3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

10-2000

Semiclassical Theory of Weighted Spectra for Regular Systems:
Absorption Spectra and Decay Rates

M. W. Beims
William & Mary

V. Kondratovich
William & Mary

John B. Delos
William & Mary, jbdelo@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

6‘ Part of the Physics Commons

Recommended Citation

Beims, M. W.; Kondratovich, V.; and Delos, John B., Semiclassical Theory of Weighted Spectra for Regular
Systems: Absorption Spectra and Decay Rates (2000). Physical Review A, 62(4).
https://doi.org/10.1103/PhysRevA.62.043401

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.wm.edu%2Faspubs%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

PHYSICAL REVIEW A, VOLUME 62, 043401
Semiclassical theory of weighted spectra for regular systems: Absorption spectra and decay rates

M. W. Beims? V. Kondratovich, and J. B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187
(Received 12 January 2000; revised manuscript received 17 May 2000; published 7 Septemper 2000

We derive a simple semiclassical representation to describe the large-scale structure of the spectrum of
regular systems weighted by some arbitrary funciddrExamples of weighted spectra are the width-weighted
spectrum, which represents the decay rate of an unstable system, and the oscillator-strength-weighted spec-
trum, which represents the photoabsorption rate. Semiclassical representations of such spectra involve
stationary-phase contributions, which are periodic or closed orbits, and end-point contributions, which are
loops on an extremal torus. The theory provides the link between semiquantal formulas and the closed-orbit
theory of atomic photoabsorption. It also allows calculation of an average decay rate without knowledge of the
widths of individual quantum states.

PACS numbgs): 32.80.Rm, 03.65.Sq, 32.70.Cs, 32:60D.

I. WEIGHTED SPECTRA: INTRODUCTION orbits that are closed at the atomic nucléBk (3) In sym-
metric double-well systems, the weights could be the split-
We consider a quantum system that has energy léugls ting AE; between a nearly degenerate pair of states lafjeled

and for each quantum state there is some observable quantireagh and Whelaf8] showed that the semiclassical repre-
W; . This quantity may bé;, the oscillator strength for tran- sentation involves complex orbits that tunnel through the
sition from some specified initial state to a leyell’;, the  barrier.(4) If a particle can tunnel from quasibound to free
width of thej resonanceAE;, the splitting between a pair of stategas for example in the Stark eff¢¢hen the weighw,
states labeledl due to tunneling through a barrier; o}/, could be defined either as the width of the quasibound

the lifetime of the staté. state or as the lifetimé/I"; . The width-weighted spectrum
We define the weighted spectrum as represents the decay rate of unstable systems as a function of
energy. In an earlier papg4], we asserted thdfor regular
DW(E) = dM(E) :2 W, S(E—E;). 1) system$ the corresponding representation involved a sum
dE T ! over irreducible loops on the “extremal torus.” That formula

_ _ _ ~will be derived in this paper.
Each state with energiz=E; is weighted by the quantity =~ Recently Bogomolny and Roubef] and Saraga and

W, . The integrated weight)(E) is defined as Monteiro [6] have used a width-weighted spectrum in an
e important application. In a “resonant tunneling diode,” elec-
W(E)=f DW(E')dE' = 2 W 2) trons.tunnel through a pote_ntial barr?er, move qua;ic!assi-
—w {i|Ej<E} cally in the presence of applied electric and magnetic fields,

_ _ _ _ _ and then tunnel through a second barrier to escape. The mea-
The purpose of this paper is to find semiclassical representgured current as a function of applied fields shows fluctua-

tions of the spectrunil) or (2) for regular systems. tions, some but not all of which seem to be correlated with
~ What is the meaning of such weighted spectra, and whaeriodic orbits. Theoretical considerations show that the cur-
is the use of semiclassical approximations to théin?f all  rent is proportional to tunneling matrix elements averaged

the weights are set to unityy;=1, then Eq.(1) represents over a range of quantum states. Therefore the measured cur-
the density of states. Gutzwill¢d] showed that the semi- rent is related to a kind of width-weighted spectrum. Theory
classical approximation for the density of states involves d5] and calculation§6] indicate that in this case the semi-
sum over classical periodic orbitBO’s) of the system. Short  classical representation involves a sum over nonperiodic
classical orbits are connected with the large-scale structure @omplex orbits called saddle orbits.
the density of states, while longer orbits give higher resolu- |n all the above cases, the semiclassical approximation
tion detail. Thus the semiclassical approximation gives a wayjives simple representations of averaged properties, large-
to obtain the density of states averaged over an energy intéscale structure, or short-time behavior of the system. For
val without examining individual state€2) The weightsW;  example, a semiclassical representation of a width-weighted
could be set tofj('), the oscillator strength for a transition spectrum may give the average decay rate of an unstable
from some selected initial stateto statej. Then Eqg.(1)  system over a range of energies, even if individual energies
represents the oscillator-strength density. For transitions beand widths are not known. In a few cag&s8] the orbit sum
tween well-localized initial states and large Rydberg statesgcan be extended far enough that properties of individual
the semiclassical representation involves a sum over classicqiantum states can also be calculated; this is the case in the
present paper.
We consider in this paper only “regular” systems, in

*Present address: Universidade Federal do Parana, Departamentbich classical orbits form tori and in which quantum states

de Fisica, Caixa Postal 19081, 81531-990 Curitiba - PR, Brazil. can be accurately calculated by quantization of action vari-
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ables. For such systems, Berry and Tabdrshowed howto W, ..< is the physical quantity that we want to study.
connect the Einstein-Brillouin-KelleEBK) quantization W,ange is @ function that picks out the observed or the rel-
scheme with the Gutzwiller periodic orbit sum. They repre-evant part of the spectrum; this can be a step function which
sented the density of states as a certain sum of integrals ovgy equal to one iE,<E<E,, and zero otherwise. Alterna-
action variables, and they showed that each stationary-phag@ely it might be a smoother cutoff function that has the
point of one of these integrals corresponds to a rational torugffect of restricting the energy to some physically relevant
(a family of periodic orbits End-point contributions to these range. When we Study Width-weighted spectra, we may
integrals also entered the theory; in their case these enghoosew,,,qe o that it selects only narrow “below barrier”
points represented isolated stable periodic ort@spoints  resonances, and eliminates broad “above-barrier” reso-
on a surface of section nances. Restriction to a finite range also helps to avoid ques-
Our analysis is similar to theirs. We find that for the tions about convergence.
width-weighted spectrum, one end point provides the domi- \we write the formulas below for the case that
nant contribution and this end point is the “extremal torus.”

For the oscillator-strength density, stationary-phase approxi- W ] 1, E,<H)=<E, .
mations dominate, and these are closed orbits. range(J) = 0 otherwise, 8
Il. AN INTEGRAL REPRESENTATION remembering that other choices are also possible. Then Eq.
OF A REGULAR WEIGHTED SPECTRUM (2) is replaced by
A. Regular spectrum
WE)= 2 W, ©)

A quantum system has a regular spectrum if the classical {n|E,<E<Ey}
motion is bounded and integrable: the particles are restricted
to a finite region of configuration space, there exist as manyNow we applyWW(E) to regular systems by using relati)
isolating integrals of motion as the number of degrees oin Eq. (9)
freedom, the system has a full set of action variahles
=(J1,J5, ... Jg) (whered is the number of degrees of free- _ _
dom), and it is possible to write the classical Hamiltonian as W(E)_{n|Ea§é<Eb} WEIn=27h(n+ )], (10
a function of these action variabled,=H(J). In the semi-
classical approximation, these action variables are quantizeshd transform into an integral representation over the action

according to the EBK condition variables
Jy=27h(n+ pm), 3
¥ (n+p) 3 W(E):f dJ W(J)Y, s[I—2a7h(n+ )],
where theith componentu; of the vectoru is 1/4 of the Fa<F<Fo "
Maslov index for a cycle of the corresponding coordinate. 1 J
The labelj for each quantum state is equivalent to this col- = WJ dIW(I) > 5[ﬂ—(n+ M|
E,<E<E, n ™

lection of quantum numbers
(11
j=n=(ny,Ny, ... Ny, (4) _ _ _

The restricted sum in Eq10) has been made into an unre-
and the discrete energy levels are values of the Hamiltoniastricted sum in Eq(11); the cutoff functionW,,,4(E) now
H(J) evaluated at the quantized actions, carries the restrictions. This allows us to use the Poisson sum

formula as i 7] for the sum over thé functions in Eq(11).

E;=E,=H(J,)=H[27A(n+ m)], (5)
C. Using the Poisson sum formula

so that the energy levels are discrete values of a continuous
function. We assume that the weightg are also discrete
values of a continuous function of the action variables

Let g(n) be discrete values of a continuous functgy(x),
and letG(s) be the Fourier transform aj(x),

W, =W, =W(3) = W[ 2 (n+ ). ©) 6(9- | e*gioax 12

B. Restricting the weights to some portion of the spectrum The Poisson sum formula asserts that the sug(gf evalu-

Experimental data are usually restricted to a finite rang@mad on the integers is the sum ofG(s) evaluated on the

of the energy, and therefore we want to restrict the WeightewtegerSM’ Le.,

spectrum to the same portion of the spectrum. This can be

introduced here by letting the weight function be the product E g(n)zz G(M). (13
of two factors, n M

W(J) =W,angd ) Wphysicd J)- (7)  We use this to evaluate/(E) by setting

043401-2
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J points and the boundaries of tfedomain. Contributions of
9(X)=4| 57— m—X], (14 stationary phase points will be discussed in Sec. IV, while
contributions of end points will be discussed in Sec. lll.

from which
Ill. WIDTH-WEIGHTED SPECTRUM
G(M)=e*m M [V =4, (15 In this section we show in detail the derivation and results
. . . for the width-weighted spectrum in the Stark problem de-
By using these relations, E¢L1) can be written as fined in a previous worl{4]. Additional results for the
1 below-barrier case are also shown.
WE)= =3 2, 672””""”‘[ dJ W(J)elM It Consider a system having a particle bound in a potential
(27h)" W well, and separated from free motion by a potential-energy

(16 barrier. Because of tunneling, the states of the particle in the
) - o well are quasibound, with complex energigs-E;—il';/2,
The sum oveM includes all positive and negative integers, wherer'; is the width, which is related to the decay time of

including zero. the state byr;=#/T"; . By choosing the weight function to be
W;=TI;, the weighted spectrunfl) is now the “width-
D. Curvilinear coordinates in action space weighted spectrum” given bj4]

In the next stefagain following[7]) we assume that over
the relevant range we can define curvilinear coordinates in DT(E)=2, I'|8(E-E)). (19
action space such th&i(J) is one coordinate. All the other '
(d—1) coordinates are denotegf(J). For systems with a Each quasibound state with real eneiy E; is weighted
regular spectrum, all the coordinatB§J) can be associated by the widthl’;.
with the conserved quantities of the integrable system. We As an example, we consider in this paper the case of an
also take@ to be dimensionless, but otherwise we leave itelectron subjected simultaneously to a Coulomb and an elec-

unspecified for now. Transforming to curvilinear coordi- tric field (the Stark problem In this case, the electron is
nates, Eq(16) becomes bound to the nucleus by the Coulomb potential, but the ex-
ternal electric field creates a potential barrier through which

1 oM. the electron can escape by tunneling.
W(E)= (277—ﬁ)d% € ”f dEdB W(E,B) We start in this section by giving some information about
the classical motion and quantum spectrum in this system.
70 [ S, This will be done in Sec. Il A. In Sec. Il B we give the
X HE.B) eM-IEVE, (17 quantization condition which includes tunneling effects and
' we give the formula to calculate the widths. Some numerical

results for the “semiquantal” width-weighted spectrum are
also shown. Finally, in the last part of this secti¢®ec.
Il C), the semiclassical formulas for the width-weighted

1 ‘ spectrum are derived and compared numerically with the
DWE)= ———3>, e‘ZW'M'”j dB W(E,B) semiquantal results.

(2mh)™W The final result of this section is: the Fourier-transform

a(J) of the scal_ed width-weighted spectrum has peaks at actions
— | eMIEE (18) coresponding to loops on the “external torus,” the last torus
Jd(E,B) before escape over the barrier; the heights of these peaks are

) i ) related to canonical periods of motion, including the imagi-
where 9(J)/d(E,B) is the Jacobian of transformation be- nary “period” of underbarrier motion.

tween the action variables and the conserved quantities. The
formula (18) is a general expression for the spectriiy A. The hydrogen atom in an electric field
weighted by some observable quantity. Note thatin Eq.  The Hamiltonian of the hydrogen atom in an electric field
(18), the weightW(E, B) appears as a continuous function of js (using atomic unitdi=1, e=1, m,=1)
E and B and not as the discrete functiom; .
The termM =0 in Eqg. (18) represents the approximation
of replacing the sum in Eq.l) by an integral, and can be
treated as a “background,” slowly varying in energy. The where
termsM # 0 give oscillatory corrections to this background.
This will be shown later in more detail for the example con- 1
sidered in this paper. Wp.2)=————,TFz (21
The method used to calculate the integral ogein Eq. (p™+7)
(18) depends upon the specific physical situation to be cong js the strength of the applied electric field ads the total
sidered and upon the relevant weight functMf{E, ). In  energy. For simplicity, we consider the cylindrically sym-
general, however, the integral is rapidly oscillatory for smallmetric statesl.,=m# =0. The scaled version of the Hamil-
fi, and the main contributions come from stationary phaseonian (20) is given by

and finally, Eq.(1) expressed as a function of the action
variables is given by

X

p2
H="+Wp2)=E, (20)

043401-3
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Vu

FIG. 1. Effective potential energy of the HamiltoniaHg and
H, from Eq.(23) (arbitrary unit3. (1+ B) and (1- 8) are, respec-
tively, the effective energies in theandv motions. The points
andv, represent the turning points for the underbarrier motion.

p? 1 -
2 — &

H= (7)2+~22)1/2+Z_

(22

where we used the scaled variables=F Y4 gq=w?q,
p=wp, and the scaled energy=E/F'2 The classical be-

havior of the system depends only on one parameter, the

scaled energy.
The Stark Hamiltoniari22) is separable in semiparabolic

coordinates (= \r +z, v=1/r—2), and the corresponding
effective Hamiltonians are

H,=p22—su?+u*/2=(1+p),

(23
H,=pZ/2—ev?—v*2=(1-B),

where B is the separation constant, which is related to th
angle of ejection of the electron from the atom By cosé,
where 6 is defined relative to the-z axis. This separation

constant can be identified as taeomponent of the gener-
alized Runge-Lenz vector in the presence of an electric fiel

[9].
From the form of Eq.(23), we see that we can define
“effective potential energies”

V,y(u)=—eu?+u?2,

(24)
V,(v)=—ev?-0v%2,

and that the right-hand sidehs) (1+ 8) can be regarded as
an “effective energy” associated with or v motion. These
guantities are shown in Fig. 1. B=—1, the effective en-
ergy in thev motion is 2 and in thar motion is 0. This
means that all the motion is in the coordinate, or in the
“downhill” direction (i.e., in the —z direction. For g=1
exactly the opposite occurs: the motion is totally in the
coordinate, or the “uphill” directionthe + z direction. For
values of 3 between—1 and+1, there is motion in both
andv coordinates.

There is a saddle point in the real potential eneiy,z)
at the energ)e = — 2F 2 (¢=—2), andbelowthis energy,
classical motion in theu,v) coordinates is bound. However,
because there is an effectivdynamica) barrier in thev
motion which allows the possibility of tunnelingee Fig. 1,

PHYSICAL REVIEW A62 043401

Electric field axis

/

/

FIG. 2. Electron orbits in thep plane superimposed on a slice
of the potential-energy landscap&z,p) for —2.05<V=<-1.8.
The size of of the figure is 22 in the scaled units. The regions
with V< —2.05 are unshaded; the region wih>—1.8 has a uni-
formly light shade. The level contours are provided in steps of
0.0025. The orbit launched at the critical anglg approaches an
unstable periodic orbit above the potential saddield line). All
orbits having this limit lie on the extremal torus. For ejection angles
less than the critical anglé, the orbit remains bounéthin line).

For larger ejection angles it goes over the effective barrier and

eescapesﬁdashed ling

the quantum spectrum is quasidiscrete, with states of long
jffetime and quite sharply defined energy. High-Rydberg
tates of the pure Coulomb field are split into regular Stark
manifolds.

For energiesabovethe saddle but below the zero-field
ionization threshold, i.e., for 2<e <0, theu motion is still
bound but the classical motion may be bound or free,
depending on the value @. The critical 8. which separates
bound from unbound motion ig.=cosf.=(1—%2). For
B=B. the effective energy (% B8.) of H, is located exactly
at the top of the effective barrier shown in Fig. 1. There is an
unstable PO, for whiclr sits on top of the barrier while
oscillates, and there are orbits approaching or receding from
this PO. For these, the corresponding periodvirmotion
diverges. Figure 2 shows examples of trajectories that start
with different ejection angles. Trajectories are shown in the

(p,2) space fore = — 1.85. The thin solid line shows a bound
trajectory with ejection angle less than the critical angle
while the dashed line shows an escaping trajectory with an
angle larger therd.. The bold line is the trajectory with an
ejection angle equal to the critical angle, and it approaches
the unstable PO, which lies on a segment of a parabola
=const. This orbit hangs near the top of théarrier and it

lies on what we call here an “extremal torus” or “last sur-
viving torus,” just before the trajectories escape over the

043401-4
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barrier.This torus is the set of all such orbits with any rela- 0.20 ' ' '
tive phase between themotion and they motion.

The coexistence of bound and unbound classical motior
for —2<e<0 is manifested in the quantum system in the
following way: in this range ofe the absorption spectrum
consists of quasidiscrete levels superposed on a smoothle o0.00
rising continuum. The higher-energwphill) quasidiscrete
levels of each manifold survive, while the lower-energy
(downhill) levels in each manifold are broadened into the -0.10
smooth continuunf10].

-0.20 : : :
, - -1. 0.0
B. “Semiquantal” results K/(2m)

For regular systems, the EBK quantization of action vari- . . . -

ables (3) gcan bg used to find thg discrete energies. If we FIG. 3. Parabolic-barrier correctiahvs K/(27) (atomic units.
. . .' § is never greater than 0.15.

neglect tunneling through the potential-energy barrier, then
guantization of action variables with fixed field strendth !
leads to a discrete real set of eigenvalugg,3,); the cor- 3u(81B)=J p,du=2 f 0\/2(1+/3)+28u2—u4du,
responding trajectories are called “eigentrajectories” or osc 0
“eigentori,” labeled by quantum numbers=(n,,n,) [11].
(Eigentrajectories are not to be confused with classical peri- ~ f f vo 2

: . J.(e,B)= dv=2 2(1—B)+2ev-+v°du,
odic or closed orbit$. _ _ o(8.8) Oscp” 0 V2(1-8)

When we also take into account tunneling through the (27)
barrier, the quantization conditions become complex. To cal- . o _
culate the width of a quasibound stdtg, or the associated andK is the action integralsee also Fig. 1
tunneling ratd”, /%, we fix the electric field= and allow the .
energyE and separation constagtto become complex. K=2 f 1|pv|dv (28)

In the present case it is convenient to consider a scaled vo
spectrum. Neglecting tunneling, we fix the scaled energy . . ) o .
—Ew?, and find quantized values of, and B,. Let us for a “full cycle” of underbarrier motion in thev coordi-

define the scaled width-weighted spectrum by setting a valyBate. If the energies _of the tunnel_ing s_tates are n_ot too close
of &, calculating such a set of,'s, and then weighting them t© the top of the barrier, then the imaginary term in E2f)

by the energy-width as follows: can be replaced by

~ i i
L'y —=In(1+e )~— e K,
(=20 S(w—w,), (25 2 2

DI=2> I'hd(E-Ep)=2

We used this approximation in our calculations. The expres-
Wherefnanw3 [12]. sion (26), which is uniform near the barrier top, can be

We use semiclassical approximations to determipand ~ (réated in a similar waysee Appendix A
T, but, since the focus of this calculation is on the indi- 1he quantum numbersn,=0,12... and n,
vidual quantum states, we call the results of this sectioi-0:1,2 - - - in EQ.(26) are integers which define the para-
“semiquantal” results. In this way we distinguish these re-Polic states and
1 K] K (|K|) K
stig—|—5=log| 5— |+ 5— (29

sults from the “semiclassical” results in Sec. IlIC. Those
2 2m| 2 2 2’

results focus on short trajectories and on the average proper- s=argl’
ties of the spectrum.
fregduoarztl\zfvaeurcem;isggItlk?ynscfr?irl (ﬂalgﬁlstve;/rg r&z\\l/lggaogigaer%ﬁz OifS the parabolic-barrier correction. This correction is often
. : . . .~ small, and in most cases it does not significantly affect the
system with two degrees of freedom, with tunneling possmleei envalues. A araph o8 vs K/2x is shown in Fia. 3. We
in only one coordinate, so the quantization conditions for the 9 es. A grap " 1FIg. 2.
scaled spectrum are See th:_:\tﬁ is never grea}ter_ than abOl_Jt 0.15. Since in )
it is being combined with integers, times 2, we conclude
~ that it affects the location of eigenvalues by at most
Ju(e,B;w)=wJy(e,B)=2m(n,+ 3), 0.15/2r—2.4% of their spacing. This is large compared to
(26)  their width, but small compared to their spacing, &xan
5 i often be neglected in these calculatiof@n the other hand,
J,(e,B8;w)=wJ,(g,8)=2m(n,+ 3)— Eln(1+e*K)— S. we will see that it cannot at all be neglected in the semiclas-
sical formulas given in the following sectign.
To calculatew,,’s, we pick a value ok, and throw away

Herel, ,jv are the scaled actions the imaginary term {i/2)exp(K) in Eq. (26). To calculate

043401-5
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the energy widths, we see that if they are not too large, they
can be determined from ER6) by the formula

0.010

PHYSICAL REVIEW A62 043401

(0.6)

(0,14)

8,
B
ga(ju vjv)

e B)

ad,
B
T 93,90 ¢
A(E.B)

_K:

Iy

where d(J,,J,)/d(E,B) is the Jacobian of the transforma-
tion from action variablesJ,,J,) to the conserved quanti-

ties (E,B). In a one-dimensional system, the corresponding

formula forT" is the vibrational frequency times an exponen-

tial factor. Our system is separable, and tunneling is only in

the v coordinate, but it is not equivalent to a one-
dimensional system. The tunneling terms make lio#nd 8
complex in such a way thak, stays real. Therefore the pre-
exponential factor in Eq30) involves bothJ, andJ, .

Finally, in this calculation, we include all resonances
which lie below the effective barrier in thecoordinate; thus

we include all quasidiscrete states, but we do not include
above-barrier resonances, which may be so broad that the
might better be regarded as background continuum. Our jus

tification for omitting above-barrier resonances is that in Eq

(7) we can apply weights to the states in any way we choose, FIG- 4. Semiquantal result ¢& Inl", and(b) I', /e”
and we choose to give above-barrier resonances zero weig

(we want a measure of tunneling rates

1. Below saddle

First we look at a spectrum far=—2.1. This is below
the saddle in the real potential energyp,z), so all states
are quasidiscrete. A width-weighted spectrum is shown i
Fig. 4@. Each point of this figure marks the width lbg
plotted against its quantized,. For example at principal
guantum numben=n,+n,+1=7, we see states with,v
quantum numbers fromn(,=6, n,=0) (the most “uphill”
and longest-lived state of the group (n,=0, n,=6) (the
most “downhill” and shortest-lived staje The other states
labeled in Fig. 4a) are for n=15. Each state also has a
quantized value of3,; those states with the largest width
(i.e., largern,), have B, closer to—1. As we expected,
when 3, is closer to— 1, there is more motion, and there-
fore the probability of tunneling is largésee the discussion

near Fig. 1. Such states are the most important in a width-

weighted spectrurh14].
If we try to plotT', from Eq.(30) itself as a function ofv,

0.000
©0.14)

-100 -

In(T")

-200

-300 . !
10 20 40

WK ys w for

scaled energy= —2.1 (atomic unit$. The parabolic quantum
numbers ,,n,) are labeled for the most downhill (0,6), (0,14)
and in(b) for the most uphill(6,0), (14,0 states for the principal
guantum numbers=7 andn=15. We see that the peaks(in) are
located at the position of the most downhill states.

be bound or free, and we examine only quasidiscrete states

rbelow the top of the effective potential-energy barfiEig.

1). Figure %a) shows an example of a scaled quasidiscrete
spectrum for a scaled energy € —1.5) well above the
saddle(at this scaled energg.= —0.125, 6.=97 degrees
Again each point of this figure marks the width [Bgplotted
against its quantizewv,. Again some Stark manifolds are
marked. Now the most downhill states do not haye=0
andn,=n—1—their corresponding orbits go right over the
effective barrier. Instead we have for exampte, €3, n,
=5) or (n,=8, n,=13) as the most downhill states of the
n=9 or n=22 manifolds, respectively.

In Fig. 5(b), T,, is plotted as a function ofv and we see

that in this case the result looks like a quasiperiodic sequence
of widths vsw.

we will see something which decays with an overall factor

exd —wK], whereK =K/w is the scaled action of underbar-
rier motion. In Fig. 4b) we extracted this overall factor and
plotted T',,/exf —wK]. The result looks like a periodic se-
quence of widths vsv, and by comparing with Fig.(4), we

C. Semiclassical results

As stated earlier, we call the above results “semiquan-
tal.” Let us now obtain a “semiclassical” formula starting

with the biggest widths, i.en,=0.

2. Above saddle

Stark problem. Hered=2, the vectoM is a two-component
vector, M=(M,,M,) and the Maslov vector isu
=(1/2, 1/2), because the motion in each coordinate has a

Now let us examine a case with energy above the saddI®laslov index of 2. The semiclassical expression for the

of V(p,z). As explained earlier, the classicalmotion can

width-weighted spectrum is then given from E8) by

043401-6
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0.2 1
o) R(e.B)=R+57c(e)[B=Bcle)], (320
(3,5) (6,10) (9,15) i ~ ~
with Jy or v=Ju or »(€,Bc(€)), and
FSERRE ®13) 1 R ady - oK
2 =2—, =2—,
TU aB TK c?ﬁ
(57)| 69| 711 (33)
X . a3, + slw)
| | AL
0.0 | ! | | . | B
@3.5) 8,13) (a) All quantities here must be evaluated @t B.(¢). These
°r . Y e quantities are called “canonical periods.” Evaluation of
2 % % %% A AT AN the integral in Eq(31) then gives
_ R A A \ o
g R AR DI=e K 3 Dy e"MdrMd) (34
-100 - A A S My .M, ure
80) Tt el ! % e %
where
eor . ° el R
-200 ‘ ‘ ' D —1 (2)r e, (35
10 20 30 40 50 MM~ 2.2~ . ~ ~
w ! 4m [TK_I(MUTU_MUTU)]
FIG. 5. Semiquantal result g&) InT,, and (b) T, vs w for the Equation(34) is a double Fourier sum of terms that oscil-

scaled energy = — 1.5 (atomic unit3. The parabolic quantum num- |ate as a function ofwv with angular frequenciesMJ,

bers f,,n,) are Iabgled in@) for the most downh|ll(§,5), (813 + valv). These are action integrals f, cycles ofu mo-

and for the most uphil(8,0), (21,0 states for the principal quantum . d I f . . h S |

numbers1=9 andn=22. Some quantum numbens,(,n,) are also tion an M, cycies ol ”.‘0“0”’ l.e., they are action integrals

shown in(b), and it is clear to see that large widths correspond toaSSOCI_ated with lrredUCIbIe_ .IOOpS of t.he extremal torus, the

the most downhill states. one with 8= B.(e). All positive, negative, and zero values
of M, andM, are included in the sum.

1
DI(E)= 21 ; 2 (_1)(Mu+Mu)f dBT(E,B) 1. Below saddle
(2m)" miw, Bele) In this section we will discuss the results from E&4)
9(3,.,3,)| for scaled energy <—2. In this case, the end poiit;(&)
xm e'IMuu(EB)+M, 3, (E.B)] (3)  =-1, so the effective energy iH, is zero and there is no
' motion in theu coordinate, i.e.J,=0. Here the extremal
o . torus degenerates to the downhill periodic orbit lying on the
Herel'(E, B) is given by the same expressionlgsfrom EQ. , 4yis (or the negative axis). In this case the sum ovad,
(30), but it is considered as a continuous functiole@ndB. a5 pe evaluated using

The lower limit of integrationB.(e) is B.(¢)=—1 for &

<—2 (below saddlg or B.(e)=1—¢e? for —2<e<0 (—)Mu 1

(above saddle > M7 sinx’ (36)
The widths are greatest for the “downhill” states, having Mu !

B close toB.(g). As B increases, the underbarrier action

integral (28) increases, and the exponential factor

exd —K(EQ)] in T'(E,B) [Eq. (30)] decreases rapidly. _ Aln A s

Therefore, for a width-weighted spectrum, we expect that the x=(aM, 7 Iry=imrc/ 7). (37

mqin contribution to.the integral oveB comes from the Equation(34) is then given by

vicinity of the end pointB.(¢).
Let us therefore expand

where

Dr=e "k D,, e"Mody, (39)
M v

v

~ .~ 1.
Ju(e,B)=du+ 57u(e)[ B~ Bele)], (323

where

- s . 1. o -1 ()M
‘]U(s’ﬁ)_v—v:‘]v_ETU(SYW)[B_BC(S):L (32b) Mv_477Sin(ﬂ-Mv}v/}u_iﬂ.;K/;U)'

(39
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0.010 . . . ~
. semiquantal results is that in the quantum restitsand the
s ©8)  Semiquantal o ©.19 © spacing between adjacemt,’s increase slightly asv de-
. creases, while the semiclassical form(88) is perfectly pe-
2 0,005 | A riodic in w.
E= In this case our approximations leading to E8g) give
an accurate representation of the width-weighted spectrum
0.000 by describing the periodic family of “downhill states’n(,
Semiclassical (b) =0, n,=n—1) [15]. (The decay rates of the “next-to-
06 1 1 downhill” states are much less than those of the downhill
04 L | states. However, the connection between H8) and the
5 guantized downhill states is not obvious. Equat{@8) in-
02y volves only the properties of the downhill periodic orbit,
0.0 1 Tt 1 which has nou motion whatever; in contrast the quantized
02 downhill states have zero-point energy in tlhenotion and
Semiclassical @) therefore somewhat less energy in thmotion than does the
downhill PO. Nevertheless, E(38) gives an accurate repre-
sentation. In fact, Eq(38) can be resummed into a set &f
5 functions having the right widths and in the right locations.
Details are in Appendix B.
Now let us consider the ‘“recurrence spectrum of the
‘ ‘ ‘ width-weighted spectrum” by taking the Fourier transform,
10 20 30 40 50
) 2__zinsu DT(W)
FIG. 6. Comparison between semiclassi@land(b) and semi- Rr(S)= fw g~ WK dw (40
guantal(c) results for the width-weighted spectrum at scaled energy !
&= —2.1(atomic unit3. In the semiquantal result, some widths are —iD
labeled by the quantum numbers,(n,). The straight line in@) is _ M,
the background for E(34) (i.e., M,=0). The solid line with few - M, (Mvjv— 27S)
oscillations is the result from Ed34) taking the sum untilM,| A A
=1, and the dotted line is the result of the summation upMg| X (ein[MvJv*ZWS] — gWilMyJd, =278]y (41)

=5. (b) is the result for maxM,|=80.
Observe that for the Fourier transform we extracted from Eq.
Equation(39) is the final result for the semiclassical expres- (39) the smooth factor efp-wK]. We expect to find peaks

sion of the _W|dth—we|ghted spectrurf) fqr_ the below- (I]ocated close to values of scaled actigp =Mvjvl(27r).
barrier case in the Stark problem. All quantities are evaluate - My
At these values the Fourier transform is

at B=—1. The result is a single Fourier series with expo-

nentials that oscillate at multiples ofnzju , and with com-

. wi+w, |2
plex amplitudesD, which depend on the “canonical peri- |Rp(S=M,J,/2m)[*=4|Dy, |?

} . (42

ods” 7,,7,,7¢ in Eq. (33). Often in the below-saddle case,
the quantum correctiod is negligible.

Figure 8a) shows the convergence of this sum fer 1 o
=-2.1. In this figure we extracted the overall factor D 7= e 27/ ™, (43

exp[—wk]. The straight line is the result fav,=0. The am

sine wave is the result of taking two more terms in the sunwhich is independent oM, . This is what we see in Figs.

(i.e.,[M,|=1) and the dotted line is the result of summation7(a) and 7b), where the absolute squares of the Fourier

up to|M,|=5. The height of the peaks increases by takingtransforms for the semiclassical and semiquantal formulas

more and more terms, because the Fourier s€8®&s"con- are plotted as a function of the varialfie The range ofw

verges” to ¢ functions. They go to infinity, but their inte- used for the Fourier transform is from; =10 to w,=>50.

grated areas are proportionaﬁq_ In the truncated sum, the For this scaled energy, the value of the scaled action calcu-

breadths of the peaks in Figs(b§ and Gc) are all nearly lated atB=—1 is 3,,/(277):0.560 59.

equal, so the heights are also proportional to Equation (43) was calculated using the approximation
Figures 6b) and Gc) compare the semiclassical numeri- given in Appendix A for the denominator ddy of Eg.

cal results from Eq(38) (with |[M,|™®*=80) with the semi-  (39).

quantal results from Eq30). The positions of the maxima The physical meaning of the exponential factor in Eqg.

for a given statew, are in perfect agreement and also the(43) is the following. We note that all of the equations in this

overall behavior of the peaks is the same. Of course theection[Egs. (37)—(43)] involve properties of the downbhill

Fourier sum(38) gives the expected Gibbs’ phenomenon.orbit (for energies below the saddle, each quantity with a

Otherwise the only discrepancy between semiclassical anchret is evaluated g&= —1). However, the quantized reso-

where
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0.03 T T T 0.34
Semiquantal C
Semiquantal (@ (©
(3.5) (6,10) 9,15 (11,18) (14,23)
2l
0.02 - b = 017 | E
gﬂ
o —
%)
¢ | L
— 0.01 | | 0.0 ) | 1 | L | | L ] 1 |
90 Semiclassical (b) b
L ! o ]
0.00

8
30 + .
Semiclassical (b) A J N J A T l
0 +r * 4 + 4 t 1 T 1
0.02 - ] 30
o 45 L Semiclassical (a) _
12
[
o =
0.01 | (=)
0'ooo.o 1.0 2.0 3.0 40 10 20 30 40 50 60 0
S w
FIG. 7. Comparison betweefa) semiclassical andb) semi- FIG. 8. Comparison between semiclassi¢al and (b), and

quantal results for the absolute square of the Fourier transform jgemiduantalc) results for the width-weighted spectrum at scaled
atomic units at the scaled energy —2.1. Peaks in the semiclas- energye = — 1.5 (atomic unit3.The straight line ina) is the result

sical result are located at scaled actid®g and the highs are from Eq.(34) for MU:MU:Q' The solid Iing with few oscillations
roportional to|Dy, |2 which is independentvdfll is the result from Eq(34) taking the sum untijM,|=|M,|=1, and
P M, v the dotted line is the result from the summation upll,|=|M,|

nances have slightly different values gf—there must be at =5 (b) is the result fofM|™**=300|M,|™**=200. In the semi-
least the zero-point motion in thecoordinate. Therefore the 9guantal result, some widths are labeled by the quantum numbers
decay rate must be governed by the tunneling integraiMu:n.)-
K(e,B) evaluated at the quantizeg},, not at3=—1. We
show in Appendix B that the exponential factor in B43) is  Eq. (33), the divergence of the derivative df(e,B3) is can-
the correction that is needed to adjuétin Eq. (40) to  celed by a corresponding divergence in the derivative,of
K(e,Bn). so 7, is finite.
In Fig. 8c) is shown the semiquantal width-weighted
spectrum fore=—1.5 together with the semiclassical re-
The semiclassical formula for the scaled width-weightedsults, again displaying the convergence properties. The
spectrum for the above barrier case is also given by(&4.  straight line in Fig. &) is the “smooth background,” i.e.,
However, the quantities are now calculated at the end pointhe result forM,=M,=0. The solid line with few oscilla-
B, and the formula involves properties of the “extremal tions is the result of taking eight more terms in the sive,
torus,” or “last surviving torus” at each scaled energy. As up to|M,/=|M,|=1) and the dotted line is for summation
explained earlier, the motion is qscillatory in if B up to [M,|=|M,|=5. Figure 8b) shows the sum up to
>B(e). When B=pB.(¢g), the v motion ascends the dy- IM,|ma*=80, |M,|™*=60. The positions of the maxima

namical barrier and hangs at the top whil@scillates peri-  re i good agreement with the semiquantal result, and also
odically, and we call the associated torus the extremal torusne gverall behavior of the peaks is the same.

Foéﬁ<ﬁc(8%é the |Ioarti'g|e %’Zolezs ogerlthe ctlyr;ar(ni;:az bz;rrier For the recurrence spectrum we expect to find peaks lo-
and escapessee also Fig. or B close toB.(e) (— . B N
=<e=<0), the parabolic phase correctiah cannot be ne- catedA at values_ of scaled aCtlorSMu'Mu__(M“‘]“
glected. Classically, if the electron stops at the top of thet M,J,)/(27). In Figs. 9a) and 9b), the (normalized ab-
barrier, the corresponding period goes to infinity. ThereforeSolute square of the Fourier transform is plotted as a function
derivatives ofi, (¢, 8) diverge as8— B.(s). In the quantum of the varl_abIeS For this scaled energy, the value of the
case, however, the uncertainty principle prevents such locafc@led actions of the extremal torus dg/(2m)=0.237 96
ization of the particle, and the period for reflectitor time  andJ, /(27)=0.389 85. The range of used for the Fourier
delay for transmissionat the top of the barrier is finite. transform is fromw;=10 tow,=120. The needles under the
Including & in peaks correspond to the values of

2. Above saddle
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6.0 IV. OSCILLATOR-STRENGTH DENSITY

Semiquantal (b) Now let us turn to a more familiar weighted spectrum—
the oscillator-strength density. We will show that a
40 - 1 stationary-phase approximation applied to the general ex-
pression(18) leads to the formulas of closed-orbit thed#y.

The observable quantity—the oscillator strength for the
transition from a given initial staté to a final staten—is
20 ¢ ] defined as

IRL(S)*

fl,=2(E,—E)Ki|D|ny|?, (45)

0.0 whereD is the relevant component of the dipole operator;
on o 12 (a) then according to Eq(1) the oscillator-strength density
\ Semiclassical 11 \ Df(E) is

02
40 | .

412 "°I 2 o DF(E)=3 f.5(E—E,). (46)
n

22
213 -1/3

IR{(S)I®

§ For a regular systertsuch as a hydrogen atom in an ex-
ternal electric fielgl the semiclassical approximation gives
the following expression fof |, :

J(E.B)

10 fl=4(2m)9" Y(E,~E) ’ly,,mn)lz. (47)

a(J)
FIG. 9. Comparison betweefa) semiclassical andb) semi- .
guantal results for the absolute square of the Fourier transfiorm The function
atomic unit$ at the scaled energy= —1.5. Peaks in the semiclas- (O
sical result are located at scaled acti®g , and they are la- 2_ 2 2
u My | Vp(Q)] |J(Q)] (48)
belled by the relation NI, /M ). The needles under these peaks a(P)
correspond to the values {Dy u [ ) ) S
is proportional to the angular distribution of the electrons
~y ejected from the atom
|DMU,M |?= a2 TUA ~ 2 (44) 2 2\(( C |2
o 16n et (MyTy— M, 7,)7] | J(Q)|*=(1/8m )|<||D|‘I’n(ﬁ)>| , (49

In this case the relative heights of the peaks in the Fourieqrg is a zero-energy scattering wave functimrmalized to
transform depend of course on the valuedvbf/M, . Here,  the § function of energywith a given value of the integrals
the importance of the parabolic correctionis manifested,  of motion g.
because without it7, would be infinite. These formulas were explained and derived in Refs.
Each peak in the Fourier transfofrsee Fig. 8a)] can be  [10,11. They involve the assumption already stated that the
indentified with a given loop on the extremal torus, havingtrajectories are regular and bounded, and form tori labeled by
M, u cycles andVl, v cycles. In general these loops do not action variables) or conserved quantitie( ).
correspond to closed orbits or to periodic orbits. For ex- The formulas involve an additional assumption. Near the
ample, we see a large 1/1 peak, but the frequencies af the nucleus the trajectories associated with the semiclassical ap-
and v motions are never equal, and no (1/1) periodic orproximation for the excited state are similar to those for
closed orbit exists. In addition, we can observe peaks witlzero-energy Coulomb scattering. For each torus, there is a
negative cycle numbers, such &8,/M,=—1/2. These central trajectory that comes on a straight line exactly to the
could be regarded as the contribution of paths on the torusucleus, turns around, and goes back out on itself. Nearby
integrated “backward in time” in one coordinateM(, the trajectories form parabolas symmetric about that line.
= —1), togetherwith motions integrated “forward in time” The angular variable® define the spatial orientation of the
in the other coordinateM ,=2). Clearly these loops do not straight line: in the cylindrically symmetric casd£2)
correspond to classical orbits. is co® (0 being the polar angje while in the three-
This concludes our analysis of width-weighted spectra indimensional case with no cylindrical symmetry)
the Stark system. To summarize, we have shown that ar (cosd, ¢) represents both polar and azimuthal angles. We
appropriate end point approximatid82) applied to the in- assume that there is a smooth invertible relationship between
tegral representatiofi3l) leads to a formula35) for the  thed—1 conserved quantitie8 and thed—1 angles repre-
width-weighted spectrum that involves actions and canonicasented by(). In Eq. (47) Q is evaluated af),=Q(8,), so
periods of the extremal torus. we are evaluating the angular distribution of outgoing waves
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in the direction that “feeds” the quantized eigentorus. d-dimensional Cartesian space; the vectatd/§8,)e span
On the other hand, the well-established closed-orbithe (d—1)-dimensional energy surface in action space. They
theory [2] assertgalso in the semiclassical approximation are therefore orthogonal to the frequency veaber dH/4J,
that the oscillator-strength density may be represented aswhich is the normal to the energy surface. But if the vector
sum over the contributions of orbits closed at the nucleus, M is also orthogonal to those samé—(1) vectors, it must
also be normal to the energy surface, and therefore collinear
_ ; with the vectorw. Thus if Mxw, then the frequencies are
DHE)=D1o(E)* clpsgi:or_b_its CWE)sinA(E). (0 commensurable, and the associated torus isqa rational torus,
their repetitions covered by periodic orbits with winding numbevk If in the
HereDf(E) is the same quantity as in E¢16). Df,(E)  energy range of interest such a periodic orbit exists, then the
is the “background absorption"—the oscillator-strength Mth term has a stationary phase point @& B, and the
density that would be present if the electron directly escapedtationary-phase contribution to the integral ofebecomes
from the atom and never returned,(E) is equal to the

classical action around the closed orbit, plus certain correc- 1 .
tions associated with Maslov indice€,(E) is a quantity DW=——175 > exp(—2miM- m)W(E, B)
called the recurrence amplitude. It depends on the stabitity of (2m) M)
the orbit and is also proportional to the angular distribution . N L 2
of the outgoing electronf)(6, ¢)|%. (More details can be X eXHIS(E,B) 1 (m/4)sgri"S ap;0p) ]
found in Ref.[2].) 1))

There must be a correspondence between Ex{3.and X |dei( 92 S/3B;3Bx) )| 2
(46), since they both represent the same observable quantity. I(E,B)

In order to show that, let us return to formula8) in Sec.

[I D. Now we will transform this formula under the assump- + —df dB W(E,B)|—4 E (53
tion that the weighting functiokV(E, B) is a slowly varying ‘9( B)
f ion. This i foW(E i Eq.(4
unction. This is true foMW/(E, B) given by Eq.(47), where
— d+1 _ 2 ~ -
W(E,B)=4(27)"" (E-E)) 8(‘]) |yﬁ(9)| (51) S(E,B)=M-J(E, ) (54)

In this expression, it is understood that the anglesare s the action around the periodic orbit. The symbil} in-
functions ofE and B8 as explained earlier. dicates that summation is performed only over the periodic
We will integrate oveiB, holding E fixed. The integral is  orbits. The symbol sgn denotes the difference between the
rapidly oscillatory, but it may have a stationary phase point ifnumbers of positive and negative eigenvalues of a matrix.
at some value of3 [The integral in Eq.(53) represents the background term
with M=0 where the stationary-phase approximation does
( 9J ) _ _ not apply] By this means formulas based upon quantization
M-|—] =0, k=1,...d-1. (52 X . e
P/ ¢ of action variables are connected to formulas from periodic
orbit theory.
These points correspond to periodic orbits with winding If we substituteW(E, B8) in the form(51) into the expres-
numbersM. To show this we think of action space as asion(53), we come to a closed-orbit formula

exdiS(E, B)—2miM - p+i(m/4)sgr(°S ;9B ) ]

Df(E)=4(2m) TV E-E)

M |det 9%S/3B;9B8x)| 2
><|yﬁ(§))|2+8w(E—Ei)f dB |Ve(Q)% (55)
|
If the sum in Eq.(55) contains a term with vector indeM, 1y (Q)|2
it also contains the term with the vector indexM. Group- CW(E)=8(2m)*VZE-E > £ T
ing the terms into such pairs, we come to expressEn) |de(a S/9B;9By)|
with (56b)
= B)— . - 2 .
Dfo(E)=8w(E—Ei)f ap 1V, sea  SHEITSEL AN mm(msanTSIB B,
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Thus, using Eq(51) and a stationary-phase approxima-
tion, we have arrived at an expression with the same struc-
ture as the closed-orbit formula of Du and De[@3. How-
ever, Eqg.(56b) is a new expression for the recurrence
amplitude, and Eq(560 contains a new expression for the
Maslov phases. The new expressions apply only to regular
systems, whereas those in Re] apply to regular or chaotic
systems, but in some cases, the new formulas may be easier
to compute. In Appendix E we show that E§6b) is equiva-
lent to the corresponding formula from Du and Delos when

both apply. _ _ _ _ 157 157.4 157.8
Let us consider again the hydrogen atom in an electric

Semiclassical

Absorption (arb. units)

p—
Semiquantal

field with m,=0. The z component of the Laplace-Runge- w (Hartrees)
Lenz vector can serve as the integral of mot@nit is sim- FIG. 10. Scaled Hydrogenic Stark spectrum with scaled energy
ply related with the ejection angle for the classical orbit start-;=g/,[F= — 0.4 plotted as function of scaled variabte- F ~4. F
ing at the nucleus varies around 10 V/cm, so the ener@y varies simultaneously
around £m~?! (the principal quantum number is about 1.0The
B=cosé. (57 result of semiclassical calculation using formul(&§) is drawn as

an upper part of this mirror plot. This calculation uses orbits with
Below the saddle enerdy,= _2\/E (Hartres, all orbits that ~ up to 200 oscillations along each of the parabolic coordinates. The
start at the nucleus @ 6= 7) are bounded. That means that noticeable width of the peaks is due to the truncation of the closed-
the integration ovepB in the semiclassical formulésé) is orbit sum. The lower part of the plot is semiquantal ca!culation
performed from—1 to 1. The angular distribution of ejected according to our formulagi6) and(47). The semiquantal oscillator-
electrons does not depend on the anglas the system is strength density is artificially broadened to match the width of the

axially symmetric. Moreover, in virtue of Eq57) oQ/eg ~ UPPerpart
=1 and thereforg,(6)|>=)(6)|%. " _
The closure conditiori52) takes the form DH(E)—4(E—E) S (—1)"2exfdiM ((Jy— )]
Y M7o i(My7,—Mjy7,)
33 3,
Mla—ﬁu-FMZﬁ:O or My7,=M,7,, (58) X |V(6=0)|2. (61)

The formula(36) allows summation oveM ,. We get
taking into account thatdd,/dB=r7,/2 and 9J,/dB

= —71,/2[cf. Eq.(33)]. The second derivative of action along 8(E—E))

SiMM(J,— )]
a closed orbit, which enters E¢56), may be represented in D" *f(E)= ————[)(6=0)|? > %
the following form: Tu V=1 SI(7TMy7y Tv)(62)

3°S _My7, din(ry/7,) Myt din(ry/7,) The action variabld, and the periods in this expression are
(7_32_ 2 B ) B 59 {0 be calculated g8=1.[The expression fonlf(_E) can
be obtained from Eq(62) by the interchange of indices

Taking into account the above expressions and usin?ndv and by inverting the total sign. The angular distribu-
i

o . ion |3 )12 -
scaled quantities introduced in Sec. Ill A, we transform thelion function|)(6)[* must be taken af=.]
general semiclassical expressid®) into the form These expressions describe the contributions of two stable

orbits of the system: the uphill orbit with ejection angle
1 =0 and the downhill orbit withd= . As was mentioned
Dfo(E)=87-r(E—Ei)J dg|y()|?, before, the contribution®*f(E) are often small except
-1 near a bifurcatiori16]. In this case, at some energy,/,
. becomes rationala new closed orbit appearsnd some
|V(6)|? member of the suni62) goes to infinity. From the math-
12 ematical point of view, this is the case of a coalescence of a
[My7dIn(ra/,)/0p] stationary phase point with the endpoint. The ways of han-
L (60) dling this case are well know17,16,18.
A(E)=wSE,B)—7M;—7M,— /4. The formulas(60), combined with expressions for the ac-
tions, periods, and their derivatives through elliptic integrals
A comment is necessary about the influence of the endeported earlief19] provides us with an efficient way to
points Bin=—1 and Bma=1 in the integral(18). Let us  calculate the recurrence strengii®(E)|? and the absorp-
consider the contribution of the end poipt,.,,=1 (or 6  tion spectrum itself according to E¢60). Figure 10 shows
=0). If this point is isolated from the stationary points, its an example of the calculation of a Stark absorption spectrum
contributionD " *f(E) has the following form: as a sum of the contributions of closed orbi&0). It is

CW(E)=327%E-E)
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compared with the semiquantal oscillator-strength densityg.12 }
according to the formulagt6) and(47). (In their turn, these
formulas are in excellent agreement with numerical calcula-
tions using the quantum formu(d5), as reported if11].) In

Fig. 10 the semiquantal oscillator-strength density is artifi- 908 7}
cially broadened, and the truncated closed-orbit sum alsc
gives broadened peaks with width inversely proportional to
the time of flight of the longest orbits involved in the calcu-

: I : : 004 |
lation. The result shown in Fig. 10 requires accounting for -
orbits making up to 200 oscillations along each of the two
parabolic coordinates. That does not represent any compute |
tional problem if we use the analytical expressiod@) [20]. ||| L1y ﬂ! 1 |l: . L |J

10 20 30 40 50

V. CONCLUSION FIG. 11. The uniform semiquantdEqg. (Al)] spectrum of

To conclude, a semiclassical representation for a regulayidths is plotted for the scaled energy= —1.5 as bold sticks with
spectrum weighted by some arbitrary functigviwas de- he'gzht equal tol’ nW_3 and positionw, satisfying the equality
rived. This representation was written as a function of theEnWn=¢ (atomic unit3. The results of summation of the general
action variables, and it includes contributions of periodic orSémiclassical formuldA3)-(A4) are shown as thin lines shifted
closed orbits as well as loops on the extremal torus for sys3ightly to the right; the summation includes terms up|My|
tems with tunneling. For photoabsorption, the formulas link~ 2% [M,| =200, M =20, and only the positive part of the semi-
the semiquantal theory of photoabsorptiph0,11 with classical graph is showfcf. Fig. 8. Results of summation of the

closed-orbit theory2]. As examples, we considered tunnel- restricted semiclassical formul(84)—(35) are shown as thin lines
) T pies, shifted farther to the right. The restricted formula4)—(35) is
ing and photoabsorption in the Stark system.

equivalent to truncatingA3)—(A4) to the terms withM=1.

ad,

J efMKK
Py
M«
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d(E,B)

Now we can repeat all the reasoning of Sec. Ill C with
respect to each member of this series and come to the gen-

In this appendix we show how the semiclassical formulagralized formula

APPENDIX A

[Egs. (34) and (35)] should be generalized to give correct " "
v_v|dths up to the top of the po_tenual barrler..Th|s ggner_ahza— r= 3 S Dy w o efwMKIZ+iW(Mu:]u+MU?]U),
tion reveals the role of classical underbarrier motion in de- My Mo=— Mg=1 ur Mo MK
terminating the widths. (A3)
The uniform expression for the width near the top is simi-
lar to Eq.(30), where
1 (—l)Mu+Mv+MK;U
D =— = = —.
% Moo M 4 Mg M (Mo =M7]
A4
= +e K,
I, a(‘]u,‘]v)ln(l e ") (A1)

Tt The terms withM =1 of this triple Fourier sum coincide
J(E.B) with expression$34) and(35). In the other terms, the action

K and period of underbarrier motior are multiplied by

This expression works well even above the top, with propeM« - W€ may interpret these terms as representing multiple
definition ofJ, . However, we restrict ourselves to the region underbarrier “oscillations” with pure-imaginary actiork
below the top, where K<1. and period 7 . The expressionéA3) and(A4) suggest that,

At the top of the barrier the values of the width given by to describe the widths near the barrier top, we need to con-
the two formulas(30) and (A1), differ noticeably. Indeed, sider a complex extension of the extremal torus. This exten-
formula(30) is proportional tee”¥=1, whereas the formula sion includes “oscillatory motion” or multiple traverses of
(A1) is proportional to In(}e ¥)=In 2~0.69 at the top. the classically forbidden region with imaginary momentum.

In order to employ the semiclassical approximation de-Similar contributions to the spectrum of energy splitting in a
scribed in Sec. Il C to the uniform expression, let us expandlouble well are discussed by Creigh and Whdlah
the logarithm in the rhs of EqA1), Figure 11 shows how accounting for multiple oscillations
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under the barrier brings the large semiclassical widths closer 1 K(E B J,(E,By 1
to the semiquantal ondslisplayed as the bold sticks DI'= 2. EBS 5 omh 2 M (B6)
A summation oveiM ¢ in the generalized expressigA3) o

can be done exactly above the saddle, wKerO on the  The argument of the delta function is zero when the EBK
extremal torus. This way we may get a “renormalized” am- quantization condition is satisfied. Therefore, the peaks of
plitude Dy v to use in the formuld34) near the barrier Eq.(38) are located at quantized values of acti¢asat the
top, guantized values ofv, in the scaled spectrumthe ampli-
tudeDMU is responsible for this “adjustmentwﬁcﬂw[,,n in

the scaled spectrum.

Tu
—[¢(a+1)

(2m)% M, 7,— M7,

BMU,MUZ(_l)Mu+M”

APPENDIX C
—y(a+0.5—-21In2] (AB)
In this appendix and in Appendices D and E we connect
with a denoting the formulas for the semiclassical amplitude given in this
. R paper with the standard formulas of closed-orbit theory. Here
M7, — My, Ag) e derive a preliminary resultEq. (C149] related to the
a=l 2AT|< (A6) geometry of the energy surface in action-angle variables.

The energy surface in action space is given by the equa-
and a standard notatiogi(z) for the logarithmic derivative tion
of the gamma functiod’(z), ¥(z2)=[In['(2)]'. H(J)=E, )
APPENDIX B where, as beford;l is the Hamiltonian of the integrable sys-
Let us start by looking only at the denominatordyf, of tem, J is the set of action variables, aids the energy of the
Eq. (39) 0 system. We consider another set of independent conserved
quantities €, B), where B represents1—1 quantites span-
.. .. 1 . - - < s ning the energy surface. We suppose that there is a one-to-
sinnmM, 7, /1,77l 7y) = E[e'(_'mK/T“M”””/T“) one relationship between the actiohsnd the integrals of
o o motion (E, B),
_e*i(*i‘lTTK/TU‘FMv"ITTU /Tu)]

9J(E, B)I(E,B)#0, .

1 - e

=5emK ImgMomm/n - (BY) Differentiation of the identityH (J(E, 8))= E with respect

to one parameteB; (i=1,...,n—1) leads to the identity

We suppose here that the first term on the right side domi-

nates(i.e., e "«/7Tu<e™k/7). Using this relation in Eq.
(38) we have

9319B;- v=0, (C2)

wherev=9dH/dJ represents the classical frequencies of the
1 o o system. Identity(C2) expresses the fact that the vector of
Dl =—— > (—)Mvg~ WKFm7ic/7)gIM, (W, =77, /7) frequencies is normal to the energy surface.
2m A, If we differentiate the same identity with respect to en-
(B2) ergy, we come to the formula

Now we can interpret €7« /7,) and (77,/7,) as terms 93/ IE - v=1. (C3)
which “adjust” the values ofK and f],, calculated atB _ N

= —1 to values calculated at the quantized valuegf In The identities(C1) and (C2) hold on all energy surfaces,
other words, we use the expansion so we can continue differentiation with respectBand B.

The results can be written in a uniform way if we write

o Taon =E, X,=pB1, ..., Xn=PBn-1. Then the derivative ofC2)
Jo (B )=y = o I 7y, B3 o (C4) with respect to any, leads to
N e o~ 9J _ ) Jv ca
K(E,Bn)=K+ 7/ 7. (B4) xoxe Lo ax (€4
Substituting relatior{B4) in Eq. (B2) we have The frequency vectow(E,B) varies continuously as a

1 function of (E, B8), and at some values oE() the frequen-
_ _— A—WK(E.BY)/h _\M,aiM, W, (E.By) cies may be commensurable. L&, 8),, be the collection of
DI 2m Mz (=)Te . (B9 values of E,B) such that

v

which can be rewritten as v(E,B)u=MIT, (CH
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whereM is a vector of integers and is a free parameter. Si(E,B)=0 for i#1, (C13b
This collection of points is typically a one-dimensional curve
in (E, B) space: giverM, for eachE there may be a value of ) B
B such thatw(E, B) satisfies Eq(C5). These points corre- Sivixra(EB =1 0_,31'£' (C130
spond to a rational torus spanned by periodic orbits with J=1 981 0Pk
frequency ratiogC5). 25y (E. B)

Now let us consider the action integral around any torus, Siviki1(EBu=— Rl ke (Cl149

’ &Blaﬁk (E‘ﬁ)M

Su(E.B)=J(E.B)-M. (C6)

This quantity is defined for every torus, and it involves inte-

It follows that the determinant of thexn matrix ¥, is
equal to(minug the determinant of ann(—1)x(n—1) ma-

gration My times around thekth fundamental loop of the

torus. We can again consider second derivativeS,diE, )
with respect tax;, Xy,

PSy(E.B) PIE,B)
&Xi&xk B aXian

(€7

Let us evaluate this quantity on thil-rational tori,
(E,B)=(E,B)\m , satisfying Eq.(C6). Substituting Eq(C5)
and then Eq(C4) into Eq. (C7), we obtain

%Sy

(7Xi (7Xk

0J Jv
=—T— . — . (C8

EBy i X e,

Now let us consider another collection of variables

:t, yzzﬁl, PP
angle variables

w(t,E,B)=v(E,p)t. (C9)

We will need the matrix Q2(E,B) having elements
Q;(E, B) defined as

Qi (E, B)=aw;/dy,, (C10a
Qe =)
’ at,B)
V1 tﬁVl/aﬁl tOI)V]_/O"ﬁn,]_
Vo t(?Vz/(?ﬁl taVZ/(?anl
vy tdvyldBy tov,1dBn_1
(C10b
Let us define also the matrix
Y(E,B)=[dI(E,B)/J(E,B)], (Cl1a
We need to calculate the matrix product
3(E,B)=Y'(E,®)Q(E.B) (C12
and evaluate it on th#¥-rational torus.
We find immediately
2(E.p=1, (C13a

, Yn=PBn_1, and let us think about the

2
defs| ey ——detoM|  (ciap
(&P IBi9P e ),
ie.,
NER TS
WEB| WP ey BB | e,
(C149

EquationgC13) hold for all (E, 8), while Eqs.(C14) hold
on the values E,B)y, i.e., on theM-rational torus. The
transpose operation can be omitted because we are evaluat-
ing a determinant.

The formulas(C1409, (C1339 and (C13b have a simple
geometrical meaning related to the energy surface in action
spaceH(J)=E. At any point on this surface, we can con-
sider the rows of the matriX™ as coordinate axes. The axes
defined by the vectors(J)/dB;, i=1,...n—1 are tan-
gent to the energy surfadd(J)=E. The axisd(J)/JE is
normal to the energy surface and hence to all otherl
vectors.

Let us also consider as vectors the columns of the matrix
Q(E,B)=ad(w)/d(t,B) represented in Eq.C10b. The first
column is the frequency vecter=dH/3J and therefore it is
also normal to the energy surface.

The coordinates of these vectors in the above-described
basis form the elements of the matrix product in the left-hand
side (lhs) of Eq. (C140. As the vectorv is perpendicular to
the energy surface, its dot product with-1 basis vectors
d(J)/aB; is zero. This is the content of EGC13b, and it
reduces the dimensionality of the determinant by one, as ex-
pressed in Eq(C140.

APPENDIX D

The above result, EqC140, is useful for evaluating the
amplitude of a semiclassical wave function. We consider a
regular system, for which all trajectories form tori. Eigen-
functions correspond to “eigentori,” i.e., tori on which the
action variables are quantized. We consider a wave function
for such a system which is locally a solution to the stationary
Schralinger equation in a given domain; however, we con-
sider a wave function which doem®t correspond to a single
eigenfunction. Two examples of the types of wave functions
we consider are the Green function and the wave function
associated with closed-orbit theory. These wave functions
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are constructed using Maslov’s approximation: start from an (W) aw) a(t,B)
(n—1)-dimensional surface in thedimensional configura- Aty LB 3Lay)’ (DY)
tion space, erect normals to that surface, and let the normal at o ' o

o be the direction of the initial momentum a§. Integrate  \yhere the last matrix has the form

Hamilton’s equations to construct a momentum-vector field

p(g), and simultaneously integrate to firﬁ(q)=fgop'dq. at,B)
Then the wave functions(q) is related to its value on the m:
initial surface by the formula

0 W) (b

1 0 } |

Now we will make several transformations involving re-

w(a)= ¢(qo)IJ(qo)/J(q)I”expi[S(q)/ﬁ—m/ZJ,(Dl) sults of Appendix C,
where a(q) aw) at,p)
(%)= Few) 3(t.B) a(t.a0) (b7a
J(a)=2aq(t)/a(t,qo). (D2)

- . . R CIINAY:)

is Jacobian probes the dependence of a trajectory end =——Q— (D7b)
point q(t) on the time of flightt and on the §—1) coordi- J(w) " a(t, o)
natesqg of the starting point on the initial surfa¢g1].

Let us assume that the family of initial conditiopg(qg) :ﬂYf—lYfﬂ JI(t. B) (D70)
does not correspond to a single torus. For egglon the a(w) a(t,do)
initial surface there is @4, and the pair {§,,q,) correspond
to initial conditions for a torus having enerdy and other _ a(q) iy a(t,B)
conserved quantitie@. All tori have the same energy, but _m a(t,qo) (D7d)
each has its own value @#—i.e., B8 is a function ofqy. The
family of orbits evolves from the initial surface, and each a(q) [(E,B]T_at,B)
orbit lies on a distinct torus. = [ } 3 (D7¢

Embedded in the family of tori are rational tori, corre- dw)| Q) J(t,0o)
sponding to periodic orbits. Let us suppose that same
=qy on the initial surface corresponds td,@)y, the . 9(q) I(E.B) It.B) (D7)
M-rational torus. The orbit emanating from this point is the a(w) a(J) Ta(t,do)

M -periodic orbit, and its action integral is equal to EG6), ) ]
and therefore it obeys Eq&C8) and (C149. We derive here Here we have successively substituted E¢S103,
a formula[Eq. (D10)] for the Jacobi determinant as the orbit (C118, and(C12. Equation(D7f) applies because we will
returns to the initial point. For convenience, we take thistake the determinant of the mati, so the adjoint does not
point to be the origin of coordinatesj=0 on the initial ~ Matter. _
surface aq(“)" ] Finally, we use f[he fact that the transformathn
For a regular system, we can describe motion in conventd:P) < (w,J) is canonical, and therefore has a generating
tional coordinates and momenta, ) or in action-angle co- function §(q,J) such that
ordinates (,J) where the actiond are conserved and cor-
dinatesw vary modulo 1 for bound motion. We can define P(9,9)=95(q,J)/4q.
thew’s such that for allJ, w=0 corresponds tg=0.
In general,g=q(w,J) and we can represent the Jacobi

(D8)

We can express this as a function &, f3), writing

matrix 4(q)/d(t,qg) as S(q;E,ﬁ)ES(q,J(E,B)),
o) _(a<q>) a(w) (am)) 2(9) N
Atae) L atw) attae) o)) attag” O P(G:E. £)=93(a:E. B}/ oa.

o . ) Let us use this representation to rewrite the first two factors
When the periodic orbit completes its cycle=M and i, gq (D7f)

=0, s0d(q)/d(J)|w=m=0 and, according to EqgD2) and

(D3), we have at closure a(q) d(E,B) d(q,E,pB)
— (D9a)
aq)  a(w) o a(w) 4(J) a(w,J)
‘]t(quO):(_ YR D4
W) | 39(t,%o) _#ap) HGEB o0
We assumed already that at each enefgythere is a J(w,J) d(a,p)

one-to-one correspondence between points on the initial sur-
faceq, and values of the conserved quantit@sThis allows _JdE.B) (D90
us to write a(p)
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%S -1 The two-dimensional semiclassical amplitullg is sim-
=2 E A (D9d)  ply related to the three-dimensional semiclassical amplitude
() d(E, B)
Az ([2], Eq.(3.12b)

Again these hold because we will take determinants. Equa-
tion (D9a) holds because the transformatida: (E, B8) is in- As(r,00) =Ax(r,0;rg,00)\rasindy/r?sing, (E3
dependent ofv; Eqg. (D9b) involves the functiomp(q;E, B)

=p(q,d); Eqg. (D9c) holds because the transformation

(9,p)«<(w,J) preserves volume, and the rest is obvious. As(d,00) = VJi_0(d,00)/ (0, do), (E4
Combining all the above and E¢C14b, we find
Ji(9,do) = a(a(t))/ d(t,qo)- (ES
2
de{ﬂ de{Lﬁ)} In the calculations of atomic photoabsorption, the initial sur-
def3,(9,q0) 1= — IBIP 9(do) (D10) face is a sphere of small radiug that lies in the zone where
wHo P the Coulomb field is dominant.
de 3(q)a(E, B) As the wave leaves the initial surface, the Jacobian

Ji_0(0,qp) is easily calculated

This formula is general: it does not involve any of the
particular assumptions of closed-orbit theory. We used only a(q(t)) aq aq
the following assumptionga) the system is regular, so each Ji(9,90) = a(t, o) V3 3
orbit lies on a torus characterized by conserved quantities o o1 Moz
(E,B); (b) each orb_it starts from a surface spanned by variy,ii, 0o andgy , being coordinates of the vectqg param-
ablesqo and there is a one-to-one correspondence betweefyizing the initial surfacésphere in our cageAs t—0, the
conserved quantitie and qo; (c) one of these trajectories o |ncity vectorv is perpendicular to the initial sphere and we
lies on theM-rational torus, and so it is a periodic orbit with yag1 with an ordinary product of velocity times Jacobian of

frequency ratidV; (d) we evaluate the classical density Jaco-i.ansition from Cartesian coordinates to paramedgrsn the
bian J;(q,qo) at the final time on that periodic orbit. This gppere

formula therefore might be widely useful in various applica-
tions of periodic-orbit theory.

(E6)

J(a)
JIHO(q!qO) =v

—_— . (E7)
APPENDIX E 9(9o)

Finally we compare two semiclassical expressions for the In the region of Coulomb field dominance~[2(E
recurrence amplitude: E@60) that holds for a regular sys- + 1/r)]Y2~(2/r)¥2 If q, are spherical anglesjo=(6,¢)
tem with any number of degrees of freedom, and the result ofhen we have
closed-orbit theory by Du and Del¢g], Eq. (5.133,

Ji_o(q,q0)=vr2sing=(2Ir)*r?sing. (E8)
C=(E—E;)22*x%% ; ¥(sin 6,sin 6;) Y2A,| (6, V* (0
( )27 T(sindisin )AL J6) 7 ( (féll) Now we need the Jacobiah(q,qo) When the wave re-
turns to the initial point along a periodic orbit. For this, we

(in Hartrees; all notation will be defined belpwThis for- just substitute Eq(D10) in Eq. (E4), and obtain

mula(E1) is valid for axially symmetric systems with a regu-

lar or chaotic spectrum. These two formulas must give the d(a) S 12

same values in the common area of their applicability—for 2\ 14 deta(ﬂ) det J(E,B)d(q)

axially-symmetric regular systems. As(9,q0) = (—) — . (E9)
We consider the case that the closure time of the orbit is r de{a—s

the same as the period of the orliithis holds for all orbits AP a(P)

for an atom in an electric field, and for some of the orbits for

an atom in a magnetic field. In other cases the period is twic&inally we make the standard approximation of closed-orbit
the closure time; then the formulas and the analysis are moi@eory of atomic spectra: the wave returning to the nucleus is
complicated. In the case we consider, the closed orbit is asimilar to a zero-energy Coulomb scattering wave. The func-
periodic orbit with frequency ratioM, so it lies on the tion S(q;E,B) then corresponds to the phase of this returning
M-rational torus, and all the equations derived in Appendicesvave. In Ref.[10], Eqg. (4.2, we gave the formula for the

C and D are valid. Furthermor#,= 6;, and Eq.(E1) may  cylindrically symmetric case

be rewritten as

S(r,6,E,0;)=—{2rV*+ 3Er¥12—cog 6 6;)1}
C=(E—E;)2Y7%% ; ¥sin 0:A,| M(65)2.  (E2 X[1+cod 6—6;)]"?, (E10
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#S(r,0,E,B) r  9cosb; 2g| ~172

ar,0)a(E,B)  2sin6; P

(E1D) C=2%"73E~E))|)(0y)|? (E14)

i

Using our earlier assumptions, we can tgke cosé;
=cos#=cos#, This way we getdB/dqy=—siné;. The
substitution of this formula and EdE11) into Eq. (D10)
gives us

This is equivalent to Eq(60) for cylindrically symmetric
systems, which confirms the agreement between two forms
of semiclassical amplitudes for two-dimensional regular sys-
tem.

23y 9 In the three-dimensional case, it is convenient to tgke
r2sino _'3 = (cosQf ,¢y); after that_we can find(a)/d(B) =r?. Another
determinant we need is equal to

defJy(r,0;rg,00)]=— 73
de{a(r,e)&(E,,B)}

S
__2sifo Sy, p de{ d(E, cosb ,@)a(r)} T e (E1S
= - Py (resiné).
(E12 We get from Eq(E9)
Combining Egs(E8) and(E12), we obtain
1/2] 2 —-1/2
As(0,0) (ro) d(ﬁs) (E16)
- 1] =175 e
R _(r0/2)1’4 52| 172 c1s 3(0:do 2 BB,
Z(ro’af)_sin—é)f 6_,82 (E13

This formula may be useful in three-dimensional applica-
The substitution of this expression for amplitude into Egs.tions of closed-orbit theorgsuch as an atom in crossed elec-
(E3) and (E2) gives the result tric and magnetic fields
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widths of the red states in the linear plot Fighp[compare
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with the logarithmic plot Fig. @)]. Above the saddle the [19] V. Kondratovich and J.B. Delos, Phys. Rev. %, 4604
motion on the extremal torus becomes anharmonic and the (1998.

ratio 7 / 7, diminishes. That is why we can see more states in[20] We also have to account for the parallel orbits and repair their

the linear plot ate=— 1.5 [Fig. &0b)]. bifurcations. Full details on this aspect of the calculation will
[16] J. Gao and J.B. Delos, Phys. Rev54, 356 (1997. appear in a later publication.
[17] P.J. Richens, J. Phys. 25, 2101(1982. [21] V.P. Maslov and M. Fedoriuksemiclassical Approximation in
[18] At the energies near field-free ionization threshile 0, the Quantum Mechanic§Reidel, Boston, 1981 see also the dis-
term D*1f(E) may lead in the orbital sum—see J. Gao and cussion of this method in J.B. Delos, Adv. Chem. PH5.
J.B. Delos, Phys. Rev. A6, 1455(1992. 161(1986.
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