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PHYSICAL REVIEW A VOLUME 57, NUMBER 6 JUNE 1998

Semiclassical formula for oscillator strengths of atomic spectra in external fields

Vladimir Kondratovich and John B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187
(Received 12 January 1998

In a previous Rapid Communicatidfhys. Rev. A56, R5 (1997)] we reported a semiclassical formula
describing oscillator strengths for transitions to a high Rydberg state of a hydrogen atom in an electric field.
The formula relates the oscillator strength for an atomic transition into a Rydberg state to the angular distri-
bution of outgoing electron waves and to the density of classical tori. Here we give a derivation of that formula
and we suggest some generalizations. We compare the formula with experimental measurements of the ab-
sorption spectrum of hydrogen in an electric field. This absorption spectrum consists of quasidiscrete reso-
nances superposed on a smooth background. We find that this background has a hitherto unexplained structure
that was visible but not recognized in the experiment. The background absorption is related to electron orbits
that directly escape from the atom, and its structure is related to the angular distribution of outgoing electrons.
[S1050-294{@8)10606-9

PACS numbsg(s): 32.60:+i, 03.65.Sq, 32.86-t

I. INTRODUCTION not directly tied to the Stark system, but which applies more
generally to one-electron atoms in fields, if the spectrum is

We consider the absorption spectrum to highly excitedregular.
states of a hydrogenic atom in applied electric and/or mag- In our previous paper, we tested the formula by compari-
netic fields. The oscillator strength for the transition from ason with numerical quantum calculations. Here we test it by

given initial statel to a final staten is defined as comparison with experiments carried out by Rottke and
, - ) Welge [2]. This comparison forces us to examine another
fo=[2me(E,—E)/R2][(i[D[n)[%, (1. jissue. In the Stark system, the absorption spectrum consists
Y p p

) ) of narrow lines superposed on a smooth continuum. Is there

whereD is the relevant component of the dipole operator. Ing t5rmula analogous to Eq1.2) that describes the con-
a previous papef1], we presented a simple semiclassicalsn,ym? In this paper we derive and test a new semiclassical
formula for this oscillator strength, and we showed how theomyia for that continuous absorption. Intensity for absorp-
formula could explain patterns that are observable in atomi¢s into a continuum is described by an oscillator-strength
spectra. That formula was density, Df(E); we will show that in this cas®f(E) is

o | ™ AEB) given by
fr=(8m) 72 (En—E)

a(l,15) .
Df(E,F)=(8 2a3/h*)(E—E; f 6)|2 sin 6d6
The formula combines quantum, semiclassical, and clas- ( )= (8m)(Meag/A7)( ) 9C(E,F)|y( )| sin

sical concepts)(6) is the angular distribution of electron 1.3
waves going out from the atom as a result of excitation by
light. For example, if the initial stateis spherically symmet-  \yhere ¢, is a critical ejection angle dividing bound from
ric and the light is linearly polarized along taeaxis, J(6) i escaping orbits.
a p, wave, proportional to co8 This quantity arises from Our derivation is based on the following assump-
quantum theory. _ _ _ tions. (a) The final staten is high lying, so it can be de-
I andl, are classical actions. The Hamilton-Jacobi equascribed by a semiclassical approximati¢in). The initial state
tion for the Stark system is separable in semiparabolic coof} s |ocalized in comparison with the final state) The ex-
dinates, is the separation constant, and there exists a cagrnal fields are weak enough to allow the Coulomb field to
nonical transformation from the conserved quantitEsd)  dominate in the region of localization of the initial state)
to the action variabled (,1,). The Jacobian of that transfor- The system(electron in combination of external fields and
mation appears in Eq1.2). Semiclassical theory tells us that Coulomb field has cylindrical symmetry and a regular spec-
each quantum state corresponds to an “eigentrajectory” trym (some of our formulas presume that=L,/%=0, but
having quantized values of these action variables. this is not essential(e) Near the nucleus the electron trajec-
Finally, analysis of the classical orbits of the Stark systemories in the final state are similar to those for zero-energy
shows that for each trajectory there is a unique “angle ofcoulomb scattering. (f) The system satisfies a certain
ejection from the atom”6, , =6,: a classical electron «“nondegeneracy condition,” which will be defined later.
moving radially outward from the nucleus at this angle will We derive the formuldl.2) for discrete states in the next
find itself on the torus having action variablds (I ,) (which  two sections, and then convert it to the formyla3) for
then corresponds to the quantum state continuum absorption in Sec. V. Section VI contains our
In this paper we present the proof of this formula. Actu-comparisons with measurements. Further generalizations of
ally we establish a more general formula, E4.7), which is  the formulas are sketched in Appendix B.

‘Iy( 0% (1.2
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Il. SEMICLASSICAL WAVE FUNCTION
FOR THE FINAL STATE f |¥,(q")|?dg’ =1. (2.5

Let us consider a regular system having cylindrical sym- . _ . .
metry around the axis. The orbital angular momentul) 'I;he above equation holds in Cartesian coordinates
around this axis is conserved, the azimuthal angle is ignor= (X:¥:2)- o classical form i th
able, and the reduced two-dimensional motion may be de-_ V& want the semiclassical form in the reduced two-
scribed by coordinates p(z) or (r,6) or (u,v) d_|men3|onal spacg=(r,0) or (p,z) or (u,v). The Cgrte—
= (rY2cos6i2, r'%sin 62). We said above that we assume sian generator and the prefactor are reexpressed in the de-
that “the system has a regular spectrum.” More precisely Sired coordinates by, for example,
we assume that there is a region of phase space in which the

. : . . . = + .
trajectories are regular, they foliate that region as a continu- SOGY 212, L) =S, 6,11,12) L6, 2.6

ous family of tori, and each torus is labeled by two action 7S S
variables, ‘:|Jr0| ——, (2.7
a(X!er)a(ILIZ!LZ)‘ C’)(raa)a(llil2)
= ! ig d 2.1 where
J_E ij qa, ( . )
_ &(rial(ﬁ) _ 2 - _1
whereC; are the irreducible loops on the torus. 0T a(x,y,2) =(r"sin §) " (2.8

We allow the possibility that other parts of phase space
may contain chaotic trajectories, and also we allow the posAnalogous expressions hold fou,p) or (p,z) coordinates.
sibility that small zones of chaotic behavior may be present Qur primary assumption is that the semiclassical form
even in the region of interest. In the region of interest, thesuch as the one irr (6, ¢),
trajectories must be sufficiently regular to allow the standard

techniques of Einstein-Brillouin-Keller-Marcus quantization B Si(r,0,11,1,)]?
to be used. Wy (r.0,¢)=(2m) 3/2; VA —a(r{6)5(|1,|2)
This implies that besides the enerBy there is a second
(exact or approximajeconserved quantity, which we name Xexpli[Si(r,0,11,1)/h+L,plh— ujml2]}
B; tori are equivalently labeled byE(B) or (I4,l5); 2.9

I(E,B)a(l41,1,)#000. No further specification is yet given
of this quantity 3 (except that we take it to be dimension- [or the corresponding form inp(z,#) or (u,v,#)], de-

less. scribes the excited state over most of the two-dimensional

In the regular region of phase space there is a canonicahace, and that this wave function is normalized to unity in
transformation from the original Cartesian variablpg)) to  pat space.

action-angle variablefl,¢), and that transformation admits

(type-2 generating functions IIl. FINAL-STATE WAVE FUNCTION

NEAR THE NUCLEUS

q
S(q,l)—f p(q’.hdq". (2.2 Equation(2.9) cannot be correct near the nucleus, or in-
deed anywhere on the-z axes. There it diverges as
If the regular region of phase space is sufficiently large, therfr2sin 6) %, so a different formula must be used. It is impos-
a regular family of quantum states builds itself upon thesible to give a formula that will cover all cases. We propose
“eigentori”"—those tori for which the two action variables that most cases will be covered by one simple assumption
are quantized as that can be stated in any of four ways.
(a) Near the nucleus, the trajectories associated with the
li=(nj+v/2h, j=12 (2.3 semiclassical approximation for the excited state are similar
to those for cylindrically symmetric zero-energy Coulomb
(most commonlyv;=1). Miller [3] and Littlejohn[4] gave a  scattering[Fig. 1(@)]. There exists an anglé; at which a
semiclassical formula for the corresponding eigenfunction, trajectory comes on a straight line exactly to the nucleus,
turns around and goes back out on itself. Nearby the trajec-
tories form parabolas symmetric about that line. We further

‘PI(Q')Z(ZWYWEQ |(0723j(q"|)/'9(1"9|)|1/2 assume that; varies smoothly as a function of the second
conserved quantity, withd@s/dB)g# 0. We are saying that
xexpli[S(a’,)/h— u;ml2]}. (2.9 (E,0;) provide alternative labels for the tori,

|(9(E,0f)/(9(|1,|2)|7&0,w
The sum is over the various “branches” of the torus that (b) When represented int(u,*v) space, the torus has a
project to the poing’, k is the number of variables in the set regular projection onto a domain around the origin=Q,
q, and |9?S(q’,1)/dq’ dl| means the absolute value of the v=0), and in the region of {,v) occupied by the initial
determinant(Miller and Littlejohn include a factori) ~¥2, state, the trajectories associated with the final state can be
which we deliberately omit.This wave functionas we de- approximated as straight parallel lines oriented at an angle
fine it) is normalized such thd®Appendix A] 0= 6;/2 from theu axis[Fig. 1(b)]. In this assumption, we
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approaches the origin at an angleand later atm— 6; . (ii)
A single quantum state could be associated with two or more
o, tori. For example, again in a magnetic field, because of the
+z symmetry, there are tori that are localized near the

and —z axes, having the same values of action variables.
Quantum states are superpositions of wave functions associ-
ated with these pairs of tori. In such cases, our formula needs
modification(Appendix B.

In other papers, we have defined a “recurrence integral”

(iID[Wc g)=Co)(y), (3.9
where
(a) (b)
FIG. 1. The family of trajectories representing zero-energy Cou- 352
lomb scattering near the atomic core(@ cylindrical and(b) semi- Co=(4mlv2)(meaglfi®) (3.7

parabolic coordinates. The semiparabolic coordinates “rectify” pa-

rabolas into straight lines. The symmetry axis for the parabolagnd Du and Delos have given formulas foK6) {Egs.
determines the incidence andgle Corresponding trajectories in the (5.13D, (4.2 and 4.3 and(4.12 in Ref.[5]}. In closed-orbit
semiparabolic coordinates make an an@le=¢/2 with theu axis.  hagry e say that the action of the laser on the initial state

. . . . is to produce near-zero-energy outgoing waves, is
are excluding from consideration the possibility that the trap, iy gngular distribution. dy olfgoing )

jectories may form a caustic near the origin. Such situations Combining Egs.(1.1), (3.1, and (3.6), the oscillator
are exceptional, and they require special treatment. : s o
. . strength is
(c) Near the nucleus the wave function for the excited
state is approximately a zero-energy cylindrically symme-

trized Coulomb-scattering wave,

\Pl(r191¢):ng,af(r79,¢), (31)

which was defined in the paper of Du and Del&3, Egs.

(4.22 and(4.23. The incoming part of’C , (r,6,¢) is (at
E=0)
[WE 4,1 0,8)]inc
exp{—2i(r/ag)Yq 1+ cog 6— 6;) 1Y%+ ime}
(r/ag)Y?(sin 6 sin 6;)2a3” :

(3.2

]

C3=(e'™212%27) (meadlh?). (3.3

(d) In (u,v) coordinates, near the nucleus the wave func-N‘I’g,af(r191¢):(27)73/2§j: Jro

fr=[2me(E,—E)/A2][i|D| ¥, )
=[2mg(E,— Ei)/ﬁ2]|<i| D|ang,0f(n)>|2

=[2my(E,— E)/A2]|N,>CEM(8:()%. (3.9

To complete our evaluation, we only have to find the coef-
ficient N,,. This we do by matching the quantum form near
the nucleus to the semiclassical form at larger distances.

IV. MATCHING SEMICLASSICAL
AND QUANTUM FORMS

We find N by equating

12

1/2| ﬁZSj(r,a,ll,lz)

a(r,0)a(l,,15)

tion is approximately a product of Bessel functions; in the

casem=0,

W, (u,0)=N"Jo(pSu) Io(p%0), (3.4

pl=2cos@;, p’=2sin0;. (3.5

XeXp[i[Sj(r,0,| 1,|2)/ﬁ+m¢_/.l,]77/2]}
4.1

in a region far enough from the nucleus that the semiclassical
form is valid, but close enough that the approximate quan-

These assumptions are all equivalent to one another. tum form is valid(we substituted_, by its quantized value

At certain points below we will be assuming a one-to-onem#). It is most appropriate to match these expressions on the
relationship betweerd|, 6;) and tori: for givenE, each torus line =6y at a moderate distance from the atom.
has a unique anglé; and each value of; corresponds to a For this purpose we need the form 8fr,6,1,l,): spe-
single torus. To understand the meaning of this assumptioaifically we need its dependence on,§,1,,1,) so that we
let us mention some cases in which the assumption does noan evaluate the mixed derivatives. We already assumed that
hold. (i) The torus can be folded in such a way that straightthe transformationl(,l,) < (E, 6;) is invertible, so we may
parallel rays approach the origin from two or more direc-useS(r,6,E,6;). From our assumptiofa) about the trajec-
tions. For example, in a magnetic field there is symmetrytories, one can show that ndar- 0, 6~ 65, for the incoming
about thez=0 plane, and there are tori in which an orbit term in the wave function,
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S(r,0,E,0;)=—{2(r/ag) >+ 1 (madE/%?)(rag)®? 3
X[2—cog 60— 6;) ]} 1+ cod 60— 6;)]1Y%. wﬁ:ﬁ’ll%

4.2

This formula is similar to the phase in E@3.2), but the
present formula contains an additional terrEr®92 '
—cos(@— 6;)], which is needed so that we can evaluzZgE. [Tl ' (a)

The determinant of the second derivatives entering Eq.
(4.1) for the wave function can now be found with the use of WMWMM
W

Eq. (4.2 and the transformation rule

2c 2c i - i
°§(r,0,11,15) 4 Si(r,0,E,B) J(E,B) 43 : e TH—T—,———T

&(rva)&(ll!IZ) Bl &(rlg)&(EuB) 0('11'2),

(15,4,0)
-(13,6,0)
(12,6,0)
(7,11,0)

9%S(r,0,E,B) _ mgr dcosé @ (b)
ar,0)dE,B)  2siné; B '
This way the incoming part of Eq4.1) is (atE=0)
e injm2 \/ J(E,B) \/’acosef
NP, (r,0,¢)=
colh 0= "5 N ot VI s
m. e-i2irl1+cogo— o2
X 537 - . em?.
27w Jr sin 6y/sin 6 ©
(4.9
Comparison with the expression fotfggf(r,e,qb) [Eq.
(3.2)] tells us that
1 J(E,B) acosby| ., 15, ) .
||\||= T (h°Imgag). (4.9 FIG. 2. The result of modeling the experimental photoabsorp-
Va2 d(11,12) B tion spectrum of hydrogen in an external electric fiekl

) o o =5714 V/cm by semiclassical formu(d.8) with background given
With use of the definitiori3.6) for the angular distribution by Eq. (5.7) (mirror plot). The initial parabolic stateng,n,,m)
M(6) and expressioi4.6) for [N|, the formula(3.8) trans-  =(0,1,0) is excited by parallel linearly polarized radiatian po-
forms into the final result larization). The energy is given in cit. We show the part of the
spectrum above the saddle poiSP energyE = —463 cm *. The
2 numbers (,,n,,m) in the upper part of the plot identify some
RICHCN parabolic final statega) Experiment, from Ref[2]. (b) Semiclas-
4.7 sical calculation adjusted according to the experimental signal dis-
crimination time and the laser bandwidgbee text for details (c)
Some generalizations of the above procedure are described $®miclassical calculations, with envelopes of Stark manifolds.

Appendix B.
In many cases we can just tajge=cos6;. That holds in

the particular case of a hydrogen atom in an external electritor; i-€., the electron has regular orbits in a bounded region
field, and we get the formula considered in our previousOf configuration space; therefore the corresponding quantum

paper[1]: spectrum is discrete. o o
In the Stark system, the energy spectrum is, in principle,
87Tm§aS(En—Ei) J(E,cos gf(n))‘ ) continuous over the whole energy axispe<E<. In re-
n= 72 o010y ||3)(6’f(n))| . (48 ality, below the saddle enerdg,=—2F"? we have a qua-
sidiscrete spectrum—each energy level is broadened because

The value of this expression is to be taken at the eigenejeéhe electron can tunnel through the barrier. Nevertheless

tion angle, which is given by the Bohr-Sommerfeld quanti-there is a well-defined classically allowed region; all the
zation conditiong2.3). other assumptions that went into our derivation are appli-

cable, and therefore the energy of each quasidiscrete level
V. SMOOTH BACKGROUND ABSORPTION C?n betr?alfc?rllatte;j byI quantlzatéonEof agtlon, and the oscillator
IN THE STARK SYSTEM strength of that level is given by E@.9.
For energies abov&=0, all electrons directly escape,

The above formula applies to discrete gquantum statesand the absorption spectrum is continuous. For energies be-
Right at the beginning, we assumed that the trajectories forntweenEg and zero, it is appropriate to think of the absorption

J(E,B) ||acos 6|

i _ 8mmeag(E,—E)
a1l B |

n ﬁ2
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ciple, observabléi.e., 8 is “an observable” according to the

§ g = rules of quantum mechanjcsWe assume that at eadh
\ﬁTﬂTﬂ:ﬁ I o there is a range 0B [ B1(E)<B<B,(E)] for which trajec-
!—Wﬁ‘ﬂ @ tories escape, and a complementary range for which trajec-
tories are bound. We assume that there is a one-to-one rela-
tionship betweerB and the ejection anglé; . Hence there is
a range of6; [ 6,(E)< 6:< 0,(E)] leading to escape.
~ Instead of working with the individual oscillator strengths
f,, let us work with the “integrated oscillator strength,”
f(E), i.e., the oscillator strength summed over all levels hav-
() ing energy less thak:
M)
0 -100 -200 -300 -400 k;;. f(E)= 2 fi. (5.9)
E A {n|E,<E}
AR W (b) This is defined such that

lim f(E)=0, lim f(E)=1,

E——o E—

df(E)/dE=Df(E)=>, fl S(E—E,). (5.2

0 -100 -200 -300 -400 671

\ﬂfﬂi’ f(E) has steps at each energy level. When we go from the
T discrete to the continuous limif(E) becomes a continuous
(c) monotonically increasing function & with 0<f(E)<1[6].
Suppose at each energy we have identified the trajectories
for which the electron escapes. For eaéh ;) there is a
i corresponding £, 8), and we can define corresponding ac-
tion variables [4,l,) for those trajectories, for example, by
o L . confining the trajectories to an appropriate box. By quantiz-
FIG. 3. The same as in Fig. 2 for ionization mea”z.ed ing in this box, we get a correspondence between action
radiation. Note the difference in the shape of the envelopes in com- ~. .
. o . . variables and quantum states (n+ 1/2)4. Then the inte-
parison with Fig. 2, and the different behavior of the background. . . . -
grated oscillator strength corresponding to escaping trajecto-
ries is
spectrum as a superposition of a continuous and a quasidis-
crete spectrum. This is immediately seen by looking at the

experimental measurements shown in Figs. 2 and 3. fescapbE)= > 8m(miad/ti?)(E,—E)
Closer inspection shows that the continuous spectrum has "SR

some structure on the largest scales. In Fig. 2, going from g
! - . 4 (E,B) dcosé
right to left, we see a sharp rise in continuum absorption at X

E=—500 cni! followed by a plateau ned= —350 cni! d(l1,12) 9B
and then another gentle rise aroubg — 275 cmi ! to a sec- 2 2142

ond plateau(use a straightedge to see thitn Fig. 3, the - egapmg&'f(meao/ﬁ )(En—Ej)
low-energy rise is more gentle, but the final value is larger E,<E

than in Fig. 2. How do we explain this structure?

Classical trajectory calculations show that there is a criti- ‘ J(E,B) dcosb 19(6,)[2
cal angled.= 6.(E,F) such that if the electron leaves the aly,l2)  aB "
atom at angles betweefy and, the electron escapes. How- A(ny.ny) AlLl)
ever, if it leaves the atom with-©0< 4., the electron re- ‘ 12 11|
mains in a bound quasiperiodic orbit. Intuitively we might A(ly,1,) A(E,B) |
expect that those classically escaping paths would corre- E Bo(E)
spond to the continuous absorption, while the classically HJ’ dE’f dB(8m)(mZad/h?)(E'—E)
bound ones would correspond to absorption to quasidiscrete - B1(E)
states. Indeed, E(_q1.3) says that th(=T oscillator-strgngth den- J(E',B) 9cos O a(ny,ny) a(ll,lz)‘
sity for the continuum is proportional to the integral of - - )
|)(6)|?, the angular distribution of outgoing electrons, over d(l,12) 9B aly12) 9(E",p)|
the escape sector. Let us now derive this formula. (5.30

Our derivation again involves assumptions that are some-
what more general than the Stark problem. We assume thEhe A quantitiesA(ny,n,)/A(l4,l,) are discrete analogues
existence of a second conserved quargityhich is, in prin-  of the corresponding Jacobians, and in going fri@3b to

(6|2 (5.33

A(E.B) (5.3b

| V(6|
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(5.39 we have gone to the continuum limit. Nojgn/gl| ~ hydrogen atom was first excited to the;E0, np,=1, m
=#"2, and almost everything else {6.39 cancels, leaving =0) Stark statéthe lowest-energy state at=2), and then it
only was further excited to states aroune 17 and higher. The

applied electric field= was 5714 V/cm, giving a saddle en-

ergy Ec=—463 cm L. In Fig. 2, the laser was linearly po-

larized parallel(w) to F, while in Fig. 3 it was linearly po-

larized perpendiculafo) to F.

dcosd Our most complete semiclassical results are shown in
B Figs. 4c) and 3c). We take the experimental spectrum to be

the sum of the quasidiscrete spectrum, calculated by the
_ JE dE'faz(E’)STr(méaglh“) semiclassical formul@4.8), plus the background terif%.7),
—® 01(E")
X

E 2
f(E)=f dE'fﬁZ(E 'dB(8m)(m2a2in®)
—o JpyEn

X (E'—E)|)(0)]?

which is proportional to the total flux along classical trajec-
tories going from the atom to infinity.

(E'—E)[)(0)|?sin 6d6 (5.9 For energies between 500 and—300 cm'%, there is a
large number of quasidiscrete states. The absorption spec-

and therefore trum does not show any clear pattern until we identify the

Df(E)=df(E)/dE overlappingn manifolds. Then we can see that the oscillator
strengths of the quasidiscrete states follow the pattern dic-

— 8m(mZa2/h?)(E— E')JHZ(E)D’( 6)|2sin 6d6. tated by|)(8(n))|?, as indicated by the envelopes shown in

&0 " JoyE) Figs. 2—4.(Two effects on the absorption spectrum have not

(5.5  been considered in these calculations. We excluded broad
above-barrier resonances, and we did not incorporate the
In this final formula, thebox-quantizefiaction variables for natural widths of any quasidiscrete state. Each of these has a
free orbits have disappeared in favor of quantities that argmall but visible effect on the absorption spectrum.
well defined. To compare with the measurements, two experimental

The final formula has a clear physical meaning: the intenfactors must be considered, as emphasizd@Jn(1) Quasi-
sity of the smooth background in absorption spectra is proeiscrete states having lifetimes greater than about
portional to the total flux along those trajectories which lead2 x 10~® sec were not detecteR) The ratio of laser line-
from the atomic core to infinity. We will compare this for- width to the natural width of an absorption varies widely
mula with experiments in the following section. For the over the spectrum. When the laser width is larger than the
Stark problem natural width, the observed peak will be lower and wider
than the calculated peak.

To account for(1), we cut off all long-lived quasidiscrete
states, using a factor{l1+exda(tit,—1)]}"* with t,
=10 % sec anda=5. Still, most of the peaks that remain
have widths that are less than the laser linewidth. To account
for (2), we “renormalized” the theoretical peak-to-

ag background ratio such that the one largest peak in Fig. 2 and
Df(E)=87T(m§a(2)/ﬁ4)(E—Ei)f l(e)da (5.7  the smooth background &~0 would match the experi-
0 ment. Finally, we again neglected the broad above-barrier
with resonances. The same renormalization constant for back-
ground was then used to draw Fig. 3.
l(a)=|W(7— 6)|%sin(7—0), a;=m—6,. (5.8 These two modifications of the semiclassical theory give
results shown in Figs.(B) and 3b). Quite respectable agree-
ment with experiment is found, again helping to confirm the
validity of the semiclassical formulas.

The combination plot, Fig. 4, shows how the semiclassi-

As was shown in our preliminary communicatift], the  cal formula(5.7) describes the smooth background spectrum
semiclassical formul#4.9) for quasidiscrete states is in ex- in the conditions of this experiment. The critical angle of
cellent agreement with quantum calculations of oscillatorejection dividing bound from free trajectories depends only
strengths. In that paper, we considered the hydrogen atom in the scaled energy= E/\F=2E/E, [Eq. (5.6)],
an electric fieldF with energiesE below the saddle point
E.=—2/F. In another papelf7] we compared this formula f.=cos "(1-3&?),
with experimental measurements of quasidiscrete levels of
the Li atom in an electric field at energies above the saddleand in the lower-right portion of Fig. 4 we plat.(g)=m
Again good agreement was obtained. — 6.(¢) versuse for & between—2 and 0.

In the present paper we compare this semiclassical for- The angular distribution of outgoing waves is plotted ver-
mula with the experiment of Rottke and Wel§2], who  susa=m— @ in the lower-left portion of Fig. 4. Initial states
measured photoabsorption of a hydrogen atom in an electrin this system are the very unsymmetricet 2 hydrogenic
field in the region above the saddle. The upper parts of FigsStark states, and they lead to the characteristic angular dis-
2 and 3 show their experimental results. In both cases, theibutions shown. Curve 2 is the one associated with the ex-

6,(E)= 6.=cos Y(1—E?/2F),
0,(E)=m, (5.6)

so we rewrite Eq(5.5) in the form

VI. COMPARISON WITH EXPERIMENTS
AND NUMERICAL CALCULATIONS
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tinuum is proportional to the integral 4f/(6)|? over the
escape sector.
The other factor in the formula,

J(E,cos6r)| | d(ly,lp) ‘*1
d(13,15) | |d(E,cosby)|

is the inverse of the density of eigentrajectories in energy and
outgoing angle. This factor is related to the large-scale struc-
ture of the tori.
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FIG. 4. Combination plot showing the calculation of continuum P
absorption in Stark spectra according to semiclassical forura
The dependence of the critical angle on the scaled energy
=E/\/E[Eqs.(5.8) and(5.6)] is shown in the lower right part of the Here we will prove that the wave functio(q) [Eq.

plot. On the lower left is plotted the angular distribution of outgoing (2.4] is normalized to unity in the case when the corre-

waves|(a) vs a for three cases. Curve 1n{,n,,m)=(1,0,0) y ndina Lagranaian manifold i r motion is fi-

initial state excited by linear parallél) radiation. Curve 2(0,1,0 iﬁg) ding Lagrangia anifold is a tor(the motion is

initial state excited byr-polarized radiation. Curve 30,1,0 initial When integrating| W ( )|2 we can neglect the cross

state excited by linear perpendicul@r) radiation. The predicted 9 911 I 9 . L
terms because they are oscillating and do not give significant

continuum absorptio® f(E) from Eq.(5.7) at scaled energy’ is L L .
proportional to the integral of () from zero to a'=ay(s') contribution to the normalization integral. So we can write

(shaded area These integrals are shown as functionseah the

upper right. Curves 2 and 3 correspond, respectively, to experi-f dq|\p|(q)|2:(2ﬂ-)*kz f dq|(&28»(q,l)/&q&l)|, (A1)
ments shown in Figs. 2 and 3. D i JD !

APPENDIX A: PROOF OF NORMALIZATION

periment shown in Figs. 2. The background absorption iwhereD denotes the classically accessible region in coordi-

proportional to the area under the curgbaded areaThus ~ Nate space. _ _ _

in this case the background should rise quickly to a plateau AS S [Ed. (2.2)] is a type-2 generating functiomS/Jl

[the center of which corresponds to the nodd @f)], and = ¢. ¢ being the angle coordinates corresponding to the

then it should have a second small rise to its final value. Thi@ctionsl, we can rewritg/Al) in the form

is precisely what we saw in Fig. 2. Curve 3 in Fig. 4 has a

more gradual rise to a larger final value, as in Fig. 3. f dg| W (q)|?=(2m) ¥ f dala(#)/d(q)|. (A2)
The converse of the above is the easier statement: the D i Jb

derivative of the smooth backgroudfiDf(E)]/dE plotted as
a function ofd,=cos Y(1—E?%2F) is a graph of J(6)[? sin 6. As the torus is an oriented manifold, all members of the
sum(A2) combine in one angular integral over tortis

VII. CONCLUSION

2_ -k _ -k k_
We give a semiclassical formula for the oscillator strengthJquw'(Q)| (2m) JTd¢ (2m)(2m)"=1. (A3
of discrete and continuous regular spectra in external fields.
The formula holds under our major assumption that the elec-
tron trajectories are regular, and that near the atom they are
similar to those for zero-energy Coulomb scattering.

As explained in Ref{1], this formula combines classical, The derivation of the semiclassical formula for oscillator
semiclassical, and quantum concepts to obtain the oscillat@trengths can easily be modified to treat more complex sys-
strength.(Quantum )X 6;) is the quantum angular distribu- tems. For example, we may consider systems without axial
tion of outgoing waves for a zero-energy electron that hadsymmetry(three-dimensional motion of the active eleciron
been excited from the state (Semiclassicaleach discrete One can also incorporate some internal degrees of freedom if
guantum state is connected to an eigentrajectory through treemore complex object than the hydrogen atom is considered
semiclassical quantization conditiof.3). (Classical each  (for example, photoabsorption by molecules in external
such eigentrajectory ha# is assumetione classical angle fields).

0;, the angle of ejection of the electron from the atom. The Let us consider the case of three-dimensional motion of
oscillator strength to the stateis proportional to the angular the photoelectron. In this case we assume the existence of
distribution of outgoing waves)/(6;)|?> at that classical three action variables=(l,,1,,13) or another triplet of con-
angle 6;(n), and the oscillator strength density in the con-served quantities, sayE(8,7) (as before,8 and y are sup-

APPENDIX B: GENERALIZATIONS
OF THE SEMICLASSICAL FORMULA
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posed to be dimensionlgsén the vicinity of the atomic core parabolas is cylindrically symmetric about this line. We as-
we can consider a family of zero-energy Coulomb trajecto-sume a one-to-one correspondence between the conserved

ries, which is defined now by two angular parametéfs).

quantities(B,y) and the returning directiond , ¢¢).

This means that there is an orbit that comes to the nucleus on Next we can introduce a “Coulomb-reference” function

a straight line from the directiondg, ¢¢). Other orbits in the

Ve o, ,¢f(r,0, ¢)—the same as that introduced in £4.183

family are parabolas centered on this line and the family obf [5], except for a normalizing factor ¢2) ~*2,

We,o, 4,10, )= (2m) " PUEL | (r,60,6)

(B1)

exp(—i2{(r/ag)[1+ cos #cos #;+sin 6 sin 6; cod p— ¢¢)1}?)

3 {(r/ag)[1+cos fcos B;+sin 6 sin scod — ;) |} H4ad?

(B2)

[the coefficientC5 is defined in Eq.(3.3)]]. Comparable to a way that orbits return to the nucleus from several distinct

assumptior(e) in the Introduction, we assume that the three-directions(a'f(n),qs'f(n)), wherel=1,2, .

dimensional semiclassical wave functi@4) behaves like
Eqg. (B2) in the zone of Coulomb dominance,

"I}|(r,0,¢):N‘PC’9f ,¢f(r!01¢)-

Then by the method used to obtain E4.6), we find

(B3)

N_e‘”’“i”/2 \/ J(E,B,y) \/a(cosaf,¢f) #5?2

- 2x d(11,12,13) a(B,y) mZ%a3

_e*iﬂi"’z\/ﬁ(E,cosef,@) 752 4
27 (11,1215 | m%ad

This way we come to an analog of Ed.7) for the oscillator
strength:

. 8mmiaf(E,—E) | d(E.B,7) |
" hi 3(11,15,13)]
d(cos s, dy) )
with
W05, ¢1)=C, i|D[Wc 4, ), (B6)

.. ,labels the dis-
crete directions from which orbits return to the atom, and
again labels the eigentorus. Alternatively, in a system having
symmetry, a given quantum state may correspond to a super-
position of wave functions associated with two or more
eigentori. For example, if the system is symmetric under
z——2, there may be distinct returning orbits near and

—Zz axes.

Such cases are characterized by superposition and inter-
ference of waves associated with several closed trajectories.
In this case, the wave function of the final state is represented
by the sum of addends in the for(8.1) for all contributing
tori, and the oscillator strength has the form

b 16m°m3aS(E,—E;)

2
h e 2N (), o)L B7)

where the sum is taken over all ejection angles Bi{d is
given by Eq.(B4).

We should note that the presence of a Coulomb field in
the final state is also not essential. We can think, for ex-
ample, about a negative ion in a cavity. In this case the final
state belongs to the discrete spectrum, but only a short-range
interaction of the active electron with the atom is present. In
this case the reference function is a plane wave labeled with

which again also represents the angular distribution ofhe constants of free motion.

ejected electrons.

In the case when the core possesses some additional de-

Another case can also arise in either two or three dimengrees of freedom, the functiow ¢ 4, , may be entangled
sions. An eigentorus could be folded in phase space in sualith them.
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