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ABSTRACT

Whole and sectioned otoliths, sectioned dorsal fin spines, sectioned pectoral fin rays, and 
stained vertebral centra from 60 fish were compared to determine the best method for 
ageing Spanish mackerel (<Scomberomorus maculatus) in the Chesapeake Bay. Structure 
growth was proportional to fish growth for all five calcified structures, but the growth of 
the vascular core in dorsal fin spines may obliterate early growth history. For otoliths, 
tin spines, and vertebrae, the number of rings on each structure increased with body size, 
but the number o f marks on pectoral fin ray sections was poorly related to body size. In a 
larger comparison, presumed ages from whole and sectioned otoliths were well correlated 
(r=0.91, n=509, p=0.0001), but whole otoliths underaged relative to sectioned otoliths for 
fish older than three. Whole otoliths were adequate for ageing young fish, but sectioned 
otoliths are better for ageing old fish and therefore for estimating growth and mortality.

Sectioned otolith ages were validated using ages-pooled plots of the monthly percent of 
otolith sections with zero marginal increment, and using one-way ANOVA and plots to 
evaluate differences between mean monthly marginal increments for all ages pooled, and 
for each presumed age group. Both ages pooled analyses indicated that annuli formed 
once per year with peak annulus formation in May, but examination of individual age 
groups revealed that age-one fish dominated pooled analyses. One annulus was formed 
per year in May-June for one, three, and four year old fish. Otoliths assigned age two 
appeared to form annuli in June or July during the period of Spanish mackerel residence 
in the Bay, although marginal increment analysis also indicated potential "annulus" 
formation in March and October.

A total of 4,194 Spanish mackerel was collected from Chesapeake Bay fisheries in 1988 
and 1993-1995 to determine if  a strong year class explained the recent period of high 
commercial landings, 1986-1995. Ages were based on 1,369 sectioned otoliths. Older, 
larger Spanish mackerel were more common in Chesapeake Bay in May through July of 
1988 and 1993-1995, while small young-of-the-year fish did not appear in the fishery 
until August and September. Age compositions were very different between 1988 (ages 0 
through 3 years) and 1993 (ages 0 through 6 years). Spanish mackerel landings in 1988 
and 1993 were supported by different year classes. The 1987 year class was stronger than 
all other year classes in the 1988 and 1993 landings. Growth in Spanish mackerel was 
rapid and highly variable, with much overlap in size at age. Female Spanish mackerel 
were larger than males at all ages except 0, and von Bertalanffy growth models indicated 
that female Spanish mackerel grew to larger maximum lengths than males. Von 
Bertalanffy parameters were L„ = 610.9 mm, K = 0.335, and to= -1.1 for sexes pooled;
L„ = 720.1 mm, K = 0.247 and to = -1.36 for females, and L„ = 483.2 mm, K = 0.421 
and to = -1.32 for males. Total mortality (Z) was between 0.53 and 0.58 for the entire 
period, based upon a maximum age of 8 years.



Plate 1. Spanish mackerel, Scomberomorus maculatus.
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Age and growth of Spanish mackerel, Scomberomorus maculatus, 

in the Chesapeake Bay region



General Introduction

The Spanish mackerel, Scomberomorus maculatus, is a member of the family 

Scombridae, which also includes "true" mackerels {Scomber), bonitos (Sarda), and tunas 

(Thunnus; Nelson, 1994). Scombrids are predatory, surface-schooling fishes with 

pelagic eggs and larvae (Royce, 1972). Adaptations for high speed swimming in a 

pelagic habitat characterize the family: all have streamlined bodies with finlets behind 

the anal and second dorsal fins, a lunate caudal fin (Robins et al., 1986), and a narrow, 

keeled caudal peduncle (Collette & Russo, 1978).

Worldwide, 18 species of Scomberomorus occupy tropical and warm temperate 

continental shelf waters. In the western Atlantic, S. maculatus ranges from Massachusetts 

to the Florida Keys, and throughout the Gulf of Mexico to the Yucatan peninsula 

(Collette & Russo, 1984). Separate populations are thought to exist in the Gulf o f 

Mexico and along the U.S. east coast based upon morphometries (Collette & Russo,

1984) and hemoglobin phenotypes (Skow & Chittenden, 1981). Spanish mackerel 

migrate north seasonally along the U.S. east coast from wintering areas off southern 

Florida. They appear off the Carolinas in March-April, in the Chesapeake Bay in May, 

and in New York-Rhode Island waters by July (Earll, 1882; Beaumarriage, 1970). They 

are resident in the Chesapeake Bay from May-September, and migrate out of the Bay by 

mid-October (Earll, 1882; Chittenden et al., 1993a). Spanish mackerel are "multiple 

spawners" (Hunter & Macewitz, 1985) which spawn repeatedly over a protracted season



throughout their range in the Atlantic. Spawning occurs from April through September in 

Florida (Powell, 1975), August through September in New York-New Jersey (Earll,

1882), and June through August in the Chesapeake Bay region (Cooksey, 1996).

Formal landings data for Spanish mackerel do not exist before 1879, although 

anecdotal evidence indicates that the east coast commercial fishery developed in New 

Jersey in 1873, and in Chesapeake Bay in 1875, coincident with the introduction of the 

pound net in these areas (Earll, 1882). Chesapeake landings peaked in 1880 at 1.6 

million pounds, with 1.8 million pounds total landed in the United States that year (Earll, 

1882). Local landings have not approached that level since, indicating that the initial 

fishery benefitted from a virgin stock (Chittenden et al., 1993b). Chesapeake landings 

gradually declined to below eight hundred thousand pounds in 1890, to about five 

hundred thousand pounds in 1900, and to below one hundred thousand pounds by 1910 

(Chittenden et al., 1993b). By 1920, most east coast landings were in Florida (Trent & 

Anthony, 1978), a trend which continues to this day (United States National Marine 

Fisheries Service (NMFS), 1950-1994).

Although Florida landings have been on the order of a million pounds or more 

annually, Chesapeake Bay Spanish mackerel landings have fluctuated markedly over the 

past sixty years, ranging from lows below 5,000 lbs to peaks of 839,000 lbs in 1937 , 

(Lyles, 1969) and 514, 000 lbs in 1990 (NMFS, 1991; Chesapeake Executive Council, 

1994). Furthermore, while nominal effort in terms of number of pound nets has steadily 

decreased since 1930 from over two thousand to less than 250, catches increased in the 

period 1986-1990, so that the recent CPUE greatly exceeds that of the 1937 landings peak
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(Chittenden et al., 1993b). CPUE is a more reliable index of changes in abundance than 

raw landings data because it standardizes the effects of fishing effort on landings 

(Shepherd, 1988; Gulland, 1983; Royce, 1972). Therefore, the CPUE data indicate that 

Spanish mackerel may be more abundant in Chesapeake Bay now than they have been 

since 1929. The period of high landings since 1986 may reflect a combination of 

increased escapement from the Florida fishery due to recently implemented regulations, 

and the production of a strong year class in the mid-1980's (Chittenden et al., 1993b).

One factor contributing to these fluctuations could be radical changes in year class 

strength, with one very strong year class supporting high landings throughout its lifespan. 

No data on the age composition of Spanish mackerel in Chesapeake Bay have ever been 

collected, and no general biological data on this species north of Cape Hatteras have 

been collected since the 1880's. Therefore, the objectives of this thesis are twofold: first, 

to describe age, growth, and mortality of Spanish mackerel in Chesapeake Bay, so that 

these life history parameters are available for management; and second, to test the 

hypothesis that the present abundance peak reflects a dominant year class.



Chapter 1

Comparison of calcified structures for ageing Spanish mackerel

5



Introduction

There has been disagreement over the most effective method for ageing Spanish 

mackerel, and the closely related king mackerel, Scomberomorus cavalla, which may 

result from geographic differences in interpretability of calcified structures. Although 

Klima (1959), Powell (1975), and Fable et al. (1987) used whole sagittal otoliths to 

determine ages in Florida Spanish mackerel, Schmidt et al. (1993) used transverse 

sections o f otoliths to age Atlantic coast Spanish mackerel. Fable et al. (1987) found 

97% agreement between whole and sectioned otolith ages and concluded that whole 

otoliths were adequate for ageing Spanish mackerel from Florida, where Gulf and 

Atlantic stocks mix. Similar comparisons of whole and sectioned otolith ages for king 

mackerel from both the Gulf and Atlantic, and from the Gulf o f Mexico only, also found 

97% and 87% agreement between structures, respectively (Johnson et al., 1983;

Manooch et al., 1987). However, agreement was only 47% between whole and sectioned 

otoliths for Atlantic coast king mackerel (Collins et al., 1988). No comparison o f whole 

and sectioned otolith ages exists for Atlantic coast Spanish mackerel, especially those 

caught north of Cape Hatteras, NC, a major zoogeographic boundary (Perry, 1985;

Robins et al., 1986). Aside from scales, which were evaluated and dismissed by Klima 

(1959), no calcified structures other than otoliths have been rigorously examined in any 

Spanish mackerel population, even though fin spines, fin rays, and vertebrae have all been 

used to age other scombrids (Johnson, 1983; Beamish, 1981; Prince et al., 1985).

6
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Beamish and McFarlane (1983) have recommended that different ageing 

techniques be evaluated for precision and accuracy in each population to be examined, 

because readability of calcified structures may vary geographically, and because 

improved ageing methods may change perceptions of population dynamics. The 

importance of a preliminary comparison was demonstrated by Lowerre-Barbieri et al. 

(1993), who found weakfish (Cynoscion regalis) otolith sections to be far superior to the 

traditionally used scales in terms of precision and accuracy. Estimates of weakfish 

growth and mortality rates based upon scale ages, which were underestimates compared 

with sectioned otolith ages, may have led management to underestimate the vulnerability 

of weakfish populations to overfishing. Because no previous studies of Spanish mackerel 

age and growth exist for populations north of Cape Hatteras, NC, it was necessary to 

determine the most effective method for ageing fish in the Chesapeake Bay region.

The objectives of this study were twofold: first, to evaluate the potential o f 

otoliths, fin spines, fin rays, and vertebrae for ageing Spanish mackerel; and second, to 

formally compare ages estimated from whole and sectioned otoliths, the previously used 

methods. The following criteria, slightly modified from Hill et al. (1989), were used to 

address the first objective, initial evaluation o f calcified structures: presence o f potential 

annual marks, proportionality of structure growth to body growth, increasing number of 

presumed annual marks with structure growth, precision of mark counts in repeated 

readings within and between readers, reader confidence in assigned ages, agreement 

between presumed ages assigned by different structures, and efficiency of processing. To 

address the second objective, a detailed comparison of presumed ages and age
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compositions estimated from whole and sectioned otoliths was conducted using a large 

random sample of fish from an entire year's collection.



Methods 

Collection and Preparation of Calcified Structures

Spanish mackerel were collected every two weeks from May to September of 

1993 and 1994 by purchasing a 50 lb box of each available market size grade from 

commercial pound net, gill net, and haul seine fishermen in Chesapeake Bay. Fork length 

(mm), total weight (g), and sex were recorded, and sagittal otoliths, spinous dorsal and 

soft-rayed pectoral fins were removed from each fish. Vertebral columns were also 

collected from a random sample o f approximately 25% of the fish in each 50 lb. box. 

After removal, otoliths were stored dry while fins and backbones were stored frozen.

In preparation for further processing and reading, otoliths were soaked in bleach 

for 30 minutes, rinsed with hydrogen peroxide to neutralize bleach, rinsed three times 

with distilled water to remove all cleaning agents, and allowed to air dry. The right and 

left otoliths of each fish were assigned at random to be read whole or to be sectioned. 

Otoliths to be read whole were stored dry until reading. Otoliths to be sectioned were 

mounted sulcus side down on cardboard using thermoplastic cement. Transverse sections 

were made using a Buehler Isomet jeweler's saw with two blades separated by a spacer 

less than 0.5 mm wide. Sections were then mounted on microscope slides using 

thermoplastic cement and polished until the core and annuli were clearly visible.

Specific fin elements and vertebrae were chosen for the analysis on the basis of 

relative size and readability as determined by preliminary comparisons of all spines, rays,

9
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and vertebrae within two individual fish. The fourth dorsal fin spine and the fourth 

pectoral fin ray were selected because they were large enough to be handled and prepared 

easily, but the size of the interior vascular core was small relative to the cores o f the first 

through third fin elements. Dorsal spines and pectoral rays numbered fifth and higher 

were too small and fragile to handle even with forceps. Caudal vertebrae were judged 

more readable than cervical or thoracic vertebrae. The 47th vertebra was selected 

because it was the largest of the more readable caudal vertebrae. Once chosen, the same 

numbered fin spine, ray, and vertebra was collected from each fish and prepared for 

reading.

Dorsal fin spines and pectoral fin rays were boiled in water for approximately 2 

minutes and wiped clean with a cloth to remove excess tissue. They were then allowed to 

air dry, mounted on cardboard with thermoplastic cement, and cross-sectioned 3-5 mm 

from the base using the same equipment as described above for otoliths. Fin spine and 

ray sections were mounted on microscope slides with thermoplastic cement and polished 

to remove excess cement from their surfaces.

Vertebral columns were boiled in water for 3-5 minutes to remove excess tissue 

so that vertebrae could be accurately counted; then the 47th vertebra was separated from 

the column. Remaining tissue was peeled off the 47th vertebra and projecting spines and 

ribs were removed. Vertebrae were cleaned using bleach, hydrogen peroxide, and 

distilled water as described above for otoliths, and then stained by soaking for 45 minutes 

in a 0.05% solution of crystal violet (Johnson, 1979).
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Initial Evaluation of Calcified Structures

Sixty Spanish mackerel between 239 mm and 608 mm fork length (FL) were 

selected from the 1,447 fish collected between May and September of 1994. To include 

as many age groups as possible in this analysis, equal numbers of fish were drawn from 

each of four fork length-based strata (200-299 mm, 300-399 mm, 400-499 mm, and 500+ 

mm FL). Whole and sectioned otoliths, the fourth dorsal fin spine, the fourth pectoral fin 

ray, and the 47th vertebra from each o f these fish were used in the comparison. Before 

preparation and analysis, all calcified structures were assigned random numbers. 

Processing time was recorded for each calcified structure, and mean processing time by 

calcified structure was used to evaluate efficiency of preparation.

To determine the relationship between fish growth and calcified structure growth, 

several types of linear, areal, and volumetric measurements were made on each structure 

for comparison with fish fork length. Whole otoliths were weighed to the nearest 0.001 

grams using an electronic balance. Whole otolith radius was measured from the focus to 

the posterior edge, and total length was measured from the rostrum to the posterior edge 

using an ocular micrometer (Figure la.). Linear and areal measurements for sectioned 

otoliths, dorsal spines, and pectoral rays were made using a compound video microscope 

with the Biosonics Optimas image analysis system. Sectioned otolith radius was 

measured from the center of the core to the distal edge of the ventral lobe, generally 

following the sulcal axis (Figure lb.), and section area was calculated. Dorsal fin spine 

and pectoral fin ray section radius was measured from an estimated central point to the 

proximal edge of the section along the lateral axis (Figures lc-d), and total area o f
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pectoral ray and dorsal spine sections, as well as area of dorsal spine cores was 

calculated. Vertebral centrum radius and diameter were measured on the posterior face of 

each stained centrum using an ocular micrometer (Figure le.). Linear regression was 

used to determine if relationships between fish fork length and calcified structure size 

were significant and increasing (Zar, 1984; SAS Institute Inc, 1988). Fits of the data to 

more parameterized (ie. quadratic and cubic) models were not attempted for the 

relationship of fish size to calcified structure size because predictive ability for back 

calculating ages, etc. was not a priority in this initial evaluation.

To establish the presence of presumed annuli on each calcified structure and to 

evaluate the relationship between calcified structure growth and number of presumed 

annuli, calcified structures were examined and presumed annulus counts were compared 

with the radial measurements described above. Whole otoliths were placed sulcus side 

down in glycerine and examined on a black background with reflected light under a 

dissecting microscope at 6X. Sectioned otoliths, dorsal fin spines, and pectoral fin rays 

were examined under a compound microscope using transmitted light and a polarizing 

filter at 2.5 to 20X, depending upon the size of the structure. Stained vertebral centra 

were examined on a white background under reflected light with a dissecting microscope 

(6X). Linear regression was used to determine if the relationship between calcified 

structure size and number of presumed annuli was significant and increasing (Zar, 1984; 

SAS Institute Inc, 1988).

Precision and confidence in repeated readings were used to evaluate the general 

clarity of presumed annual marks on each calcified structure. To estimate within and
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between reader precision, all calcified structures were examined twice by two different 

readers, with at least one week between repeated readings. Readings of calcified 

structures were done in a randomized order and without knowledge of fish size or date of 

capture. The confidence level for each reading was assigned by the reader using a scale 

o f 1 (very low confidence) to 5 (very high confidence). Precision and differences 

between readings were evaluated by simple percent agreement, percent agreement ±  one 

presumed annulus, average percent error (APE; Beamish & Fournier, 1981), and 

coefficient of variation (CV; Chang, 1982). Between reader percent agreement was 

calculated by averaging percent agreement between readers for the first reading and 

percent agreement between readers for the second reading.

To evaluate agreement between calcified structures from the same fish, 

presumed ages were compared using Spearman's rank correlation (Zar, 1984; SAS 

Institute Inc, 1988). Presumed age was defined as the number of presumed annuli on a 

given calcified structure for the purposes of this study. Agreement between structures 

was also calculated as simple percent agreement, percent agreement ± one presumed 

annulus, and using a test of symmetry as described in Hoenig et al. (1995). Individual 

calcified structures that showed no agreement in four readings were not included in 

between structure comparisons.

Detailed Comparison of Sectioned vs. Whole Otoliths

Presumed ages from sectioned and whole otoliths were compared in detail using 

an experiment designed to simulate "real world" production ageing. To represent only the 

most common age classes in proportion to their occurrence, a random sample o f 545
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otoliths was examined from the fish captured in 1993 which ranged in length from 192 to 

658 mm FL. As in the preliminary evaluation of calcified structures, the right or left 

otolith was selected at random from each fish; however, the selected otolith was both 

aged whole and then sectioned and aged again, so that comparisons of whole and 

sectioned ages were from the same otolith. This design eliminated the potential for 

presumed age disagreements arising from differences between right and left otoliths. To 

re-evaluate precision in this larger experiment, a subsample of 133 sectioned otoliths was 

reread, with one month between repeated readings.

Whole and sectioned otolith presumed ages were compared using Spearman's rank 

correlation (Zar, 1984; SAS Institute Inc, 1988). Agreement between whole and 

sectioned otolith presumed ages was calculated as simple percent agreement, percent 

agreement ± 1 presumed annulus, and assessed using Hoenig et al.'s (1995) test o f 

symmetry as described above. Differences between presumed age compositions from 

whole vs. sectioned otoliths were assessed with a Kolmogorov-Smimoff two sample test 

(Worthington et al., 1995; Sokal & Rohlf, 1984). Differences between whole and 

sectioned otolith presumed ages were also examined for trends by fish fork length and 

sex.



Results 

Initial Evaluation of Calcified Structures

All structures had marks which could be interpreted as annual. (Figures la-e.) 

Whole otolith annuli were identified as concentric wide relatively translucent "summer" 

bands bordered by narrow opaque "winter" bands in the posterior field of the otolith 

which were continuous around the otolith to the rostrum and anterostrum. The focus was 

usually clearly visible as a transparent point near the center of the distal face of whole 

otoliths. Sectioned otolith presumed annuli were identified as wide transparent areas 

bordered by narrow opaque bands originating at the sulcus and running parallel to the 

edge of the section. Marks visible on both the ventral and dorsal halves of the section 

were counted. The otolith core was usually identifiable as an opaque area medial to the 

sulcus acousticus on sections. Dorsal spines had concentric wide transparent areas 

bordered by very narrow opaque rings which were identified as annuli if they were 

continuous around the section. No growth center was identifiable in spines due to the 

vascularized core, so a growth center had to be estimated for radial measurements. 

Pectoral rays are composed of two asymmetrical elements which frequently became mis- 

oriented during sectioning; alternating transparent and opaque bands often appeared on 

each element in the section. Ages were assigned lower confidence if bands appeared on 

only one element. There was no growth center on fin ray sections, so it was estimated for 

radial measurements. Vertebral centra had visible presumed annuli only when stained

15
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Figure 1. Presumed annuli on calcified structures from a 575 mm FL female Spanish 

mackerel, Scomberomorus maculatus, caught in Chesapeake Bay 5 July, 1994. Arrows 

point to marks counted as presumed annuli. 

la. Whole otolith under reflected light.

lb. Sectioned otolith in transmitted light with a polarizing filter.

lc. Sectioned dorsal fin spine in transmitted light with a polarizing filter.

Id. Sectioned pectoral fin ray in transmitted light with a polarizing filter, 

le. Stained vertebral centrum under reflected light.
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with crystal violet. Concentric narrow indentations in the overall uniform surface of the 

centrum were counted as annuli if they were continuous around the centrum. The growth 

center was clearly visible as a hole through the center of the bone on all vertebral centra.

Calcified structure size was directly related to fish size for all five structures, 

indicating that structure growth was proportional to body growth; however, the area of 

the vascular core in dorsal fin spines was also proportional to fish size, indicating that the 

growth of the vascular core in dorsal fin spines may obliterate early growth history. All 

regressions of structure size on fish fork length, including dorsal spine core area, were 

significant at p<0.001 and all slopes were positive (Table 1). A regression o f spine core 

area on fish size indicates that fish over 500 mm FL have a spine core area which equals 

or exceeds the total spine area of 300 mm FL fish (Figure 2), suggesting that early growth 

history becomes lost as fish grow. Although all r  values were high, regressions of 

section area, core area, or whole structure diameter on fish length had much better r  fits 

than regressions of structure radius on fish length.

For all calcified structures except pectoral fin rays, the number of presumed annuli 

on each structure increased with structure size (Figure 3), and therefore body size. All 

regressions o f otolith, spine, and vertebral radius on number of presumed annuli were 

significant at pO.OOl and increasing (Table 2). Sectioned otoliths had the best r  fit 

(0.71), followed closely by whole otoliths (r=0.68), vertebrae (r=0.61), and dorsal spine 

sections with a poorer fit (r= 0 .3 1). By contrast, the number of presumed annuli on 

pectoral fin ray sections was poorly related to ray size, and therefore body size.
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Table 1. Regression equations and r2 for relationships between calcified structure 

growth and fish growth for Spanish mackerel, Scomberomorus maculatus. All equations 

are significant with p < 0.001. WOWT = whole otolith weight, WOTL = whole otolith 

total length, WORAD = whole otolith radius, SOAR = sectioned otolith area, SORAD = 

sectioned otolith radius, SPAR = sectioned dorsal spine total area, SPRAD = sectioned 

dorsal spine radius, RAAR = sectioned pectoral ray area, RARAD = sectioned pectoral 

ray radius, VTDIAM = vertebral centrum diameter, VTRAD = vertebral centrum radius, 

FL = fish fork length.

Calcified Structure Equations r2

Whole otolith WOWT = -0.0133 + 7.69*10° (FL) 0.94
WOTL = 1.56 + 0.0154 (FL) 
WORAD = 0.861 + 6.02* 10° (FL)

0.93
0.88

Sectioned otolith SOAR = -0.178 + 4.02* 10'3 (FL) 
SORAD = 0.301 + 1.42*10'3 (FL)

0.87
0.69

Dorsal spine SPAR = -0.371 +2.08*10° (FL) 
SPRAD = -0.0581 + 1.12*10° (FL)

0.93
0.84

Pectoral ray RAAR = -0.640 + 3.23*10° (FL) 
RARAD = -0.0918 + 2.31*10° (FL)

0.87
0.75

Vertebral centrum VTDIAM = -1.21 +0.0178 (FL) 
VTRAD = -0.422 + 7.74* 10° (FL)

0.97
0.92
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Figure 2. Regressions of dorsal spine total area and vascular core area on fork length in 

Spanish mackerel, Scomberomorus maculatus. Vascular core size in fish over 500 mm 

FL exceeds dorsal spine size of 300 mm FL fish, indicating the potential for growth 

increment resorption.
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Figure 3. Relationship between the number of presumed annuli and fish length in whole 

otoliths, sectioned otoliths, dorsal fin spines, pectoral fin rays, and vertebral centra of 

Spanish mackerel, Scomberomorus maculatus.



FL 
(m

m
)

600  -

400  -

200

600  -

400  -

200

Whole Otoliths

Sectioned Otoliths

600  -

400

200

Dorsal Spines

600

400  -

200

Pectoral Rays

600  -

Vertebral Centra400  -

200
0 2 4 6

Presumed Age



21

Table 2. Regression equations, p values, and r  for relationships between calcified 

structure size and number of presumed annuli for Spanish mackerel, Scomberomorus 

maculatus. N = number of presumed annuli, WORAD = whole otolith radius, SORAD = 

sectioned otolith radius, SPRAD = dorsal spine radius, RARAD = pectoral ray radius. 

VTRAD = vertebral centrum radius.

Calcified Structure Equation p value

Whole otoliths N = -3.80 + 1.59 (WORAD) 0.0001 0.68

Sectioned otoliths N = -4.56 + 7.44 (SORAD) 0.0001 0.71

Dorsal spines N = -0.657+ 6.12 (SPRAD) 0.0001 0.31

Pectoral rays N = 0.410+ 1.24 (RARAD) 0.0309 0.09

Vertebral centra N = -0.430 + 0.375 (VTRAD) 0.0001 0.61
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Regression analysis showed a very poor relationship of number of presumed annuli to ray 

radius, with only marginal significance at p=0.031 and extremely poor fit to a linear 

model. The r2 of 0.09 indicated that the number of rings had little to do with fin ray size 

(Table 2). For example, the highest count of 4 presumed annuli was read from one o f the 

smallest fin rays in the sample (Figure 3).

Sectioned otoliths were most likely to identify older fish, and vertebrae were least 

likely to do so. Sectioned otoliths had the greatest maximum presumed age of six on the 

largest fish, while stained vertebrae had a maximum of only three presumed annuli even 

for the largest fish (Figure 3). Distributions o f presumed ages from each structure also 

indicated that sectioned otoliths identified more fish over presumed age 3 than any other 

calcified structure, whereas vertebrae identified only presumed age three and under with 

presumed age two being most common (Figure 4). Presumed age one was most common 

in all other calcified structures except for whole otoliths, which found presumed age zero 

most common. Whole otoliths and dorsal fin spine sections gave maximum presumed 

ages o f five for the larger fish in the sample, while pectoral fin ray sections had a 

maximum of four presumed annuli on one of the smallest fish.

Clarity of presumed annuli on Spanish mackerel calcified structures was poor, as 

indicated by highly variable but generally low precision and confidence in readings for 

all structures. In general, reader one read otoliths and vertebrae most consistently, while 

reader two read vertebrae and fin elements most consistently. For reader one, sectioned 

otoliths had the highest within reader precision and confidence (79.3% agreement, Table 

3; 3.2 confidence, Table 4). Reader one was nearly as precise with vertebrae (78.3%
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Figure 4. Frequency distributions of presumed ages (years) from whole otoliths, 

sectioned otoliths, dorsal fin spines, pectoral fin rays, and vertebral centra o f Spanish 

mackerel, Scomberomorus maculatus.
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Table 3. Indices of precision overall, and for each reader in two readings of Spanish 

mackerel, Scomberomorus maculatus calcified structures. % Agree = simple percent 

agreement, % Agree ± 1 = percent agreement allowing for deviations of + 1 presumed 

annulus, APE & CV = average percent error and coefficient of variation.

Reader 1

Whole Sectioned Dorsal Pectoral Vertebral
Otoliths Otoliths Spines Rays Centra

% Agree 61.7 79.3
% Agree ± 1  100 100
APE & CV 0.26 0.14

Reader 2

% Agree 51.7 56.9
% Agree ±  1 95.0 98.3
APE & CV 0.39 0.28

57.6 60.0 78.3
93.2 93.3 100
0.22 0.21 0.12

64.4 66.7 78.3
98.3 96.7 98.3
0.20 0.20 0.11
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Table 4. Mean confidence levels assigned to Spanish mackerel, Scomberomorus 

maculatus, age readings by reader and structure.

Reader/ Whole Sectioned Dorsal Pectoral Vertebral
Reading Otoliths Otoliths Spines Rays Centra

Reader 1
First 3.10 3.15 2.47 1.86 2.34
Second 2.97 3.19 2.59 2.10 2.32

Reader 2
First 2.17 1.68 1.97 1.68 2.69
Second 2.08 1.93 2.14 1.90 2.64

Mean 2.58 2.56 2.33 1.89 2.50
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agreement), although mean confidence for vertebrae (2.3) was lower than for sectioned 

otoliths. Whole otoliths, spines, and rays had similar agreement for reader one (61.7% - 

57.6%), although mean confidence varied greatly between pectoral rays (2.0) and whole 

otoliths (3.1). By contrast, reader two had the highest agreement and confidence for 

vertebrae (78.3%, 2.7), intermediate agreement for dorsal spines and pectoral rays (64.4% 

- 66.7%), and lowest agreement for whole and sectioned otoliths (51.6% - 56.9%).

Reader two assigned lowest mean confidence to pectoral ray and sectioned otolith ages 

(1.8). Precision calculated as APE and CV was still generally low, and did not greatly 

change the rank order of structure precision for either reader (Table 3).

Between reader agreement for Spanish mackerel calcified structures was also 

generally low, ranging from 46% to 65% (Table 5). Spanish mackerel dorsal fin spines 

and sectioned otoliths had the highest between reader precision: 65% and 59% agreement 

respectively. Measured by APE and CV, Vertebrae had the least between reader error 

(0.29 APE, 0.31 CV), and sectioned otoliths and dorsal fin spines were nearly equivalent 

(0.35 APE for both, 0.38 and 0.39 CV respectively). Disagreement was highest for whole 

otoliths and pectoral fin rays.

Although overall precision and confidence in interpreting Spanish mackerel 

calcified structures were not high, within and between reader disagreements generally 

changed age by only one year. Percent agreement for reader one increased to 100% for 

whole and sectioned otoliths and vertebrae, and over 90% for fin spines and rays when 

allowing for differences o f + 1 year (Table 3). Similarly, percent agreement for reader two 

increased to over 95% for all structures when allowing for differences of ±1 year (Table
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Table 5. Indices of between reader precision for Spanish mackerel, Scomberomorus 

maculatus calcified structures. % Agree = simple percent agreement, % Agree ±  1 = 

percent agreement allowing for deviations of + 1 presumed annulus, APE = average 

percent error, CV = coefficient o f variation.

Between Whole Sectioned Dorsal Pectoral Vertebral
Readers Otoliths Otoliths Spines Rays Centra

% Agree 45.8 58.6 65.3 47.5 J J . J

% Agree ±  1 90.0 95.7 94.9 91.7 94.2
APE 0.58 0.35 0.35 0.40 0.29
CV 0.64 0.38 0.39 0.45 0.31

% disagreements
exceeding 1 ring 10.0 4.3 5.1 8.3 5.8
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Figure 5. Comparisons of presumed ages (years) from whole otoliths, sectioned dorsal 

fin spines, sectioned pectoral fin rays and stained vertebral centra with sectioned otolith 

presumed ages from Spanish mackerel, Scomberomorus maculatus. The diagonal line 

represents 1:1 agreement. The number of fish each point represents is indicated.
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3). Between reader agreement for all structures also increased to at least 90% when 

allowing for differences of ±1 year (Table 5). Sectioned otolith precision increased to 

95.7%; therefore 37.1% of all sectioned otolith readings differed by one year, while less 

than 5% differed by more than one year. Whole otoliths had the highest proportion of 

greater than one year differences between readers (10%, Table 5).

Both correlation analysis and percent agreement between structures indicated that 

different calcified structures from the same Spanish mackerel generally did not estimate 

the same presumed age, although whole and sectioned otoliths appeared to differ by only 

one year in estimated presumed age. Correlation between sectioned and whole otolith 

presumed ages was much higher (r=0.81, n=38, p=0.0001; Table 6, Figure 5) than 

correlations between any other pair of structures. Whole otolith presumed ages were 

slightly better correlated than sectioned otolith presumed ages with ring counts from fin 

spines and vertebrae. Conversely, ring counts from pectoral rays were completely 

uncorrelated with sectioned otoliths (r=0.18, n=34, p=0.2326) and vertebrae (r=0.28, 

n=39, p=0.0853), and had low correlations with whole otoliths and dorsal spines. Percent 

agreement between structures was generally low, but most disagreements were +1 year. 

Whole and sectioned otoliths agreed only 50% of the time, but allowing for one year 

differences increased agreement to 97.4%; therefore less than 3% of differences 

exceeded one year (Table 6). For other between structure comparisons, differences 

exceeding one year ranged from a low of less than 8% for whole otoliths vs. dorsal spines 

to a maximum of 25% for sectioned otoliths vs. pectoral rays. Agreement between both 

otolith preparations and dorsal spines was generally higher than for other comparisons.
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Table 6. Ring count agreement between Spanish mackerel, Scomberomorus maculatus 

calcified structures. rs = Spearman's rank correlation coefficients, n = number compared, 

p = probability rs = 0, % Agree = percent agreement between structures, % Agree ±  1 = 

percent agreement between structures allowing for deviations of plus or minus one ring.

Sectioned Dorsal Pectoral Vertebral
Otoliths Spines Rays Centra

Whole otoliths vs.
rs 0.81 0.62 0.45 0.71
n 38 39 39 34
P 0.0001 0.0001 0.0037 0.0001

% Agree 50.0 48.7 56.4 41.2
% Agree + 1 97.4 92.3 79.5 88.2

Sectioned otoliths vs.
rs — 0.57 0.18 0.64
n — 46 44 41
P — 0.0001 0.2326 0.0001

% Agree — 34.8 27.3 41.5
% Agree ± 1 — 89.1 75.0 82.9

Dorsal spines vs.
rs — — 0.37 0.56
n — — 46 39
P — — 0.0109 0.0002

% Agree — — 45.7 43.6
% Agree + 1 — — 80.4 84.6

Pectoral Rays vs.
r s — — — 0.28
n — — — 39
P — — — 0.0853

% Agree — — — 33.3
% Agree ± 1 — — — 82.1
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Tests of symmetry showed that disagreements between whole vs. sectioned 

otoliths and whole otoliths vs. vertebrae presumed age comparisons were systematically 

biased (Table 7). Chi-square analysis showed that whole otoliths systematically 

underaged relative to sectioned otoliths for ages exceeding zero, and that vertebrae 

overestimated ages of zero and one year old fish relative to whole otoliths, and 

underestimated ages above three. For all other comparisons, no systematic ageing bias 

was detected by chi-square analysis, indicating that disagreements were randomly 

distributed throughout age classes.

Efficiency of processing, measured as mean preparation time, varied from 1 to 13 

minutes per specimen among Spanish mackerel calcified structures. Because whole 

otoliths required only cleaning before they could be read, their processing was faster and 

easier than for any other structure, averaging one minute per otolith. Structures requiring 

cleaning and sectioning all had mean processing times between 10 and 13 minutes per 

specimen, and cleaning and staining vertebral centra required an average of nine minutes 

per vertebra (Table 8).

Detailed Comparison of Sectioned vs. Whole Otoliths

Presumed ages on whole and sectioned otoliths showed higher correlation and 

agreement in this detailed comparison than in the initial evaluation of calcified structures. 

Ages from whole and sectioned otoliths were well correlated (Figure 6; Spearman's rank 

r=0.91, n=509, p=0.0001). Whole and sectioned otolith presumed ages agreed for 83.3% 

of the fish examined. A Kolmogorov-Smimoff two-sample test found no significant 

difference (p>0.10) between age compositions determined by whole
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Table 7. Chi-square tests of symmetry for ring count comparisons between Spanish 

mackerel, Scomberomorus maculatus calcified structures.

Sectioned Dorsal Pectoral Vertebral
Otoliths Spines Rays Centra

Whole otoliths vs.
X2 12.44 8.98 9.57 14.13
df 7 6 7 7
p value <0.10 <0.25 <0.25 <0.05

Sectioned otoliths vs.
X2 — 8.08 14.25 13.87
d f — 9 12 10
p value — <0.75 <0.50 <0.25

Dorsal spines vs.
x2 — — 11.87 6.00
df — — 11 7
p value — — <0.50 <0.75

Pectoral Rays vs.
x2 — — — 10.75
df — ~ — 7
p value — — — <0.25

32
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Table 8. Mean processing times (minutes) for Spanish mackerel, Scomberomorus

maculatus calcified structures.

Structure Process Mean Time per Specimen

Whole otoliths Cleaning 1.0

Sectioned otoliths Cleaning, sectioning, polishing 10.9

Dorsal spines Cleaning, sectioning, polishing 10.0

Pectoral rays Cleaning, sectioning 13.0

Vertebral centra Cleaning, staining 8.9
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Figure 6. Comparison of whole and sectioned otolith ages (years) from 509 Spanish 

mackerel, Scomberomorus maculatus. The diagonal line represents 1:1 agreement. The 

number o f fish each point represents is indicated.
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and sectioned otoliths; both methods estimate age structures dominated by presumed one 

and two year olds (Figure 7).

Although presumed ages were well correlated, the results o f this detailed 

comparison agree with the initial evaluation of calcified structures in that whole otoliths 

underaged relative to sectioned otoliths. Whole otoliths more often underestimated than 

overestimated sectioned otolith presumed age for all ages over 1 (Figure 6). A test of 

symmetry revealed significant systematic differences in presumed ages assigned by the 

methods (%2=18.48, df = 7, p = 0.01). Disagreements were most dramatic for presumed 

age classes 4 through 6 as identified by sectioned otoliths. The majority (80%, four of 

five) of fish aged six by sectioned otoliths were aged three by whole otoliths. No six 

year olds were identified by whole otoliths.

Differences in presumed ages assigned by whole and sectioned otoliths were sex- 

and length-dependent. In general, males were more likely to be underaged by whole 

otoliths because they grew more slowly and more growth information was contained on 

smaller whole otoliths compared with female Spanish mackerel. Whole otolith presumed 

ages underestimated sectioned otolith presumed ages for male fish over 400 mm FL by 

one to three years (Figure 8). Presumed ages of some male fish over 350 mm FL were 

also underestimated by one year. For female Spanish mackerel, underestimation o f 

presumed age by whole otoliths was less severe and did not occur exclusively over a 

particular size range. However, underestimation was more likely for females over 450 

mm. In the range of 370 mm to 400 mm FL, whole otoliths appeared to overestimate the 

presumed age of females relative to sectioned otoliths (Figure 9). Tests of symmetry by
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Figure 7. Frequency distributions of presumed ages (years) from whole and sectioned 

otoliths o f 509 Spanish mackerel, Scomberomorus maculatus.
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Figure 8. Comparison of whole and sectioned otolith presumed ages (years) by FL for 

210 male Spanish mackerel, Scomberomorus maculatus.
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Figure 9. Comparison of whole and sectioned otolith presumed ages (years) by FL for 

297 female Spanish mackerel, Scomberomorus maculatus.
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sex revealed significant bias between whole and sectioned presumed ages for males over 

one (%2=18.49, df=3, p<0.001), but no significant bias for females (X=5.67, df=7, 

p<0.75).

Sectioned otoliths showed very high precision in repeated readings. Precision in a 

subsample of 133 sectioned otoliths was much higher than for the initial evaluation of 

calcified structures; agreement was 97%, and all disagreements were ±1 year. Error was 

distributed over all presumed age classes, with two disagreements between ages 1 and 2, 

one between ages 3 and 4, and one between ages 5 and 6.



Discussion

The initial evaluation of calcified structures indicates that pectoral fin ray sections 

and stained vertebrae should not be used for ageing Spanish mackerel. Counts of 

presumed annuli on these two structures were poorly related to fish size and presumed 

ages from other structures. Pectoral fin rays gave the highest presumed ages for some of 

the smallest fish, and presumed ages estimated from fin rays were completely 

uncorrelated with sectioned otolith ages. Vertebrae had a very narrow range o f presumed 

ages compared to all other calcified structures: maximum presumed age was only three 

for vertebrae, compared with five for whole otoliths and spines, and six for sectioned 

otoliths. Although no previous studies examined the ageing potential of pectoral fin rays 

and vertebrae for Spanish mackerel or any other member of the genus Scomberomorus, 

both of these calcified structures have successfully aged other members of the family 

Scombridae. For example, albacore (Thunnus alalunga) fin ray ring counts increased 

with fish size as indicated by the von Bertalanffy growth function (Beamish, 1981). 

Vertebrae have been used to age other scombrids such as bluefin tuna, Thunnus thynnus 

(Prince et al., 1985; Lee et al., 1983) and little tunny, Euthunnus alletteratus (Johnson, 

1983), primarily because they showed reasonably good agreement with ages estimated 

from other reliable calcified structures which were more difficult to obtain. Vertebrae are 

also used almost exclusively to estimate age in pelagic sharks (Cailliet et al., 1983; 

Schwartz, 1983; Pratt & Casey, 1983). However, vertebrae are not useful for ageing all
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pelagic fishes; Hill et al. (1989) found that counts of increments on vertebrae o f Pacific 

blue marlin (Makaira nigricans) were uncorrelated with counts from otoliths or fin 

spines.

The initial evaluation of calcified structures demonstrated that dorsal spines have 

potential for ageing Spanish mackerel, although growth of the vascular core may 

obliterate early growth information for larger fish. This may explain why maximum ages 

from dorsal spines were one year less than those from sectioned otoliths, even though 

agreement between otolith and spine ages was better than for other structures examined, 

and there was no systematic bias by age class in disagreement, indicating that errors were 

random. There is resorption o f early annuli in the spines o f other scombrids, including 

bluefin tuna, Thunnus thynnus (Compean-Jimenez & Bard, 1983); skipjack tuna, 

Euthunnuspelamis (Antoine et al., 1983) and little tunny, Euthunnus alletteretus (Cavre 

& Diouf, 1983; Johnson, 1983). In all o f these cases, early growth of large fish was 

estimated using the averaged early growth increments from the spines of smaller fishes of 

the same species. Likewise, Hill et al. (1989) were able to statistically replace the 

resorbed early annuli in dorsal and anal spines of Pacific blue marlin, Makaira nigricans, 

with the cautionary statement that bias may have been introduced to the final age 

estimates. Spanish mackerel dorsal spines may merit the extra effort necessary to 

compensate for ring resorption, because sectioned dorsal fin spines had the highest 

between reader agreement of any structure in the preliminary comparison, indicating that 

they are relatively easy to interpret. The obvious advantage of dorsal fin spines over 

otoliths is that fin spines may be removed without sacrificing the fish.
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Sectioned otoliths gave the best information for ageing Spanish mackerel in the 

initial evaluation of calcified structures, although both whole and sectioned otoliths were 

initially difficult for readers to interpret consistently. Sectioned and whole otoliths had 

the best model fits of number of rings to structure radius, indicating the strongest 

relationship o f number of marks to body size o f all structures compared. This evidence, 

along with studies of marginal growth conducted by Powell et. al (1975) and Schmidt et 

al. (1993), indicates that marks on otoliths reflect fish age better than marks on the other 

structures. However, the precision of repeated readings on sectioned otoliths was not 

significantly greater than agreement for other structures, and was poorer for whole 

otoliths. Most disagreements were by + 1 year, suggesting that either edge interpretation 

or first annulus identification was the problem, and not general illegibility. These 

problems were solved by training and increased experience reading Spanish mackerel 

sectioned otoliths, as evidenced by the great increase in precision between the initial 

evaluation of calcified structures (79% agreement for reader 1) and the detailed 

comparison of whole and sectioned otoliths (97% agreement). Previous studies reported 

high agreement between repeated readings on either whole or sectioned Spanish mackerel 

otoliths, but these studies were from different geographic areas. Fable et al. (1987) found 

97.7% agreement between three readers of 520 whole otoliths collected in Florida. This 

suggests that Florida Spanish mackerel whole otoliths are considerably clearer than those 

o f Chesapeake Bay Spanish mackerel, where agreement was only 45% between readers. 

Similarly, sectioned otolith clarity may vary geographically, because Schmidt et al.

(1993) found 96.5% agreement between two readers for 1039 sectioned otoliths from fish
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caught on the Atlantic coast south of Cape Hatteras, NC, whereas this study found 59% 

agreement between readers.

Agreement between sectioned and whole otolith presumed ages from Chesapeake 

Bay Spanish mackerel was much lower than reported in previous comparisons, perhaps 

due to geographic differences in growth and/or readability of otoliths. Fable et al. (1987) 

found 97.4% agreement between 70 whole and sectioned otolith age readings for Florida 

Spanish mackerel, but agreement between whole and sectioned otoliths was only 50% for 

60 fish and 83.3% for 509 fish for Chesapeake Bay fish. Furthermore, there was a 

significant bias using the whole otolith method which underestimate age in larger, older 

Spanish mackerel. Clearly, whole otoliths cannot always be used to reliably age Spanish 

mackerel over their entire geographic range, or over the entire range of ages in a given 

population.

Since the primary objective o f this study was to find the best method to age 

Spanish mackerel, whole otoliths must be still be considered because their processing 

time is minimal and they agree well with sectioned otoliths over part of the age range 

sampled. It has been shown that for some age and growth investigations such as 

determining age compositions, large samples evaluated with imprecise methods yielded 

better estimates than small samples evaluated with precise methods (Worthington, et al., 

1995). In fact, there was no statistical difference between the 1993 age compositions of 

Spanish mackerel determined by whole or sectioned otoliths in this study. However, the 

results of both comparisons show that maximum age for Spanish mackerel was not 

correctly estimated by the less precise whole otolith method even with a relatively large
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sample, so some amount of sectioning is necessary with this species even if whole 

otoliths are used to determine the majority of ages.

The most efficient method for ageing Spanish mackerel may be a combination of 

sectioning as many otoliths as time and resources allow and reading whole otoliths for the 

remainder of the sample comprised of small fish. The method currently in practice at the 

NMFS Southeast Fisheries Research Center in Panama City, Florida is to section otoliths 

for all Spanish mackerel over 500 mm FL (D. Devries, personal comm.). Although this 

practice may be effective for more southern populations of Spanish mackerel, the results 

o f this study indicate that Chesapeake Bay Spanish mackerel are smaller than 500 mm FL 

when ages from whole and sectioned otoliths diverge, particularly for males. Differences 

in whole and sectioned age by length and sex are easily assessed by preliminary 

comparisons such as this study. If it were impossible to section all of the otoliths for an 

age and growth study in Chesapeake Bay, the results of this study indicate that it would 

be possible to section only the otoliths of male Spanish mackerel over 350 mm FL and of 

females over 475 mm FL, reading all other otoliths whole. To use a combination whole 

and sectioned otolith method for Spanish mackerel, I recommend calibration of the sex- 

length age deviation for different geographic areas, with recalibration over time using 

stratified sample as in initial evaluation of calcified structures.



Chapter 2

Validation of annual marks on sectioned otoliths of Spanish mackerel; 

a comparison of pooled and individual age-group analyses
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Introduction

Beamish and McFarlane (1983) have recommended that ageing techniques be 

evaluated for precision and accuracy over the entire range of ages in each population 

examined. Their advice has generally been followed in that many age and growth studies 

now include some attempt at age validation, but a wide range of techniques are employed 

for validation. Although validation techniques from known age methods (Secor et al.. 

1995) and tetracycline marking (McFarlane & Beamish, 1992; Crabtree et al., 1996) to 

radiometric analysis (Fenton et al., 1991; Milton et al., 1994; Smith et al., 1995; Stewart 

et al., 1995), chemical analysis (Gauldie et al., 1995), and analysis of marginal growth 

(Barger, 1990; Morales-Nin & Ralston, 1990; Hyndes et al., 1992; Barbieri et al., 1993; 

Love et al., 1996) are all designed to prove that marks identified as annuli actually form 

on an annual basis, these techniques are not created equal. Known age methods and 

tetracycline marking provide convincing validation of ages, but only after large 

investments of time and holding space for live fish or effort in recapturing marked and 

released individuals; consequently they are most often employed in daily increment 

validation for larval and juvenile fish (Szedlmayer et al., 1991; Thomas et al., 1995). 

Radiometric and chemical methods often require pooling o f otoliths and calibration with 

validated ages (Fenton & Short, 1992). Therefore, indirect validation by the analysis o f 

marginal growth over time on otoliths (or any other structure employed for ageing) is 

often the only practical way to test the hypothesis that annuli actually form once per year.
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Age validation by the analysis of marginal growth on otoliths falls into two 

general categories: the simpler method involves classification of the otolith margin as 

translucent vs. opaque to describe the monthly percent of opaque otolith margins over an 

annual cycle for pooled age groups (Barger, 1990; Morales-Nin & Ralston, 1990; Love et 

al., 1996). The second method involves measurement of the distance from the distal 

edge of the last opaque mark to the margin of the otolith and analysis o f changes in the 

monthly mean of this measurement (Hyndes et al., 1992; Barbieri et al., 1993; Crabtree 

et al., 1996); this second method is properly termed "marginal increment analysis." In 

both cases, validation is considered successful if a single mode and minimum are present 

in an annual plot of the data. Many workers pool all age groups in these analyses for 

simplicity or to increase monthly sample size, although the results may not adequately 

represent the pattern for each individual age group (Hyndes et al., 1992).

Age and growth of Spanish mackerel, Scomberomorus maculatus, has been 

studied extensively only throughout its southern range (Klima, 1959; Powell 1975; Fable 

et al. 1987; Schmidt et aL, 1993). Previous attempts at validation of Spanish mackerel 

ages all used the method of otolith marginal growth analysis with pooled age groups. 

Klima (1959), Powell (1975), and Fable et al. (1987), examined whole otoliths o f Florida 

fish, and Schmidt et al. (1993) examined sectioned otoliths of southeast Atlantic Spanish 

mackerel. Klima (1959), Fable et al. (1987) and Schmidt et al. (1993) used the simpler 

method of comparing monthly percentages of opaque otolith margins to indicate annulus 

formation once per year, while Powell (1975) used pooled mean monthly measurements 

o f marginal increments to reach the same conclusion. Although all o f these studies
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reported validation of ages, their results differ in terms of timing of annulus formation 

and interpretation of the first annulus, especially for whole otoliths.

Because there may be geographic differences in the appearance and readability of 

Spanish mackerel otoliths (Chapter 1) and the explanation for apparent fluctuations in 

abundance of Spanish mackerel north of Cape Hatteras may be based on changing age 

structure (Chapter 3), it was especially important to validate sectioned otolith ages for all 

age groups of Spanish mackerel in the Chesapeake Bay region. The objective o f this 

study was to determine the timing and periodicity of annulus formation for each age 

group of Spanish mackerel by analyzing the marginal growth on sectioned otoliths, which 

were previously determined to be the best structure for ageing Spanish mackerel ranging 

north of Cape Hatteras (Chapter 1). Analysis was conducted by three methods (tw*o for 

age groups pooled and one by individual age group) for comparison with previous studies 

and to evaluate the effects o f pooling age groups. For the sectioned otolith method to be 

considered accurate for ageing Chesapeake Bay Spanish mackerel, marks identified as 

annuli would form once per year and at generally the same time of year for each age 

group.



Methods

Spanish mackerel were collected every two weeks during their seasonal residence 

in the Chesapeake Bay region between May and October of 1993-1995 by purchasing 50 

lb boxes of each available market size grade from commercial pound net, gill net, and 

haul seine fisheries, following Chittenden (1991). Because marginal increment analysis 

requires collection of fish in all months of the year, additional Spanish mackerel were 

purchased in April 1993 (n = 53) and November 1994 (n = 3) from North Carolina, and 

between December 1994 and March 1995 (n = 398) from Florida. All fish were collected 

north of Cape Canaveral, FL to ensure that only Spanish mackerel from the Atlantic coast 

population were included in the analysis. Fork length (mm), total weight (g), and sex 

were recorded for each fish. Both sagittal otoliths were removed from each fish and 

stored dry.

Preliminary analysis indicated that marginal increment measurements from a 

minimum of 25 fish per month would be adequate to establish timing and frequency of 

annulus formation. An ANOVA of mean marginal increments from otoliths sectioned for 

a comparison of calcified structures (Chapter 1) found significant (p=0.003) differences 

between June and July, 1994 with only 19 otoliths in each month. Differences between 

June and July marginal increments were also found for individual age groups one (n=8 & 

11; p=0.049), two (n=3 & 4; p=0.089), and three(n=4 & 3; p=0.005) in the preliminary 

analysis. For marginal increment analysis, all monthly collections of Spanish mackerel
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were stratified by fork length and equal numbers of fish were drawn from each stratum to 

include the entire range of age groups for each month. To ensure adequate representation 

o f older age groups and to focus on fish captured north of Cape Hatteras, the number o f 

fish included in the analysis per month was increased to 50 during the months of Spanish 

mackerel residence in the Chesapeake Bay region (April - October).

Otoliths randomly selected for marginal increment analysis were cleaned, 

sectioned, mounted, and polished by methods outlined in Chapter 1. Otolith sections 

were examined in transmitted light under a compound microscope with a polarizing filter 

at 10 and 20 x magnification. Presumed annuli were counted on the ventral lobe nearest 

the sulcus acousticus. Marginal increments (ie., the distance from the distal edge o f the 

last opaque band to the edge of the section, Figure 10) were measured on each otolith 

section using a calibrated video microscope. All otolith sections were examined in a 

randomized order without knowledge of fish size or collection date. Three independent 

readings comprised of otolith examinations, presumed annulus counts, and marginal 

increment measurements were made on each otolith section. Qualitative comments on 

otolith appearance were recorded during each reading to assess trends in readability by 

age, sex, FL, time of year or collection location. Young of year fish with no visible 

annuli were recorded as age zero and omitted from further analysis.

Monthly patterns in the marginal growth of Spanish mackerel otoliths were 

assessed by three methods for each of the three readings: first, by ages pooled analysis of 

trends in percent of otoliths with opaque margins; second, by ages pooled analysis o f 

trends in mean marginal increments; and third, by analysis of trends in mean marginal
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Figure 10. Ventral portion of an otolith section from a 6 year old 575 mm FL female 

Spanish mackerel, Scomberomorus maculatus, collected 5 July 1994. Arrows indicate 

marks counted as annuli. Line indicates marginal increment measurement.
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increments separately for each age group. To compare results with previous studies, the 

quantitative measurement of zero marginal increment was assumed to be the equivalent 

of the qualitative assessment of an opaque otolith margin. Therefore, the percent o f 

otolith sections with marginal increment measurements of zero were plotted by month for 

all otoliths. One-way ANOVA (Zar, 1984; Minitab Inc., 1996) was used to evaluate 

differences between mean monthly marginal increments for all age groups pooled, and for 

each presumed age group. The annual growth pattern of the otolith margin was evaluated 

by plotting mean monthly marginal increments for ages pooled and by individual age 

groups.



Results

Three general types of Spanish mackerel otoliths were identified during the 

independent readings of sections: "normal," "double-ringed," and "abnormal." "Normal" 

otolith sections were characterized by wide translucent areas bordered by narrow opaque 

bands originating at the sulcus and running parallel to the edge of the section (Figure 10). 

These alternating bands were visible on both the ventral and dorsal halves of the section, 

and the otolith core was usually identifiable as an opaque area medial to the sulcus 

acousticus. In all three readings, over 90% of otolith sections were considered "normal". 

"Double-ringed" otolith sections were characterized by wide a translucent areas bordered 

by twin narrow opaque bands separated by a narrow translucent area, but in all other 

aspects resembled "normal" otolith sections (Figure 11). These twin opaque bands were 

counted as a single presumed annulus when they were identified as "double rings" by the 

reader. The percentage "double-ringed" otolith sections was approximately 3% (13 out of 

422 otoliths). No clear trends o f right vs. left otoliths or male vs. female fish were 

present in "double-ringed" otolith sections. "Abnormal" otolith sections were 

characterized by inconsistent or unclear patterns of translucent and opaque areas so that it 

was difficult or impossible for the reader to draw any consistent conclusion about age 

(Figure 12). In at least two out of the three readings, 5.5% (23 out of 422) o f otoliths 

were considered "abnormal." Only three otoliths were considered "abnormal" in all three 

readings, and only one of these had no age assigned to it in any reading. "Abnormal"
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Figure 11. Ventral portion of a "double-ringed" otolith section from an 8 year old 650 

mm FL female Spanish mackerel, Scomberomorus maculatus, collected 19 June 1995. 

Double arrows indicate pairs of marks counted as annuli.
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Figure 12. Ventral portion of an "abnormal" otolith section from a 508 mm FL female 

Spanish mackerel, Scomberomorus maculatus, age undetermined, collected 2 February, 

1995.
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otolith sections showed no trends by sex, FL, right or left otolith, time of year, or 

collection location.

Both types of ages pooled analysis indicated that annuli formed once per year, 

with peak annulus formation in May, for all three readings. The monthly percent of 

otoliths with zero marginal increment for each reading had a major peak in May, and 

showed few otoliths with zero marginal increments appearing in September through 

February (Figure 13). Pooled age ANOVA results for all three readings showed 

significant differences between months (Table 9), and plots of mean marginal increments 

for pooled ages also show minimal marginal increments in May, or May and June for 

reading three, with marginal growth increasing after June to a maximum in September - 

January (Figure 14). The apparent second minimum marginal increment in November in 

all three readings was caused by a small (n = 3) number of older fish with reduced otolith 

growth relative to the average young fish represented in all other months. Analysis 

without the November data did not change the ANOVA results presented above.

Although the ages pooled analyses appeared to validate Spanish mackerel ages in 

all three readings, individual age group analyses validated only age one fish in all three 

readings. Patterns in the mean monthly marginal increments of one year old Spanish 

mackerel matched those of the pooled analysis (Figures 15-16). In each reading, one year 

olds had minimal marginal increments in May, with marginal growth increasing 

throughout the summer and stabilizing at maximal growth in September through January 

(ANOVA d f=  141, 123, 133, p<0.001; Tables 10-11).

Marginal increment analysis by individual age groups did not validate ages over
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Figure 13. Percent of Spanish mackerel, Scomberomorus maculatus, otoliths by month 

with zero marginal increment (opaque margins) in readings one, two, and three.
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Table 9. Results of one way ANOVA testing for differences between mean monthly 

marginal increments (mm) on sectioned otoliths for all ages pooled of Spanish mackerel, 

Scomberomorus maculatus.

Reading One Ages Pooled

Source df SS MS F p

Month 11 0.07765 0.00706 4.48 <0.001
Error 372 0.58607 0.00158
Total 383 0.66372

Reading Two Ages Pooled

Source df SS MS F p

Month 11 0.11490 0.01045 7.23 <0.001
Error 365 0.52709 0.00144
Total 376 0.64199

Reading Three Ages Pooled

Source df SS MS F p

Month 11 0.18733 0.01703 11.38 <0.001
Error 357 0.53444 0.00150
Total 368 0.72177
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Figure 14. Mean marginal increments by month for all ages pooled of Spanish mackerel, 

Scomberomorus maculatus, for readings one, two, and three. Error bars represent the 

standard error of the mean, and numbers are sample size in each month.
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Figure 15. Mean marginal increments by month for ages one through six o f Spanish 

mackerel, Scomberomorus maculatus, for reading one. Error bars represent the standard 

error of the mean , and numbers are sample size in each month.
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Figure 16. Mean marginal increments by month for ages one through six of Spanish 

mackerel, Scomberomorus maculatus, for reading three. Error bars represent the standard 

error of the mean, and numbers are sample size in each month.
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Table 10. Results of one way ANOVA testing for differences between mean monthly 

marginal increments (mm) measured on sectioned otoliths during reading one for each 

age class of Spanish mackerel, Scomberomorus maculatus.

Age One

Source df SS MS F p

Month 10 0.11214 0.01121 6.14 <0.001
Error 131 0.23917 0.00183
Total 141 0.35131

Age Two

Source

Month
Error
Total

df

10
87
97

SS

0.010564
0.058180
0.068744

MS

0.001056
0.000669

F

1.58

P
0.126

Age Three

Source df SS MS F p

Month 9 0.001445 0.000161 0.29 0.975
Error 48 0.026891 0.000560
Total 57 0.028336

Age Four

Source

Month
Error
Total

df

11
28
39

SS

0.003015
0.009587
0.012602

Ages Five Through Eight Pooled 

Source df SS

MS

0.000274
0.000342

F

0.80

P
0.639

MS F

Month
Error
Total

8
37
45

0.001858 0.000232 0.88 0.545
0.009812 0.000265
0.011670
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Table 11. Results of one way ANOVA testing for differences between mean monthly 

marginal increments (mm) measured on sectioned otoliths during reading three for each 

age class of Spanish mackerel, Scomberomorus maculatus.

Age One

Source df SS MS F P
Month 10 0.20985 0.02099 14.49 <0.001
Error 123 0.17811 0.00145
Total 133 0.38796

Age Two

Source

Month
Error
Total

df

10
88
98

SS

0.031340
0.062494
0.093834

MS

0.003134
0.000710

F

4.41

P
<0.001

Age Three

Source df SS MS F p

Month 9 0.011733 0.001304 3.80 0.001
Error 45 0.015426 0.000343
Total 54 0.027159

Age Four

Source

Month
Error
Total

df

11
25
36

SS

0.010648
0.009170
0.019818

Ages Five Through Eight Pooled 

Source df SS

MS

0.000968
0.000367

F

2.64

P
0.022

MS

Month
Error
Total

8
35
43

0.004800 0.000600 2.16 0.056
0.009718 0.000278
0.014518
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one year old in the first reading, and only age groups one, three, and four years were 

validated in the second and third readings. No significant differences between mean 

monthly marginal increments were found for age groups two through four in the first 

reading (Table 10, Figure 15). Significant differences between mean monthly marginal 

increments were found for three and four year old fish in readings two and three (since 

the results from readings two and three agree, only the results of reading three are 

presented; Table 11). Minimum mean marginal increments occurred in May and June 

for three year olds, and in June for four year olds in reading three (Figure 16), suggesting 

that annuli formed once per year, but up to one month later for three and four year old 

Spanish mackerel relative to one year olds.

Two year old and five through eight year old Spanish mackerel age groups were 

not adequately validated by marginal increment analysis. Although a significant 

difference between months was detected for Spanish mackerel assigned age two in 

readings two and three (Table 11), minima occurred in the months of March and October, 

as well as June and July (Figure 16). For two year olds, March and October sample sizes 

are smaller (n < 5) than for other months. When data from these months were not 

included in the ANOVA, there were still significant differences between mean monthly 

marginal increments for two year olds, based upon differences between the June-July 

minimal growth and the early fall through winter maximal increments. Analysis by 

individual ages also revealed that five through eight year olds were not collected in 

enough months of the year for validation by marginal increment analysis.



Discussion

Marginal increment analysis o f sectioned otoliths by individual age group 

adequately validated ages one, three and four for Spanish mackerel over their northern 

range in this study. Although the timing o f annulus formation may be slightly later for 

older fish, readings two and three consistently indicated formation of a single annulus per 

year in May and June for these age groups. These results generally agree with previous 

studies, which established single annulus formation for pooled age classes anywhere 

between March and May (Fable et al., 1987), May and June (Klima, 1959), and May and 

July (Powell, 1975; Schmidt et al., 1993). However, unless the timing of annulus 

formation is identical for all age groups as has been shown for weakfish, Cynoscion 

regalis (Lowerre-Barbieri et al., 1993) and croaker, Micropogonias undulatus (Barbieri et 

al., 1993) the general agreement between studies in timing of annulus formation for ages 

pooled may not be applicable to all age groups, and may not constitute true validation.

The results clearly demonstrate that pooled age analyses of marginal growth were 

inadequate for validating Spanish mackerel ages in populations north o f Cape Hatteras. 

Pooled analyses indicated validation for all three readings, although the results for 

individual age groups were inconsistent between readings, and clearly unvalidated in 

reading one. Both the percent of otoliths with zero marginal increments and the pooled 

ages mean monthly marginal increment plots were dominated by age group one, 

misrepresenting results for older age groups. Age one fish were numerically dominant and
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had the greatest annual change in mean marginal increments of any age group, due to 

higher growth rates. Hyndes et al. (1992) found a similar age group dominance using 

pooled age marginal increment analysis for whole otoliths of flathead, Platycephalus 

speculator.

The most serious drawback to the ages pooled marginal increment analyses was 

the misrepresentation of the age two pattern. There was no reading with in which the 

ages pooled mean marginal increment plots or monthly percentages of opaque margins 

correctly reflected the pattern of marginal increment growth for fish assigned age two, 

which were more numerous than all ages except one year olds. Small numbers of fish 

assigned age two in March and October may account for the minimal mean marginal 

increments in those months, but because some monthly sample sizes were even smaller 

for three and four year olds, this explanation is not satisfactory. The differences between 

timing o f annulus formation for Atlantic (May-July; Powell, 1975 & Schmidt, 1993) and 

northern Gulf of Mexico (March-May; Fable et al., 1987) Spanish mackerel has been 

attributed to genetic distinction o f stocks (Skow & Chittenden, 1981; Schmidt et al., 

1993). If similar stock structure within the Atlantic existed, discrepancies between 

stocks might result in the apparent March and July peaks in annulus formation in two year 

olds.

Even when conducted for each age group, marginal increment analysis cannot 

distinguish true annuli from subannual checks unless it is used in conjunction with 

laboratory or tag-recapture studies of chemically marked fish. It is possible that fish w^ere 

assigned age two when they were actually age one fish forming "double rings;" this may
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have created the marginal increment minimum for two year olds in October. "Double 

rings" were easily identified in older fish where the pattern was well established.

However, if a "double ring" forms in the first year of growth it is impossible to tell from a 

second true annulus unless the timing of annulus formation is already known.

Marginal increment analysis is inadequate for validating the ages of the oldest 

fish, which are by definition rare, but are disproportionally important in estimating 

growth and mortality. Validation was impossible for Spanish mackerel ages five and up 

due to insufficient samples in each month of the year. Although the ANOVA for 

combined ages five through eight showed significant differences between mean monthly 

marginal increments with a minimum in May and June, no fish over four were collected 

between August and October, so it was not possible to evaluate the pattern o f marginal 

growth properly. Older age groups can only be truly validated by a different method, 

such as mark-recapture. Spanish mackerel fin spines may be considered for ageing live 

specimens (Chapter 1) in a study involving chemical marking.

Marginal increment analysis can be a useful tool for indicating potential sources 

of error in an ageing technique or analysis, but only if it is conducted for each age group 

separately. Ages pooled analyses o f otoliths with opaque margins or marginal increments 

seem convenient and simple, allowing the more "important" analyses of age and growth 

to proceed with minimal interference. However, analysis by age group provides greater 

confidence in assigned ages and in subsequent age and growth studies (Barbieri et al., 

1993; Lowerre-Barbieri et al., 1993; Crabtree et al., 1996). Even if satisfactory 

validation is not achieved for all age groups (as in the present study) the appropriate focus
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of research can be determined to improve the situation; in this case, the investigation of 

"double ring" formation in young fish. The problematic mean monthly marginal 

increment pattern for fish assigned age two in this analysis refined techniques for 

subsequent analyses: the reader noted potential "double rings," which prevented inclusion 

in growth analyses (Chapter 3). Only fish collected in North of Cape Hatteras between 

May and September were included in further analysis, since only one "annulus" appeared 

to form during this period for each age group. An understanding of the limitations of 

marginal increment analysis and a given ageing technique may ultimately be more 

valuable than assuming validation using pooled age analyses of marginal growth.



Chapter 3

Age composition, growth, and mortality of Spanish mackerel 

over the recent landings peak, 1988 - 1995
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Introduction

Spanish mackerel abundance has fluctuated dramatically over the past century in 

the Mid Atlantic region, with Chesapeake Bay landings ranging from below ten thousand 

to over 1.5 million pounds (Earll, 1882; Lyles, 1969; Trent & Anthony, 1979; U.S. 

NMFS, 1950-1994). Peaks in Chesapeake landings occurred in the 1880-90's, the late 

1930's, and again from 1987 to the present (Chittenden et al., 1993b). While the number 

o f licenced pound nets in Chesapeake Bay steadily decreased since 1930 from over two 

thousand to less than 250, catches increased sharply in the period 1986-1990, so that the 

recent CPUE greatly exceeds that of the 1937 landings peak (Chittenden et. al., 1993b). 

This suggests that Spanish mackerel abundance in Chesapeake Bay may be much higher 

over the recent landings peak (1986-1995) than it has been since 1929. Due to this 

increased abundance, Spanish mackerel are now an economically important component of 

fisheries in the Chesapeake Bay (Chesapeake Executive Council, 1994).

The great fluctuations in abundance of Atlantic coast Spanish mackerel in the Mid 

Atlantic region are presently unexplained. Chittenden et al. (1993b) suggested that the 

recent period of high landings may reflect a combination of increased escapement from 

the Florida fishery due to recently implemented regulations, and the production o f a 

strong year class in the mid-1980's. However, little information exists to evaluate any 

hypothesis explaining the fluctuations in abundance, because no data have ever been
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collected on the age composition of Spanish mackerel in Chesapeake Bay, and there have 

been no biological investigations o f this species in its range north of Cape Hatteras, NC 

since the work of Earll (1882) and Ryder (1882). Therefore, the objectives of this study 

were twofold: first, to describe size, age and year class compositions, growth, and 

mortality of Spanish mackerel in Chesapeake Bay, so that these life history parameters 

were available for management; and second, to evaluate the hypothesis that the present 

abundance peak could reflect a dominant year class. This was accomplished by 

examining interannual variations in size and age compositions, growth, and mortality .



Methods 

Collection of Fish and Otolith Preparation

A total of 4,194 Spanish mackerel were purchased from Chesapeake Bay 

commercial fisheries between May and September of 1988 and 1993-1995. Over 98% of 

these fish were captured in pound nets, with the remainder captured in gill nets and haul 

seines. Total numbers of fish collected for individual years were 1163 in 1988, 1027 in 

1993, 1430 in 1994, and 574 in 1995. Collection locations included Lynnhaven, the 

lower York River, Mobjack Bay, Gwynn's Island, and the lower Eastern Shore (Figure 

17). A 25 lb. or 50 lb. box of each available market size grade (i.e. small, medium, large, 

or ungraded) was purchased every two weeks from each location where they were 

available, although fish were generally sold by size grade only at the Lynnhaven location. 

Although boxes could not be selected at random, size compositions in boxes from the 

same market grade (including "ungraded") were assumed to be similar, because 

Chittenden (1989) found that 98% of variation in fish length occurred within boxes, and 

less than 2% of the variation occurred between boxes of weakfish (Cynoscion regalis) 

and Atlantic croaker (Micropogonias undulatus) in the same market grade. All fish were 

measured for fork length (FL, ±  1 mm), total weight, and gonad weight (TW and GW, ± 

0.1 g). A random subsample o f fish were measured for girth (mm) anterior to the first 

dorsal fin. Sex and gonad maturity stage were determined macroscopically. Both sagittal 

otoliths were collected from each fish, and stored dry.
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Figure 17. Collection locations for Spanish mackerel, Scomberomorus maculatus, 

Chesapeake Bay.
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The right or left otolith from each fish was selected at random, cleaned, and 

sectioned using methods outlined in Chapter 1. Otolith sections were examined in 

transmitted light under a compound microscope with a polarizing filter at 10 and 20X 

magnification. Annuli were counted on the ventral lobe nearest the sulcus acousticus. 

According to marginal increment analysis, May-June is generally the time of annulus 

formation for one through four year old Spanish mackerel in Chesapeake Bay (Chapter 

2). Therefore, ages were assigned as follows so that all fish spawned in the same year 

had the same age: ages were annulus count + one for fish with wide translucent otolith 

margins in May or June, but were otherwise equal to annulus counts.

Size, Age, and Year Class Compositions

The size range of Spanish mackerel in Chesapeake Bay in 1988 and 1993-1995 

was described using all 4,194 fish collected. Mean length was compared between 

collection years using one-way ANOVA (Zar, 1984). The overall range of ages in 

Chesapeake Bay was described using 1,369 aged fish collected in 1988 and 1993-1995. 

Mean size and age were compared by month over these years to evaluate seasonal 

patterns in size and age structure.

Length frequencies of Spanish mackerel collected in 1988 and 1993 were 

compared to evaluate changes over time. Differences in size compositions between years 

and sexes were assessed with a Kolmogorov-Smimoff (KS) two-sample test (Sokal & 

Rohlf, 1981; Zar, 1984). Differences in mean FL for each year and between sexes were 

measured with a t-test (Zar, 1984).

To evaluate changes in age composition over the recent Chesapeake regional
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landings peak, 550 fish were drawn from each of the 1988 and 1993 collections, which 

had roughly equal overall sample sizes and consistent collection protocols. Collections 

were stratified by market size grade (small, medium, large, or ungraded) and a random 

sample was selected from each grade. Numbers of fish selected were proportional to the 

total number collected in each grade, so that the subsample from each year reflected the 

composition of the collection from each year. Age compositions resulting from this raw 

data will be referred to as "collected age compositions" throughout this manuscript.

To adjust Spanish mackerel age compositions to reflect total fishery landings for 

each year, ratio estimates (Cochran, 1977) were used to extrapolate from the collected age 

compositions in each year. Because collections were made by market size grade and age 

compositions within grades differed by month, numbers at age within the landings were 

estimated for each market grade by month, then totaled across market grades and months 

to estimate numbers at age in total landings for each year:

Nj = £ ( sum over jk )  N ijk = ( nijk / wjk) * Wjk, 

where Nj = adjusted number of Spanish mackerel age / in total landings 

N ijk = adjusted number o f fish age i landed in market grade j  in month k, 

njj = number of fish age i in subsample collected from market grade j  in month k, 

wjk = weight of subsample (lbs) collected from market grade j  in month k, and 

Wjk = total weight landed (lbs) in market grade j  in month k.

Spanish mackerel total monthly landings were provided by the Virginia Marine 

Resources Commission (VMRC). VMRC does not separate Spanish mackerel landings 

into market size grades. Landings by month (Wjk) for market grades "small," "medium,"
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and "large" were provided by Lynnhaven Fish Company, the only wholesaler in the 

region who graded catches, and who landed over 50% by weight of Chesapeake Bay 

Spanish mackerel in 1988 and 1993 (VMRC, unpublished monthly landings). For the 

purposes of the ratio estimate, the monthly total weight landed (Wjk) for market grade 

"ungraded" was determined by subtracting the total weight of Lynnhaven's monthly 

landings from VMRC's total monthly landings. Ratio estimate adjustments were not 

attempted for grades and/or months where no collections were made; therefore, adjusted 

age compositions applied to over 80% of total landings for each year. Age compositions 

resulting from the ratio estimate adjustment will be referred to as "adjusted age 

compositions" throughout this manuscript. Differences in collected and adjusted age 

compositions between 1988 and 1993, and differences between collected and adjusted 

age compositions within years were evaluated with Kolmogorov-Smimoff (KS) two- 

sample tests (Sokal & Rohlf, 1981; Zar, 1984).

To examine year class contributions to landings in 1988 and 1993, all age groups 

in the adjusted age compositions were converted to year classes (ie. the year in which a 

fish of a given age was spawned). Abundance of a particular year class which was an 

order of magnitude greater than all other year classes was the criterion for designation as 

a "strong" year class. Proportions of each year class in the landings for 1988 and 1993 

were evaluated for the presence of a strong year class or classes.

Growth

To describe Spanish mackerel growth in the Chesapeake Bay region for 

management purposes, age and growth data from fish captured in 1988 and 1993-95
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were used to calculate mean fork length at age, von Bertalanffy growth parameters, 

length-weight, and length-girth relationships. Analyses were conducted with sexes 

pooled as well as by sex, because Spanish mackerel are not externally sexually dimorphic 

and differential management by sex would be impossible. Mean fork lengths at age were 

compared using t-tests for each age group. Seasonal growth rates for individual age 

groups were estimated using linear regression of fish length on month within years. The 

growth parameters K, to and were calculated by fitting observed lengths at age to the 

von Bertalanffy growth function using the Marquardt algorithm in Fishparm (Saila et al., 

1988) and the SAS PROC NLIN (SAS Institute, 1988). Only fish collected in the month 

o f June each year were included in the von Bertalanffy analysis to eliminate seasonal 

variations in growth. June was chosen for this analysis because it is close to the time of 

annulus formation for all age groups (Chapter 2), and because the oldest fish were present 

then. Length-girth relationships were determined by linear regression, and length-weight 

relationships were calculated using linear regression with log-transformation and non

linear regression (SAS Institute, 1988). Linear regression equations for were compared 

using ANCOVA with type III sums of squares (Steel & Torrie, 1980; Freund et al.,

1986).

Mortality

Total mortality rates (Z) of Spanish mackerel in the Chesapeake Bay were 

estimated for each year and overall from maximum age using both of Hoenig's (1983) 

equations:

In Z = 1.44 - (0.982) * In tmax (for all taxa),
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In Z = 1.46 -(1.01) * In (for fish), 

and Royce's (1972) equation:

2  = 4 .6 /1 ^ ,

where 1^^ = maximum observed age. These equations were used to provide a range o f 

estimates. Maximum age was determined from sectioned otoliths o f all fish over 500 mm 

FL, and a random sample of half the male fish over 400 mm FL collected in 1988 and 

1993-95.



Results

Size, Age, and Y ear Class Compositions

Spanish mackerel size varied moderately by year. Overall, fish averaged 353 mm 

FL between 1988 and 1993-1995, and ranged from 192 mm FL to 658 mm FL (Table 

12). Mean length was greatest in 1993 (378 mm), smallest in 1994 (337 mm), and 

intermediate in 1988 and 1995 (350-351 mm). The greatest range of fish lengths, 

including the largest and smallest Spanish mackerel, were collected in 1993. Lengths 

ranged from 221 mm to 585 mm in 1988, and from 204 mm to 608 mm and 650 mm in 

1994 and 1995, respectively. Differences in mean length were significant between years 

(ANOVA, F = 104.94, df = 4193, p < 0.0001).

Older, larger Spanish mackerel were most common in Chesapeake Bay in May 

through July o f 1988 and 1993-1995, while small young-of-the-year fish did not appear 

in the fishery until August and September. The oldest (ages 6 +) fish were only collected 

in May - July , and the largest and oldest fish (over 600 mm FL, age 8) were only 

collected in June (Table 13). Mean length was relatively stable in May - August, ranging 

from 365 mm FL - 380 mm FL, but was lowest in September (324 mm FL). Mean age 

was greatest in May and June (2.18 and 1.99 years, respectively), and lowest in Sept

ember (0.61 years). Age 0 (young-of-year) fish do not appear in landings until August.

Spanish mackerel length frequencies were roughly similar in appearance in 1988 

and 1993; both were basically unimodal, symmetrical, and normal (Figure 18). Length
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Table 12. Mean, standard error, and range of fork length (mm) of Spanish mackerel, 

Scomberomorus maculatus, captured in Chesapeake Bay 1988 and 1993-1995.

Y ear N M ean S tdE rr Min

1988 1163 349.58 1.590 221 585

1993 1027 378.27 2.023 192 658

1994 1430 337.15 1.522 204 608

1995 574 351.48 1.941 204 650

All Years 4194 352.63 0.915 192 658
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Table 13. Mean, standard error, and range of length (mm) and age (years) by month o f 

Spanish mackerel, Scomberomorus maculatus, collected between 1988 and 1993 in 

Chesapeake Bay.

Length

M onth N M ean StdE rr Min M ax

May 71 378.17 8.60 247 541

June 355 379.93 4.22 239 658

July 402 366.05 2.35 286 575

August 277 377.92 2.28 251 488

September 264 325.45 5.18 192 576

All months 1369 364.85 1.84 192 658

Age

M onth N M ean S tdE rr Min M ax

May 71 2.18 0.15 1 6

June 355 1.98 0.06 1 8

July 402 1.36 0.04 1 6

August 277 1.34 0.04 0 4

September 264 0.61 0.06 0 4

All months 1369 1.42 0.03 0 8
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Figure 18. Length frequencies (FL mm) of Spanish mackerel, Scomberomorus 

maculatus, collected in Chesapeake Bay in 1988 and 1993.
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frequencies did not show the distinct multiple modes necessary to determine age by the 

Peterson method, except that a small mode of age 0 fish is visible in the 1993 length 

frequency. Mean and median lengths were nearly equal within each year, being 

respectively 350 mm and 348 mm in 1988, and 385 mm and 386 mm in 1993.

Despite their similar appearance, Spanish mackerel length frequency distributions 

were significantly different between 1988 and 1993 (KS, D = 0.307, p < 0.01). Fish 

collected in 1993 were larger than those in 1988. Mean length in 1993 (385 mm) was 

significantly larger (unpaired t = -13.92, df = 2161, p < 0.0001) than the 1988 mean, (350 

mm). Furthermore, the largest fish were collected in 1993. Maximum size was 658 mm 

FL in 1993 as opposed to 585 mm FL in 1988, and more fish were larger than 500 mm 

FL in 1993 (22) than in 1988 (6).

Collected and adjusted age compositions of Spanish mackerel were generally 

similar within each year. Percentages estimated for each age group were within + 6% 

between collected and adjusted estimates in 1988 (Table 14). For 1988, the collected age 

composition was not significantly different from adjusted age composition (KS, D = 

0.0439, p > 0.10). Similarly, percentages of each age group were within + 8% between 

collected and adjusted age compositions in 1993. Despite this general agreement, 

significant differences were found between collected and adjusted age compositions in 

1993 (KS D = 0.0871, p < 0.01), with the largest difference for age group 0 (16.5% 

collected vs. 4% adjusted).

Both collected and adjusted age compositions of Spanish mackerel were very 

different between 1988 and 1993. Only ages 0 through 3 years were identified in 1988,
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Table 14. Collected and Adjusted (see methods) age compositions of Spanish mackerel, 

Scomberomorus maculatus in 1988 and 1993.

Collected Adjusted

1988 1993 1988 1993

Age N % N % N % N %

0 77 14.7 69 12.7 46331 16.5 8854 4.0

1 381 70.7 194 35.8 179711 64.2 91844 41.8

2 69 12.7 202 *■> * 7  ^
J  / . J 46718 16.7 96926 44.0

3 11 1.9 60 11.0 7187 2.6 19911 9.1

4 0 0.0 8 1.5 0 0.0 1405 0.6

5 0 0.0 2 0.4 0 0.0 203 0.1

6 0 0.0 7 1.3 0 0.0 800 0.4
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whereas ages 0 through 6 were found in 1993 (Figure 19). Age one fish dominated 

collected and adjusted 1988 age compositions (71% and 64%; Table 14), but age one and 

two fish were codominant in 1993 (36% and 37%, respectively in collected, and 42% and 

44% in adjusted age compositions). In 1988, 98% and 97% of the fish were age two or 

younger in collected and adjusted age compositions, respectively. In 1993, however,

86% of fish in collected age compositions were age two or younger, and 89.8% were two 

and under in adjusted age compositions. A Kolmogorov-Smimoff two sample test found 

significant (p<0.01) differences between the 1988 and 1993 age compositions, using both 

collected and adjusted data.

Spanish mackerel landings in 1988 and 1993 were supported by different year 

classes, and different numbers of year classes. 1988 landings were primarily supported 

by the 1987 year class as one year old fish, which composed 64% of the catch based on 

adjusted age compositions (Table 14, Figure 20). Most of the remaining 1988 catch was 

supported by the 1988 and 1986 year classes, together totalling 33% of landings, with the 

1985 year class comprising under 3% of landings. In 1993, landings were supported 

jointly by the 1992 and 1991 year classes as one and two year old fish, which together 

composed 86% of the 1993 catch. The 1990 and 1993 year classes together composed 

13% of 1993 landings, with combined 1989, 1988, and 1987 year classes composing just 

over 1 % o f 1993 landings.

The 1987 year class was stronger than all other year classes in the 1988 and 1993 

landings. Numbers of fish estimated by adjusted age compositions and totaled across 

years are greatest for the 1987 year class (180,511 fish, 36% of total, Table 15) followed
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Figure 19. Collected and Adjusted (see methods) age compositions of Chesapeake Bay 

Spanish mackerel, Scomberomorus maculatus in 1988 and 1993.
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Figure 20. Year class composition of 1988 and 1993 landings of Spanish mackerel, 

Scomberomorus maculatus, in Chesapeake Bay.
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Table 15. Year class composition of combined 1988 and 1993 landings of Spanish 

mackerel, Scomberomorus maculatus in Chesapeake Bay.

Y ear Class Age(Y ear) Adj. N Age(Year) Adj. N Total %

1985 3 (1988) 7187 7187 1.44

1986 2 (1988) 46718 46718 9.35

1987 1 (1988) 179711 6 (1993) 800 180511 36.11

1988 0 (1988) 46331 5 (1993) 203 46534 9.31

1989 4 (1993) 1405 1405 0.28

1990 3 (1993) 19911 19911 3.98

1991 2 (1993) 96926 96296 19.39

1992 1 (1993) 91844 91844 18.37

1993 0 (1993) 8854 8854 1.77

Total 499890
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by the 1991 (96,926 fish, 19%) and 1992 (91,844 fish, 18%) year classes. All other 

individual year classes contributed to less than 10% of Spanish mackerel combined 

landings in 1988 and 1993.

Growth

Growth in Spanish mackerel was rapid and highly variable, with much overlap in 

size at age. With data pooled over 1988 and 1993-1995, mean lengths at age were 347 

mm for age 1, 404 mm for age 2, 456 mm for age 3, 476 mm for age 4, 515 mm for age 5 

and 508 mm for age 6 (Table 16). Lengths ranged from 239-531 mm at age 1, 307-528 

mm at age 2, 365-576 mm at age 3, 400-565 mm at age 4, 384-658 mm at age 5, and 

418-658 mm at age 6 (Figure 21). Even young-of-the-year fish, though incompletely 

recruited to the fishery, ranged in size from 192-365 mm FL. Length is a very poor 

predictor of age in Spanish mackerel; given these ranges o f size at age, a 420 mm 

Spanish mackerel could be anywhere from 1 to 6 years old.

Part of the variation in length at age was due to growth within the year. Age one 

Spanish mackerel grew rapidly within each year, with linear regressions indicating a 

mean growth rate of over 30 mm per month for one year old Spanish mackerel within 

their period of residence in Chesapeake Bay (FL = 120.6 + 31.26 Month, r2 = 0.47 for 

1988; and FL = 121.9 + 32.46 Month, r2 = 0.59 for 1993). This growth rate did not 

change between 1988 and 1993 (ANCOVA, p>0.10). Aside from a very weak 

relationship for 1993 two year olds (FL = 342.8 + 7.27 Month, r2 = 0.07), no significant 

monthly growth rate was detectable by linear regression for any other age groups.

Another major component of the variation in length at age was sex. Within years.
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Table 16. Mean and range of length at age for sexes pooled of Spanish mackerel, 

Scomberomorus maculatus, collected in Chesapeake Bay 1988 and 1993-1995.

Age M ean FL n Std Deviation M inim um  M axim um

0 268.4 182 33.7 192.0 365.0

1 347.1 690 38.0 239.0 531.0

2 404.1 337 34.4 307.0 528.0

J 456.0 111 50.4 365.0 576.0

4 476.0 25 41.8 400.0 565.0

5 515.2 11 96.3 384.0 658.0

6

<7

508.7 12 72.1 418.0 658.0

/

8 650.0 1 650.0 650.0
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Figure 21. Range and mean o f lengths for each age of Spanish mackerel, 

Scomberomorus maculatus, collected in Chesapeake Bay between 1988 and 1993-1995. 

Bars represent ranges, and points means of fork lengths (mm). The age 0 bar is not 

closed to represent incomplete recruitment to the fishery.
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female Spanish mackerel were larger than males at all ages except for incompletely 

recruited age 0 fish (Table 17). In 1988, mean fork length at age was significantly greater 

for females than males for 1 through 3 year olds. Similarly, 1993 females were 

significantly larger than males for ages 1 through 3 years. Mean lengths of females were 

also greater than those for males at ages 4 and 6, although sample sizes were too small for 

t-tests or differences were not significant.

Observed Spanish mackerel lengths at age from June showed an adequate fit to 

the von Bertalanffy growth model, which improved somewhat when sexes were modeled 

separately. The sexes pooled model predicted a mean asymptotic length (L«,) o f 610.9 

mm with a growth rate (K) of 0.335 and to o f -1.1 (Figure 22, n = 335, r  = 0.76).

Separate von Bertalanffy growth models indicated that female Spanish mackerel grew to 

much larger maximum lengths than males. Model parameters for females were L,, = 

720.1 mm, K = 0.247 and t0 = -1.36 (n = 209, r2= 0.83). Model parameters for male 

Spanish mackerel were L„ = 483.2 mm, K = 0.421 and to = -1.32 (n = 126, r =  0.79).

Although length at age and growth rates were different for male and female 

Spanish mackerel, there was no sexual dimorphism in length-weight or length-girth 

relationships. Fork length-total weight and fork length-girth relationships for each year's 

collections were not significantly different between sexes (ANCOVA, p>0.10; Table 18, 

Figure 23).

Mortality

Maximum age, and therefore total mortality estimates, varied by year between 

1988 and 1993-1995. Overall maximum observed age for all Chesapeake collections was
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Table 17. Mean fork length (FL mm) at age of female and male Spanish mackerel, 

Scomberomorus maculatus collected in 1988 and 1993.

1988

Age Mean FL Females n Mean FL Males n t

0 276.6 36 279.6 27 0.70

1 360.1 229 330.5 152 8.80

2 436.7 34 403.6 35 7.27

3 509.1 8 413.7 3 6.28

P

0.4850

0.0001

0.0001

0.0003

1993

Age Mean FL Females

0 252.7

1 361.8

2 404.6

3 477.2

4 490.0

5 571.5

6 583.3

n Mean FL Males

32 250.1

99 335.9

132 368.5

43 395.7

2 459.0 

2

3 465.8

n t p

36 0.26 0.7925

94 4.86 0.0001

70 12.80 0.0001

17 10.71 0.0001

1   -------

4 2.76 0.1063
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Figure 22. Observed lengths at age and fitted von Bertalanffy regression lines for 

Spanish mackerel, Scomberomorus maculatus, collected in Chesapeake Bay in June of 

1988 and 1993-1995.
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Table 18. Length weight and length girth relationships for Spanish mackerel, 

Scomberomorus maculatus collected in Chesapeake Bay, 1988 & 1993-1995. FL = fork 

length (mm), TW = total weight (g), GTH = girth (mm). Pooled relationships include 

unsexed, young-of-the-year fish.

Length-weight Equation n r2

Pooled TW = 7.06* 10*6 FL 3 04 1369 0.99

Females TW = 7.00*1 O'6 FL 3 04 804 0.99

Males TW = 9.09*1 O'6 F L 2"  551 0.99

Length-girth Equation n r2

Pooled GTH = 33.0 +0.366 FL 648 0.77

Females GTH = 37.8 + 0.355 FL 416 0.74

Males GTH = 29.3 + 0.372 FL 237 0.74
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Figure 23. Sexes pooled fork length-total weight relationships for 1988 and 1993-1995 

collections of Spanish mackerel Scomberomorus maculatus in Chesapeake Bay.
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8 years (Figure 24), giving total mortality estimates between 0.53 and 0.58 (Table 19). In 

1988, maximum age for both sexes was 3 years, giving total mortality estimates between 

1.41 and 1.53. In 1993 and 1994, maximum age was 6 years for both sexes, giving total 

mortality estimates of 0.70 - 0.76. In 1995, maximum age was 5 years for male Spanish 

mackerel and 8 years for females, resulting in total mortality estimates of 0.84 - 0.92 for 

males and 0.53 - 0.58 for females.
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Figure 24. Otolith section from an 8 year old 650 mm FL female Spanish mackerel, 

Scomberomorus maculatus, collected 19 June 1995.
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Table 19. Annual maximum age and total mortality (Z) estimates for Spanish mackerel, 

Scomberomorus maculatus collected in Chesapeake Bay in 1988 & 1993-1995. 

Estimates of Z follow: Hoenig's (1983) equations for (1) fish only, and (2) all taxa; and 

(3) Royce's (1972). F=females, M=males.

Y ear M ax age n a t M ax Age Z
(years) (1) (2) (3)

1988 3 (F&M) 5(F ) 2 (M) 1.41 1.43 1.53

1993 6 (F&M) 3(F ) 5 (M) 0.70 0.73 0.76

1994 6 (F&M) 1(F) 1 (M) 0.70 0.73 0.76

1995 8 (F) 5 (M) 1(F) 3 (M) 0.53 0.55 0.58
0.84 0.87 0.92

Overall 8 (F) 6 (M) 1 (F) 6 (M) 0.53 0.55 0.58 (F)
0.70 0.73 0.76 (M)



Discussion

Spanish mackerel age compositions have changed greatly over the recent period 

of high landings in Chesapeake Bay, 1986-1996. Age compositions expanded from fully 

recruited age groups 1 to 3 in 1988 to age groups 1 through 6 in 1993. Although previous 

studies did not examine interannual variations in age compositions, the compressed age 

structure found in Chesapeake Bay in 1988 is unusual. Klima (1959) found age groups 0 

through 5 between 1956-1958 in southeast FL; Powell (1975) found fish up to 8 years 

old between 1968 and 1969 in Florida; and Fable et al. (1987) found ages 0 through 9 

between 1977 and 1981 collecting from both coasts of Florida. These studies used whole 

otoliths, which underestimated ages o f older Spanish mackerel compared with sectioned 

otoliths (Gaichas et al., in review), so it is possible that the age ranges for these studies 

are even greater than reported. Indeed, Schmidt et al (1993) used sectioned otoliths to 

age Spanish mackerel from the southern Atlantic coast and found ages ranging from 0 

through 11. When age compositions were combined over years in the present study, 

results were similar to previous studies; ages for Spanish mackerel collected in 

Chesapeake Bay between 1988 and 1995 ranged from 0 to 8 years.

Spanish mackerel exhibited rapid and highly variable growth in Chesapeake Bay 

between 1988 and 1995. The expansion of age structure between 1988 and 1993 was not 

obvious in length frequency distributions, due to the wide ranges of size at age. Powell 

(1975), Fable et al. (1987), and Schmidt et al. (1993) also reported wide ranges of

100
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Spanish mackerel size at age, and estimated L*. ranging from 645 to 741 for females and 

from 515 to 776 for males, and K ranging from 0.24 to 0.45 for females and from 0.27 to 

0.48 for males. Von Bertalanffy parameter estimates for female fish collected in 

Chesapeake Bay are similar to estimates from previous studies: =720.1 and k=0.25.

Mean asymptotic length predicted by the model for male Spanish mackerel, =483.2, 

was somewhat smaller than previously reported. Mean observed fork lengths at age in 

Chesapeake Bay by sex and for sexes combined were also smaller than mean observed 

lengths at age reported in Powell (1975), Fable et al. (1987), and Schmidt et al. (1993) for 

all ages. Mean length at age was not compared with the results of Klima 1959, due to 

general disagreement in the literature over Klima's identification of the first annulus 

(Powell, 1975; Fable et al. 1987). Differences were greatest between this study's length 

at age results and those of Powell (1975) and Fable et al. (1987), probably due to a 

combination of stock differences between the Atlantic and Gulf of Mexico populations of 

Spanish mackerel (Skow & Chittenden, 1981; Collette & Russo, 1984) and the use o f 

whole vs. sectioned otoliths to estimate age. Although ageing techniques and stock 

sampled were more comparable between this study and Schmidt et al. (1993), mean fork 

length at age was still smaller for Chesapeake Bay Spanish mackerel at all ages. 

Differences in collection methods could account for a difference in mean length at age: 

over 98% of fish collected from Chesapeake Bay were captured in pound nets, a gear that 

is generally not size selective. However, fish collected for Schmidt et al.'s 1993 study 

were captured by "hook and line, trawls, gill nets, and block (stop) nets," all o f which are 

size selective.
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Spanish mackerel in Chesapeake Bay appeared to have decreasing annual total 

mortality over the period 1988-1995 based upon estimates of Z from maximum age. 

Although no other estimates of mortality for Spanish mackerel are reported in the 

literature, Z can be calculated from maximum ages in other studies to compare with 

Chesapeake Bay estimates. Using Hoenig's (1983) equation for all taxa, the estimate of 

overall Z based upon Klima's (1959) maximum age of 5 is 0.87, based upon Powell’s 

(1975) maximum age of 8 is 0.55, based upon Fable et al.,’s (1987) maximum age o f 9 is 

0.48, and based upon Schmidt et al.’s (1993) maximum age of 11 is 0.40. As with all 

other age and growth parameters, the mortality estimate for 1988 (1.43) is unusually high 

in comparison with previous studies, but the estimates for 1993 (Z=0.73) and for the 

overall period 1988-1995 (Z=0.55) fall within the range of results from previous studies.

There was evidence of a strong (1987) year class moving through the annual 

Chesapeake Bay landings. However, the 1987 year class alone did not support landings 

throughout the period of 1988-1993. As expected, younger age groups dominated the 

landings in each year: fish aged 2 and under composed 97.4% and 89.8% of 1988 and 

1993 landings, respectively. Because Spanish mackerel are sexually mature by age one 

(Powell, 1975; Schmidt et al., 1993) or by a fork length which corresponds to mean 

length at age one estimated in this study (Finucane and Collins, 1986; Cooksey, 1996), it 

is possible that the large 1987 year class reproduced very successfully as age one fish in 

1988. There is evidence that Spanish mackerel reproduce in the Chesapeake Bay region: 

both female and male Spanish mackerel were collected from Chesapeake Bay with 

ovaries and testes in the running ripe stage o f development (Cooksey, 1996), and very
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small (28-184 mm FL, n=31) juvenile Spanish mackerel were collected in Virginia waters 

by the VIMS seine and trawl surveys between 1993 and 1995.

Fisheries theory states that the expansion of age compositions over time is 

characteristic of "colonization" and population growth, usually in the absence of heavy 

fishing pressure. By contrast, as a "new" fishery on a stock progresses, theory states that 

age compositions should compress over time (Weatherly, 1972). The situation for 

Spanish mackerel in Chesapeake Bay is consistent with neither theory: age compositions 

appear to have expanded over time although fishing has continued throughout the period 

of high landings, 1986-1995. One explanation for this pattern is that a strong year class 

or classes, including the 1987 year class, may have experienced high reproductive 

success, contributing to a self sustaining Chesapeake Bay fishery in which F is apparently 

low enough to allow moderate population expansion.

The question remains as to why Spanish mackerel reappeared in Chesapeake Bay 

in 1986. There are several explanations for these apparent population dynamics. First, 

the entire Atlantic stock may have experienced strong year classes in the mid-late 1980's, 

resulting in a density-dependent range expansion. Second, environmental parameters in 

Chesapeake Bay may have changed between the early part of the 20th century and the 

mid-late 1980's, resulting in a shift from very unfavorable to very favorable 

environmental parameters for Spanish mackerel. Environmental factors affecting Spanish 

mackerel populations may include temperature, turbidity, or other water quality 

parameters as well as the population dynamics of other fish species including prey and 

competitors. Third, gear restrictions and other fishery regulations which were instituted
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in the Florida Spanish mackerel fishery in 1985 (Chittenden et al., 1993b) may have 

increased escapement from that region to the Chesapeake Bay region. Most probably a 

combination of these factors contributed to the 1986-1995 period of high landings in the 

Chesapeake region. Further study is required to compare fluctuations in landings and age 

compositions coastwide to determine if this phenomenon is unique to Chesapeake Bay, or 

if  it represents a coastwide fluctuation in age and growth parameters.
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