s0d 

1
2 eT̃k 1

1
4 S̃k . (4)

The periodT̃k can, in turn, be measured experimentally
by varying the scaled energy and using the relationT̃k 
≠S̃ky≠e. Note that the accuracy of this measurement is
not critical because we use only Eq. (4) to get thesign of
T̃kZ̃R

k at ṽ  0.
Furthermore, sincẽZR

k sṽd comes from the finite-time
Fourier transform of a continuous function, it depends
continuously and smoothly oñv. Therefore, knowing
the sign ofZ̃R

k at ṽ  0, we can determine its sign for
increasingṽ by inverting the sign at each zero crossing.
[Such zero crossings can be seen in Fig. 3 (below), near
ṽ  1.65.]

ThusZ̃R
k sṽd, including its sign, is determined. We in-

vert Eq. (3) by expressing̃zkstd as a sum of smooth ba-
sis functions,

P
n anfnstd. ThenZ̃R

k sṽd 
P

n anFnstd,
where the basis functionsFnsṽd and fnstd are related
by a Fourier transform. We determine the coefficientsan

from a least squares fit of̃ZR
k sṽd to the signed experimen-

tal data.
We have studied two closed orbits of lithium, the “2y3”

and the “3y4” orbits. (The orbit label, described in [13],
identifies the bifurcation in which it was created from
the primitive closed orbit that exists along the positive
z axis.) The exact classical orbits, computed numerically,
are shown in Fig. 2. The chosen energy wase  22.05,
slightly below the saddle point of the potential surface
at e  22. The orbits are both directed “downhill”
toward the saddle point. They were chosen because
their relatively long periods enabled the limited frequency

FIG. 2. Computed classical trajectories ate  22.05. Solid
line: 2y3 orbit; dotted line: 3y4 orbit. The vertical axis is the
distance along thẽz axis; horizontal axis is the radial distance
r̃ from the z̃ axis.

range of the experiment to access a significant fraction of
the total Fourier power withiñZksṽd.

Figure 1 shows the recurrences corresponding to these
orbits at a single value ofṽ and a range of values
of f̃. Such series of measurements were made for
17 different scaled frequencies in the range0.6 # ṽ #

4.0. The resulting values of̃TkjZ̃kj for the 2y3 and 3y4
orbits are shown in Fig. 3. It can be seen that, across
the experimentally accessible frequency range, agreement
between data and theory is good—within about 10%.

The periods for the orbits were found to bẽT2y3 
3.75 6 0.31 and T̃3y4  4.4 6 0.3 (the true values are
3.720 and3.915, respectively). The accuracy is limited by
the calibration of the electric field. The uncertainty does
not include possible systematic effects due to other orbits
with similar actions, though these may be present in the
3y4 orbit. Inserting these numbers into Eq. (4) correctly
indicates that̃ZRs0d is negative for both orbits.

Figure 4 showsz̃std for the two trajectories. The
heavy solid lines show the orbits as reconstructed by the
experiment. The qualitative behavior of the trajectories
can easily be discerned. The light lines are the exact
classical trajectories. Note that, as seen in Fig. 2, both
orbits initially move from the nucleus in the2z direction
before they are turned back toward the nucleus by the
electric field. The 2y3 orbit loops back to the nucleus
once before closing while the 3y4 orbit loops back twice.

The time resolution of the reconstructed trajectories is
limited by the experimental frequency range. This in
turn was limited by the difficulties in coupling the rf
power into the field plates, permitting an actual frequency
range of 200–1260 MHz, and a scaled frequency range
0.6 # ṽ # 4.0. Therefore, details with a time scale
shorter thanDt , 1yṽmax  0.25 are not probed by
this experiment. Expressed another way, atṽ  4, the
oscillating field goes through about2.5 cycles during the
time of an orbit—adequate to determine only three or

FIG. 3. Experimental measurement ofT̃ jZ̃sṽdj. The circles
are the results of fits to data like those in Fig. 1 to the form of
Eq. (2). The solid lines are classical calculation. (a) 2y3 orbit;
(b) 3y4 orbit. The points at̃v  0 are found using Eq. (4).
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FIG. 4. Reconstruction of classical orbits. The light solid
lines show the exact classical trajectories,z̃std. The heavy
solid lines show the experimental reconstructions. The dashed
lines show the exact trajectories, filtered through the exper-
imental frequency window,0.6 # ṽ # 4.0. (a) 2y3 orbit;
(b) 3y4 orbit.

four coefficients in the orbit reconstruction. In order to
illustrate the severe effect of the finite frequency range,
Fig. 4 also shows the exact trajectories filtered through
the experimental frequency window (dashed lines).

Our experiment produces accurate, albeit low-
resolution, pictures of classical trajectories important to
the Stark spectrum of lithium. Even the low-resolution
reconstructions afforded by the experiment allow one to
see the qualitative motion of each classical trajectory and,
in particular, the different number of loops executed by
each orbit—information that is available from no other
experiment.

When classical trajectories are extracted from a quan-
tum system, the resolution is necessarily limited by Heisen-
berg’s uncertainty principle. How close is this experiment
to that limit? Or put another way: To what extent could
the resolution of the reconstructed trajectory be improved
by increasing the frequency range of the experiment?

The semiclassical analysis relies on the assumptions that
the rf frequency is much lower than the laser frequency,
and that the classical orbits are large compared with the
size of the atom. If either of these assumptions breaks
down, then the fuzziness of the initial state would create
fuzziness in the reconstructed trajectory. Considering that
the size of the initial state is only a few Bohr radii,
whereas the smallest distance probed in this experiment
is a few thousand Bohr radii, we are clearly orders of
magnitude away from the uncertainty principle limits.
Hence, the resolution in the current experiment is limited
by experimental, not fundamental, restrictions. Much
more classical detail could be extracted by our method.

Our demonstration that it is possible to reconstruct clas-
sical trajectories from spectral data relies on only a few
properties of the system: (i) The initial state occupies
only a small region of space. (ii) Outside that region a
semiclassical (short-wavelength) approximation is appro-

priate. (iii) The time-dependent “probing” Hamiltonian is
known, and has the formF1z cossvtd. These assump-
tions are sufficient for the validity of Eq. (2), which al-
lows us to inferjZ̃svdj from experimental measurements.
In the present case, to obtainz̃st̃d we also used the facts
that the classical orbits are time-reversal symmetric (nec-
essary because of the loss of phase information discussed
above), and that the complete Hamiltonian is scaling (this
is convenient but not essential to the method). Although
we applied the method to the Stark spectrum of lithium—
a system whose classical and quantum dynamics were al-
ready well understood—the method does not depend on
the details of that system. It should be possible to apply
the technique to systems for which the classical or even
quantum behavior is not known.
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