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Semiclassical formula for oscillator strengths of atomic spectra in external fields

Vladimir Kondratovich and John B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

~Received 12 January 1998!

In a previous Rapid Communication@Phys. Rev. A56, R5 ~1997!# we reported a semiclassical formula
describing oscillator strengths for transitions to a high Rydberg state of a hydrogen atom in an electric field.
The formula relates the oscillator strength for an atomic transition into a Rydberg state to the angular distri-
bution of outgoing electron waves and to the density of classical tori. Here we give a derivation of that formula
and we suggest some generalizations. We compare the formula with experimental measurements of the ab-
sorption spectrum of hydrogen in an electric field. This absorption spectrum consists of quasidiscrete reso-
nances superposed on a smooth background. We find that this background has a hitherto unexplained structure
that was visible but not recognized in the experiment. The background absorption is related to electron orbits
that directly escape from the atom, and its structure is related to the angular distribution of outgoing electrons.
@S1050-2947~98!10606-6#

PACS number~s!: 32.60.1i, 03.65.Sq, 32.80.2t

I. INTRODUCTION

We consider the absorption spectrum to highly excited
states of a hydrogenic atom in applied electric and/or mag-
netic fields. The oscillator strength for the transition from a
given initial statei to a final staten is defined as

f n
i 5@2me~En2Ei!/\

2# z^ iuDun& z2, ~1.1!

whereD is the relevant component of the dipole operator. In
a previous paper@1#, we presented a simple semiclassical
formula for this oscillator strength, and we showed how the
formula could explain patterns that are observable in atomic
spectra. That formula was

f n
i 5~8p!S me

2a0
2

\2 D ~En2Ei!U ]~E,b!

]~ I 1 ,I 2!
UuY~un!u2. ~1.2!

The formula combines quantum, semiclassical, and clas-
sical concepts.Y~u! is the angular distribution of electron
waves going out from the atom as a result of excitation by
light. For example, if the initial statei is spherically symmet-
ric and the light is linearly polarized along thez axis,Y~u! is
a pz wave, proportional to cosu. This quantity arises from
quantum theory.

I 1 andI 2 are classical actions. The Hamilton-Jacobi equa-
tion for the Stark system is separable in semiparabolic coor-
dinates,b is the separation constant, and there exists a ca-
nonical transformation from the conserved quantities (E,b)
to the action variables (I 1 ,I 2). The Jacobian of that transfor-
mation appears in Eq.~1.2!. Semiclassical theory tells us that
each quantum staten corresponds to an ‘‘eigentrajectory’’
having quantized values of these action variables.

Finally, analysis of the classical orbits of the Stark system
shows that for each trajectory there is a unique ‘‘angle of
ejection from the atom’’u I 1 ,I 2

[un : a classical electron
moving radially outward from the nucleus at this angle will
find itself on the torus having action variables (I 1 ,I 2) ~which
then corresponds to the quantum staten!.

In this paper we present the proof of this formula. Actu-
ally we establish a more general formula, Eq.~4.7!, which is

not directly tied to the Stark system, but which applies more
generally to one-electron atoms in fields, if the spectrum is
regular.

In our previous paper, we tested the formula by compari-
son with numerical quantum calculations. Here we test it by
comparison with experiments carried out by Rottke and
Welge @2#. This comparison forces us to examine another
issue. In the Stark system, the absorption spectrum consists
of narrow lines superposed on a smooth continuum. Is there
a formula analogous to Eq.~1.2! that describes the con-
tinuum? In this paper we derive and test a new semiclassical
formula for that continuous absorption. Intensity for absorp-
tion into a continuum is described by an oscillator-strength
density, D f (E); we will show that in this caseD f (E) is
given by

D f ~E,F !5~8p!~me
2a0

2/\4!~E2Ei!E
uc~E,F !

p

uY~u!u2 sin udu

~1.3!

where uc is a critical ejection angle dividing bound from
escaping orbits.

Our derivation is based on the following assump-
tions. ~a! The final staten is high lying, so it can be de-
scribed by a semiclassical approximation.~b! The initial state
i is localized in comparison with the final state.~c! The ex-
ternal fields are weak enough to allow the Coulomb field to
dominate in the region of localization of the initial state.~d!
The system~electron in combination of external fields and
Coulomb field! has cylindrical symmetry and a regular spec-
trum ~some of our formulas presume thatm5Lz /\50, but
this is not essential!. ~e! Near the nucleus the electron trajec-
tories in the final state are similar to those for zero-energy
Coulomb scattering. ~f! The system satisfies a certain
‘‘nondegeneracy condition,’’ which will be defined later.

We derive the formula~1.2! for discrete states in the next
two sections, and then convert it to the formula~1.3! for
continuum absorption in Sec. V. Section VI contains our
comparisons with measurements. Further generalizations of
the formulas are sketched in Appendix B.
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II. SEMICLASSICAL WAVE FUNCTION
FOR THE FINAL STATE

Let us consider a regular system having cylindrical sym-
metry around thez axis. The orbital angular momentumLz
around this axis is conserved, the azimuthal angle is ignor-
able, and the reduced two-dimensional motion may be de-
scribed by coordinates (r,z) or (r ,u) or (u,v)
5(r 1/2cosu/2, r 1/2sinu/2). We said above that we assume
that ‘‘the system has a regular spectrum.’’ More precisely,
we assume that there is a region of phase space in which the
trajectories are regular, they foliate that region as a continu-
ous family of tori, and each torus is labeled by two action
variables,

I j5
1

2p R
Cj

pdq, ~2.1!

whereCj are the irreducible loops on the torus.
We allow the possibility that other parts of phase space

may contain chaotic trajectories, and also we allow the pos-
sibility that small zones of chaotic behavior may be present
even in the region of interest. In the region of interest, the
trajectories must be sufficiently regular to allow the standard
techniques of Einstein-Brillouin-Keller-Marcus quantization
to be used.

This implies that besides the energyE, there is a second
~exact or approximate! conserved quantity, which we name
b; tori are equivalently labeled by (E,b) or (I 1 ,I 2);
](E,b)/](I 1 ,I 2)Þ0,̀ . No further specification is yet given
of this quantityb ~except that we take it to be dimension-
less!.

In the regular region of phase space there is a canonical
transformation from the original Cartesian variables~p,q! to
action-angle variables~I ,f!, and that transformation admits
~type-2! generating functions

S~q,I !5Eq
p~q8,I !dq8. ~2.2!

If the regular region of phase space is sufficiently large, then
a regular family of quantum states builds itself upon the
‘‘eigentori’’—those tori for which the two action variables
are quantized as

I j5~nj1n j /2!\, j 51,2 ~2.3!

~most commonlyn j51!. Miller @3# and Littlejohn@4# gave a
semiclassical formula for the corresponding eigenfunction,

C I~q8!5~2p!2k/2(
j

u~]2Sj~q8,I !/]q8]I !u1/2

3exp$ i @Sj~q8,I !/\2m jp/2#%. ~2.4!

The sum is over the various ‘‘branches’’ of the torus that
project to the pointq8, k is the number of variables in the set
q, and u]2S(q8,I )/]q8]I u means the absolute value of the
determinant.~Miller and Littlejohn include a factor (i\)2k/2,
which we deliberately omit.! This wave function~as we de-
fine it! is normalized such that@Appendix A#

E uC I~q8!u2dq851. ~2.5!

The above equation holds in Cartesian coordinatesq8
5(x,y,z).

We want the semiclassical form in the reduced two-
dimensional spaceq5(r ,u) or (r,z) or (u,v). The Carte-
sian generator and the prefactor are reexpressed in the de-
sired coordinates by, for example,

S~x,y,z,I 1 ,I 2 ,Lz!5S~r ,u,I 1 ,I 2!1Lzf, ~2.6!

U ]2S

]~x,y,z!]~ I 1 ,I 2 ,Lz!
U5uJruuU ]2S

]~r ,u!]~ I 1 ,I 2!
U, ~2.7!

where

Jru5U]~r ,u,f!

]~x,y,z!
U5~r 2sin u!21. ~2.8!

Analogous expressions hold for (u,v) or (r,z) coordinates.
Our primary assumption is that the semiclassical form

such as the one in (r ,u,f),

C I~r ,u,f!5~2p!23/2(
j

Jru
1/2U]2Sj~r ,u,I 1 ,I 2!

]~r ,u!]~ I 1 ,I 2!
U1/2

3exp$ i @Sj~r ,u,I 1 ,I 2!/\1Lzf/\2m jp/2#%

~2.9!

@or the corresponding form in (r,z,f) or (u,v,f)#, de-
scribes the excited state over most of the two-dimensional
space, and that this wave function is normalized to unity in
that space.

III. FINAL-STATE WAVE FUNCTION
NEAR THE NUCLEUS

Equation~2.9! cannot be correct near the nucleus, or in-
deed anywhere on the6z axes. There it diverges as
(r 2sinu)21, so a different formula must be used. It is impos-
sible to give a formula that will cover all cases. We propose
that most cases will be covered by one simple assumption
that can be stated in any of four ways.

~a! Near the nucleus, the trajectories associated with the
semiclassical approximation for the excited state are similar
to those for cylindrically symmetric zero-energy Coulomb
scattering@Fig. 1~a!#. There exists an angleu f at which a
trajectory comes on a straight line exactly to the nucleus,
turns around and goes back out on itself. Nearby the trajec-
tories form parabolas symmetric about that line. We further
assume thatu f varies smoothly as a function of the second
conserved quantity, with (]u f /]b)EÞ0. We are saying that
(E,u f) provide alternative labels for the tori,
u](E,u f)/](I 1 ,I 2)uÞ0,̀ .

~b! When represented in (6u,6v) space, the torus has a
regular projection onto a domain around the origin (u50,
v50!, and in the region of (u,v) occupied by the initial
state, the trajectories associated with the final state can be
approximated as straight parallel lines oriented at an angle
Q f5u f /2 from theu axis @Fig. 1~b!#. In this assumption, we
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are excluding from consideration the possibility that the tra-
jectories may form a caustic near the origin. Such situations
are exceptional, and they require special treatment.

~c! Near the nucleus the wave function for the excited
state is approximately a zero-energy cylindrically symme-
trized Coulomb-scattering wave,

C I~r ,u,f!.NCC,u f

m ~r ,u,f!, ~3.1!

which was defined in the paper of Du and Delos@5#, Eqs.
~4.22! and ~4.23!. The incoming part ofCC,u f

m (r ,u,f) is ~at

E50!

@CC,u f

m ~r ,u,f!# inc

5C3

exp$22i ~r /a0!1/2@11cos~u2u f !#
1/21 imf%

~r /a0!1/2~sin u sin u f !
1/2a0

3/2 ,

~3.2!

C35~eip/2/23/2p!~mea0
3/\2!. ~3.3!

~d! In (u,v) coordinates, near the nucleus the wave func-
tion is approximately a product of Bessel functions; in the
casem50,

C I~u,v !.N8J0~pu
0u!J0~pv

0v !, ~3.4!

pu
052 cosQ f , pv

052 sin Q f . ~3.5!

These assumptions are all equivalent to one another.
At certain points below we will be assuming a one-to-one

relationship between (E,u f) and tori: for givenE, each torus
has a unique angleu f and each value ofu f corresponds to a
single torus. To understand the meaning of this assumption
let us mention some cases in which the assumption does not
hold. ~i! The torus can be folded in such a way that straight
parallel rays approach the origin from two or more direc-
tions. For example, in a magnetic field there is symmetry
about thez50 plane, and there are tori in which an orbit

approaches the origin at an angleu f and later atp2u f . ~ii !
A single quantum state could be associated with two or more
tori. For example, again in a magnetic field, because of the
6z symmetry, there are tori that are localized near the1z
and 2z axes, having the same values of action variables.
Quantum states are superpositions of wave functions associ-
ated with these pairs of tori. In such cases, our formula needs
modification~Appendix B!.

In other papers, we have defined a ‘‘recurrence integral’’

^ iuDuCC,u f
&5C2Y~u f !, ~3.6!

where

C25~4p/& !~mea0
3/\2! ~3.7!

and Du and Delos have given formulas forY~u! $Eqs.
~5.13b!, ~4.2 and 4.3!, and~4.12! in Ref. @5#%. In closed-orbit
theory, we say that the action of the laser on the initial state
is to produce near-zero-energy outgoing waves, andY~u! is
their angular distribution.

Combining Eqs.~1.1!, ~3.1!, and ~3.6!, the oscillator
strength is

f n
i 5@2me~En2Ei!/\

2# z^ iuDuC In
& z2

5@2me~En2Ei!/\
2#u^ iuDuNnCC,u f ~n!

m &u2

5@2me~En2Ei!/\
2#uNnu2C2

2uY„u f~n!…u2. ~3.8!

To complete our evaluation, we only have to find the coef-
ficient Nn . This we do by matching the quantum form near
the nucleus to the semiclassical form at larger distances.

IV. MATCHING SEMICLASSICAL
AND QUANTUM FORMS

We find N by equating

NCC,u f

m ~r ,u,f!5~2p!23/2(
j

Jru
1/2U]2Sj~r ,u,I 1 ,I 2!

]~r ,u!]~ I 1 ,I 2!
U1/2

3exp$ i @Sj~r ,u,I 1 ,I 2!/\1mf2m jp/2#%

~4.1!

in a region far enough from the nucleus that the semiclassical
form is valid, but close enough that the approximate quan-
tum form is valid~we substitutedLz by its quantized value
m\!. It is most appropriate to match these expressions on the
line u5u f at a moderate distance from the atom.

For this purpose we need the form ofS(r ,u,I 1 ,I 2): spe-
cifically we need its dependence on (r ,u,I 1 ,I 2) so that we
can evaluate the mixed derivatives. We already assumed that
the transformation (I 1 ,I 2)↔(E,u f) is invertible, so we may
useS(r ,u,E,u f). From our assumption~a! about the trajec-
tories, one can show that nearE;0, u;u f , for the incoming
term in the wave function,

FIG. 1. The family of trajectories representing zero-energy Cou-
lomb scattering near the atomic core in~a! cylindrical and~b! semi-
parabolic coordinates. The semiparabolic coordinates ‘‘rectify’’ pa-
rabolas into straight lines. The symmetry axis for the parabolas
determines the incidence angleu f . Corresponding trajectories in the
semiparabolic coordinates make an angleQf5uf /2 with theu axis.
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S~r ,u,E,u f !52$2~r /a0!1/21 1
3 ~ma0

2E/\2!~r /a0!3/2

3@22cos~u2u f !#%@11cos~u2u f !#
1/2\.

~4.2!

This formula is similar to the phase in Eq.~3.2!, but the
present formula contains an additional term,1

3 Er3/2@2
2cos(u2uf)#, which is needed so that we can evaluate]S/]E.

The determinant of the second derivatives entering Eq.
~4.1! for the wave function can now be found with the use of
Eq. ~4.2! and the transformation rule

]2Sj~r ,u,I 1 ,I 2!

]~r ,u!]~ I 1 ,I 2!
5

]2Sj~r ,u,E,b!

]~r ,u!]~E,b!

]~E,b!

]~ I 1 ,I 2!
, ~4.3!

]2Sj~r ,u,E,b!

]~r ,u!]~E,b!
52

mer

2 sin u f

] cosu f

]b
. ~4.4!

This way the incoming part of Eq.~4.1! is ~at E50!

NCC,u f

m ~r ,u,f!5
e2 im jp/2

A2p
AU ]~E,b!

]~ I 1 ,I 2!
UAU] cosu f

]b U
3

me

23/2p

e2 i2$r @11cos~u2u f !#%
1/2

Ar sin uAsin u f

eimf.

~4.5!

Comparison with the expression forCC,u f

m (r ,u,f) @Eq.

~3.2!# tells us that

uNu5
1

A2p
AU ]~E,b!

]~ I 1 ,I 2!
UAU] cosu f

]b U~\2/me
1/2a0

2!. ~4.6!

With use of the definition~3.6! for the angular distribution
Y(u f) and expression~4.6! for uNu, the formula~3.8! trans-
forms into the final result

f n
i 5

8pme
2a0

2~En2Ei!

\2 U ]~E,b!

]~ I 1 ,I 2!
UU] cosu f

]b UuY„u f~n!…u2.

~4.7!

Some generalizations of the above procedure are described in
Appendix B.

In many cases we can just takeb5cosuf . That holds in
the particular case of a hydrogen atom in an external electric
field, and we get the formula considered in our previous
paper@1#:

f n
i 5

8pme
2a0

2~En2Ei!

\2 U]„E,cosu f~n!…

]~ I 1 ,I 2!
UuY„u f~n!…u2. ~4.8!

The value of this expression is to be taken at the eigenejec-
tion angle, which is given by the Bohr-Sommerfeld quanti-
zation conditions~2.3!.

V. SMOOTH BACKGROUND ABSORPTION
IN THE STARK SYSTEM

The above formula applies to discrete quantum states.
Right at the beginning, we assumed that the trajectories form

tori, i.e., the electron has regular orbits in a bounded region
of configuration space; therefore the corresponding quantum
spectrum is discrete.

In the Stark system, the energy spectrum is, in principle,
continuous over the whole energy axis,2`,E,`. In re-
ality, below the saddle energyEs522F1/2, we have a qua-
sidiscrete spectrum—each energy level is broadened because
the electron can tunnel through the barrier. Nevertheless
there is a well-defined classically allowed region; all the
other assumptions that went into our derivation are appli-
cable, and therefore the energyEn of each quasidiscrete level
can be calculated by quantization of action, and the oscillator
strength of that level is given by Eq.~4.8!.

For energies aboveE50, all electrons directly escape,
and the absorption spectrum is continuous. For energies be-
tweenEs and zero, it is appropriate to think of the absorption

FIG. 2. The result of modeling the experimental photoabsorp-
tion spectrum of hydrogen in an external electric fieldF
55714 V/cm by semiclassical formula~4.8! with background given
by Eq. ~5.7! ~mirror plot!. The initial parabolic state (n1 ,n2 ,m)
5(0,1,0) is excited by parallel linearly polarized radiation~p po-
larization!. The energy is given in cm21. We show the part of the
spectrum above the saddle point~SP! energyEs52463 cm21. The
numbers (n1 ,n2 ,m) in the upper part of the plot identify some
parabolic final states.~a! Experiment, from Ref.@2#. ~b! Semiclas-
sical calculation adjusted according to the experimental signal dis-
crimination time and the laser bandwidth~see text for details!. ~c!
Semiclassical calculations, with envelopes of Stark manifolds.
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spectrum as a superposition of a continuous and a quasidis-
crete spectrum. This is immediately seen by looking at the
experimental measurements shown in Figs. 2 and 3.

Closer inspection shows that the continuous spectrum has
some structure on the largest scales. In Fig. 2, going from
right to left, we see a sharp rise in continuum absorption at
E52500 cm21 followed by a plateau nearE52350 cm21

and then another gentle rise aroundE52275 cm21 to a sec-
ond plateau~use a straightedge to see this!. In Fig. 3, the
low-energy rise is more gentle, but the final value is larger
than in Fig. 2. How do we explain this structure?

Classical trajectory calculations show that there is a criti-
cal angleuc5uc(E,F) such that if the electron leaves the
atom at angles betweenuc andp, the electron escapes. How-
ever, if it leaves the atom with 0,u,uc , the electron re-
mains in a bound quasiperiodic orbit. Intuitively we might
expect that those classically escaping paths would corre-
spond to the continuous absorption, while the classically
bound ones would correspond to absorption to quasidiscrete
states. Indeed, Eq.~1.3! says that the oscillator-strength den-
sity for the continuum is proportional to the integral of
uY(u)u2, the angular distribution of outgoing electrons, over
the escape sector. Let us now derive this formula.

Our derivation again involves assumptions that are some-
what more general than the Stark problem. We assume the
existence of a second conserved quantityb, which is, in prin-

ciple, observable~i.e.,b is ‘‘an observable’’ according to the
rules of quantum mechanics!. We assume that at eachE
there is a range ofb @b1(E),b,b2(E)# for which trajec-
tories escape, and a complementary range for which trajec-
tories are bound. We assume that there is a one-to-one rela-
tionship betweenb and the ejection angleu f . Hence there is
a range ofu f @u1(E),u f,u2(E)# leading to escape.

Instead of working with the individual oscillator strengths
f n

i , let us work with the ‘‘integrated oscillator strength,’’
f (E), i.e., the oscillator strength summed over all levels hav-
ing energy less thanE:

f ~E!5 (
$nuEn,E%

f n
i . ~5.1!

This is defined such that

lim
E→2`

f ~E!50, lim
E→`

f ~E!51,

d f~E!/dE[D f ~E!5(
n

f n
i d~E2En!. ~5.2!

f (E) has steps at each energy level. When we go from the
discrete to the continuous limit,f (E) becomes a continuous
monotonically increasing function ofE with 0,f (E),1 @6#.

Suppose at each energy we have identified the trajectories
for which the electron escapes. For each (E,u f) there is a
corresponding (E,b), and we can define corresponding ac-
tion variables (I 1 ,I 2) for those trajectories, for example, by
confining the trajectories to an appropriate box. By quantiz-
ing in this box, we get a correspondence between action
variables and quantum statesI5(n11/2)\. Then the inte-
grated oscillator strength corresponding to escaping trajecto-
ries is

f escape~E!5 (
n escaping

En,E

8p~me
2a0

2/\2!~En2Ei!

3U ]~E,b!

]~ I 1 ,I 2!

] cosu

]b UuY~un!u2 ~5.3a!

5 (
n escaping

En,E

8p~me
2a0

2/\2!~En2Ei!

3U ]~E,b!

]~ I 1 ,I 2!

] cosu

]b UuY~un!u2

3UD~n1 ,n2!

D~ I 1 ,I 2!

D~ I 1 ,I 2!

D~E,b!
UD~E,b! ~5.3b!

→E
2`

E

dE8E
b1~E!

b2~E!

db~8p!~me
2a0

2/\2!~E82Ei!

3U]~E8,b!

]~ I 1,I 2!

] cosu

]b UuY~un!u2U]~n1,n2!

]~ I 1,I 2!

]~ I 1,I 2!

]~E8,b!
U.

~5.3c!

The D quantitiesD(n1 ,n2)/D(I 1 ,I 2) are discrete analogues
of the corresponding Jacobians, and in going from~5.3b! to

FIG. 3. The same as in Fig. 2 for ionization bys-polarized
radiation. Note the difference in the shape of the envelopes in com-
parison with Fig. 2, and the different behavior of the background.
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~5.3c! we have gone to the continuum limit. Nowu]n/]I u
5\22, and almost everything else in~5.3c! cancels, leaving
only

f ~E!5E
2`

E

dE8E
b1~E8!

b2~E8!
db~8p!~me

2a0
2/\4!

3~E82Ei!uY~u!u2U] cosu

]b U
5E

2`

E

dE8E
u1~E8!

u2~E8!
8p~me

2a0
2/\4!

3~E82Ei!uY~u!u2sin u du ~5.4!

and therefore

D f ~E!5d f~E!/dE

58p~me
2a0

2/\4!~E2Ei!E
u1~E!

u2~E!

uY~u!u2sin u du.

~5.5!

In this final formula, the~box-quantized! action variables for
free orbits have disappeared in favor of quantities that are
well defined.

The final formula has a clear physical meaning: the inten-
sity of the smooth background in absorption spectra is pro-
portional to the total flux along those trajectories which lead
from the atomic core to infinity. We will compare this for-
mula with experiments in the following section. For the
Stark problem

u1~E!5uc5cos21~12E2/2F !,

u2~E!5p, ~5.6!

so we rewrite Eq.~5.5! in the form

D f ~E!58p~me
2a0

2/\4!~E2Ei!E
0

ac
I ~a!da ~5.7!

with

I ~a!5uY~p2u!u2sin~p2u!, ac5p2uc . ~5.8!

VI. COMPARISON WITH EXPERIMENTS
AND NUMERICAL CALCULATIONS

As was shown in our preliminary communication@1#, the
semiclassical formula~4.8! for quasidiscrete states is in ex-
cellent agreement with quantum calculations of oscillator
strengths. In that paper, we considered the hydrogen atom in
an electric fieldF with energiesE below the saddle point
Es522AF. In another paper@7# we compared this formula
with experimental measurements of quasidiscrete levels of
the Li atom in an electric field at energies above the saddle.
Again good agreement was obtained.

In the present paper we compare this semiclassical for-
mula with the experiment of Rottke and Welge@2#, who
measured photoabsorption of a hydrogen atom in an electric
field in the region above the saddle. The upper parts of Figs.
2 and 3 show their experimental results. In both cases, the

hydrogen atom was first excited to the (n150, n251, m
50! Stark state~the lowest-energy state atn52!, and then it
was further excited to states aroundn517 and higher. The
applied electric fieldF was 5714 V/cm, giving a saddle en-
ergy Es52463 cm21. In Fig. 2, the laser was linearly po-
larized parallel~p! to F, while in Fig. 3 it was linearly po-
larized perpendicular~s! to F.

Our most complete semiclassical results are shown in
Figs. 2~c! and 3~c!. We take the experimental spectrum to be
the sum of the quasidiscrete spectrum, calculated by the
semiclassical formula~4.8!, plus the background term~5.7!,
which is proportional to the total flux along classical trajec-
tories going from the atom to infinity.

For energies between2500 and2300 cm21, there is a
large number of quasidiscrete states. The absorption spec-
trum does not show any clear pattern until we identify the
overlappingn manifolds. Then we can see that the oscillator
strengths of the quasidiscrete states follow the pattern dic-
tated byuY„u(n)…u2, as indicated by the envelopes shown in
Figs. 2–4.~Two effects on the absorption spectrum have not
been considered in these calculations. We excluded broad
above-barrier resonances, and we did not incorporate the
natural widths of any quasidiscrete state. Each of these has a
small but visible effect on the absorption spectrum.!

To compare with the measurements, two experimental
factors must be considered, as emphasized in@2#. ~1! Quasi-
discrete states having lifetimes greater than about
231026 sec were not detected.~2! The ratio of laser line-
width to the natural width of an absorption varies widely
over the spectrum. When the laser width is larger than the
natural width, the observed peak will be lower and wider
than the calculated peak.

To account for~1!, we cut off all long-lived quasidiscrete
states, using a factor$11exp@a(t/t021)#%21 with t0
51026 sec anda55. Still, most of the peaks that remain
have widths that are less than the laser linewidth. To account
for ~2!, we ‘‘renormalized’’ the theoretical peak-to-
background ratio such that the one largest peak in Fig. 2 and
the smooth background atE'0 would match the experi-
ment. Finally, we again neglected the broad above-barrier
resonances. The same renormalization constant for back-
ground was then used to draw Fig. 3.

These two modifications of the semiclassical theory give
results shown in Figs. 2~b! and 3~b!. Quite respectable agree-
ment with experiment is found, again helping to confirm the
validity of the semiclassical formulas.

The combination plot, Fig. 4, shows how the semiclassi-
cal formula~5.7! describes the smooth background spectrum
in the conditions of this experiment. The critical angle of
ejection dividing bound from free trajectories depends only
on the scaled energy«5E/AF52E/Es @Eq. ~5.6!#,

uc5cos21~12 1
2 «2!,

and in the lower-right portion of Fig. 4 we plotac(«)5p
2uc(«) versus« for « between22 and 0.

The angular distribution of outgoing waves is plotted ver-
susa5p2u in the lower-left portion of Fig. 4. Initial states
in this system are the very unsymmetricaln52 hydrogenic
Stark states, and they lead to the characteristic angular dis-
tributions shown. Curve 2 is the one associated with the ex-
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periment shown in Figs. 2. The background absorption is
proportional to the area under the curve~shaded area!. Thus
in this case the background should rise quickly to a plateau
@the center of which corresponds to the node ofI (a)#, and
then it should have a second small rise to its final value. This
is precisely what we saw in Fig. 2. Curve 3 in Fig. 4 has a
more gradual rise to a larger final value, as in Fig. 3.

The converse of the above is the easier statement: the
derivative of the smooth backgroundd@Df(E)#/dE plotted as
a function ofuc5cos21(12E2/2F) is a graph ofuY(u)u2 sinu.

VII. CONCLUSION

We give a semiclassical formula for the oscillator strength
of discrete and continuous regular spectra in external fields.
The formula holds under our major assumption that the elec-
tron trajectories are regular, and that near the atom they are
similar to those for zero-energy Coulomb scattering.

As explained in Ref.@1#, this formula combines classical,
semiclassical, and quantum concepts to obtain the oscillator
strength.~Quantum! Y(u f) is the quantum angular distribu-
tion of outgoing waves for a zero-energy electron that had
been excited from the statei. ~Semiclassical! each discrete
quantum state is connected to an eigentrajectory through the
semiclassical quantization conditions~2.3!. ~Classical! each
such eigentrajectory has~it is assumed! one classical angle
u f , the angle of ejection of the electron from the atom. The
oscillator strength to the staten is proportional to the angular
distribution of outgoing wavesuY(u f)u2 at that classical
angleu f(n), and the oscillator strength density in the con-

tinuum is proportional to the integral ofuY(u)u2 over the
escape sector.

The other factor in the formula,

U]~E,cosu f !

]~ I 1 ,I 2!
U5U ]~ I 1 ,I 2!

]~E,cosu f !
U21

,

is the inverse of the density of eigentrajectories in energy and
outgoing angle. This factor is related to the large-scale struc-
ture of the tori.
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APPENDIX A: PROOF OF NORMALIZATION

Here we will prove that the wave functionC I(q) @Eq.
~2.4!# is normalized to unity in the case when the corre-
sponding Lagrangian manifold is a torus~the motion is fi-
nite!.

When integratinguC I(q)u2, we can neglect the cross
terms because they are oscillating and do not give significant
contribution to the normalization integral. So we can write

E
D

dquC I~q!u25~2p!2k(
j
E

D
dqu~]2Sj~q,I !/]q]I !u, ~A1!

whereD denotes the classically accessible region in coordi-
nate space.

As S @Eq. ~2.2!# is a type-2 generating function,]S/]I
5f, f being the angle coordinates corresponding to the
actionsI , we can rewrite~A1! in the form

E
D

dquC I~q!u25~2p!2k(
j
E

D
dqu]~f!/]~q!u. ~A2!

As the torus is an oriented manifold, all members of the
sum ~A2! combine in one angular integral over torusT:

E
D

dquC I~q!u25~2p!2kE
T
df5~2p!2k~2p!k51. ~A3!

APPENDIX B: GENERALIZATIONS
OF THE SEMICLASSICAL FORMULA

The derivation of the semiclassical formula for oscillator
strengths can easily be modified to treat more complex sys-
tems. For example, we may consider systems without axial
symmetry~three-dimensional motion of the active electron!.
One can also incorporate some internal degrees of freedom if
a more complex object than the hydrogen atom is considered
~for example, photoabsorption by molecules in external
fields!.

Let us consider the case of three-dimensional motion of
the photoelectron. In this case we assume the existence of
three action variablesI5(I 1,I 2,I 3) or another triplet of con-
served quantities, say, (E,b,g) ~as before,b and g are sup-

FIG. 4. Combination plot showing the calculation of continuum
absorption in Stark spectra according to semiclassical formula~5.7!.
The dependence of the critical angleac on the scaled energy«
5E/AF @Eqs.~5.8! and~5.6!# is shown in the lower right part of the
plot. On the lower left is plotted the angular distribution of outgoing
waves I (a) vs a for three cases. Curve 1: (n1 ,n2 ,m)5(1,0,0)
initial state excited by linear parallel~p! radiation. Curve 2:~0,1,0!
initial state excited byp-polarized radiation. Curve 3:~0,1,0! initial
state excited by linear perpendicular~s! radiation. The predicted
continuum absorptionD f (E) from Eq. ~5.7! at scaled energy«8 is
proportional to the integral ofI (a) from zero to a8[ac(«8)
~shaded area!. These integrals are shown as functions of« in the
upper right. Curves 2 and 3 correspond, respectively, to experi-
ments shown in Figs. 2 and 3.
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posed to be dimensionless!. In the vicinity of the atomic core
we can consider a family of zero-energy Coulomb trajecto-
ries, which is defined now by two angular parameters (uf,ff).
This means that there is an orbit that comes to the nucleus on
a straight line from the direction (u f ,f f). Other orbits in the
family are parabolas centered on this line and the family of

parabolas is cylindrically symmetric about this line. We as-
sume a one-to-one correspondence between the conserved
quantities~b,g! and the returning direction (u f ,f f).

Next we can introduce a ‘‘Coulomb-reference’’ function
CC,u f ,f f

(r ,u,f)—the same as that introduced in Eq.~4.18a!
of @5#, except for a normalizing factor (2p)21/2,

CC,u f ,f f
~r ,u,f!5~2p!21/2CC,u f ,f f

@5# ~r ,u,f! ~B1!

52 iC3

exp„2 i2$~r /a0!@11cosu cosu f1sin u sin u f cos~f2f f !#%
1/2
…

$~r /a0!@11cosu cosu f1sin u sin u fcos~f2f f !#%
1/4a0

3/2 ~B2!

@the coefficientC3 is defined in Eq.~3.3!#. Comparable to
assumption~e! in the Introduction, we assume that the three-
dimensional semiclassical wave function~2.4! behaves like
Eq. ~B2! in the zone of Coulomb dominance,

C I~r ,u,f!5NCC,u f ,f f
~r ,u,f!. ~B3!

Then by the method used to obtain Eq.~4.6!, we find

N5
e2 im jp/2

A2p
AU ]~E,b,g!

]~ I 1 ,I 2 ,I 3!
UAU]~cosu f ,f f !

]~b,g!
U \5/2

me
1/2a0

2

5
e2 im jp/2

A2p
AU]~E,cosu f ,f f !

]~ I 1 ,I 2,I 3!
U \5/2

me
1/2a0

2 . ~B4!

This way we come to an analog of Eq.~4.7! for the oscillator
strength:

f n
i 5

8pme
2a0

2~En2Ei!

\ U ]~E,b,g!

]~ I 1 ,I 2 ,I 3!
U

3U]~cosu f ,f f !

]~b,g!
UuY~u f ,f f !u2 ~B5!

with

Y~u f ,f f !5C2
21^ iuDuCC,u f ,f f

&, ~B6!

which again also represents the angular distribution of
ejected electrons.

Another case can also arise in either two or three dimen-
sions. An eigentorus could be folded in phase space in such

a way that orbits return to the nucleus from several distinct
directions„u f

l (n),f f
l (n)…, where l 51,2, . . . , labels the dis-

crete directions from which orbits return to the atom, andn
again labels the eigentorus. Alternatively, in a system having
symmetry, a given quantum state may correspond to a super-
position of wave functions associated with two or more
eigentori. For example, if the system is symmetric under
z→2z, there may be distinct returning orbits near1z and
2z axes.

Such cases are characterized by superposition and inter-
ference of waves associated with several closed trajectories.
In this case, the wave function of the final state is represented
by the sum of addends in the form~3.1! for all contributing
tori, and the oscillator strength has the form

f n
i 5

16p2me
3a0

6~En2Ei!

\6 U(
l

Nn
~ l !Y„u f

~ l !~n!,f f
~ l !
…U2

, ~B7!

where the sum is taken over all ejection angles andNn
( l ) is

given by Eq.~B4!.
We should note that the presence of a Coulomb field in

the final state is also not essential. We can think, for ex-
ample, about a negative ion in a cavity. In this case the final
state belongs to the discrete spectrum, but only a short-range
interaction of the active electron with the atom is present. In
this case the reference function is a plane wave labeled with
the constants of free motion.

In the case when the core possesses some additional de-
grees of freedom, the functionCC,u f ,f f

may be entangled
with them.
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