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Catastrophes and stable caustics in bound states of Hamiltonian systems 
J. B. Delos8

) 

Physics Department. College o/William and Mary. Williamsburg. Virginia 23185 

(Received 21 March 1986; accepted 15 September 1986) 

Caustic~nvelopes of families of classical trajectories, or boundaries between classically 
allowed and forbidden regions-correspond to singular points of a phase-space surface called a 
Lagrangian manifold. According to catastrophe theory, only a limited number of types of 
caustics are stable under general perturbations of the manifold. Most of the caustics that are 
found in calculations correspond to members of the canonical list of elementary catastrophes. 
However, there are some exception~xamination of trajectories of typical Hamiltonian 
systems shows that stable structures exist which are not in accord with the stability theorem of 
catastrophe theory. These exceptional cases are discussed in this paper. They arise because of 
the special form of the typical Hamiltonian of physical systems. 

I. INTRODUCTION 

The relationship between caustics and catastrophes has 
been discussed in some detail by Berryl and Connor,2 who 
introduced to physicists and chemists some of the math­
ematical developments that had been made by Thom and by 
Arnold.3 The fundamental result of these studies is the fam­
ous classification theorem. While in general, caustics could 
have practically any geometrical structure, the classification 
theorem establishes that only a very limited number of struc­
tures can be stable or typical. The number of distinct forms of 
stable or typical caustics is limited by the dimension of con­
figuration space of the system, N (the number of degrees of 
freedom). For N small, each stable caustic type must corre­
spond to one of Thom's "Elementary Catastrophes." These 
have been enumerated, and the geometrical structure of each 
has been analyzed in detail. 4 In two dimensions, the only 
stable caustics are supposed to be the so-called "folds" and 
"cusps," while in three dimensions the list also includes 
"swallowtails," "elliptic umbilics," and "hyperbolic umbi­
lics." 

Many trajectory calculations on a variety of systems 
have now been carried out. While these calculations general­
ly confirm the utility of the classification theorem, some real 
and some apparent conflicts with the theory are also found. 
For example, for bound systems with two degrees of free­
dom, isolated cusps are rare or nonexistent, and cusps usual­
ly occur in pairs, as part of a swallowtail structure. However, 
according to the classification theorem, the swallowtail is 
supposed to be stable in three dimensions, but not in two 
dimensions. Also, in two dimensions, corners appear where 
two linear caustics meet at a right angle. These corners are 
characteristic of the hyperbolic umbilic catastrophe (stable 
for N = 3), and the stable appearance of corners in two­
dimensional systems is certainly a violation of the classifica­
tion theorem. Finally, in three dimensions, rectangular 
corners where three planar caustics meet are very common. 
These structures are unrelated to any ofThom's elementary 
catastrophes, so their stable appearance is another violation 
of the classification theorem. 

0) Present address: Visiting Fellow. Joint Institute for Laboratory Astro­
physics, University of Colorado, Boulder, Colorado 80309. 

We shall show that this apparent discrepancy between 
mathematical theory and calculational experience arises be­
cause (i) the calculations focus on bound systems. and (ii) 
the typical Hamiltonian for a physical system is not a com­
pletely general function of positions and momenta-instead 
it is a quadratic form in the momenta, 

1 
H =- LTij(q)PiPJ + V(q). 

2 ij 

II. CATASTROPHES AND CAUSTICS 

A. Canonical catastrophes 

(1) 

Catastrophe theory is a description of singularities of 
projections of surfaces associated with smooth functions. 
Suppose we are given a smooth function 4>(P.q) of K + N 
real variables:K "internal" variables P = {PI •...• PK} andN 
"external" variables q = {ql •...• qN}. (For some applica­
tions. the variables p are called "state variables" and the 
variables q are called "control variables"; in the present con­
text. however. the words internal and external seem more 

space 
of external venables 

configuration space) ~ or bifurcation set 

. Singular 
points 

FIG. I. A Lagrangian manifold is a surface in phase space corresponding to 
a regular family oftrajectories. It is a special case ofa catastrophe manifold. 
In general a catastrophe manifold is a surface in a space of external variables 
(coordinates. in our case) and internal variables (here. momenta). Singu­
larities of the projection of the catastrophe manifold into the space of exter­
nal variables (configuration space) are catastrophes. The bifurcation set or 
caustic is the set of points in configuration space corresponding to the singu­
lar points that lie on the manifold. Depicted here is a fold. where the 
Lagrange manifold turns back over itself. 
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426 J. B. Delos: Catastrophes and stable caustics 

CUSP 

FIG. 2. If configuration space is two dimensional, then only two distinct 
types of caustics are structurally stable-folds and cusps. A cusp is shown 
here. 

appropriate.) In the K + N dimensional (p,q) space, the lo­
cus of points (pO,qo) satisfying the vanishing-gradient condi­
tion 

a<l>(p,q) = 0 a = 1, ... ,K 
aPa 

(2) 

forms an N-dimensional surface usually called a "catastro­
phe manifold." We consider the projection of that surface 
into q space. Singularities of this projection are called catas­
trophes, and in particular, the points in q space correspond­
ing to singular points on the manifold are called the bifurca­
tion set. 

Thom studied the forms such catastrophes could take, 
and he especially analyzed what happens if the function <I> is 
modified by a general smooth perturbation. He considered a 
catastrophe to be stable or typical if a smooth perturbation to 
<I> leaves the structure of the catastrophe essentially un­
changed. He established the profound and unexpected result 
that the number of stable catastrophes is independent of the 

'- singular ~nts 

FIG. 3. A dented or twisted fold produces this portion ofa swallowtail ca­
tastrophe. The complete swallowtail structure emerges when the external 
space has at least three dimensions. As explained in the text, this portion or 
slice of the swallowtail is stable in only two dimensions. 

(0) 

(b) 

FIG. 4. (a) Bifurcation set or caustic associated with the swallowtail catas­
trophe; (b) Restriction of the bifurcation set to the planes if, vU', and ff 
(i.e., intersection of those planes with the bifurcation set). The structures 
appearing in planes if and ff are stable in two dimensions, because a small 
movement of those planes or of the bifurcation set leaves the topological 
form unchanged. The structure appearing in plane vU' is unstable in two 
dimensions, because a small perturbation changes it to one of the other two 
structures. 

number of "internal" variables {p\"",PK}' and that it de­
pends only on the number of external variables {q\, ... ,qN}' 
As we mentioned earlier, if there is only one external vari­
able, then the only stable catastrophe is called a fold; if there 

(0) 

FIG. 5. (a) Bifurcation set (caustic) associated with the hyperbolic umbilic 
catastrophe. Like the swallowtail, this catastrophe requires an external 
space of at leastthree dimensions. (b) Intersection of planes if and vU' with 
the hyperbolic umbilic bifurcation set. Again the structure appearing in 
plane if is stable in two dimensions. According to catastrophe theory the 
angle or comer seen in plane vU' is unstable in two dimensions, because a 
small perturbation will change it to the fold-and-cusp of plane if. How­
ever, calculations on classical dynamical systems show these comers to be 
stable. This happens because the Hamiltonian is quadratic in the momenta. 
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FIG. 6. Typical trajectories for bound Hamiltonian systems with two or three degrees offreedom. (a) Distorted rectangle. The sides correspond to four fold 
catastrophes, meeting in comers. Note that X and Yaxes have different scales. If the scales were the same, the comers would be right angles. Reprinted from 
Ref. 5 (d). (b) Distorted annulus. The outer boundary is a fold caustic while the inner boundary contains three swallowtail structures, each corresponding to 
the..? slice in Fig. 4. Reprinted from Ref. 5 (a); (c) This very distorted rectangle contains folds, comers, and swallowtail sections. Reprinted from Ref. 5 (g); 
(d) The simplest three-dimensional trajectories fill a distorted cube in configuration space, such as the one outlined here. The sides of the cube correspond to 
folds. The edges and the comers do not correspond to any of the canonical list of catastrophes. 

are two, stable catastrophes are limited to folds and cusps. 
For N = 3, the list expands to include swallowtails, and el­
liptic and hyperbolic umbilics, while for N = 4, besides the 
lower-order ones, there are butterflies and parabolic umbi­
lics. Some of these are sketched in Figs. 1-5. For more infor­
mation see Refs. 1-4. 

B. Caustics as catastrophes 

A caustic is an envelope of a trajectory or a family of 
trajectories. Typical examples are shown in Fig. 6. Thom 
and Arnold3 have shown that such envelopes are singulari­
ties of projections of catastrophe manifolds, and so they 
should typically have the forms associated with the canoni­
cal catastrophes. 

The argument goes as follows. Associated with regular 
trajectories in configuration space is a surface in phase space 

known as a Lagrangian manifold. When we examine the in­
terior regions of one of the trajectories in Fig. 6, we see that 
associated with each configuration space point 
q = {q), ... ,qN} there is a discrete set of allowable values of 
the momentum vector P = {p), ... ,PN}' and that these al­
lowed values vary smoothly with position q. Therefore there 
is a set of functions P ( q) corresponding to sheets of a surface 
in phase space, and that surface is the Lagrangian manifold. 
Arnold3

(b) and Maslov and Fedoriuk3
(c) have shown that 

associated with any sufficiently small domain of a Lagran­
gian manifold, there is a generating function, which can take 
any of several forms. For systems withN degrees offreedom, 
a generating function S(Pa,lIp) is a function of K momenta 
Pa = {PalaEa} and N-K coordinates q,8 = {qblbEP}, 
where the sets a and P are disjoint collections of integers 
between 1 and N containing, respectively, K and N-K ele­
ments (this means that the set Pa' lip contains no canonical-

J. Chem. Phys., Vol. 86, No.1, 1 January 1987 



428 J. B. Delos: Catastrophes and stable caustics 

ly conjugate pairs). The generating function gives the em­
bedding of the domain of the manifold in phase space 
through the rules 

as( Pa'CIp) 
Pb ( Pa'CIp) = a bE{3, 

qb 

- as( Pa'CIp) 
qa(Pa'CIp) = a aEa. 

'Fa 

(3) 

Let us consider 

(4) 
aEa 

The set of K equations 

a<l> 
-=0 aEa 
apa 

(5) 

defines the restriction of the manifold to the Pa 'Lx CIp space. 
Now this is a vanishing-gradient condition of the same form 
as Eq. (2). Comparing these, we see that the momenta corre­
spond to internal (state) variables and the coordinates cor­
respond to external (control) variables. It follows that a La­
grangian manifold is a special case of a catastrophe 
manifold. Therefore, the only singularities that are stable 
under general perturbations of the manifold must be the ca­
nonical catastrophes. Since the singular points of the projec­
tion of the Lagrange manifold into configuration space are 
the caustics, it follows that the number of stable caustic 
structures is limited by the dimension of configuration 
space. For example if N = 2, stable caustics should corre­
spond to folds or cusps. 

c. Typical caustics 

Let us now examine Figs. 6 and 7 in more detail. The 
trajectories and the caustic types shown therein are charac­
teristic of a great variety of physical systems. One finds that 
folds are very common: all of the smooth parts of the enve­
lopes of the two-dimensional trajectories are fold caustics. 
Cusps appear occasionally, but rarely in isolation-they 
usually appear in pairs, as part of a swallowtail structure.6 

Several examples can be seen in Figs. 6(b), 6(c), and 7(d). 
This raises the question: Why is the swallowtail, which is 
said to be a stable structure only for n;;o.3, nevertheless an 
important structure for n = 2? 

In the figures one also sees corners where two folds 
meet, almost always at right angles. We will establish that 
these corners are stable under relevant perturbations of the 
manifold. However, the simplest catastrophe that contains a 
corner is the hyperbolic umbilic, in which the corner appears 
as the most atypical (and therefore supposedly unstable) 
two-dimensional slice of the bifurcation set. Catastrophe 
theory is telling us that corners in two dimensions ought to 
be unstable. How do we resolve this? 

Figure 6(d) shows the outline of a three-dimensional 
trajectory. It possesses sides which correspond to folds, but it 
also possesses edges where two sides meet, and corners 
where three edges meet. None ofThom's canonical catastro­
phes contain such structures, and therefore they are not sup­
posed to be stable. 

Why is catastrophe theory misleading us in this way? 

FIG. 7. Development of the swallowtail structure. As the energy changes, 
the upper caustic is distorted through the sequence of patterns that appears 
in Fig. 4(b), from ff through .A' to .Y. 

J. Chern. Phys., Vol. 86, No.1, 1 January 1987 
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We shall show that the swallowtails appear for a trivial rea­
son, but the comers appear for an interesting reason. 

D. Swallowtails 

In Fig. 6, we have focused attention on systems in which 
the trajectories occupy a bounded region of configuration 
space. A fold caustic separates allowed regions from forbid­
den regions, but a cusp caustic does not (it separates singly 
allowed from triply allowed regions). Therefore, when a 
cusp appears in a bounded system, it cannot occur in com­
plete isolation. Hence it can alternately be regarded as one 
part of some larger catastrophe. The simplest catastrophe 
that contains a cusp together with a boundary between al­
lowed and forbidden regions is a swallowtail, and in fact 
when we look at trajectories we most commonly see cusps 
appearing in pairs, where they represent slices of the swal­
lowtail bifurcation set. 

There is no conflict with catastrophe theory here. In 
fact, this case provides a nice confirmation of the relevance 
of the classification theorem to the study of caustic struc­
tures. Such slices of the swallowtail bifurcation set are stable 
in two dimensions, in the sense that a general small perturba­
tion to the manifold leaves the topological structure of such a 
slice unchanged. In Fig. 4(a), we could imagine disturbing 
the plane .Y -such a disturbance would not change the es­
sential structure of its intersection with the bifurcation set. 

On the other hand, the slice of the bifurcation set ob­
tained from plane J( is topologically unstable, and a small 
perturbation to the plane or to the manifold changes the 
structure of the caustic from a simple fold to the three-fold­
two-cusp structure. This also is completely consistent with 
trajectory calculations. In Figs. 7 (a)-7 (c) a family oftrajec­
tories is shown for a certain physical system at various ener­
gies. The sequence of pictures illustrates the continuous "un­
folding" or "development" of the swallowtail structure as 
the energy is varied. Figure 7 (b) is the point at which the 
topological structure changes, and the form of the caustic 
here is very unstable-a small change of energy produces an 
important change in the structure. This is just what catastro­
phe theory tells us. 

E. Corners 

Comers appear for a different and much more interest­
ing reason. We shall show that structures which are "gen­
eric" among smooth Lagrangian manifolds are not necessar­
ily typical in physics. First let us establish that the comers 
are stable structures in mechanics. 

In the two-dimensional trajectories in Figs. 6 and 7, 
each comer appears at some point on the equipotential curve 
having V( q) = E; there the momentum is equal to zero. (I) 
Ifwe fix the Hamiltonian function, fix the energy, and vary 
the second initial condition specifying the orbit, then the 
comer persists; it moves to a different point on the equipo­
tential curve, but it maintains its topological structure. In 
particular, the lines of the comer still meet at right angles. 
(2) If we vary the energy, the comer still persists. Of course, 
it moves to a different equipotential curve. (3) If we change 
the Hamiltonian by smoothly varying the parameters in the 
potential energy, the comer again persists, generally shifting 

its position smoothly. (4) If we examine trajectories of sev­
eral different Hamiltonians of the form (I), we keep finding 
comers. Not all trajectories possess comers, but if we start a 
regular trajectory from rest at a point qO, then a comer ap­
pears at qQ. We therefore cannot avoid thinking of the 
comers as stable structures. 7 

On the other hand, catastrophe theory, which is absolu­
tely rigorous, tells us that within the class of caustics for 
n = 2, comers really are unstable. A general small perturba­
tion to the Lagrangian manifold will change a comer into a 
different structure, as indicated in Fig. 5. How do we resolve 
this paradox? 

Poston and Stewart4 mention the possibility that new or 
different structures (other than the canonical catastrophes) 
may appear under certain conditions. 

"There are many different notions of structural stabili­
ty" 4(b) ... "[T]he notion of stability depends upon the 
perturbations that we allow .... " 4(c) 

Furthermore 
" 'Typicality' statements do not mean that for some­
thing else to happen is impossible or unphysical. They 
do mean that something else happening requires special 
explanation and justification .... " 

In particular, noncanonical catastrophes can occur stably if 
the system possesses some special symmetry, and if they are 
found, 

"[ I] t is the job of the mathematical scientist to account 
for the symmetry which stabilizes them." 4(d) 

With the above discussion in mind, let us define or cre­
ate a distinction between generic and typical Hamiltonian 
mechanical systems. Let us say that a generic or general 
Hamiltonian system is described by an arbitrary differentia­
ble function of p's and q's, H (p,q). However, let us say that a 
typical Hamiltonian system is described by a Hamiltonian of 
the form (I )-Le., it is quadratic in the momenta (no linear 
terms). 

We consider a certain restricted class of Lagrangian 
manifolds. (i) The manifold must possess a point which pro­
jects to the origin in momentum space p = O. (ii) The mani­
fold must possess a small domain containing that point, 
which domain must admit a diffeomorphic projection into 
momentum space. Then the domain admits a generator S( p) 
such that qj (p) = as(p)/apj. (iii) This generator must sat­
isfya Hamilton-Jacobi equation with a typical Hamiltonian 
(1). 

In the following section, it will be proved that every 
member of this class of Lagrangian manifolds possesses 
caustics which form a comer. Therefore, within this restrict­
ed class of Lagrangian manifolds, which correspond to a 
very large subset of physically interesting mechanical sys­
tems, the comer is a stable structure. 

III. ANALYSIS OF THE CORNER 

We consider trajectories associated with Hamiltonians 
o~the form (I): the critical assumption is that the expansion 
of the Hamiltonian in powers of the momenta contains no 
linear terms in momenta-besides terms independent of mo­
menta, there are only terms that are at least quadratic in 
momenta (higher terms are allowed by the analysis, but are 
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430 J. B. Delos: Catastrophes and stable caustics 

not very relevant to nonrelativistic physics). Let us examine 
domains of Lagrangian manifolds that have a smooth and 
smoothly invertible projection into p space, and which pro­
ject onto a domain surrounding the origin p = O. The do­
main of the manifold is characterized by a generating func­
tion S(p) such that qi (p) = - as(p)lapi' We shall show 
that Hamiltonians of the form (1) force the generator to 
take a form such that a corner appears in configuration space 
at thepointqO = q(p = 0). Furthermore, we shall show that 
in suitably defined "normal" coordinates, the lines of the 
corner meet at right angles. Proofs of these statements are 
long, and the reader who is not interested in the details might 
skip to Sec. III F below. 

A. Transformation to "normal" coordinates 

The normal variables (P, Q) are defined in the following 
way. The origin of Q coordinates, Q = 0, is taken to be the 
point qO corresponding to p = 0; i.e., the manifold point 
which projects onto the point P = 0 in momentum space 
also projects onto the point Q = 0 in configuration space. 
(The origin of coordinates is at the corner that will emerge 
from the analysis.) Furthermore, the Q 's are taken to be 
linear combinations of q's such that the transformed kinetic 
energy matrix evaluated at qO is equal to the unit matrix. 
Such coordinates can be constructed by a modification of the 
method that is used to calculate normal modes of vibration 
(but of course the Q 's are not the same normal coordinates 
that would be obtained if the expansion had been carried out 
about the equilibrium point). The transformed Hamiltonian 
IS 

A 1 A A 

H(P,Q) = 2 ~ Tij(Q)PiPj + V(Q) , (6a) 
IJ 

1'(0) = 1, (6b) 
A 

V(O) = E. (6c) 

A derivation is given in the Appendix. 
This Hamiltonian is now expanded in powers of Q, and 

the leading terms are 

H-E= ~(~ P;-FiQi) + "', (7a) 

(7b) 

Higher terms in Eq. (7) contain either quadratic products 
QiQj or cubic products QiPjPk or higher degree products. 
The Q's are referred to as normal variables because of the 
simple form of Eq. (7). [Perhaps we should emphasize here 
that we are not assuming that higher-order terms in H have 
no effect on the trajectory as a whole. It is rather that the 
higher-order terms are irrelevant. Our analysis, like catas­
trophe theory, deals only with local behavior of caustics, and 
this local behavior is determined entirely by the leading 
terms in Eq. (7).] 

The generator S(p) can be reexpressed as a new func­
tion of the new momenta, S(p) = S(P), and the resulting 
function must satisfy the Hamilton-Jacobi equation, 

A ( as) H P -- -E=O , ap (8) 

for which the lowest-order terms are 
A 

"(~P2+F as)+ ... =0. "7' 2 I I aP
i 

(9) 

Now let us expand S( P) in a Taylor series in P, 

S(P) = So + L SiPi 
i 

1 1 + - L SijPi Pj + - ) SijkPiPjPk + .... (10) 
2 ij 6 ffo 

The constant is irrelevant. The linear terms vanish because 
of the definition of the origin of Q coordinates 

A 

Qi (P = 0) = - as(p) I = - Si = 0 . (11) 
aPi p=o 

The quadratic terms vanish because when S(P) is put into 
Eq. (9), the quadratic terms produce terms which are linear 
in P 's, and which cannot be canceled by anything else in that 
equation. [The kinetic energy is quadratic in P's, and any 
product (as laPi )(as la~) arising from higher-order 
terms in Eq. (9) is a.1.so at least quadratic in P's.] Therefore 
the lowest terms in S(P) are cubic. 

B. Analytical geometry of the corner 

The analysis up to this point applies to systems with any 
number of degrees offreedom. Let us now restrict ourselves 
to the case N = 2. 

The general cubic- and-higher generator is in this case 

S(P) =!APi +¥1PiP2+!CPIP~ +!DP~ +"', (12) 

whereA, B, C, D are constants. The equations for the embed­
ding of the manifold in phase space are 

-Ql(P1P2) = as =APi +BPIP2+~CP~ +''', 
aPI 2 

(13a) 

- Q2(P1P2) = as =~BPi + CP1P2 +DP~ + .... 
ap2 2 

( 13b) 

Applying the Hamilton-Jacobi equation (8) to the gener­
ator ( 12), and collecting in powers of P 's using the fact that 
the lowest-degree parts of H have the form (7a), we obtain 

!(Pi + P~) + (APi + BP1P2 + !CPi)F1 

+ (!BPf +CPIP2+DP~)F2+'" =0. (14) 

Since P's are independent variables, this implies a set of si­
multaneous linear equations for the constants A-D, 

FIA + V'2B = -!, 
F1B+F2C=0, 

!F1C +FzD= -!. 

(15a) 

(15b) 

(15c) 

Since F's are determined from the Hamiltonian, these are 
three equations in four unknowns. They therefore admit a 
one-parameter family of solutions--one of the coefficients 
(we will choose B) is arbitrary, and the others are deter-

J. Chern. Phys., Vol. 86, No.1, 1 January 1987 
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mined from it: 

A = - q + !F2B)IF) , 

C= -F)BIF2' 

D = - (! - ViB IF2)IF2 · 

(16a) 

(16b) 

( 16c) 

The qualitative properties of the manifold near P = 0 
are determined by the cubic terms in S, or the quadratic 
terms in Q (P), so henceforth we will ignore all higher 
terms.s 

Caustics are singularities of the projection of the mani­
fold into Q space, and they occur when a Jacobian vanishes 

____ a_(=Q=)'=Q=2.:...,.) ____ = 0 . 
a(intrinsic manifold coordinates) 

( 17a) 

Whatever we might choose for "intrinsic manifold coordi­
nates," the manifold locally has a good projection into P 
space, so 

a(intrinsic manifold coordinates) #0 
a(p),P2) 

(17b) 

and therefore the caustics are determined by the condition 

a [Q)(p),P2),Q2(P),P2)] =0. (17c) 
a(p),P2) 

Evaluation of this Jacobian leads to the equation 

(24C - B 2)Pi + (4AD - BC)P)P2 + (lED - C2)p~ = 0 

(18) 

or, definingp = P)IP2 , 

p2 + {3p + y = 0 , 

{3 = (4AD - BC)/(24C - B2) , 

Y = (2BD - C 2)/(24C - B 2) . 

(19a) 

(19b) 

(19c) 

The roots of this quadratic equation ( 19) may be denotedp + 
andp_: 

p± =H-{3±({32-4y»)/2]. (20) 

These roots p ± satisfy another polynomial equation 
that occurs repeatedly in proofs given below. Let us consider 
again the quadratic equation (19a) whose roots arep+ and 
p _, and let us multiply that equation by the factor p ± - / 

with/ = F)IF2: 

(p2± +{3p± +Y)(P± -f) =0, 

p3± + ({3-/)p2± + (y-{3/)P± -y/=o. 

Now using Eq. (19b) together with the evaluations 

4AD-BC= [F2 + (F~ -Fi)B ]IF)F~, 

24C _B2 =BIF2 

one can in a few minutes of scribbling show that 

{3 - /= 2(C -A)IB, 

y-{3/= 2(D -B)IB, 

and therefore that Eq. (21b) is equivalent to 

(21a) 

(21b) 

(22a) 

(22b) 

(23a) 

(23b) 

!Bp3± + (C-A)p2± + (D-B)p± -!C=O. (24) 

This equation will appear again later. 

<-:':';':':-:-:-:', ~~~~~~~~~~§~~~~~;;::f;;;;;r-T-:::;::;::;:;:::;:;:;:;:; ,::. -- - --- -- -- - -- -- -- - - --

•••••••••••••••••••••••••••••••••••••• 

FIG. 8. "Impossible" figure illustrating 
the corner associated with a hyperbolic 
umbilic. Phase space has four dimensions, 
with axes PJlI2Q,q2' The projections of 
these axes into the plane of the paper are 
four straight lines meeting at an origin. 
One must imagine that these lines are all 
orthogonal (this is most easily done by al­
ternately hiding thep" Q" orq2axes). The 
Q,Q2 plane is configuration space and the 
PJlI2 plane is momentum space. The two 
parabolic curves lie upon a smooth two­
dimensional surface in the four-dimen­
sional phase space. They represent the set 
of singular points on the Lagrangian 
manifold. The parabola with black dots 
projects to a straight line in momentum 
space. Both branches of that parabola pro­
ject to a single half-line in configuration 
space. Likewise the two branches of the 
parabola with hollow dots project to a 
straight line in momentum space but to a 
half-line in configuration space. The caus­
tics in configuration space meet at a right 
angle, as do the singular lines in momen­
tum space. Such a structure is impossible 
in three dimensions, but it does exist in 
four-dimensional space. 

'.' .. " ... 
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The two roots p ± define two straight lines through the 
origin ofthe P IP2 plane. These two lines are named 1T + and 
1T _, each being defined by an equation of the form 
PI = p ± P2• These two straight lines are the projections of 
the singular points of the manifold into the P IP2 plane. 

These two lines meet at right angles.9 To prove this, note 
that the condition required is 

dP 1+ (P2) ___ [dP 1- (P2) ] - I 

dP2 dP2 
(25a) 

or 

(25b) 

Now the constant term in a quadratic equation of the form 
( 19) is equal to the product of the roots, so let us examine 
that term: 

p+p- = r 
= (2BD - C 2 )/(2AC _ B 2) 

-B/F2 +B2Fi/F~ _B2FilF~ 
=------------~~--~--~~ 

B/F2 +B2 _B2 

= -1 (26) 

and the lines are indeed perpendicular. 
These two lines in P space project out via Eqs. (13) to 

two curves on the manifold, and these curves are the locus of 
singular points (Fig. 8). The projections of these curves into 
Q space are the caustics. Thus the caustics can be given para­
metrically by the equations 

Q l (P2) = QJ [P I± (P2),P2] 1= 1,2, (27) 

i.e., with P2 as the independent variable, the" + " caustic is 
the line 

Q 1+ (P2) = (Ap2+ + Bp+ + ~C)P~ , 

Q 2+ (P2) = (!Bp2+ + Cp+ + D)P~ , 
and the" - " caustic is the line 

Q 1- (P2) = (Ap2_ + Bp_ + ~C) P~ , 
Q2- (P2) = (!Bp2_ + Cp_ +D) P~ . 

(28a) 

(28b) 

These are again two straight lines through the origin, for 

QI±(P2) Ap2± +Bp± +!C 
------- = ----=--=----'--=---=--
Q2± (P2) !Bp2± + Cp ± + D 

= constant. (29) 

The two caustics therefore form a comer. 
Furthermore, in Q space as well as P space, the lines 

meet at right angles. The necessary and sufficient condition 
for this is that 

0'+0'_ = -1 (30) 

and this follows from the fact that: 

FIG. 9. Canonical rotation in position and momentum space from 
P,P2Q,Q2 to flJ,flJ 2!!),f!)2 coordinates. On the right-hand side is also 
shown our conventions for labelling branches of the Lagrangian manifold. 

0'+ = p+, 
(31) 

0'_ = p_. 

These equations are proved by rewriting Eq. (24) in the 
form 

(32a) 

or 

c. Natural coordinates for the corner 

The above results suggest that a change of variables 
might put the generator in a simpler form, and in fact we still 

A 

have to show that S corresponds to the hyperbolic umbilic 
catastrophe. We have shown that the projection of the singu­
lar points into the PI' P2 plane forms two straight lines that 
meet in a right angle at the origin (Fig. 9). Therefore it is 
natural to consider a rotation of momentum coordinates 
such that the new axes are aligned with these projected sin­
gular points. 

Let us define 9 19 2 as rotated P IP2 coordinates, 

[PI] = [C~S 8 - sin 8] [9 1] , (33) 
P2 sm 8 cos 8 9 2 

i.e., given a point in the P plane represented by components 
P I P2 , then the same point is represented in rotated coordi­
nates by the components 9 192' By choosing 

tan 0 = 1/ p_ (34) 

we make the 9 I axis correspond to the singular line 1T _. By 
convention, the angle 0 lies between - 1T/2 and 1T/2. 

Let us now reexpress S in terms of these rotated coordi­
nates. Combining Eqs. (33) with (12), and abbreviating 
c = cos 0, s = sin 0, a straightforward calculation gives 

.9'(9) =5 [P(9)] = iA(c39~ - 3c2s9i 9 2 + 3CS2919~ - s39~) 

+!B [c2s9~ + (c3 - 2c~)9i 9 2 + (S3 - 2c2s)919~ + cs29n 

+!C[cs29~ - (~-2c2s)9i92+ (c3-2cs2)919~ -c2s9n 

+ jD [~9~ + 3cs29i 9 2 + 3c2s919~ + c39~] . 
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B': 
We need to examine the coefficient of & r & 2-<:all it 

B' = - !A (3c2s) + !B(c3 
- 2cr) 

- ~C(~ - 2c2s) + j.D(3cs2) . (36) 

This can be evaluated using 

sin 0 = tan 0 I( 1 + tan2 0)1/2, 

cos 0 = (1 + tan2 0) -1/2 . 

(37a) 

(37b) 

(The positive square root is involved in both of these expres­
sions; this follows from the above-noted convention that 
-1r/2<.0<'1r12.) Substituting Eq. (37) into Eq. (36), mul­

tiplyingtheexpression by (1 + tan 0)3/2, and then using Eq. 
( 34), we obtain 

B'= -Alp_+!B(1-2Ip2_) 

_ ~C(1 - 2p2_ )1 p3_ + D I p2_ 

and multiplying by p3_ and rearranging terms we find that 
the coefficient is 

p~B'=!Bp3_ + (C_A)p2_ +(D-B)p_-iC (38) 

which, according to Eq. (24), is exactly equal to zero. 
Ifwe apply the same process to the coefficient of &' I &'~ 

in Eq. (35), and if for tan 0 we substitute - p + (which is 
equal to 1/ p _ ), then the magical equation (24) again ap­
pears, so this coefficient also vanishes. It follows that in these 
rotated coordinates, Y is given simply by 

Y =!A ' &: + tv' &'~ (39) 

with 

A' = !Ac3 + !BC2S + !Ccs2 + j.D~, (4Oa) 

D' = -!A~ + !Bcr - !Cc2s + !Dc3 . (4Ob) 

The geometry of the singular points can be calculated 
very quickly from this form. Corresponding to the rotation 
of momenta (33), there is a rotation of coordinates (Fig. 9) 

[QI] = [~sO -SinO] [52 1]. (41) 
Q2 S10 0 cos 0 52 2 

With such rotations, the full transformation PIP2QIQ2 
-+ &' I & 2 g 152 2 is canonical. Therefore the Lagrangian 
manifold is given in these coordinates by 

52 1(&'1,&'2) = _ aY = -A '&'r, 
a&'1 

52 2(&'1,&'2) = _ aY = -D'&'~. (42) 
a&'2 

The Jacobian defining the singular points is just 

a(fl l ,fl 2 ) =4A'D'&'1 &'2 (43) 
a(&'I'&'2) 

which vanishes on the lines &' I = 0 and &' 2 = O. Therefore 
the caustics are the half-lines 52 I = 0 with sgn (fl 2) fixed, 
and 52 2 = 0 with sgn (52 I) fixed. 

D. Stability of the corner 

The expression 

j gi'J'i +j&"~ (44) 

is a standard form for the "germ" of the hyperbolic umbilic 
catastrophe, and the expression 

(45) 

represents a "universal unfolding" of this catastrophe. The 
terms germ and unfolding are defined in various references 
on catastrophe theory. 1.2.4 Their essential meaning is the fol­
lowing. Given a manifold with a generator of the form (44), 
we may consider general smooth perturbations of the gener­
ator, which produce smooth perturbations of the manifold. 
It can be shown that small perturbations of the generator 
( 44) lead to essential changes in the geometrical structure of 
the caustics. However, given any manifold which was ob­
tained by an arbitrary small perturbation of generator (44), 
there exists a smooth change of coordinates such that the 
generator of the perturbed manifold has exactly the form 
( 45), with a I' a2, and a3 constants. Therefore, all possible 
caustic structures associated with any perturbation of Eq. 
( 44) can be found by examining the structures associated 
with the universal unfolding (45), for various values of the 
parameters aI' a2, and a3• 

Now the generator (39) can be transformed to the form 
(44) by appropriate rescaling of the &' 's (&'; = A ' ! &' I' 
&'i = D'! &'2)' Therefore we have established that if a do­
main of a Lagrangian manifold associated with a Hamilto­
nian of the form (1) has a smooth and smoothly invertible 
projection onto a domain surrounding the origin of momen­
tum space, then that manifold has locally the structure asso­
ciated with the hyperbolic umbilic catastrophe. 

The bifurcation set associated with this catastrophe was 
shown in Fig. 5. One slice of the bifurcation set (the plane 
1, corresponding to a3 = 0) contains a comer. No other 
slice has such a comer however, so from the point of view of 
catastrophe theory, the comer should be unstable in two 
dimensions-a general perturbation of the manifold would 
produce a nonzero value of a3, and the comer would break 
up into a fold and a cusp. 

The explanation of the observed stability of the comer is 
again the fact that what is generic or typical in mathematics 
is not necessarily typical in physics. As was proved earlier, a 
Hamiltonian of the form (1) cannot admit generators 
S(PI ,P2 ) containing quadratic terms in the momenta: the 
constant a3 must vanish, because the kinetic energy contains 
no terms that are linear in the momenta. Therefore the plane 
1, containing the comer, is the only physically relevant 
slice of the bifurcation set. Within the class of Lagrangian 
manifolds associated with a Hamiltonian of the form (1), 
the comer is stable-perturbations to the manifold that do 

.A-

not produce quadratic terms in S leave the comer intact. 
(We may mention that perturbations to the manifold 

that involve linear terms, a I &' I + a2 &' ~ have no such effect. 
In fact, from the equations 52 i = - as I a&' i , we find that 
these linear terms only correspond to displacements of the 
origin of coordinates of 52 space. From our point of view, 
such displacements are of no interest.) 

E. Extension to N degrees of freedom 

Our development through Eq. (11) applies to systems 
with any number of degrees offreedom, while the rest of the 
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analysis, Eqs. (12 )-( 45), applies only to systems with two 
degrees of freedom. For N = 3 or higher, we advance the 
following propositions. 

We already proved that for any N, a change of variables 
puts the Hamiltonian in the form (7), and the Hamilton­
Jacobi equation in the form (9). In the Taylor expansion of 
A 

S(P), linear and quadratic terms were shown to vanish. 
Therefore the lowest-degree terms in S(P) are cubic: 

(46) 

Here we adopt the convention that the coefficients Sijk are 
invariant under all permutations of indices, 

(47) 

For example, the coefficients S112' S121' and S211 all multiply 
PiP2; and we ta~e these coefficients to be equal. 

As always, S(P) generates a manifold in phase space 
through the equations, 

as 1 
-Qm(P) =-=- LSmijPJj. apm 2 ij 

(48) 

This manifold must be consistent with the Hamilton-Jacobi 
equation (9) and this provides restrictions on the coeffi­
cients S kij' When Eq. (48) is put into Eq. (9), a set of linear 
inhomogeneous equations for the Sk/S is obtained. 

A general orthogonal point transformation of coordi­
nates and momenta would be generated by a matrix 
!!It = [!!It ij] according to the rules 

Pi = L !!Itij.9j , 
j 

Qi = L !!It ij P2 j , 
j 

Fi = L !!It ij.7j • 

j 

(49) 

In the transformed variables {.9, P2}, the form of the Hamil­
ton-Jacobi equation is the same as before 

(50) 

We propose that for any S(P) locally satisfying the original 
Hamilton-Jacobi equation, there exists an orthogonal trans­
formation such that in the new variables the Hamilton-Ja­
cobi equation is separated, and 

~.9~ -.7mg m(.9 m) =0, 

P2 m (.9) = g m (.9 m) = .9~/2.7 m , 

and the generator in transformed variables is 

A 

S[P(.9)] = L .9~/6.7m· 
m 

(5la) 

(5lb) 

(52) 

It is easy to prove that given a separated local solution (52), 
l...he inverse transformation !!It-I gives a solution to Eq. (9), 
S(P). We also believe (but have not proved) that every local 
solution S(P) can be obtained by this means. If this is true, 
then the caustics must locally have the structure described in 
the next paragraph. 

Singular points of the manifold are given by the equa-

FIG. 10. Trajectories for the Hamiltonian (54) with k, = 1.0, k2 = 2'/2. 
Initial conditions for both trajectories were q, = 1.0, q2 = 1.5, p, = 0.0, 
P2 = 0.0. Top: c = 0; bottom: c = 0.523 598 776. Each comer breaks up 
into the typical section of the hyperbolic umbilic. 

tion 

or 

(53) 
m 

Hence the projection of the singular points of the manifold 
into momentum space are the N planes on which anyone of 
the .9 m 's vanishes. Each of these planes has dimension 
N - 1. The projection of the singular points into configura­
tion space are theN "quadrants" in which anyone of the g's 
vanishes and each of the other P2's has a fixed sign. For 
example in the case N = 3, if all .7's are positive then the 
caustics are three quarter planes: g 1 = ° with g 2 and g 3 

nonnegative, P2 2 = ° with gland g 3 nonnegative, and 
g 3 = ° with gland g 2 nonnegative. Locally these caustics 
have the form of three walls meeting in a comer, as found in 
Fig.6(d). 

F. An illustrative calculation 

Our theorem, asserting that Hamiltonians having no 
linear terms in the momenta admit comers as stable struc­
tures, can be illustrated very clearly by a simple calculation. 
Consider the Hamiltonian 

H=!(p~ + p~) +!(k1q~ +k2q~) +CQ1P2' (54) 

If c = 0, this Hamiltonian has the form ( 1 ), so the theorem 
asserts that comers should be stable under changes in the 
initial conditions and under changes in the force constants. 
In fact, every trajectory has a rectangular envelope with four 
comers. If we change c to a nonzero value, then this Hamil­
tonian no longer has the form (1); catastrophe theory then 
tells us that comers should no longer be stable, so we expect 
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that for the typical trajectory each comer will break up into 
the fold-and-cusp representing the typical two-dimensional 
section of the hyperbolic umbilic. This is shown in Fig. 10. 

IV. SEMICLASSICAL WAVE FUNCTIONS NEAR A 
CORNER 

As is well-known, near any caustic, primitive semiclassi­
cal wave functions are singular, and more accurate forms are 
needed. A motivation for the study of the geometry of caus­
tics and their relationship to elementary catastrophes is the 
desire to obtain simple standard forms for quantum-me­
chanical wave functions in such singular regions. The classi­
fication theorem tells us that a very limited set of standard 
forms will be needed to describe most physical situations for 
N small--one for each of the elementary catastrophes. For 
N = 2, we need a formula that describes wave functions near 
folds, and another describing wave functions near cusps. The 
first of these is well-known to be the Airy function, and the 
second is called the Pearcey function. Both have now been 
extensively studied, and Taylor expansions, asymptotic ex­
pansions, tables, and graphs are all available.2 

From this point of view, the analysis given in this paper 
may appear at first sight to be a bit of bad news. We have 
shown that typical Hamiltonians for physical systems admit 
stable structures other than those enumerated by the classifi­
cation theorem. It follows that these additional structures­
the comers-also have to be analyzed, and standard forms 
for wave functions near comers also have to be found. The 
news has a happy ending, however: the leading term in the 
standard form describing a comer-wave function is nothing 
more than a product of Airy functions. 

We calculate wave functions near a comer using the 
general framework developed by Maslov and Fedor­
iuk. 3(c). \0 They have shown that in the vicinity of almost any 
singular region, a good approximation to the wave function 
can be obtained using Fourier transformation from a mo­
mentum-space or mixed-space form 

'II(q) = ( - 21Tifz) -K/2 f exp (i ~ Paqa1fz) 

X iii (p"CJp )dp" . (55a) 

Such a form is useful whenever the primitive semiclassical 
form in the mixed Pa CJp space provides an acceptable ap­
proximation: 

iii (Pa CJp) = C If(Pa ,CJP ) 1- 1/2 exp [is(Pa CJp )lfz]. (55b) 

Here {Pa CJp } is a mixed set of N coordinates and momenta, 
with the set containing no canonically conjugate pairs, S is a 
generator for the manifold using Pa and CJp as fundamental 
coordinates, f is a Jacobian corresponding to the inverse of 
the classical density in the mixed space, and K is the number 
of variables in the set a (the number of momenta in the 
chosen mixed space). C is a constant chosen such that this 
local approximation to 'II joins smoothly onto local approxi­
mations defined in other regions. We refer the reader to Ref. 
10 for a detailed discussion, and for calculations based upon 
this formulation. 

Near the comer, since the Lagrange manifold has a good 

projection into momentum space, Eq. (55) becomes 
- A -In ~ 'II(PIP2) = C IJ(PI,P2) I exp[iS(PHP2)lfz] , (56) 

where now S has the properties discussed in Sec. III. 

A. Leading term near the corner 

We have seen that a rotation of coordinates greatly sim­
plifies the generator, so it is best to evaluate'll in the rotated 
coordinates !!2 IS!} 2' Combining Eq. (56) with Eq. (54), we 
have in these coordinates 

'II(!!2) = (-21Tifz)-IC f 1/(9)1-1/2 

Xexp{ilfz)[Y(9) + 9 1S!}1 + 9 2!!22]}d9, 
(57) 

= (-21Tifz)-IC f 1/(9)1-1/2 

Xexp{Ulfz)[9 1S!} I + 9 2 !!2 2 

+!A'9~+jD'9~Pd9. (58) 

Now if 1/ (9) 1- 1/2 is approximately constant near the ori­
gin (9 1= 9 2 = 0), it can be taken outside the integral, 
and then the double integral separates into a product, 

'II(!!2) = (-2mfz)-ICI/(O)I-1/2 

X f exp[ Ulfz)( 9 IS!} I +!A' 9i) ]d9 I 

X f exp[Ulfz)(92!!22+jD'9~)]d92 
= C' Ai(!!2 IIA 11/3ftZ/3)Ai(!!22ID '1/3ftZ/3) (59) 

with 

C' =iCI(fzA 'D') 1/31 /(0)1 1/2 . (60) 

Equation (59) is the promised simple-product-of-Airy 
functions representing the leading term in the semiclassical 
approximation to the wave function near a comer. This for­
mula has already been used to calculate a local approxima­
tion to a bound state wave function. 9

(c) It should be obvious 
that such simple-product forms hold for any number of de­
grees offreedom, N-from Eq. (52) for Y ( 9 ), the approx­
imation / ( 9 ) = constant leads directly to a separated 
form. 

B. Higher-order approximations 

In some cases a more accurate approximation may be 
desired. The semiclassical approximation can be regarded as 
an expansion "in powers of fz," with the primitive semiclassi­
cal approximation of order ff and neglected terms of order fz 
and higher. In this view, Eq. (59) is of order fz- 1/3, and 
higher corrections to Eq. (59) lead to an expansion in pow­
ers offzl/3, with the first four terms of order fz- 1/3, ff, fz1/3, 
and ftZ/3. In the present case, these four terms lead to what is 
called the "uniform approximation." Formulas for this type 
of uniform approximation have been given in the simpler 
case ofa fold by Chester, Friedman, and Ursell l1

(a) and by 
Conner,l1(b) and formulas for the more complicated case of 
the full hyperbolic umbilic catastrophe have been given by 
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Vzer et aJ. 11 Here we give a uniform approximation suitable 
for a two-dimensional comer. (A closely related formula has 
been developed and used by Marcus and his collabora­
tors. lI (e) Our formula is simpler because we take advantage 
of a symmetry applicable to bound states but not scattering. ) 

We choose to work in the variables QIQ2PIP2' with 
again the comer at the point (0,0). 

This formulation of the uniform approximation is based 
on the assumption that the primitive semiclassical approxi­
mation appropriate to the comer is already available. This 
primitive approximation is a combination of four terms, 

4 

'I1p(Q) = L Ipn)(Q)I-1/2 
n=1 

(61) 

The functions S (n) (Q) are generators of the four domains or 
sheets of the Lagrange manifold that project to the point Q, 
and J (n)'s are the density Jacobians associated with these 
domains. The quantitiesjl(n) are Maslov indices, which con­
tain the little additional phase shift associated with tunneling 
into classically forbidden regions. Each of these quantities is 
described in detail in Refs. 3 ( c) and 10. 

Calculations show that Lagrange manifolds and genera­
tors associated with bound states of Hamiltonians of the 
form (1) usually have certain symmetry properties, which 
we formulate as follows. If we write p(n)(Q) = VS (n)(Q), 
then these functions represent the four possible values of 
(vector) momentum associated with a given position Q­
i.e., these functions define the embedding of the Lagrange 
manifold in phase space. It is found that ifP(n) (Q) is a sheet 
of the manifold, then - p(n)(Q) defines another sheet of 
the same manifold. [It is obvious that Hamiltonians of the 
form (1) permit this symmetry; we have not proved that 
they require this symmetry.] Therefore the four values of 
pen) (Q) are connected in pairs according to the convention 

p(3)(Q) = _ p(1)(Q) , 
(62) 

P(4)(Q) = _ p(2)(Q) . 

Generators are always defined only to within arbitrary addi­
tive constants, and we adopt the convention that the four 
generators S (n) (Q) have a common value at the comer, 12 so 

s(n)(Q)=S(O) + AS(n)(Q), 

AS(n)(Q) = f p(n)(Q')'dQ', 

and then the AS (n),s also have the symmetry (62): 

AS(3)(Q) = _ AS(i)(Q) , 

AS(4)(Q) = _ AS(2)(Q) . 

(63a) 

(63b) 

A schematic representation of our conventions is shown in 
Fig. 9. Following this convention, it can be shown that the 
Maslov indices are equal to 

jl(i) = _ jl(3) = 1 , 

jl(2) = jl(4) = ± 2 . 
(64) 

The wave function is again represented by an integral, 

'I1(Q) = (- 21Tili)-1 f IJ(P)I-1/2 

xexp{(i/Ii) [S(P) + Q-P]}dP. (65) 

Let us now recall that in Eqs. (10) and (12), it was recog­
nized that the Taylor expansion ofthe generator S(P) con­
tains not only cubic terms, but also all higher terms. These 
higher terms played no role in the (local) analysis of the 
structure of the comer, but now they are relevant in the 
calculation of improved approximations to the wave func­
tion-in fact we want to derive a uniform appr0xJ..mationjust 
so that the effects ofsuch higher-order terms in S(P) can be 
incorporated. This time, therefore, we define new variables 

Q = Q(Q) , 

P=P(P;Q) , 

and a parameter 

A =A(Q) 

(66a) 

(66b) 

such that the exponent in Eq. (65) takes exactly the form 

S(P) + Q_P = ~o(P;Q) , 
(67) 

~O(P;Q) = i P~ + i Pi + QIPI + QJ>2' 
[Previously we only put the cubic terms inS(P) into a stan­
dard form; now we are locally transforming the entire expo­
nent into a standard form.] 

This change of variables (66) only makes sense if the 
Jacobian a(PI,P2)/a(PI,P2) is finite and nonzero. A neces­
sary condition for this is obtained by differentiating Eq. 
(67), 

as ~o a~ - + Qi = L --=- - i = 1,2 . 
api j alj api 

(68) 

At each Q, there are four values ofP such that the left-hand 
sides of these equations vanish exactly. Those are the mani-

A 

fold points p(n)(Q), where Qi = -as/aPi' At those 
points, we may regard Eq. (68) as a pair of homogeneous 
linear equations for unknowns ~o / aPi • The determinant of 
that system of equations is seen to be the Jacobian of the PIP 2 

-+PIP2 transformation, and since we insist that that determi­
nant must be finite, we are forced to take ~o/aPi = 0 at 
these points. Hence from Eq. (67), 

p;[p(n)(Q);Q) + Qi = 0 (69) 

and 

s[p(n)(Q») +p(n)(Q)_Q 

=A(Q) ± ~ QV2 ± ~ Qil2. (70) 

As stated above, for each Q there are four distinct mani­
foldpointsp(n)(Q) on whichEq. (70) must hold. Therefore 
we regard Eq (70) as a set of four equations determining 
three unknowns, QI,Q2' and A at each Q. The existence ofa 
solution to these equations is guaranteed by the symmetry 
properties (62) and (64); this w~ prove by constructing a 
solution. Generators seQ) and S(P) associated with var­
ious representations are related by Legendre transforma­
tion, so the left-hand side ofEq. (70) isjust 

A . 

s[p(n)(Q») +p(n)(Q)_Q=s(n)(Q). (71) 
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Let us take 

A(Q)=..!.. ± s(n)(Q)=S(O), 
4 n= 1 

(72a) 

HQI (Q) p/2 = ~ [S(J)(Q) _ S(4)(Q)] 

= HS(2)(Q) _S(3)(Q)] , (72b) 

HQ2(Q) p/2 = ! [S(J)(Q) _ S(2)(Q)] 

= HS(4)(Q) - S(3)(Q)] (72c) 

together with the convention that the Q 's are negative in the 
classically allowed region. These Q's obviously satisfy Eq. 
(7). 

As a function of the new variables Q, the wave function 
is now 

'II[Q(Q)] = J exp[i<l>°(P;Q)/Ii] g(P) dP 

with 

g(P) = ( _ 211"ili) -III [P(P)] 1- 1/2 a(PIP2) . 
a(PIP2) 

(73) 

(74) 

We now need to expandg(P) in a series, retaining four terms 

g(P) = goo +glOPI +gOlP2 +gnPIP2 + .... (75) 

[It may seem that the first neglected terms in Eq. (75) in­
volve pi and pi, but following the method of Chester et 
ai.,lI(a) it is possible to define the series in such a way that 
quadratic terms involving Pi and P~ are canceled, so the 
first neglected terms in Eq. (75) actually are cubic.] 

With this approximation, the wave function (73) be­
comes 

1 I 

'II[Q(Q)] = I I gmn Umn (Q) , (76) 
m=On=O 

where 

Umn (Q) = J P'['P; exp [i<l>°(P;Q)IIi]dP. (77) 

Using Eq. (67), these functions Umn (Q) are easily found to 
be 

Uoo = ~/3(211")2 Ai(QI/~/3) Ai(Q2/~/3) , 
UOI = ( - iii) (211")2 Ai(QI/~/3) Ai'(Q2/~/3) , 

(78) 
UIO = ( - ili)(211")2 Ai'(QI/~/3) Ai(Q2/~/3) , 

Un = _1i4/3(211")2 Ai'(Q1/~/3) Ai'(Q2/~/3) , 

where 

Ai'(z) = d Ai(z) . (79) 
dz 

The last step is to determine the coefficients gmn' One 
good way to choose them is such that the series (75) and the 
exact formula (74) forg(P) match each other atthe station­
ary points pen) (Q). This criterion implies a set of simulta­
neous linear equations for the coefficients g mn' which can be 
written in the form 

g(p(n» = goo + glOP jn) +goIPin
) +gllPln)Pin). (80) 

It follows from the above formulas that this uniform 
approximation is not in general separable-it cannot neces­
sarily be put into the form 'III (QI )'II2(Q2)' 

To summarize, the uniform approximation is given by 
Eq. (76), where U'saredefinedinEq. (78), Q'saregivenas 
functions of Q 's by Eq. (72), and g's are obtained by solving 
the simultaneous linear equations (80). 

v. SUMMARY OF RESULTS 

Given: (a) The Hamiltonian has the form (1); (b) the 
Hamilton-Jacobi equation in momentum space 

H( p,- :)-E=O 

admits as one its solutions a generator S(P) which is smooth 
in a neighborhood of the origin p = O. 

Then: 

A. In general 

( 1) S ( p) generates a manifold in phase space through 
the relationship 

qj(p) = -as(p) . 
apj 

(2) There exist point transformations to (nonunique) 
"normal" variables (P,Q) such that the kinetic energy has 
the form 

T=..!.."" p2+ ... 2'7- I 

and such that the point P = 0 corresponds through the 
manifold to Q = o. 

( 3) When the generator of the manifold is written in 
these variables, its Taylor expansion about P = 0 contains 
no linear and no quadratic terms. 

8.ln the case N=2 

( 4) A rotation of coordinates converts S( P) to the germ 
of the hyperbolic umbilic catastrophe. 

( 5) Singular points on the manifold project into mo­
mentum space as two straight lines passing through the ori­
gin and meeting at a right angle. 

(6) Singular points on the manifold project into config­
uration space as two straight half-lines meeting in a right 
angle at the origin. 

C.ln the caseN=3 

( 7) It is proposed that a rotation of coordinates converts 
S(P) to a standard form 

S(P) =!a&'~ +!p&'~ +!r&'~. 
(8) Singular points of this manifold project into mo­

mentum space to three perpendicular planes passing 
through the origin. 

(9) These singular points project into configuration 
space to three perpendicular quadrants (quarter planes) 
meeting at the origin. 

D. In general 

(to) The leading term in the semiclassical approxima­
tion to the wave function associated with a comer is a simple 
product of Airy functions. 
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E.ln the case N=2 

( 11) A uniform approximation suitable in a corner is 
given by Eqs. (76)-(Sl). 

VI. CONCLUSIONS 

Thom's list of canonical catastrophes describes all types 
of caustics that are stable under arbitrary smooth perturba­
tions of the Lagrangian manifold (the surface in phase space 
corresponding to a regular family of classical trajectories). 
However, the typical Hamiltonian that arises in physics 
(quadratic in the momenta) does not allow arbitrary pertur­
bations of the manifold. Hence physically stable structures 
arise which do not correspond to any of Thom's catastro­
phes. In the study of bound states of typical Hamiltonian 
systems, to the canonical list of catastrophes one more stan­
dard type must be added, which we call a corner. For sys­
tems with two degrees of freedom the corner is a special part 
of the (normally three dimensional) hyperbolic umbilic ca­
tastrophe. The analytic geometry of the corner has been de­
scribed in this paper, and formulas for a uniform approxima­
tion to the wave function have been derived. 

For bound states of such Hamiltonian systems with two 
degrees offreedom, the important caustic structures are not 
folds and cusps, but folds, corners, and swallowtails. 

APPENDIX: TRANSFORMATION TO NORMAL 
VARIABLES 

Transformation to normal variables is done in two steps: 
first the origin of q coordinates is changed, and then combi­
nations of q's are constructed to convert T(qo) to the unit 
matrix. 

The analysis is quite similar to that used to calculate 
normal modes of vibration, but there are several differences. 
( I) The expansion of H is carried out about an extremal 
point of the motion, where V( qO) = E, not about the equilib­
rium point. (2) It is not assumed that the trajectory stays 
close to the point qQ. The expansion is only used to describe 
local properties of the Lagrange manifold. No global as­
sumptions about the manifold are made, except that it corre­
sponds to a regular trajectory. (3) The resulting normal co­
ordinates are not unique, and an arbitrary rotation of normal 
coordinates leaves them normal. [In contrast, in the usual 
normal mode analysis, the expansion is carried out about a 
minimum of V( q), vibrations about this point are presumed 
to be small enough that higher-order terms are negligible at 
all times, and the resulting normal coordinates are unique 
provided that the normal frequencies are nondegenerate. ] 

The type-2 generator 

(AI) 

with qO defined as the position at which the momenta vanish 

(A2) 

leads to the transformation equations 

aWA 
pj =-a--=P;' 

qj 

, aWA ° 
qj =-a' =qj -qj' 

'Pj 

(A3) 

(A4) 

and the Hamiltonian can be reexpressed in these variables as 

H= 4, 21 Tij(q')P;P; + V'(q') , 
IJ 

T ij ( q' ) = T ij [q ( q')] , 

V'(q') = V[q(q')] , 

V'(O)=E. 

Now defining 

Tg = Tij(q' = 0) = Tij(q = qO) 

(A5a) 

(A5b) 

(A5c) 

(A5d) 

(A6) 

we may make a second linear canonical transformation, us­
ing the generator 

WB (P,q') = I Pj Wijq; 
ij 

which gives 

, aWB 
Pk =--= IPjW;k, 

aqk j 

aWB 
Qk =--= ~ Wk·q~· 

aP
k 

7' 7 J 

The kinetic energy term is then 

T= ~ 4,p;Tij(q')p; 
lJ 

= 21 I Pk WkjTij(q') WjlPI • 
ijkl 

We take coefficients Wkj such that 

WT'(O)W= 1. 

(A7) 

(AS) 

(A9) 

(AW) 

(All) 

This matrix W could be calculated by the following method. 
Since TO is a symmetric matrix, there exists an orthogonal 
transformation X which converts it to a diagonal (and posi­
tive-definite) matrix 

XT'(O)X= t, (AI2) 

where X = X -1 and t is diagonal. Then the matrix 
Y = tjj - 1/28ij converts t to the unit matrix: 

(A13) 

Finally, any orthogonal matrix Z leaves the unit matrix un­
changed, 

ZlZ= 1. 

Therefore W can be taken to be the product 

W=ZYX 

for then 

WT'(O)W=ZYXT'(O)Xn= 1. 

(AI4) 

(AI5) 

(AI6) 

Clearly W is not unique, since the orthogonal transforma­
tion Z is arbitrary. It follows that our "normal coordinates" 
are also not unique, and from anyone set of normal coordi-
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nates an arbitrary orthogonal transformation (e.g., rota­
tion) gives another set of normal coordinates. 

Let us now denote 

WT'(q')W= T"(q'). (A17) 

Next, T"(q') and V(q') have to be reexpressed as functions 
of Q 's using the inverse of relationship (A9), and then the 
Hamiltonian in new variables is 

A 1 A A 

H(P,Q) =-2 ~ Tij(Q)Pi~ + V(Q) 
IJ 

with 
A 

T(Q) = T" [q'(Q)] , 
A 

V(Q) = V'[q'(Q)] , 
A 

T(O) = 1 , 

V(O) =E 

in agreement with Eq. (6) of the main text. 
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