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Escape of trajectories from a vase-shaped cavity

Paul Hansen,1,* Kevin A. Mitchell,2,† and John B. Delos1,‡

1Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
2School of Natural Sciences, University of California, Merced, California 95344, USA

�Received 26 January 2006; published 28 June 2006�

We consider the escape of ballistic trajectories from an open, vase-shaped cavity. Such a system serves as a
model for microwaves escaping from a cavity or electrons escaping from a microjunction. Fixing the initial
position of a particle and recording its escape time as a function of the initial launch direction, the resulting
escape-time plot shows “epistrophic fractal” structure—repeated structure within structure at all levels of
resolution with new features appearing in the fractal at longer time scales. By launching trajectories simulta-
neously in all directions �modeling an outgoing wave�, a detector placed outside the cavity would measure a
train of escaping pulses. We connect the structure of this chaotic pulse train with the fractal structure of the
escape-time plot.

DOI: 10.1103/PhysRevE.73.066226 PACS number�s�: 05.45.Ac, 05.45.Df, 42.60.Da, 32.80.Rm

I. INTRODUCTION

We study a billiard system that exhibits “chaotic escape,”
in which the amount of time to exit the system depends
sensitively on initial conditions. Such systems display fractal
structure—a hallmark of chaotic dynamics. Well known frac-
tals may show regular self-similarity �e.g., the Cantor set�,
asymptotic self-similarity �e.g., sequences of period-
doubling bifurcations� or statistical self-similarity �e.g.,
coastlines and clouds�. Certain chaotic systems may exhibit a
type of fractal structure called “epistrophic” self-similarity
�1,2�. �The word “epistrophe” is a term from rhetoric, mean-
ing a regular ending following a variable beginning.� An
epistrophic fractal may have self-similar structures as well as
variable structures at all levels of resolution. Previously, we
studied such fractals in a model two-dimensional map �1,2�
and in the ionization of hydrogen in parallel electric and
magnetic fields �3,4�. In those cases, the variable structures
came to dominate as we went deeper into the fractal.

This paper describes a new example of epistrophic fractal
structure: the escape of trajectories �e.g., light, microwaves,
or electrons� from a perfectly reflecting open vase-shaped
cavity �5�. The fractal structure is analyzed using the topo-
logical methods developed in our previous work.

Miller �6� may have been the first to compute and identify
chaotic scattering trajectories, which he called “chattering”
trajectories, in atom-molecule collisions. Later, in the study
of He colliding with I2, Davis �7� and Tiyapan and Jaffé �8�
gave evidence of asymptotic self-similarity in plots of final
action versus initial phase. For more background on chaotic
scattering see the book by Gaspard �9�. Motivated by this
earlier work, we found analogous phenomena in the escape
of high-Rydberg electrons from hydrogen atoms in parallel
electric and magnetic fields �3,4�. Treating the electron mo-
tion classically, we presented graphs of the escape time of

the electron �the time between the excitation of the electron
and its arrival at a detector� versus the initial launch angle of
the electron. These escape-time plots exhibit intervals over
which the escape time is a smooth function of launch angle,
but for which the escape time goes to infinity at each end-
point. These intervals of continuous escape time are called
escape segments. The set of escape segments displays what
we called epistrophic self-similarity, with asymptotically
self-similar sequences of escape segments �called “epistro-
phes”� as well as “unexpected” escape segments �called
“strophes”� occurring at all levels of resolution and at arbi-
trarily long times.

The purpose of this paper is to show that similar epist-
rophic fractal structure occurs in escape of light or particles
from the vase cavity. In so doing, we provide a new physical
system in which the effects of epistrophic fractals may be
observed experimentally �10�.

In Refs. �2,11�, we developed a new form of symbolic
dynamics that establishes the existence and structure of a
minimal required set of escape segments. This symbolic dy-
namics, which we call homotopic lobe dynamics, is used
here to interpret the fractal structure of the escape-time plot
for the vase cavity. Homotopic lobe dynamics belongs to a
larger field of research that applies symbolic techniques to
the study of chaotic transport, including escape and scatter-
ing processes. We have been particularly influenced by the
mathematical work of Jung and collaborators �12–16�, Eas-
ton �17,18�, Rom-Kedar �19,20�, and more recently by the
work of Collins �21�.

We mention other recent work on chaotic transport that
goes in a somewhat different direction from our work here.
New geometric phase-space formulations have led to impor-
tant advances in the theory of transition states, especially for
systems with three or more degrees of freedom. �See, for
example, Ref. �22�.� These developments provide new ways
to identify well defined transition states, and thereby to com-
pute transport rates or chemical reaction rates as appropriate
flux integrals in phase space. Our work has some features in
common with this work—most obviously our phase space
perspective and more specifically our focus on a periodic
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orbit dividing surface �PODS� and its associated stable and
unstable manifolds. However, our goals are quite distinct.
We are focused on systems with only two degrees of free-
dom, and we are not concerned with transition rates averaged
over a microcanonical ensemble of initial conditions. In-
stead, we are concerned with the details of the spectrum of
escape times for trajectories that begin at a single point in
space at some sharply defined instant of time, and we ana-
lyze this time spectrum in terms of topological constraints
placed on trajectories by homoclinic tangles.

This paper has the following outline. Section II defines
the geometry of the vase cavity, and Sec. III gives an over-
view of the trajectories found therein, including a discussion
of the escape-time plot. Section IV introduces the Poincaré
return map and discusses the homoclinic tangle that under-
lies the escape dynamics. Section V describes the method
of homotopic lobe dynamics, and Sec. VI uses this method to
analyze the structure of the escape-time plot. Finally, the
pulse train that is emitted from the cavity is discussed in
Sec. VII.

II. THE VASE

We construct a two-dimensional reflecting cavity that has
trajectories analogous to those of hydrogen in parallel fields
�Fig. 1�. In the hydrogen system, an electron may be trapped
in bound trajectories which orbit the proton for all time.
Many of these bound trajectories lie within a region of sta-
bility surrounding a stable periodic orbit. Outside this stable
region, the electron may escape by passing over a saddle in
the potential energy and into the exit channel on the right.

The boundary between the Coulomb well and the exit chan-
nel is formed by an unstable periodic orbit near the saddle. In
molecular dynamics, such a boundary is called a periodic
orbit dividing surface �PODS�. Some orbits approach the
saddle, oscillate near the PODS, and then either pass over the
PODS into the exit channel or reflect back into the Coulomb
well. Electrons that cross the PODS never return to the atom.

We construct an open vase-shaped reflecting cavity with
similar dynamics �Fig. 2�. It has bound trajectories that
bounce back and forth forever without escaping; again many
of these bound trajectories lie within a region of stability
surrounding a stable periodic orbit. Trajectories can only es-
cape the cavity by passing through the bottleneck of the vase.
Within the bottleneck is an unstable periodic orbit that con-
stitutes a PODS, i.e., all escaping trajectories pass over this
orbit. Again, some orbits approach the PODS, oscillate near
it for a while, and then either escape from the cavity or
reflect back into the interior. Past the bottleneck, the cavity
flares, so that trajectories that escape are never reflected back
into the cavity.

FIG. 1. �Color online� Effective potential energy contours for an
electron in a hydrogen atom in parallel electric and magnetic fields,
where V�� ,z�= ��2+z2�−1/2+Fz+B2�2 /8, drawn in cylindrical coor-
dinates �� ,z�. The nucleus at the origin of coordinates �� ,z�
= �0,0� produces a deep Coulomb well, the electric field creates a
saddle, and the magnetic field gives confinement in the � direction.
Near the saddle in the potential energy there is an unstable periodic
orbit �the vertical line� that constitutes a dividing surface between
the Coulomb well and the escape channel to the right. Electron
trajectories that begin at the nucleus must pass over this dividing
surface in order to escape. Three such trajectories are illustrated in
the figure.

FIG. 2. �Color online� �a� A vase-shaped cavity, whose reflective
boundary is defined by Eq. �1�. The arc length q along the boundary
is recorded at several points. To simplify the surface of section, we
introduce a reflective boundary at the symmetry axis y=0. �b� A
sampling of trajectories in the vase. At the widest point of the vase
body is a stable periodic orbit, with a quasiperiodic orbit nearby. At
the narrowest point of the neck is an unstable periodic orbit, which
forms a periodic orbit dividing surface. A trajectory is shown falling
away from this periodic orbit. Finally, there is a regular scattering
trajectory, or open whispering gallery mode. It starts at the lower
right, outside the vase near x=1.5, y=−0.1. It barely misses the
neck of the vase, and then hits the upper boundary almost tangen-
tially. It continues reflecting close to the upper boundary, crosses
y=0, and continues along the lower boundary until finally exiting at
x=1.5. �c� Surface-of-section plot showing the same trajectories as
panel �b�. The two �blue� triangles near �q , p���0.3,0� and �1.02,0�
are the intersections of the stable and unstable POs with the vase
boundary. The loop of �red� circles represents the quasiperiodic tra-
jectory shown in �b�. The �green� diamonds represent the trajectory
falling away from the unstable PO. The �blue� squares form the
regular scattering trajectory. Its incoming reflections form the se-
quence of points near p=−1 with decreasing q. When the trajectory
crosses y=0, q becomes negative, and so we replace �q , p� by
�−q ,−p�, producing an outgoing sequence of reflections near p=1.
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For the boundary of the vase, we choose the function

y = ± f�x� = ± �x�w

2
+ A�x − 1�2� . �1�

Here w is a measure of the width of the vase neck, and A is
a measure of the curvature near the neck. In our calculations
we set w=0.1 and A=0.3215. We consider a detector span-
ning a vertical line that is well to the right of the neck at x
=1.5. In our computations, we run trajectories from a point
inside the vase until they arrive at the detector, which may be
regarded as an absorbing boundary.

A shape such as this—indeed any boundary that is not
convex—can create problems in the theoretical analysis. We
describe the reflection of rays by recording the position qn
along the boundary and the angle of incidence �n for succes-
sive reflections. The mapping �qn ,�n�� �qn+1 ,�n+1� will con-
tain discontinuities if the boundary is not convex. However,
in this paper, we have chosen the parameters A and w so that
such discontinuities can only occur after the last reflection
before the trajectory hits the detector. These discontinuities
therefore do not invalidate our topological analysis.

We consider a burst of trajectories �light, microwaves, or
particles� starting from a single initial point on the boundary
of the vase and traveling in all directions into the vase. All
trajectories travel with the constant speed c=1. This en-
semble of trajectories strikes the detector in a train of pulses.
To study this pulse train, we compute the escape-time plot:
the time required for a trajectory launched in a given direc-
tion to reach the detector.

III. THE ESCAPE-TIME PLOT

There is a stable periodic orbit bouncing vertically at the
widest point of the vase. Near this orbit are many quasiperi-
odic orbits that bounce between the upper and lower bound-
aries in Fig. 2�b�. They move slowly back and forth in the
horizontal direction, being “reflected” from the narrow tip
and narrow neck of the vase, so that they remain forever in
the wide part of the vase. As mentioned previously, there is
an unstable periodic orbit at the narrowest point of the neck,
and this orbit constitutes a PODS.

Regular scattering trajectories are also present. An easy
way to construct one is to pick any point on the convex part
of the boundary of the vase �a point sufficiently to the left of
the neck�, and start a trajectory nearly tangent to the bound-
ary. Tracing this trajectory backwards and forwards, one ob-
tains a regular scattering trajectory. It could be called an
“open whispering gallery mode.”

In addition to the bound trajectories and the regular scat-
tering trajectories there are complex “chaotic” scattering tra-
jectories. These trajectories may be turned back by the
bottleneck many times before finally escaping, and the resi-
dence time of these trajectories within the cavity is a sensi-
tive function of the initial conditions.

We choose an initial point on the boundary at x=0.0466,
y=0.0739. �This point is selected because it makes the topo-
logical analysis as simple as possible.� In Fig. 3 we show the
time to reach the detector as a function of p=sin �, where �
is the initial launch angle of the trajectory, measured from

the normal. For p close to zero, the initial velocity is nearly
perpendicular to the boundary, and the resulting trajectories
appear to be bound and quasiperiodic. For p close to ±1, the
initial velocity is nearly tangent to the surface, and the re-
sulting regular scattering trajectories escape quickly.

Within the two intervals of p between the bound and the
regular scattering trajectories, there are chaotic trajectories,
where the time to escape is a sensitive function of initial
conditions. The escape time in one of these intervals is
shown in more detail in Fig. 4, together with two enlarge-
ments. These enlargements show repeating structure as well
as variable structure at higher levels of resolution.

Our goal is to understand the structure within this escape-
time plot. For this purpose, we use a Poincaré surface of
section.

IV. DISCRETE TIME DYNAMICS

A. The arc-length surface of section

We define a surface of section �SOS� in the usual way for
a billiard system �Fig. 2�c��. We assign to each point on the
boundary of the vase a coordinate q equal to the signed arc
length along the boundary measured clockwise from the tip
of the vase. Points on the upper boundary have q�0 and
points on the lower boundary have q�0. The conjugate mo-
mentum p is the component of velocity parallel to the bound-
ary at the point q. The SOS is thus parametrized by �q , p�.
For 	p	 close to 1, the trajectory is nearly grazing the surface

FIG. 3. �Color online� For trajectories starting at q=0.091 13
�i.e., x=0.0466, y=0.0739�, the heavy �blue� curves show the es-
cape time �lower horizontal axis� versus the initial tangential mo-
mentum p �vertical axis�. When p is close to zero, trajectories re-
main in the vase a very long time, and appear to be quasiperiodic.
When p is close to ±1, the regular scattering trajectories escape
quickly. For 	p	 between about 0.38 and 0.55, the escape time is a
sensitive function of the initial direction. The homoclinic tangle is
shown placed over the escape-time plot, with its q coordinate re-
corded along the upper horizontal axis.
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and moving in a clockwise direction; for p close to 0, the
trajectory is nearly normal to the surface.

Any point �q , p� specifies an initial location and direction
of a ray at the boundary of the vase. Following this ray, we
find a new reflection point q� where the ray next hits the
boundary. The new momentum p� is the component of ve-
locity parallel to the boundary at q�. Thus, successive reflec-
tions define a map M on the surface of section

�q�,p�� = M�q,p� . �2�

We next cut the SOS in half by taking advantage of re-
flection symmetry. If a trajectory begins at �q0 , p0� on the
upper boundary and arrives at �q1 , p1� on the lower boundary,
we may instead imagine that the trajectory reflects from a flat
mirror at y=0. �Such a trajectory is shown in Fig. 2�a�.� This
is equivalent to the following rule: if q1�0, replace �q1 , p1�
by �−q1 ,−p1�. The resulting reduced SOS �q , p� is then de-
fined only for q�0. On the full SOS, many orbits alternate
between positive and negative q. This includes the previ-
ously mentioned unstable orbit in the neck of the vase and
the stable orbit in the body of the vase, which therefore both
have period two. However on the reduced SOS, since q is
always positive these two orbits have period one, and thus
each is a single point on the reduced SOS.

B. Homoclinic tangles

A numerically computed SOS plot is shown in Figs. 5 and
6. The stable orbit intersects the surface of section at an
“O point,” surrounded by rings consisting of quasiperiodic
orbits. These rings bound a continent of stability. Around this
continent are many smaller islands of stability. The PODS in
the neck of the vase intersects the SOS at an “X point.” The
upper left stable manifold and the lower left unstable mani-
fold of the X point contain trajectories that approach the
PODS in the limit t→ ±�. These stable and unstable mani-
folds intersect an infinite number of times, forming a com-
plicated pattern called a homoclinic tangle.

Figure 7 shows a sketch of a homoclinic tangle similar to
the one in Fig. 6, but which is simpler to discuss. We define

the complex as the region of the SOS bounded by the stable
and unstable manifolds that connect the X point zX with the
intersection point P0. The point P0 maps forward to the
points P1, P2 , . . ., and backward to P−1, P−2 , . . .. Between P0
and P1 is another intersection point Q0, which maps forward
and backward to create the sequence of points Qn. The seg-
ments of the stable and unstable manifolds that join P0 to Q0
bound a region of the plane called the escape lobe E0. This
lobe maps backward to the escape lobes E−1, E−2 , . . .. The
lobe E−1, which is inside the complex, thus maps to the lobe

FIG. 4. �Color online� Escape time as a function of initial tan-
gential momentum p. Selected regions are blown up. Repeating
patterns are evident in these expanded graphs. However, we also see
regions that are not repetitions of structure at larger scales. Two of
these regions are marked with asterisks.

FIG. 5. �Color online� Surface of section. Concentric loops rep-
resent bound, apparently quasiperiodic trajectories. Surrounding
this stable continent is a ten-island chain. All other points make up
the unstable �lighter/green� and stable �darker/blue� manifolds of
the unstable fixed point. The stable and unstable manifolds consti-
tute the homoclinic tangle.

FIG. 6. �Color online� The early development of the homoclinic
tangle. The X point near q=1, p=0 is the unstable PO, with its
stable and unstable manifolds. One stable manifold approaches the
X point from the lower right, and one unstable manifold recedes
from it toward the upper right. These two never intersect any other
manifolds. Another unstable manifold starts from the X point to the
lower left and a stable manifold approaches the X point from the
upper left. These two intersect near �q=0.1, p=0�. The interior of
the region thus formed is called the complex. C0 is a capture lobe
outside the complex, which maps to C1 inside the complex. E−1 is
an escape lobe inside the complex, which maps to E0 outside the
complex. C6 �the sixth iterate of C0� intersects E−6 �the sixth back-
iterate of E0�, so the minimum time a scattering trajectory can spend
inside the complex �i.e., the minimum delay time� is D=11.
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E0, which is outside the complex. We say that a point has
escaped from the complex when it arrives in E0. Any point
that lands in E0 must map to successive escape lobes En, and
therefore escape from the cavity; such points may take a
number of additional bounces before arriving at the detector,
but calculations show that they never reenter the cavity.

The segments of the stable and unstable manifolds that
join Q−1 to P0 bound the capture lobe C0, which maps for-
ward to the lobes C1, C2 , . . .. The lobe C0, which is outside
the complex, maps to the lobe C1, which is inside the com-
plex, and we say that points in C1 have just been captured
into the complex. The lobes C0 and E−1 are sometimes called
a “turnstile �23�.”

Notice in Fig. 7 that the lobes C2 and E−2 intersect in the
region H−2. Mapping this intersection forward twice, we see
that C4 and E0 also intersect. We define the minimum delay
time D to be the smallest n such that Cn+1 intersects E0; that
is, D is the smallest number of iterates that a scattering tra-
jectory may spend within the complex. In Fig. 7, D=3. The
lobe C0 �outside� maps to C1 �inside� which maps to C2
�inside�; some of the points in C2 are also in E−2; they map to

E−1 �inside� and then to E0 �outside�; therefore such trajec-
tories spend three iterates inside the complex, and no trajec-
tory coming from outside can spend fewer iterates inside.
Examining the surface of section for the vase in Fig. 6, there
is an intersection between C6 and E−6 which implies D=11.

C. The discrete-escape-time plot

The ensemble of initial conditions used to compute the
escape-time plots �Figs. 3 and 4� forms a line L0 in the
surface of section. This line of initial conditions appears as
the vertical line in Fig. 3, with q=0.091 13 and p ranging
between ±1. The map M defines a discrete-escape-time plot
�Fig. 8�, in which we record the iterate at which a point
arrives in E0 as a function of p along L0. This discrete-
escape-time plot rectifies the continuous-escape-time plot
�Fig. 4�. Each icicle in Fig. 4 is straightened into a constant
escape segment. Each escape segment spans an open interval
of L0 in which all points arrive in E0 on the same iterate.

Many of these escape segments form orderly sequences.
Several such sequences are marked by arrows in Fig. 8. The
long left pointing arrow marks a sequence that converges
upon the boundary of the complex, where chaotic scattering
trajectories change to regular scattering trajectories. The
other arrows mark additional sequences which converge
upon the endpoints of earlier escape segments. We call each
such regular sequence of escape segments an epistrophe.

The “epistrophe theorem” proved in Ref. �1� asserts that
�1� such a sequence of escape segments converges upon ev-
ery endpoint of every escape segment and �2� the asymptotic
tails of such sequences are self-similar and are all similar to
each other. The epistrophe theorem therefore implies that
there must be regular structure-within-structure at all levels

FIG. 7. Qualitative surface of section for delay time D=3.
Points are labeled in Roman bold, curves in script, and regions of
the plane in italic. zX is the unstable fixed point, corresponding to
the periodic orbit dividing surface. S and U are its stable and un-
stable manifolds. P0 is chosen to be the principal intersection be-
tween S and U. The complex is the region of the plane bounded by
the segments of S and U connecting zX to P0. Each capture lobe, Cn,
is bounded on the outside by a segment of the stable manifold Sn

and on the inside by a section of the unstable manifold Cn. Each
escape lobe En is bounded on the outside by a portion of the un-
stable manifold Un and on the inside by a portion of the stable
manifold En. Capture lobe C2 and escape lobe E−2 overlap to form
the hole H−2. Mapping this hole backwards and forwards produces
an infinite sequence of holes Hn, three of which lie inside the com-
plex. The line of initial conditions, labeled L0, can be continuously
distorted into C0E0 without passing through a hole, and so we have
the homotopy relation l0=c0e0. By scrutinizing the figure, we see
that C4 can be similarly distorted into �E3

−1C3
−1��E2

−1C2
−1�

��E1
−1C1

−1�U0
−1E0�E1C1��E2C2��E3C3�S4, and so we arrive at Eq. �5�.

FIG. 8. �Color online� Discrete-escape-time plot. Plotting the
iterate at escape �arrival in E0� versus p, the icicles in Fig. 4 are
rectified into escape segments. Many escape segments form regular
sequences which we call epistrophes. In the range of p shown here,
the minimal set of escape segments begins at i=13, and the first
epistrophe converges to the left. Each segment of this epistrophe
spawns a new epistrophe beginning twelve iterates later. Then each
segment in each of those epistrophes must spawn a new epistrophe
beginning twelve iterates later. In contrast, the cluster of escape
segments marked by an asterisk is not part of the minimal set, and
this cluster cannot be predicted by the topological methods used
here.
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of resolution in the escape-time plot. On the other hand, the
epistrophe theorem says nothing about how epistrophes be-
gin, nor does it assert that all escape segments lie in well
organized epistrophes. �Some segments that are not part of
epistrophes are marked with an asterisk in Fig. 8.�

Homotopic lobe dynamics is a topological method for ex-
plaining, or predicting, the regular sequences of escape seg-
ments shown in Fig. 8. The next section describes this
method. Further details are given in Refs. �2,11�.

V. HOMOTOPIC LOBE DYNAMICS

As explained above, for the tangle sketched in Fig. 7, C2
intersects E−2, and so the minimum delay time D is equal to
three. We consider the intersection H−2=C2�E−2 to be a
“hole” in the SOS. We consider all its forward and backward
iterates Hn to be holes as well. Each Hn lies in the escape
lobe En and in the capture lobe CD+n+1.

Now we label the segments forming the boundaries of the
escape and capture lobes. We label the outer boundary of the
capture lobe Cn by Sn, since it lies on the stable manifold.
We label the inner boundary of Cn by Cn. Similarly, we label
the outer boundary of the escape lobe En by Un, since it lies
on the unstable manifold. We label the inner boundary of En
by En. Each of these boundaries is really a directed curve or
path; they inherit their direction from the directions of the
stable and unstable manifolds �24�.

A. Path classes

We now define families of equivalent paths, or “path
classes.” The path class cn is the family of all paths obtained
by distorting the curve Cn without crossing any hole Hk or
moving its endpoints. Likewise sn, en, and un are respectively
the families of paths obtained by distorting the curves Sn, En,
and Un without crossing any hole or moving endpoints. Simi-
larly, l0 is the path class obtained by distorting that part of
the curve L0 joining Q−1 to Q0, without intersecting any
hole. For example, in Fig. 7 we see that the path L0 can be
distorted into the combination of directed curves C0 followed
by E0. We say that path L0 is homotopic to path C0 followed
by path E0; i.e., the path class l0 is the same as the path class
c0 followed by e0:

l0 = c0e0. �3�

More generally, path classes can be combined by multi-
plication and inversion. Two path classes a1 and a2 may be
multiplied to form a new path class a1a2 if the final point of
a1 is the initial point of a2. Any path in a1a2 is homotopic to
any path in a1 followed by any path in a2. We define the
inverse a−1 of a path class a as the family of all paths in a
traversed backwards. The product of any path class with its
inverse is the identity path class 1, the set of all paths begin-
ning and ending at the same point without encircling any
holes, i.e., aa−1=1. Similarly, a1=1a=a. These properties
define a mathematical group, except that multiplication must
be between adjacent paths. �To combine two paths a and b,
the final point of a must equal the initial point of b.� Hence,
the path classes sn, un, en, and cn generate what mathemati-

cians call a “groupoid” start from here. This groupoid con-
sists of the set of all path classes that begin and end at any of
the homoclinic points Pi and Q j and encircle any collection
of holes Hk any number of times, in any direction and in any
order. The map M, acting on these path classes, simply shifts
their indices

M�sn� = sn+1, �4a�

M�un� = un+1, �4b�

M�en� = en+1, �4c�

M�cn� = cn+1. �4d�

B. The basis of path classes

The elements sn, un, cn, en generate the groupoid but they
are not a minimal generating set, i.e., they are not all re-
quired to form a basis of path classes. As shown in Ref. �2�,
a basis can be formed by including only sn�−��n���,
un�−��n���, cn�−��n�D�, and en�0�n���.

As already stated, the line of initial conditions we chose is
homotopic to c0e0. The Poincaré map M acts on the decom-
posed path class l0=e0c0 to advance the indices of each basis
factor in turn, e.g., l1=M�l0�=M�e0c0�=e1c1. The forward
iterates of l0 will automatically be expressed in the basis until
we reach M�lD�=eD+1cD+1. The factor cD+1 is not in the basis,
but it can be decomposed into basis elements through a
lengthy “unwinding” process, which can be extracted from
Fig. 7 for the case D=3:

c4 = �e3
−1c3

−1��e2
−1c2

−1��e1
−1c1

−1�u0
−1

� e0�e1c1��e2c2��e3c3�s4. �5�

This is explained in greater detail in Ref. �2�, in which the
following formula for arbitrary D is obtained:

M�cD� = F−1u0
−1e0FsD+1, �6�

where

F = �c1e1��c2e2� ¯ �cDeD� . �7�

The product F itself can be shown to map forward as

M�F� = e1
−1c1

−1u0
−1e0FsD+1eD+1. �8�

C. Symbolic representation of escape

The above algebra generates a symbolic basis expansion
for all forward iterates ln=Mn�l0� of the path class for the
line of initial conditions. Moreover, the path class ln passes
through the escape lobe E0 once for every occurrence of u0
or u0

−1 in its basis expansion. This is clear from a plot of the
tangle. The segment U0 bounds E0 on the outside. Therefore,
any segment of Ln that has mapped from inside the complex
to a curve in class u0 must therefore cross E0, and thereby
generate a segment that escapes on the nth iterate. This is
true for either u0 or u0

−1, which determines whether Ln travels
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clockwise or counterclockwise around the hole H0. Thus, this
algebraic representation yields a topologically forced set of
intersections of Ln with E0; i.e., it gives a minimal required
set of escape segments.

The algorithm for generating this minimal set is summa-
rized by the following.

�1� Decompose l0 in the basis.
�2� Iterate this decomposition for l0 forward N times, ap-

plying Eqs. �4�, �6�, and �8� �or alternatively Eqs. �9� below�.
Cancel any products aa−1.

�3� Each un or un
−1 factor �n�0� in the decomposition of

lN corresponds to a segment that escapes in N−n iterates.
�4� The relative positions of the un factors in the expan-

sion of lN are the same as the relative positions of their cor-
responding escape segments along L0.

This algorithm can be simplified further. All segments
en�n�0� and sn�−��n��� can be eliminated from the al-
gebraic process, because they never spawn any u0 segments,
and because their omission does not lead to any false cancel-
lation of factors. Thus, the dynamical equations needed in
step 2 of the algorithm reduce to

M�un� = un+1, − � � n � � , �9a�

M�cn� = cn+1, n � D , �9b�

M�cD� = F−1u0
−1F , �9c�

M�F� = c1
−1u0

−1F . �9d�

In Ref. �2� it is shown that at sufficiently large N, the algo-
rithm implies the following two rules.

Epistrophe continuation rule. Every segment in the mini-
mal set that escapes at N−1 iterates has beside it a segment
that escapes at N iterates. This is the origin of epistrophes in
the escape-time plot.

Epistrophe start rule. Every segment in the minimal set
that escapes at N−	 iterates �	=D+1� spawns on both sides
a segment that escapes at N iterates. Each of these segments
begins an epistrophe that converges toward the spawning
segment.

The algorithm and the two rules predict only a minimal
topologically forced set of escape segments. They do not
predict or explain any others. In fact other escape segments
typically do occur, and they are caused by additional twisting
and mangling of L0 at higher iterates of the map. The de-
scription of all escape segments would require not only the
minimum delay time D, but also an infinity of other param-
eters describing the topology of the tangle.

VI. ANALYSIS OF THE ESCAPE-TIME PLOT

We now analyze the escape-time plot for the vase �Figs. 8
and 9�. As noted in Sec. IV B, for the parameters considered
here, the intersection between C6 and E−6 yields D=11 �Fig.
6�. We choose the location of the source of particles to be at
q=0.091 13, so that the resulting line of initial conditions L0
passes through the points Q0 and Q−1 on the SOS. Conse-
quently, l0=c0e0 as in Eq. �3� and Fig. 7. �For other lines of
initial conditions, see Ref. �2�.�

We apply the preceding algorithm, ignoring all en and sn
segments, to obtain

l0 = c0, �10a�

l1 = c1, �10b�

l2 = c2, �10c�

]

l11 = c11, �10d�

l12 = F−1u0
−1F , �10e�

l13 = F−1u0
−1c1u1

−1c1
−1u0

−1F . �10f�

The first u0 factor occurs at iterate 12, signifying one
escape segment on that iterate. The next iterate l13 has a u1

−1

and two u0’s, corresponding to the one segment already
found on iterate 12 and two new segments on iterate 13.
Continuing this iteration, one may verify by hand that l25
contains the following u factors in order:

u0,u1, . . . ,u11,u0
−1,u12,u0;

u1
−1,u0

−1,u13
−1,u0,u1,u0

−1,u12
−1,u0,u11

−1,u10
−1, . . . ,u0

−1. �11�

As stated earlier, each un in this list is a segment that arrived
in the escape lobe E0 on the i=25−n iterate of the map. This
algorithm predicts many of the escape segments seen in
Fig. 9. For example, u0 ,u1 , ¯ ,u11 together with u12 are part
of an epistrophe which begins on the thirteenth iterate. On

FIG. 9. �Color online� Escape segments in the minimal set are
labeled according to their factors in l25. In expression �11�, each u0

represents an escape segment that occurs on the 25th iterate, and
each un for n�0 represents a segment that escapes on iterate
i=25−n. Thus the segments in the epistrophe that begins near
p=−0.5 at i=13 are labeled u12,u11, . . . ,u0. On either side of the
first u12 in expression �11� is a u0, and these represent the first
segments of the epistrophes that converge on either endpoint of the
segment labeled u12. Similarly, u13 is a segment near p= +0.49 that
escapes on iterate i=12. On either side of u13 in expression �11� is
both a u0 and a u1, which are the first two segments of the epistro-
phes that converge upon u13.
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either side of u12 is a u0
−1 and a u0 segment, which escape at

i=25. These u0
−1 and u0 segments are the beginnings of two

new epistrophes converging upon u12. This agrees with the
epistrophe start rule, which states that an epistrophe must
begin 	=12 iterates after the segment upon which it con-
verges.

Comparing expression �11� to Fig. 9, we find that all seg-
ments predicted by the topological algorithm are present in
the numerical computation. All segments before the semico-
lon in expression �11� occur in the upper part of Fig. 9, and
all segments after the semicolon occur in the lower part of
Fig. 9.

On the other hand, some escape segments shown in Fig. 9
are not part of the minimal set, and cannot be predicted from
the present topological arguments. For example, every es-
cape segment in the interval −0.48� p� +0.47 is not part of
the minimal set. We see two large groups of such escape
segments marked by asterisks: a set of six near p=−0.47 and
another set near p= +0.45. Note that they are the largest
segments in the range i=23, . . . ,26.

The “epistrophe theorem” proved in Ref. �1� asserts that
an epistrophe must converge upon each end of every escape
segment. However, except in the minimal set, we cannot pre-
dict when these epistrophes begin. Scrutiny of the upper
parts of Fig. 9 indicates that even in the unpredicted parts of
the figure, epistrophes often begin 12 iterates after the seg-
ment upon which they converge.

We have used the word “strophe” to refer to segments that
are not part of the minimal set, i.e., are not predicted by this
topological analysis. The present methods permit the exis-
tence of strophes, but they tell us nothing about them—they
do not tell us whether the strophes form repeating patterns or
what patterns might be present. We have recently succeeded
in generalizing the method of homotopic lobe dynamics to
account for such additional strophe structures �11�. The ap-
plication and development of this new method is work in
progress.

VII. THE PULSE TRAIN

For definiteness, we take the vase to be a microwave cav-
ity, with one unit of length equal to one meter and one unit of
time equal to 3.3 ns. We consider a pulse of radiation from a
source at x=0.0466, y=0.0739 with a uniform distribution in
p=sin �, where � is the angle of the ray from the normal. We
numerically compute the rate at which microwaves strike the
detector at x=1.5 as a function of time. We then convolve
this time spectrum with a Gaussian of width 0.1 ns. This
width is intended to model the initial duration of the pulse,
plus cavity dispersion �if any�, plus measurement uncertainty
in the detector.

The resulting time spectrum is shown in Fig. 10. Near t
�2 is a large “prompt” pulse consisting of trajectories that
begin on the two intervals of L0 outside the complex. These
intervals are labeled “regular scattering” in Fig. 3. They in-
clude whispering gallery trajectories which run around the
convex part of the boundary of the vase. In addition, they
include trajectories that escape without any bounces from the
boundary, as well as trajectories that may have a large num-

ber of bounces but pass through the neck of the vase without
being turned back.

Near t�5 units is a pulse arising from the epistrophes that
begin at iterates 12 and 13. The trajectories approach the
neck but are turned back, and then escape when they ap-
proach the second time. Near t�7 units is a pulse associ-
ated with the strophes and epistrophes near iterate 23. The
corresponding trajectories have been turned back twice by
the neck of the vase before escaping on their third approach.

For the parameters chosen, pulses arising from individual
escape segments within an epistrophe are not fully resolved,
but rather overlap to form the large pulses in Fig. 10. This
contrasts with the hydrogen computations in which some
pulses from individual escape segments were resolved �3,4�.

VIII. CONCLUSIONS AND FUTURE WORK

The vase was conceived as a simple and experimentally
accessible system having trajectories that are analogous to
those that occur in the ionization of hydrogen in parallel
electric and magnetic fields. The most important aspect of
the dynamics is the presence of a periodic orbit dividing
surface and its associated homoclinic tangle. Unstable peri-
odic orbits and their homoclinic or heteroclinic tangles occur
generally in the theory of chaotic transport and in the modern
theory of transition states �22�. The time required for a par-
ticle to escape from such a system is a sensitive function of
initial conditions, and the escape-time plot shows fractal
structure. We have computed the escape-time plot for the
vase, and we have used the topological methods developed
in Ref. �2� �homotopic lobe dynamics� to analyze and inter-
pret the fractal structure of this plot.

There is an alternative way to observe the fractal charac-
ter of the escape dynamics. Instead of using a burst of pho-
tons and measuring the time spectrum, one could use a fixed-
frequency continuous source and a small �pointlike� detector
to measure interferences. Each trajectory going from source
to detector carries an associated wave, and the phase of this

FIG. 10. �Color online� The current striking the detector at the
vertical line x=1.5, plotted as a function of time after the initial
burst of radiation. For clarity, the pulses after time 5 are reproduced,
expanded by a factor of 12.
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wave is proportional to the length of the path. Varying the
frequency of the source, the signal at the detector would be a
superposition of sinusoidal oscillations, and Fourier transfor-
mation would recover the time spectrum of orbits from the
source to the detector. Calculations of this type are now be-
ing carried out for various vase-shaped enclosures.
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