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Semiclassical calculation of quantum-mechanical wave functions 
for a two-dimensional scattering system 

s. K. Knudson, J. B. Delos, and B. Bloom 
Departments a/Chemistry and Physics, College 0/ William and Mary, Williamsburg, 
Virginia 23185 

(Received 1 March 1985; accepted 19 August 1985) 

The semiclassical theory developed by Maslov and Fedoriuk is used to calculate the wave function 
for two-dimensional scattering from a Morse potential. The characteristic function S and the 
density Jacobian J are computed in order to obtain the primitive wave function. The incident part 
shows distorted plane-wave behavior and the scattered part shows radially outgoing behavior. A 
uniform approximation gives a wave function that is well behaved near the caustic. 

I. INTRODUCTION 

For more than a century, the semiclassical or JWKB 
approximation has been one of the standard methods for 
constructing solutions of one-dimensional differential equa­
tions. There has long been a need for the development of a 
corresponding method for solving differential equations in 
two or three dimensions. Elastic, inelastic, and reactive scat­
tering of atoms from molecules are examples of processes 
which can be described by solving an n-dimensional Schro­
dinger equation, and for which semiclassical approxima­
tions are known to be appropriate. It is not surprising, there­
fore, that important contributions to this mathematical 
problem have been made by molecular physicists and theo­
retical chemists. I On the other hand, it is also not surprising 
that some of the most fundamental mathematical questions 
were not addressed in that work. 

A careful and thorough mathematical exposition of n­
dimensional semiclassical theory has recently been given by 
Maslov and Fedoriuk (MF),2 and a simplified summary of 
the essential concepts that they developed will soon be pub­
Iished. 3 Part of the purpose of the present work is to close the 
gap between abstract mathematical theorems and useful 
computational methods. As suggested above, these two fac­
ets of semiclassical theory have developed somewhat inde­
pendently of each other. On one hand, while MF have devel­
oped the theory in great detail, they have not, to our 
knowledge, ever actually used their ideas to compute a non­
trivial wave function. On the other hand, much of the ongo­
ing calculational work cited in Ref. 1 would profit from an 
appreciation of the mathematical advances presented in MF. 

In the present paper, the theory created by Maslov and 
Fedoriuk is used for the first time to calculate a wave func­
tion for a very simple system-elastic scattering of a particle 
on a Morse potential in two dimensions. 

Semiclassical scattering amplitUdes and differential 
cross sections for elastic scattering are already understood 
through the work of Ford and Wheeler and others4 many 
years ago. Methods similar to theirs (partial wave expansion, 
one-dimensional WKB approximation, and stationary 
phase summation) could also be used to obtain the wave 
function, but apparently no one has ever carried out such a 
calculation. For this purpose, the methods developed by MF 
are quite appropriate, easily providing the wave function 

everywhere, and (if desired) scattering amplitudes and differ­
ential cross sections as well. Furthermore, in contrast to 
methods based upon partial-wave expansions, the present 
methods are very easily extended to systems that do not have 
spherical symmetry. Finally, the Morse scattering system 
provides particulary clear and simple illustrations of many 
of the abstract concepts discussed in Refs. 2 and 3. 

II. SUMMARY OF THE PROCEDURE FOR 
CALCULATION OF WAVE FUNCTIONS 

MF's mathematical theorems implicitly specify a con­
structive procedure for calculation of wave functions, and 
we state the rules of this procedure as concisely as possible in 
this section. Subsequently, in Secs. III-VI, the procedure is 
carried out to obtain a wave function (a more complete dis­
cussion ofthe procedure is given in Ref. 3, and of course the 
full treatment, together with all proofs, is presented by MF2). 

We wish to obtain a semiclassical approximation for the 
wave function 'I1(q), which is a solution to the Schrooinger 
equation 

[ H ( - iii ~ ,q) - E ] 'I1(q) = 0 (2.1) 

a linear partial differential equation in n variables (ql ... qn), 
collectively denoted q (configuration space). Associated with 
the Hamiltonian operator H ( - ifti) / aq, q) is the Hamilton­
ian function H (p,q) defined in the 2n-dimensional phase 
space (p, q) (Pl ... Pn' ql ... qn)' A formal asymptotic ap­
proximation to 'I1(q) is constructed by the following steps: 

(i) Compute trajectories. A family of trajectories is calcu­
lated by integration of Hamilton's equations from specified 
initial conditions. The rules for allowable initial conditions 
are a bit complicated. (a) One chooses an (n - 1 )-dimension­
al initial surface in the n-dimensional configuration space; 
coordinates spanning this initial manifold are denoted 
WO = {w?li 1...n - 1}, and the embedding of the initial 
manifold in configuration space is given by n smooth func­
tions {q?(wO)li = l...n}. (b) For each point qO, an initial mo­
mentum pO(qo) and an initial value of a characteristic func­
tion S O(qO) are specified, subject to certain restrictions. First, 
pO(q~ must satisfy 

H [BK: pO(qO), q~ = E. (2.2) 
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Second, SO(qO) must be such that for any increment dqo re­
stricted to the initial surface 

n 

dSo = pO(qO).dqO = L p?(qO)dq? (2.3) 
i=1 

SUbject to these restrictions, the initial conditions are 
mathematically arbitrary, and they are chosen in accordance 
with the physical boundary conditions imposed on the wave 
function. From those initial conditions, an (n - 1 )-param­
eter family of trajectories, and the characteristic function S 
for this family, is calculated by integration of Hamilton's 
equations 

Pi = - aH laqi' 

qi =aH lap;. 

n 

S = p.q = L PidqJdt. 
i=1 

(2.4a) 

(2.4b) 

(2.4c) 

This integration generates (pointwise) a set of 2n + 1 func­
tions of n variables 

qi = qi(t, WO), 

Pi = Pitt, WO), 

S=S(t, WO). 

(2.5a) 

(2.5b) 

(2.5c) 

(ii) Represent trajectories as a manifold in phase space, 
and select charts. The functions [PIt, WO), q(t, wOll correspond 
to an n-dimensional surface in the 2n-dimensional phase 
space, and this surface is called a Lagrangian manifold. The 
manifold can be spanned by the n "intrinsic" coordinates 
(t, wO)-time and the n - 1 coordinates spanning the initial 
manifold. This manifold must now be divided into overlap­
ping domains ("charts"), each of which makes use of a set of 
n phase-space coordinates that is appropriate for that do­
main. A domain is said to be regular if it has a smooth and 
smoothly invertible ("diffeomorphic") projection into part 
of configuration space. For such a domain the functions 
! qi (t, WO) Ii = l...n} obtained by integration of Eq. (2.4) are 
smooth, and the relationship between (t, WO) and q is one to 
one and smoothly invertible. It follows that in a regular do­
main, configuration space coordinates can be regarded as the 
independent variables, and the embedding of the manifold in 
phase space can be described by n smooth functions 
p(q) = !Pi(ql ... qn)li = l...n}. (Thesefunctionsneednotactu­
ally be constructed, but the picture that they provide of the 
topological structure of the manifold is needed.) 

Domains that are not regular are called singular. For 
each singular domain, one must select a set of n phase-space 
coordinates (Pa,q/3) = !PiliEa} ® !qjljEP}, where a 
and P are disjoint sets containing, respectively, k and n-k 
elements. This means that the setpaqp contains no canoni­
cally conjugate pairs. (Such a set !p a qp ) is called a "Lagran­
gian coordinate plane.") This set is chosen in such a way that 
the manifold has a diffeomorphic projection into a portion of 
the P a q/3 plane. Then the embedding of this domain of the 
manifold in phase-space is given by n functions 
(pp, qa) = !Pj(Paqp)lj EP} ® !q;(Paqp)li E a}. MF have 
proved that stable singular domains always admit such a 
representation. 

On the manifold one must also define a set of "switching 

functions," or a "partition of unity": a set of positive func­
tions ej(t, WO) such that 

L ej(t, WO) = 1 (2.6) 
j 

and such that each ej is nonzero only in the jth domain, 
where it is close to unity. These switching functions are used 
to join different locally valid asymptotic approximations 
into one smooth global wave function. 

(iii) Calculate generator and Jacobian in each regular 
chart. Integration ofEqs. (2.4) also generates the quantity S, 
which is single valued and smooth on the manifold and 
which may be represented by a function S (t, WO). Within any 
regular domain, since there is a smooth and smoothly inver­
tible relationship between configuration-space points q and 
manifold points (t, WO), we may alternatively regard this 
same quantity S as a function of q. Using notation that is 
conventional in physics, we shall always denote the charac­
teristic function as S regardless of what the independent var­
iables are, and write in the jth regular domain 

S=S(t, WO) =Sj(q). (2.7) 

S (q) is also called the generator for the specified domain of 
the manifold and it will be seen to become part of the phase of 
the wave function. 

Also, in each regular domain, a Jacobian 

(2.8) 

must be computed and represented as a function of q. Be­
cause there is an invertible relationship between q and (t, WO), 
this Jacobian is finite and nonzero in the regular domain. 
The Jacobian determines the amplitude of the wave func­
tion. 

The representation of Sand J as functions of q involves 
the inversion of the relationship q(t, WO) that is obtained from 
integration ofEq. (2.4). That integration gives positions q as 
functions of (t, WO); to calculate S (q) and J (q), one might spe­
cify q, compute the corresponding value of(t, WO) (the intrin­
sic coordinates for the manifold), and then find the associat­
ed values of Sand J. An interpolation procedure may be used 
to carry this out. 

(iu) Calculate the Maslou index I-'j for each regular do­
main. The Maslov index I-'j for thejth regular chart is calcu­
lated using the prescription given in Ref. 3 (there are some 
errors in Ref. 2). One regular chart is selected as the initial 
chart, and I-' for that chart is (arbitrarily) set to zero. A curve 
is defined that goes from any arbitrary initial point in the 
initial chart to an arbitrary final point in the jth chart. The 
curve is divided into sections, and the total value of I-'j is the 
sum of the values obtained for each section. For each section 
that lies entirely in a regular chart, the contribution to I-'j is 
zero. For each section that lies in a singular chart having 
coordinates /Paqp), the contribution is 

merdex -- - merdex -- , . (aqa ) . (aqa
) 

ap a initial ap a final 

(2.9) 

where the inerdex of a matrix is the number of negative 
eigenvalues of the matrix. The inerdex is evaluated at the 
initial and final points of each section of the curve, with the 
entire section lying within one chart. 
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The Maslov index can often be obtained simply by in­
spection of the topological structure of the manifold. 

(v) Calculate generator and Jacobian for each singular 
chart. The characteristic functionS (t, WO) is well defined, sin­
gle valued, and smooth over the entire manifold. In each 
singular domain, having already chosen a suitable mixed set 
of coordinates for the domain, the generator 

S=S-Paqa =S- L Pjqj (2.10) 
iea 

is calculated, as is the corresponding Jacobian 

J = a(Pa' qp)la(t, WO). (2.11) 

Both of these quantities have to be regarded as functions of 
Paqp' [This again requires the inversion of the computed 
relationship (tw°}---+(Pa qp ).] 

(vi) Calculate the index Vj for each singular chart. The 
index Vj (not to be confused withJLj) is also defined in Ref. 3. 
To calculate it one defines a chain or sequence of overlapping 
charts, of which the first is the initial chart and the last is the 
singular chart of interest. At each place in the chain where 
we switch from one chart to another, there is a contribution 
to vi of 

. (aqa
) . (aqa

) merdex -- - merdex --
ap a final ap a initial 

(2.12) 

Here the inerdex is evaluated for two different charts at the 
same point on the manifold. The index Vj is the sum of such 
contributions, one from each change of charts in the chain. 

(vii) Calculate contributions to \{I (q)from each chart, and 
sum. At each configuration point q, the domains of the La­
grangian manifold that project to q must be identified. Each 
such regular domain contributes 

'l'j(q) = IpO[wO(q)] 11/2 IJj(q)I-1/2 ej(q) 

X exp{i[ Sj(q)11i - ! JLj'IT] }, (2.13) 

where Sj (q), ~ (q), and JLj are the characteristic function, Ja­
cobian, and Maslov index for the jth regular domain. The 
quantity pO(WO) is an initial density associated with the field 
of trajectories; in the cases of immediate interest it is a 
smooth, but otherwise mathematically arbitrary function of 
wO, defined on the initial manifold in accordance with the 
physical boundary conditions on the wave function. 

Each singular chart having coordinates (Paqp) gives a 
wave function in the corresponding mixed space of coordi­
nates and momenta that is equal to 

\iij(Paqp) = IpO[w°(paqp)] 11/2 1l;(Paqp)I-I12 ej Paqp 

xexp{i[Sj(Paqp) -! Vk1T]}. (2.14) 

The associated contribution to the configuration-space wave 
function is the Fourier transform of \iij : 

'l'j(q) = ( - 21Tili) - kl2 f exp(iPaqalli) 

X \iij(Paqp)ej(Paqp )dpa' (2.15) 

As mentioned earlier, k is the number of variables in the set a 
and ej is the switching function attached to thejth chart. 

In applications ofEqs. (2.14) and (2.15), one may make 
use of simplifying approximations. For example, a suitably 

chosen Taylor expansion of Sand J leads in the simplest 
cases to Airy-function approximations. 

Finally, the full wave function is given by a sum of con­
tributions from each chart. 

\{I(q) = L 'l'j(q). (2.16) 
j 

The relative amplitudes and phases of the terms in this sum 
are all implicitly included in the formulas given above. 

III. TRAJECTORIES AND THE MANIFOLD 

We now consider the scattering of a particle of mass M 
from a central potential V(R). For a central potential the 
scattering occurs in a plane; we take it to be the XZ plane, 
with the origin of the coordinate system at the scattering 
center and the initial direction of motion of the particle taken 
to be Z. In order to eliminate additional interference effects, 
we limit impact parameters to positive X, making this a re­
stricted two-dimensional problem. We also employ polar co­
ordinates 

(3.1) 

so that R is the radial distance from the scattering center to 
the particle and the angle 0 is measured in the counterclock­
wise sense from the forward (positive Z) axis. We use a Morse 
potential 

V(R) = D exp[ - aIR - Re)] 

X { exp [ - aIR - Re II - 2} (3.2) 
with potential parameters a = 2.5, D = 1 eV, and Re = 21/6 

in atomic units except as noted. The Hamiltonian is then 

H = (P; + P;)/2M + V(R), (3.3) 

where the P 's are the canonical momenta. The classical Ha­
miltonian equations of motion are then explicitly, in polar 
coordinates, 

dR Idt = PRIM, d01dt = - L IMR 2, 

dPRldt = L 21MR 3 + 2aD exp[ - aIR - Rell 

X { exp [ - aIR - Re)] - I}, 

dLldt= O. (3.4) 

The energy E and the angular momentum L = (2ME) 1/2b 
are both constants of motion; conservation of energy is used 
only as a check on the numerical accuracy of the integration, 
but conservation of angular momentum is used to reduce the 
number of trajectory equations integrated to the first three in 
Eq. (2.4). The energyS is taken to be E = 1.6 (eV) and the 
reduced mass M = 1. The trajectory starts at time t = 0 from 
Z = ZO, where IZol is large, with an impact parameter 
b = XO. The initial momentum is in the + Z direction with 
magnitude (2ME )112. As discussed above, these conditions 
correspond to a one-dimensional Lagrangian manifold 
spanned by the coordinate WO = b = XO,andcondition (2.2) 
is satisfied. Integration of trajectories then gives a two-di­
mensional Lagrangian manifold in the four-dimensional 
phase space. Any point on a trajectory can be characterized 
by its impact parameter b and the time t. The final direction 
of a trajectory is called the scattering angle, designated 0 F • 

Solution of Eqs. (2.4) for a number of different impact 
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o 
x 

4 

parameters generates the field of trajectories displayed in 
Fig. 1 (in a perspective consistent with that of later figures 
displaying S, J, and '1'). For trajectories starting at large im­
pact parameter b such as the trajectory labeled b4 , the influ­
ence of the potential is very weak; the trajectory is therefore 
essentially a straight line, with the scattering angle E>F very 
small and negative. As the impact parameter decreases a 
trajectory such as b3 feels the attractive part of the potential, 
and scatters to negative E>F' As b continues to decrease and 
the repulsive forces grow, the scattering angle attains a mini­
mum value, called the rainbow angle E>r, on the trajectory 
having impact parameter b = br • Trajectories starting at 

8 

z 

FIG. 1. The family of trajectories for 
two-dimensional scattering from a 
Morse potential. Each trajectory be­
gins at Z = - 8 with various values of 
XO = b. The region devoid oftrajector­
ies is the classically forbidden region, 
separated from the allowed region by 
the caustic. The labeled impact param­
eters bj denote the beginning and the 
end of representative trajectories. 

very small b, e.g., b l , are strongly repelled by the inner por­
tion of the potential, and scatter out to large positive angles. 

The curve which separates the classically allowed from 
the classically forbidden portion of configuration space is the 
caustic; it is made up of the locus of points at which adjacent 
trajectories cross over each other. As seen in Fig. 1, for the 
Morse potential the caustic is roughly circular at small Z, 
and it becomes nearly linear for large Z. 

An approximate representation of the manifold is 
shown in Fig. 2. We partition this manifold into four over­
lapping charts, each with a particular domain. 

I (incident): the portion of the manifold representing tra-

FIG. 2. Qualitative picture of the Lagrangian manifold for a typical family of elastically scattered trajectories. The manifold is represented as a two­
dimensional surface in the reduced phase space (XZP x). The lower sheet of the manifold contains trajectories which have not touched the caustic; the upper 
sheet contains trajectories that have passed through the caustic. Labeled trajectories help to define the shape of the surface. The trajectory labeled (} - }') 
begins with P~ = 0, XO small, and Z = Zoo On the incoming part of this trajectory, while Z decreases, X remains nearly constant, and Px remains small. As 
the trajectory passes through the caustic, Px increases rather suddenly, then becomes approximately constant on the outgoing part of the trajectory. The 
trajectory labeled (3 - 3') also begins with P~ = 0, Z = Zo, but with larger XO. This trajectory mainly feels the attractive part of the potential energy and Px 
decreases as t increases. After the trajectory passes through the caustic, P x approaches a negative constant. The trajectory (4 - 4') never passes through the 
caustic, but otherwise is quite similar to (3 - 3'). 
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jectories or parts of trajectories that have not touched (and 
may never touch) the caustic. Trajectories having b > b, gen­
erally lie entirely within the I domain, so much of I corre­
sponds to nearly rectilinear trajectories; however, I also in­
clude trajectories that have been pulled by the attractive 
force into the region X < O. 

S (scattered): the portion of the manifold representing 
parts of trajectories that have glanced off the caustic. This 
domain includes only the later (large t ) portions of trajector­
ies having b < b,. Both I and S are restricted to be "not too 
close" to the caustic. 

C (caustic): The portions of the manifold that are close to 
the caustic. This is divided further into C}, corresponding to 
the "semicircular" part of the caustic, and C2, the "linear" 
part. 

Domains I and S are regular and configuration coordi­
nates (X,Z) are appropriate. Domains C I and C2 are singular. 

For singular domains of the manifold, any Lagrangian 
coordinate plane (Pa, qp) can be used, provided that the do­
main has a smooth projection into that plane [MF have 
proved an important theorem which asserts that (to order Ii) 
the wave function is invariant under changes of Lagrangian 
coordinates]. Most of C I has a smooth projection into the 
(Z, Px ) plane and therefore those coordinates could be used 
in that region. Even better are the coordinates (0, PR I-the 
polar angle and the radial momentum, since these coordi­
nates are nearly parallel to and perpendicular to the caustic. 
To obtain a similar Lagrangian coordinate plane for the C2 

domain, we define rotated Cartesian coordinates 

u = Z cos 0, - X sin 0 " 

V= -Zsin0, -Xcos0, 

such that U and V run, respectively, parallel to and perpen­
dicular to the linear part of the caustic. It follows that the 
pair (U, P v) are appropriate coordinates for this domain. 

We shall also define the "I sheet" of the manifold to 
include the I domain and the "precaustic" part of the C do­
mains, and the "s sheet" to include the S domain and the 
"post-caustic" part of the C domains. For the remainder of 
the paper we will use a subscript I (or S) to denote quantities 
associated with incident (or scattered) sheets. For this scat­
tering problem, one incident and one scattered trajectory 
pass through each point in the accessible portion of the XZ 
plane. 

In order to obtain the results of the trajectory integra­
tions in the form required for plotting, a two-dimensional 
(X,Z ) grid is established in the scattering plane, spaced at 0.1 
a.u. increments in both directions. Each time a trajectory 
passes through any of the Z-grid lines, the sheet and the 
values of X, of P x' and of the functions Sand J described in 
the next section are stored. Data from many trajectories with 
different impact parameters are used to provide these values 
over the entire plane for both incident and scattered classes. 
On each Z-grid line this information is then interpolated to 
give values at the X-grid intersections; this interpolation 
must be done separately for the incident and scattered sheets 
of the manifold. Trajectory data at the caustic is also stored 
and interpolated along the caustic as required to obtain the 
uniform wave function below. 

IV. THE CHARACTERISTIC FUNCTION S, THE 
JACOBIAN J, AND THE MASLOV INDEX 

In order to determine the semiclassical wave function, 
we need to compute two functions, the characteristic func­
tion S (X,Z) and the Jacobian J (X,Z). We first consider S, 
which is a solution of the Hamilton-Jacobi equation 

H(as, as ,x,z)=_1_IVSI2+ V(X,Z) E 
ax az 2M 

(4.1) 
and which is calculated by integrating Eq. (2.Sc) 

S(X,Z) =SO(XO,ZO) +J(Px dX +Pz dZ)dt (4.2) 
dt dt 

along the trajectory connecting the initial point XOZO with 
XZ. As explained in Refs. 2 and 3, if the integral (4.2) is to 
satisfy the Hamilton-Jacobi equation (4.1), the initial values 
SO(XO, ZO) must be chosen in an appropriate manner. From 
Eq. (2.3) we see that for the scattering problem, SO must be 
constant along the initial surface Z = Z 0, and the nearby 
lines of constant S then represent plane waves incident on the 
target. One sees from Fig. 2 that locally [for short times in 
Eq. (3.2)] S (X, Z) is unique, but globally S is a two-valued 
function of position, one value being associated with each 
sheet of the manifold Sf (X,Z) and S s (X,Z). Each of these 
functions is single valued and continuous up to the caustic, 
where the two functions join each other continuously. 

The surfaces Sf and Ss are shown in Figs. 3(a) and 3(b), 
respectively, and below each surface members of the appro­
priate trajectory class are inscribed. The behavior of Sf and 
Ss is easy to understand when one remembers that P = VS; 
the incident surface Sf begins at Z = ZO with the (arbitrary) 
initial value of zero and for large XO (large impact param­
eter), Sf increases linearly with increasing Z, consistent with 
the nearly rectilinear trajectories in this region. Above the 
caustic, Sf increases in the direction of motion of the trajec­
tories, which is along the caustic. The surface Sf is joined to 
Ss at the caustic and Ss generally increases radially with 
increasing R, corresponding to the outward motion of the 
scattered trajectories. 

The Jacobian is given by Eq. (2.8), 

J = a(q)la(t, WO) = a(Z,X)la(t, b) 

ax dZ dX az 
ab dt 

(4.3) 
dt ab 

and it can be expressed in polar coordinates as 

J = _ R [(aR) d0 _ dR a0]. (4.4) 
ab dt dt ab 

The velocities in this formula can be obtained directly from 
the data for a single trajectory, but the derivatives with re­
spect to impact parameter b cannot. In order to obtain these 
a lab terms, pairs of trajectories at adjacent impact param­
etersb + ab 12 and b - ab 12 are in fact used. The numerical 
derivatives, e.g., {Z (t, b + ab 12) - Z (t, b - ab 12) II ab, 
are found to be stable for ab between 0.0 1 and 0.000 001 a. u.; 
we used ab = 0.0003 a.u. The Jacobian is computed as the 
trajectories are integrated. It is also single valued on the 
manifold, but two valued in configuration space. 

The Jacobian is plotted in Fig. 4. From Eq. (4.3), the 
initial value of J is (2E 1M) 1/2 andJ stays close to this asymp­
totic value over most of the incident portion of the manifold. 
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curve having initial point on the incident sheet and final 
point on the scattered sheet has J-L(l) = 1. 

The index of such curves gives the Maslov index of the 
regular domains, so we have J-L [ = 0, J-L s = 1. 

Similar but appropriately modified reasoning is used to 
calculate the index v, which is defined by the properties of a 
chain of charts. Each sequence or chain begins with the chart 
1 for which the set Pa is empty and inerdex (aqa laPa) = O. 
For the sequence [1 - CI], we switch from coordinatesXZ to 
coordinates (PxZ) somewhere on the 1 sheet, where ax I 

36 

8.0 apx <0 and its inerdex is + 1. Therefore, according to Eq. 
(2.12), the index v associated with this sequence is 1 - 0 = 1. 
In contrast to J-L, v does not change within chart CI. For the 
sequence [1 - CI - S], v has a contribution of 1 from the 
sequence [1 - CI] and we need to find the contribution from 
the [CI - S] part. In the upper part of CI, we already stated 
that ax lapx >Oandinerdex = 0, and inS thesetPa isagain 
empty, so its inerdex is also zero, and from Eq. (2.12) the 
contribution of [C I - S] to v is zero. 

o 

8.0 

z 

FIG. 3. (a) The characteristic function SI ofEq. (4.2). Members of the inci­
dent class of trajectories and the caustic are inscriW below the surface. 
Note that the scale is not square. (b) The characteristic functions Ss of Eq. 
(4.2). Members of the scattered class of trajectories and the caustic are in­
scribed below the surface. Note that the scale is not square. 

On the part corresponding to scattered trajectories, the first 
term in Eq. (4.4) becomes small and J is approximately (2E I 
M)I/2 R (a®lab), so its magnitude increases linearly withR. 
The classical density is therefore inversely proportional to R 
in this region, as one would expect for radially outgoing tra­
jectories. 

To calculate the Maslov indices, we follow the instruc­
tions given in Sec. V C of Ref. 3 and stated more briefly 
earlier in this paper. To calculate, consider any curve 
I [WO, w] on the manifold that starts from any point WO on the 
initial surface and ends at an arbitrary point w. If the curve 
lies entirely within the 1 chart, because that chart is regular, 
J-L(l ) = O. If the curve enters the chart C, this chart has coordi­
nates (0, PR ) and the relevant matrix in Eq. (2.9) is (aR I 
aPR )e' Within C I' this derivative has the same properties as 
(aX lap x )z, the behavior of which is easily seen from the 
qualitative sketch of the manifold (Fig. 2). Near the caustic, 
on the 1 sheet, it is negative, while on the S sheet it is positive. 
Therefore, inerdex (aX lapx ) is + 1 (one negative eigenval­
ue) for points in Cion the 1 sheet, and 0 (no negative eigenval­
ues) for points in Cion the S sheet. Hence, a curve in CI that 
goes from the 1 sheet to the S sheet has an index J-L = (initial 
inerdex-final inerdex) = 1. Finally, since for any curve that 
lies entirely within the S sheet J-L(I ) = 0, it follows that any 

The index Ve, for chart CI is just equal to V for the 
sequence [1 - CI], so it is also equal to unity. The same is 
true for chart C2• 

These quantities can now be used to determine semiclas­
sical wave functions. We first discuss the primitive semiclas­
sical wave function. 

V. PRIMITIVE WAVE FUNCTION 

The formula for an individual term in the primitive 
function is given by Eq. (2.14). For the case of two-dimen­
sional potential scattering, the initial density pO(WO) is a con­
stant (the flux density of the incident beam is independent of 
impact parameter) so this equation takes the form 

'I'(X, Z) = IJ(X, Z)I-I/2 exp [is (X, Z)l1i - iJ-L1T12]. (5.1) 

There is one term of this type for each of the charts 1 and S. 
Surfaces of constant phase of these functions are lines of 
constant S[ or Ss and these are indicated in Fig. 5. The lines 

8 

FIG. 4. The Jacobian manifoldJ [Eq. (4.3)]. The upper sheet is J1 , the lower 

Js · 
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FIG. 5. Contour plots of Sf and Ss with selected trajectories. The contours 
are the wavefronts for which the trajectories are the "rays." Contour lines 
are located at integer multiples of 1T/2. 

of constant 8 1 are initially straight, corresponding to the 
incoming plane wave motion. There are small deviations 
near the caustic, where the potential is important, and re­
fraction around the scattering center is also evident. 

One is tempted to describe the surfaces of constant 8 s as 
"outgoing circular wavefronts," but Fig. S shows that the 
word "circular" should not be taken too literally. The wave­
fronts are not really circular nor even elliptical. In the usual 
description of wave scattering, the boundary conditions in­
volve outgoing circular (or spherical) waves at large dis­
tances, and the asymptotic form the wave function is written 
as 

f(0)e ikR /R 1/2. (S.2) 

The exponential factor in Eq. (S.2) does describe circular 
waves, but the preexponential factor is complex, and to com­
pareEq. (S.2) with Eq. (S.l), we would have to recognize that 

8s(R, 0)/1i - ,u!1T + i In [Js(R, 0)/2] 
R_oo 

--. kR - i In[f(0)/R 1/2] + constant. (S.3) 

Thus the phase effects described by noncircular scattered 
waves in the present approach are contained in the phase of 
the scattering amplitudef(0) in the conventional approach. 

Surfaces of constant 8s join the surfaces of constant 81 

in a cusp-like manner at the caustic. This means that if the 
Maslov indices,u for both charts were equal, then crests and 
troughs of the incident waves would meet crests and troughs 
of the scattered waves at the caustic. In fact, however, since 
,u = 1 in the 8 chart, but,u = 0 in the I chart, it follows that 
(e.g., in the real part of '1') a crest of incident waves meets a 
node of scattered waves, and an incident node meets a scat­
tered trough.6 [Alternatively, if the time dependent factor 
exp( - iEt /Ii) were included in the wave function, we could 
say that the scattered wave is "delayed" 1/4 wavelength be­
hind the incident wave.] 

The imaginary part of '1'1 and the real part of 'l's are 
shown in Fig. 6. Both of these functions are expected to be 
reasonably accurate everywhere except near the caustic, 
where J vanishes; there the singularity in both wave func­
tions is apparent. Note that this unphysical behavior in the 
primitive wave function is confined to a narrow region im-

8.0 

0.74 

8.0 

FIG. 6. (a) The imaginary part of the primitive incident semiclassical wave 
function [Eq. (5.1 )]. (b) The real part of the primitive scattered semiclassical 
wave function [Eq. (S.I)J. 

mediately adjacent to the caustic. 
The incident primitive function displays the plane-wave 

oscillatory motion expected from the character ofthe wave­
fronts of 8 1 , The oscillations are modified in the region 
Z> 0, X < 0, which in Fig. 6 is above and behind the linear 
portion of the caustic. Here the crests of the waves run at 
about a 4So angle to the original direction. This is related in 
the obvious way to the trajectories (Fig. S) and it can also be 
understood from a different point of view. 

Hamilton's analogy between rays of geometrical optics 
and trajectories of classical dynamics tells us that the index 
of refraction n(q) in an inhomogeneous medium corresponds 
to the classical quantity [E - V(q)p/2 times a constant. 
Therefore, the attractive well of the potential energy pro­
duces an effect that is similar to that of a medium with a large 
index of refraction. Plane waves entering the region refract 
and bend around the target. The potential energy therefore 
acts as a lens, which produces outgoing refracted waves in 
the region X < 0, Z > O. The amplitude of these refracted rays 
is proportional toR -1/2, consistent with the behavior of the 
Jacobian in Fig. 4. 

The scattered wave function 'l's shows curved outgoing 
waves with amplitude again proportional to R -1/2. 

The total primitive semiclassical wave function is given 
by the sum of the incident and scattered terms at each point. 
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\fIp(X, Z) = IJ/(X, Z)I-1/2 exp[iS/(X, Z)lIi] 

+ IJs(X, Z)i-1/2 exp[iSs(X, Z)l1i - !1T]. 
(5.4) 

We defer discussion of this result until the uniform terms are 
included. 

VI. UNIFORM WAVE FUNCTION 

In the forbidden region and near the caustic, the primi­
tive wave function is unsuitable and a better approximation 
is obtained by Fourier transformation of a momentum-space 
or mixed-space form. The formula we use here is sometimes 
called a "transitional approximation" -it gives a result that 
is adequate only in the vicinity of the caustic. 

The singular part of the manifold was divided into two 
charts C1 and C2• In C1, since the caustic is shaped more or 
less like a semicircle, polar coordinates provide a useful rep­
resentation. Transformation into momentum space can be 
justified in polar as well as Cartesian coordinates, so we can 
write in domain C I: 

\fie, = (_21Tili)-1/2 e - i
'ITV

c /2 I:oo e(pR,0)ll(PR,0)1:-1/2 

xexp{i[PRR +S(PR, 0)]11i1 dPR. (6.1) 

Here e(PR , 9) is an appropriate switching function, which is 
equal to unity in chart C1 and which goes to zero elsewhere, 

I 

and ve, is a Maslov index for the chain of charts [/ - C1], 

which was shown to be equal to unity. 
With further approximations, Eq. (6.1) can be converted 

to the Airy-function form given in Eq. (5.26) of Ref. 3. We 
define 

<P(PR;R,0)=RPR +S(PR, 0) (6.2) 

and expand <P in a Taylor series in P R , using 

a<PlaPR =R+aSlaPR =R-R(PR,0), (6.3) 

a2<plap~ = - aR (PR, 0)1aPR, (6.4) 

a 3<plap1 = - a 2R (PR, 0)1ap~. (6.5) 

Equations (6.3)-(6.5) use the same notation as does Ref. 3. R 
is one of the independent variables in \fI, but R (PR, 0) is one 
of the functions defining the embedding of the manifold in 
phase space [Le., one of the functions qa (Pa' qp )]. Rand 
R (PR , 0) need not be equal to each other. With derivatives 
given above, we may Taylor-expand <P about the point Pc 
such that 

(6.6) 

Pc is then the value of P R on the caustic at angle 0 and 
R (Pc, 0) = R e , the radius of the caustic at 0. With the ad­
ditional approximations that IJ(PR, 0)1- 1/2 is nearly con­
stant and that the switching function is unity over the signifi­
cant range of the integral, we obtain the leading term in the 
asymptotic expansion of the wave function 

\fie, = ( - 21Tili)-1/2 e-i1T/211(Pe, 0)1- 1/2 exp[ i<P(Pe; R, 0)11i] 

xI: 00 exp{(illi)[(PR - Pcl(R - Rcl- (PR - Pcl3/3P(0)3] I dPR 

= e-i1T/41i-1/6121TI1(Pe, 0W 12 P(0) exp[i<P(Pe; R, 0)1Ii]Ai[ -P(0)(Re - R )/1f'3] , (6.7) 

and 

<P(Pe; R, 0) = S(Re, 0) + PdR - Rcl. 

The leading Airy function term requires numerical eva­
luation of the second derivative given in Eq. (6.8), and high­
er-order corrections to the wave function involve successive­
ly higher derivatives, which are not easy to obtain 
accurately. We obtained better results by choosingp(0) in 
such a way that the magnitUde of the primitive wave func­
tion is equal to the magnitude ofthe uniform wave function 
(6.7) at a distance from the caustic where both forms are 
valid. For numerical convenience, the value ofP (0) obtained 
in this pointwise fashion was replaced by the approximation 

{:J(0) = - 1 + 1.285(0 - !1T) - n(0 - !1Tf (6.9) 

In chart C2 , the caustic is nearly linear and we have 
chosen to use as coordinates 

U = (Z + X)I..fi" 

V = (Z - X)/..fi" 
(6.10) 

because U and Vare roughly parallel and perpendicular to 
the caustic, respectively. The uniform approximant in C2 has 
the same form as in Eq. (5.7) above, with U replacing 9 and V 
replacing R: 

\fie, = e-i1T/41i-1/6121TI1(U, p vW/2 {:J(U) 

xexp{i[SdU ) + P~(V - Vcl]11i1 

XAi{ -P(U) [V- VdU)]11i2/31. (6.11) 

Again, the parameter {:J is obtained by using a fit to the values 
found by matching the magnitudes of the primitive and uni­
form terms, and we found a good fit using 

P(u) = 1.95 - 0.27 U. (6.12) 

A switching function is used to stitch the two different Airy 
approximations together at the boundary between C1 and C2 

near the Z axis. A second switching function is then used to 
combine the Airy and primitive approximations. The formu­
las for the switching functions are 

el = H 1 - tanh[2.5(U - 1.25)]1, 

e2 = H 1 - tanh [ 4(V - Vc - 0.3)] I, U> 1 

= !11- tanh [ 4(R - Re - 0.4)]1, U < 1 (6.13) 
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FIG. 7. Real part of the total semiclassical wave function for scattering from 
a Morse potential, obtained by combining the semiclassical wave function 
from each of the charts using switching functions [Eq. (6.14)]. 

and the final expression for the complete wave function is 
then 

\II = \II p(1 - e2) + e2 [\II c, e l + \II c, (1 - e l )]. (6.14) 

The real part of the resulting wave function is shown in 
Fig. 7. The effect of the Airy terms is perhaps most clearly 
seen along the linear portion of the caustic. The decay of the 
wave function in the forbidden region is clearly depicted and 
the singularities in the primitive term are replaced by smooth 
maxima, as the primitive term joins onto the Airy function. 
It takes some effort to join the primitive and uniform wave 
functions smoothly and there is a bit of a bump in the wave 
function near the rightmost comer ofthe figure. This occurs 
primarily because the particular procedure used to deter­
mine the parameter f3 requires the magnitude of the wave 
function to be continuous; neither the real nor the imaginary 
part need separately be. 

Away from the caustic the interference of the incident 
and scattered primitive terms is visible, most clearly at the 
larger X values near Z = O. There the scattered term distorts 
the uniform oscillations of the incident wave, producing sec­
ondary maxima and minima. 

Finally, let us mention again that for the present calcu­
lation we have included only the leading Airy function term, 
which is formally of order ,,-1/6. The next correction is of 
order ,,116 and it can easily be calculated using the method of 
Chester, Friedman, and UrseW (see also Connor and Mar­
cus I(a)). It gives an improved approximation near the caustic 
and the result also joins more smoothly onto the primitive 
semiclassical wave function. 

VII. CONCLUSION 

The mathematical developments made by Maslov and 
his co-workers are a major advance in semiclassical theory. 

Their formulation provides much-needed insight and deeper 
understanding of short-wavelength approximations for sys­
tems having several degrees of freedom. 

In this paper, we have shown that the concepts they 
developed also lead to a simple and practical calculational 
method for obtaining wave functions. From such wave func­
tions, all observable physical properties of a system can be 
found. We have illustrated the method by calculating \II(q) 
for a simple and well-understood two-dimensional scatter­
ing system. In the future, we will examine the corresponding 
three-dimensional scattering system. 
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