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We continue our study of the fractal structure of escape-time plots for chaotic maps. In the preceding
paper, we showed that the escape-time plot contains regular sequences of successive escape
segments, called epistrophes, which converge geometrically upon each end point of every escape
segment. In the present paper, we use topological techniques to:~1! show that there exists a minimal
required set of escape segments within the escape-time plot;~2! develop an algorithm which
computes this minimal set;~3! show that the minimal set eventually displays a recursive structure
governed by an ‘‘Epistrophe Start Rule:’’ a new epistrophe is spawnedD5D11 iterates after the
segment to which it converges, whereD is the minimum delay time of the complex. ©2003
American Institute of Physics.@DOI: 10.1063/1.1598312#

Topological methods and symbolic dynamics have long
been valuable tools for describing orbits of dynamical
systems. For example, if a particle in the plane scatters
from three fixed disks, labeled A, B, and C, its orbit can
be characterized by a sequence of symbols, such as
. . . ABA*BCBCA . . . , giving the sequence of collisions
with the disks. The asterisk gives the location of the par-
ticle at the present time; as time goes by the asterisk
takes one step to the right. In this paper, we describe a
new kind of symbolic dynamics, in which the symbol se-
quence describes the structure of a curve in the plane.
The relevant curve is not the trajectory of a particle, but
rather an ensemble of initial points in phase space—the
line of initial conditions. This line winds around ‘‘holes’’
in the plane in a manner described by the symbol se-
quence. The dynamical map applied to the line induces a
map on the symbol sequence, which is more complicated
than a simple shift. We use this symbolic dynamics to
derive properties of the epistrophes introduced in the
preceding paper. In particular, we use it to obtain a
‘‘minimal set of escape segments’’ and an ‘‘epistrophe
start rule.’’

I. INTRODUCTION

As in the preceding paper1 ~Paper I!, we study maps of
the phase plane, having an unstable fixed point~an X point!
and an associated homoclinic tangle of stable and unstable
manifolds~Fig. 1!. The stable and unstable manifolds inter-
sect transversely, bounding a region of phase space~called
the ‘‘complex’’! from which a trajectory may or may not
escape. We consider an initial distribution of points along a
curve passing through the complex~the line of initial condi-
tions!. The escape-time plot is the number of iterates of the

map required for a point to escape the complex, plotted as a
function along the line of initial conditions~Fig. 2!. For cha-
otic systems, such escape-time plots have a complicated set
of singularities and structure at all levels of resolution.2–16

These fractal escape-time plots play a central role in a variety
of classical decay and scattering problems; we have been
particularly motivated by the ionization of atoms, especially
hydrogen in parallel electric and magnetic fields.

The escape-time plot of a discrete map is divided into
‘‘escape segments,’’ intervals over which the escape time is
constant. In Paper I, we proved that there exist certain im-
portant sequences of consecutive escape segments, which we
called epistrophes, at all levels of resolution. The epistrophes
are characterized by the Epistrophe Theorem, whose core
results are:~1! each end point of an escape segment spawns
a new epistrophe which converges upon it;~2! in the limit
ni→`, every epistrophe converges geometrically, with rate
equal to the Liapunov factora of the X point; ~3! the
asymptotic tails of any two epistrophes differ by a simple
scaling.

The focus of Paper I was the asymptotic behavior of
epistrophes. In the present paper, we address how epistro-
phes begin. We use the topological structure of the ho-
moclinic tangle and the line of initial conditions to show that
there is a certain minimal set of escape segments. For this
minimal set, we prove the Epistrophe Start Rule~Theorem
1!, which says that after a sufficiently large time, each epis-
trophe begins some number of iteratesD after the segment
that spawned it~i.e., the segment upon which the epistrophe
converges!. The numberD is the same for all epistrophes of
a given map and is dependent on the topological structure of
the tangle; explicitly,D5D11, whereD is the minimum
delay time of the complex, that is, the minimum number of
iterates a scattering trajectory spends inside the complex.
The bulk of our effort is devoted to developing an algebraic
algorithm for constructing the minimal set of escape seg-
ments for a general line of initial conditions. This algorithm
allows us to compute the initial structure of the escape-time
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plot for iterates before the Epistrophe Start Rule sets in. The
algorithm is then used to prove the Epistrophe Start Rule
itself.

A critical aspect of this paper is our use of homotopy
theory. We develop the necessary formalism in Sec. III, and
prior knowledge of homotopy theory is not required. Homo-
topy theory provides an algebraic framework for describing
the topological structure of curves in the phase plane. As we
shall explain, the phase plane has a set of ‘‘holes’’ into which
the line of initial conditions cannot pass. A symbol sequence
can be used to describe how the line circumvents these holes.
As the dynamics maps the line forward, there is an induced
dynamics on the symbol sequence, representing a new kind

of symbolic dynamics which we call ‘‘homotopic lobe dy-
namics.’’ From the symbol sequence, one can readily read off
the structure of the minimal set of escape segments. Lines
with different symbol sequences may have different minimal
sets; however, at long enough times, these minimal sets al-
ways obey the Epistrophe Start Rule.

Some escape segments, such as that marked with an as-
terisk in Fig. 2, are not within the minimal set guaranteed by
the topology. These segments are ‘‘surprises’’ which, within
the present topological analysis, we cannot predict. Since
they break the regular structure and since they often have no
obvious connection with any of the epistrophes, we call them
‘‘strophes’’ as in Sec. III B of Paper I. Strophes interfere with
the self-similar structure of the fractal and typically do not
go away in the asymptotic limit, resulting in what we called
‘‘epistrophic self-similarity’’ in Sec. III C of Paper I. Despite
the presence of these strophes, the minimal set often seems
to accurately describe the early and intermediate time struc-
ture of the escape-time plot.

Patterns similar to our Epistrophe Start Rule have been
seen in other work. In the numerical study of Tiyapan and
Jaffé,14 epistrophes and the Epistrophe Start Rule are evident
in the structure of the initial angle-final action plot~analo-
gous to the escape-time plot!. Similarly, Jung and
co-workers9–11 used symbolic dynamics to construct a tree-
diagram that gives a comparable description of a scattering
system. In each case, the authors consider a specific line of
initial conditions that is far outside of the complex and is
topologically simple. Easton,17 followed by Rom-Kedar and
others,18–20 showed that recursive patterns also apply to ho-
moclinic intersections between the stable and unstable mani-
folds. Thus, it may not be surprising that comparable patterns
should apply to the intersections between the stable manifold
and an arbitrary line of initial conditions, at least at suffi-
ciently large iterate. But at what iterate does this pattern set
in, and what is the minimal set before it sets in? Algorithm 1
answers both these questions, as well as giving a simple
proof of the Epistrophe Start Rule. An important observation
is that the escape-time plot depends both on the topology of
the tangle and on the topology of the line of initial condi-
tions.

The paper is organized as follows. Section II motivates
our study by presenting numerical computations on a par-
ticular saddle-center map with a chosen line of initial condi-
tions. Section III is the theoretical heart of the paper, in
which we formally develop homotopic lobe dynamics. Sec-
tion III D contains Algorithm 1 for computing the minimal
set of escape segments. Section III F contains Theorem 1,
which includes the Epistrophe Start Rule. In Sec. IV we ap-
ply our techniques to the escape-time plots for two represen-
tative lines of initial conditions. Conclusions are in Sec. V.
Appendices A and B contain the proofs of Algorithm 1 and
Theorem 1, respectively. Table I summarizes the notation in
this article.

II. NUMERICAL DATA FOR AN EXAMPLE SYSTEM

As an example we study the mapM defined by Eqs.
~A1!–~A3! of Paper I using parameter valuest51.5, f

FIG. 1. A phase space portrait is shown for our saddle-center map, which
possesses a homoclinic tangle. The line of initial conditionsL0 coincides
with q51.72.

FIG. 2. Escape datani andnw are plotted for the saddle-center map in Fig.
1. On the right, the number of iteratesni required to escape is plotted as a
function of p parametrizing the line of initial conditionsL0 . The escape
segment marked by an asterisk atni515 is the first numerically computed
segment that is not in the minimal set; it is a strophe. On the left is plotted
the winding number of the trajectory as it escapes to infinity.
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50.25, m50.57. Figure 1 shows a phase space portrait for
this map, along with the line of initial conditionsL0 consid-
ered here. The same map is plotted in Fig. 1, Paper I, but
with a different line of initial conditions.

We review the basic picture of phase space transport
described in Paper I and Refs. 18, 19, 21, and 22. The map
M has an unstable fixed point~X point! denotedzX and
having Liapunov factora.1, which is the larger of the two
eigenvalues ofM linearized aboutzX . The X point has an
associated homoclinic tangle consisting of the branchS of
the stable manifold and the branchU of the unstable mani-
fold ~Fig. 1!. The complex is the region of phase space
bounded on the north by the segment ofS connecting the
homoclinic intersectionP0 to zX and bounded on the south
by the segment ofU connectingP0 to zX . The forward and
backward iteratesPn5M n(P0) are homoclinic intersections
with the same sense asP0 . The homoclinic intersectionQ0

and its iteratesQn5M n(Q0) have the opposite sense.
Theescape zone E0 is the lobe bounded by the segments

of S andU joining P0 to Q0 . It maps forward to the lobes
En , n>0, which all lie outside the complex, and backward
to the lobesE2n , n.0, which all intersect the complex.
Similarly, the capture zone C0 is the lobe bounded by the
segments ofS andU betweenQ21 andP0 . It maps forward
to the lobesCn , n.0, which all intersect the complex, and
backward to the lobesC2n , n>0, which all lie outside the
complex. Under one iterate of the map the escape zoneE21

maps from inside to outside the complex and the capture
zoneC0 maps from outside to inside the complex; the lobes
E21 andC0 together form what is called aturnstile.21,22 It is
important to emphasize that all points which escape inn
iterates lie in the escape zoneE2n .

In the escape-time plot shown in Fig. 2, the number of
iteratesni to escape is plotted as a function along the line of
initial conditionsL0 . Figure 2 is analogous to Fig. 2 of Paper
I, but for a different choice ofL0 . For a givenni , the set of
escaping points is partitioned into open intervals calledes-
cape segments; an escape segment is one connected compo-
nent of E2ni

ùL0 . For example, the first three escape seg-

ments at ni53,4,5 in Fig. 2 correspond to the three
intersections ofL0 with the lobesE2n , n53,4,5, shown in
Fig. 1.

The Epistrophe Theorem of Paper I says that the escape-
time plot contains sequences of escape segments, called epis-
trophes. Several epistrophes are denoted by arrows in Fig. 2.
The first epistrophe starts atni53 and converges monotoni-
cally upward, containing one escape segment for eachni

>3. A second epistrophe begins atni59 and converges
downward upon the end point of theni53 segment. We say
that theni53 segment ‘‘spawns’’ this epistrophe. Two more
epistrophes are spawned atni510 and converge upon the
two end points of theni54 segment. Similarly, theni55
segment spawns two more epistrophes beginning atni511.

The data in Fig. 2 suggest the following Epistrophe Start
Rule: each end point of an escape segment atn iterates
spawns an epistrophe which begins atn1D iterates, where
in this caseD56. This recursive rule is formulated precisely
by Theorem 1 in Sec. III F. In general,D5D11, whereD
describes the global topology of the tangle~Sec. III A!. The
fact thatD56 in Fig. 2 is a consequence of the fact thatE23

intersectsC3 ~and no earlierCn , n,3) in Fig. 1.
On the left of Fig. 2 are plotted the winding numbersnw

of the escaping trajectories, i.e., the number of times a given
trajectory winds around the central stable zone as it escapes
to infinity. Notice that all segments of the epistrophe begin-
ning at ni53 have winding numbernw51. Similarly, all
segments of the epistrophes spawned by theni53,4,5 seg-
ments have winding numbernw52. The data in Fig. 2 thus
suggest that all segments of an epistrophe have the same
winding number and that this number is one greater than the
winding number of the segment which spawned the epistro-
phe. This rule will be precisely formulated and proved in a
separate publication.

III. HOMOTOPIC LOBE DYNAMICS

We introduce a new kind of symbolic dynamics, where
the symbol sequences refer to paths in the plane~rather than
trajectories of the map!. This symbolic dynamics allows us to
identify and describe a minimal set of escape segments along
an arbitrary line of initial conditions. The theory of homo-
topy is central to our development.23–25 Homotopy theory
allows us to ignore the detailed positions of the stable and
unstable manifolds and concentrate instead on their global
topological structure. Homotopy theory also provides a natu-
ral algebraic framework for describing this global structure.

We consider a ‘‘saddle-center map’’M, which has a
simple homoclinic tangle, as seen in Fig. 1 and described
precisely by Assumptions 1–5 in Paper I.26

A. The homotopy groupoid

We define theactive region A to be the union of the
complex with all of its forward and backward iterates. By
construction, it is an invariant region of the phase plane. The
boundary ofA, denoted]A, contains alternating segments of
S andU ~the outer boundaries of capture and escape zones!
as well as theX point.27 The boundary]A has a well-defined
orientation determined by the orientations ofS andU.

TABLE I. Notation summary.

M Dynamical map
zX Unstable fixed point
S, U Tangled branches of the stable and unstable

manifolds
Pn , Qn (2`,n,`) Homoclinic intersections
a Set of allPn’s andQn’s
En , Cn (2`,n,`) Escape and capture zones
L0 Line of initial conditions
,0 Path-class ofL0

D Minimum delay time of the complex
A, ]A Active region and boundary of the active region
Hn (2`,n,`) Holes in the active region
A* 5A\ønHn Active region minus holes
En , Un Paths alongS andU boundaries ofEn

Sn , Cn Paths alongS andU boundaries ofCn

en , un , sn , cn Path-classes ofEn , Un , Sn , Cn

F Path-classc1c2¯cD

P(A* ,a) Fundamental groupoid of path-classes inA*
having base points ina
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Let D.0 be the smallest integer such thatCD11 inter-
sectsE0 . Considering all scattering trajectories which begin
outside the complex, enter the complex, and eventually exit,
D is the smallest possible number of iterates spent inside the
complex. For this reason, we callD theminimum delay time
of the complex or simply thedelay time. The delay time is
equivalently defined by the first pre-iterateE2D11 of E0

which intersectsC0 . In Fig. 1, the delay timeD is equal to 5.
~The delay timeD agrees with Easton’s signature,.17–19!

For the caseD51, shown in Fig. 3,E21 intersectsC1 ,
forming an open regionH215E21ùC1 , which we view as
a hole in the active regionA. Mapping this hole backwards
and forwards gives an infinite set of holesHn . More gener-
ally, for arbitrary D we define the holesHn5EnùCn1D ,
2`,n,`, where D5D11. ~See Fig. 4 for the caseD
53.) The setA* 5A\ønHn is the active region minus all the
holesHn . The D holesH2D , . . . ,H21 are inside the com-
plex; all other holes are outside.

The homoclinic intersectionsPn and Qn , 2`,n,`,
form a subseta of the boundary]A. Two paths~or directed
curves! having the same initial and final pointss0 ,s1Pa are
said to behomotopicif one can be continuously distorted
into the other without passing through a holeHn and without
moving their end points.28 The concept of homotopy defines
equivalence classes of paths; the path-class, orhomotopy
class, a is the set of all paths homotopic to an arbitrary path
APa. That is, two paths belong to the same homotopy class
if they can be distorted one into the other without changing
the end points or passing through any hole; likewise, two
homotopy classesa andb are equal if a pathA in classa can
be distorted into a pathB in classb.

We are particularly interested in the following paths. For
eachn, we defineSn to be the path along theS boundary of

capture zoneCn , joining Qn21 to Pn , and we defineUn to
be the path along theU boundary of escape zoneEn , joining
Pn to Qn , as shown in Fig. 3. These paths lie in the boundary
]A of the active region. Similarly, for eachn, we defineEn to
be the path along theS boundary ofEn andCn to be the path
along theU boundary ofCn . These paths bound the lobesEn

andCn in the interior ofA. Since each pathEn , Cn , Un , and
Sn has end points ina and does not pass through any of the
holes Hn , each belongs to a well-defined homotopy class.
These classes are distinct, since none of the curves can be
distorted into any other, and we denote them byen , cn , un ,
andsn , respectively. These homotopy classes encode global
topological information about the structure of the tangle.

Let P(A* ,a) be the collection of all homotopy classes
of paths inA* having end points ina. For a path-classa1

PP(A* ,a) joining s0 to s1 and a path-classa2PP(A* ,a)
joining s1 to s2 , their producta1a2 joins s0 to s2 and is
constructed by first traversing a representative pathA1Pa1

followed by a representativeA2Pa2 . The homotopy class of
a constant path, i.e., one which remains at a given points
Pa for all times, is denoted 1~with the end pointsPa being
understood from context!; for all aPP(A* ,a), 1a5a1
5a. For a classaPP(A* ,a), its inversea21 contains a
representative path froma, but traversed backwards; clearly,
aa2151. The setP(A* ,a) thus has most of the structure of
a group~multiplication, identity, and inverse! except in one
respect: the producta1a2 is not defined between arbitrary
elementsa1 anda2 but only between elements such that the
final point of a1 equals the initial point ofa2 . A set with
such a restricted product is called a groupoid,29 and
P(A* ,a) is called thefundamental groupoid of path-classes
in A* having base points ina.

The dynamical mapM, acting on points in the plane,
induces a map on the path-classes, which forms a kind of
symbolic dynamics on the symbolsen , cn , un , and sn .

FIG. 3. Qualitative phase space portrait for the delay timeD51. Capture
zoneC1 overlaps escape zoneE21 , so some orbits enter the complex on
one iterate and leave on the next. The complex is bounded by the unstable
manifoldU from zX to P0 and by the stable manifoldS from P0 back tozX .
The active regionA is the union of the complex withEn , n>0, andCn ,
n<0. The boundary]A of A contains alternating segmentsSn andUn of the
stable and unstable manifolds. The inner boundaries ofEn and Cn are,
respectively, denotedEn and Cn . The intersection ofCn with En22 is the
‘‘hole’’ Hn22 .

FIG. 4. Qualitative phase space portrait for delay timeD53. Here C2

overlapsE22 . Cn andSn link Qn21 to Pn encircling holeHn24 ; likewise,
Un andEn link Pn to Qn encircling holeHn .
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WhenM acts on these elements, it simply shifts their indi-
ces,

M~en!5en11 , ~1a!

M~cn!5cn11 , ~1b!

M~un!5un11 , ~1c!

M~sn!5sn11 . ~1d!

B. The minimal set of escape segments

We now turn our attention to the line of initial condi-
tions, which we assume is given by a pathL0 that~1! has end
points l i ,l fP]A, ~2! does not self-intersect, and~3! does
not intersect any holeHn or theX point zX .30 For the homo-
topy analysis, we must shift the end points ofL0 so that
they lie in the seta. For example, we shift the initial point by
first traversing a pathKi before traversingL0 ; Ki begins
at one of the two points ina on either side ofl i , runs
along]A, and finally terminates atl i . By thus shifting both
end points, we assign toL0 a well-defined homotopy class
,0PP(A* ,a).31

The intersection ofL0 with escape zoneE2n is the set of
points that escape on thenth iterate, and any connected com-
ponent of this set is called anescape segment; sometimes we
will use the terme2n-segmentto emphasize an intersection
with E2n . ~The indexn may, in fact, be either positive or
negative.! In this article, we answer the following two ques-
tions regarding a minimal set of escape segments.

Question 1: What is the minimum number of intersec-
tions possible between a representative pathL08P,0 and a
representative pathE2n8 Pe2n?

The minimum number ofe2n-segments is half the mini-
mum number of intersections.

Question 2: LetL08P,0 , E2n1
8 Pe2n1

, E2n2
8 Pe2n2

(n1

Þn2) be paths which minimize all possible pairwise- and
self-intersections. In particular, E2n1

8 andE2n2
8 do not inter-

sect each other or themselves, andL08 has the minimum num-
ber of escape segments at both n1 and n2 iterates. What are
the positions of the escape segments at n1 iterates relative to
those at n2 iterates?32,34

In answering these questions we allow ourselves to dis-
tort L0 andE2n into pathsL08 andE2n8 to minimize the num-
ber of intersections. Thus we are constructing a ‘‘distorted
escape zone’’E2n8 whose intersection withL08 is a set of
‘‘distorted escape segments.’’ Henceforth, we omit the de-
scriptor ‘‘distorted’’ and leave it understood.

The answer to the above two questions will be obtained
from the algebraic algorithm in Sec. III D, which will lead in
turn to a proof of the Epistrophe Start Rule in Sec. III F.

C. The untangled basis of path-classes

By a basis of a groupoid we mean a minimal set of
elements that generate the entire groupoid. To construct a
basis of the fundamental groupoidP(A* ,a), we first
include the path-classes( . . . ,s21 ,s0 ,s1 , . . . ; . . . ,u21 ,
u0 ,u1 , . . . ) along the boundary of the active region]A.

We then select path-classes( . . . ,c21 ,c0 ;c1 , . . . ,
cD ;e0 ,e1 , . . . ) that encircle the holes inA* , so that the
complete basis is

~ . . . ,c21 ,c0 ; c1 , . . . ,cD ; e0 ,e1 , . . . ;

. . . ,s21 ,s0 ,s1 , . . . ; . . . ,u21 ,u0 ,u1 , . . . !, ~2!

shown schematically in Fig. 5. The elementsc1 , . . . ,cD are
special in that they are the only basis elements which must
enter the interior of the complex, encircling theD holes
H2D , . . . ,H21 .

The representative pathsCn , En , Sn , and Un for this
basis satisfy~see Fig. 5!: ~1! no path in the basis intersects
itself or any other path in the basis~except perhaps at the end
points!; ~2! each representativeEn and Cn in the basis en-
circles exactly one hole, and each hole is encircled exactly
once. Furthermore,~3! all homotopy classes of relevance to
us, specifically,0 , cn , anden , 2`,n,`, have a unique
finite reduced expansion in the basis.33 ~A reduced expansion
is a sequence of elements in which any two adjacent factors
a anda21 have been canceled.! Because of these properties
and the simple picture shown in Fig. 5, we call this basis the
‘‘untangled basis.’’

D. Symbolic dynamics of path-classes

Now we develop the symbolic dynamics that will de-
scribe the minimal set of escape segments. First, however,
we must assign a direction to each escape segment. Recall
that the two end points of anen-segment (2`,n,`) are
intersection points between a pathEn8Pen and a pathL8
P,. Using the orientation ofEn8 , one of these end points
occurs first. We define the direction of an escape segment to
point alongL8 from the secondend point to thefirst end
point. ~See Fig. 6.! Recall thatL8 has an independent direc-
tion defined by its own parametrization. An escape segment
is said to ‘‘point forward’’ if its direction is the same asL8
and to ‘‘point backward’’ otherwise. A point onL8 is said to

FIG. 5. Basis paths are shown for the active regionA* with an infinite
number of holesHn punctured in it.A* is bounded below by]A, which has
been straightened into a line. The basis ofP(A* ,a) contains the path-
classessn andun (2`,n,`) which link Qn21 to Pn andPn to Qn along
]A. The basis also includes the path-classescn , 2`,n<D ~bounding
capture zones! anden , 0<n,` ~bounding escape zones!. The classesen ,
0<n, encircle the holesHn , and the classescn , n<D, encircle the holes
H2D1n21 . ~Note that the ordering of the holes shown in the diagram does
not coincide with the order of their indices.! For D51 or 3, the reader may
verify that the curves drawn above agree topologically with those in Figs. 3
and 4.
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lie on the ‘‘positive’’ side of an escape segment if the seg-
ment points toward it and on the ‘‘negative’’ side otherwise.

We need the forward iterates of all untangled basis ele-
ments expressed in terms of the untangled basis. For most
elements, this is given by Eq.~1!. Only one additional equa-
tion is needed,

M~cD!5cD115F21u0
21e0FsD11 , ~3!

whereF is an abbreviation for the path-class

F5c1e1c2e2 . . . cDeD . ~4!

Notice that the right-hand side of Eq.~3! @after substituting
in Eq. ~4!# is expressed entirely in terms of the untangled
basis~2!. Equation~3! is proved by first observing

e215u21~c0e0FeD
21!sD

21cD~eDF21e0
21c0

21!, ~5!

which, though rather lengthy, can be directly verified from a
figure such as 3 or 4; one simply concatenates the basis paths
as shown on the right and then distorts the resulting path into
E21Pe21 . By applying M to both sides of Eq.~5! and
solving for cD11 , one obtains Eq.~3!. It is convenient to
explicitly compute the forward iterate ofF from Eq. ~3!,

M~F !5e1
21c1

21u0
21e0FsD11eD11 . ~6!

For the purpose of computing the minimal set of escape
segments, theen basis elements (n>0) and thesn basis
elements~all n) can simply be omitted from any expression
that contains them, resulting in significant computational
simplification; for example, Eqs.~3!, ~4!, and~6! above be-
come Eqs.~7!–~9! below. This is explained more fully in
Appendix A. We can now state the algorithm for constructing
the minimal set of escape segments up to a given iterateN.

Algorithm 1: Let L0 be the line of initial conditions and
,0PP(A* ,a) its homotopy class.

~1! Expand ,0 in the untangled basis, omitting any
en-factors for n>0 and all sn-factors for2`,n,`.

~2! Compute,N by iterating,0 forward N times using Eqs.
(1b) and (1c), and

M~cD!5F21u0
21F, ~7!

where

F5c1c2¯cD . ~8!

For convenience, one may also use the following for-
mula, which explicitly maps F forward:

M~F !5c1
21u0

21F. ~9!

Carry out any cancellations of factors using aa2151, so
that ,N is expressed as a reduced expansion in the un-
tangled basis.

Then,

~a! Each un or un
21 factor (n>0) in the expansion of,N

corresponds to a segment that escapes in ni5N2n
iterates and that points backwards or forwards, respec-
tively.

~b! The relative positions of the un-factors in the expansion
of ,N are the same as the relative positions of their
corresponding escape segments alongL0 .

This algorithm is justified in Appendix A.

E. Examples

We apply Algorithm 1 to compute the minimal set of
escape segments~up to ni53) for the simple exampleD
51, ,05cD5c1 . Carrying out step 2, the first three iterates
of ,0 are computed to be

,05c1 , ~10a!

,15c1
21u0

21c1 , ~10b!

,25c1
21u0c1u1

21c1
21u0

21c1 , ~10c!

,35c1
21u0c1u1c1

21u0
21c1u2

21c1
21u0c1u1

21c1
21u0

21c1 ,
~10d!

where theun-factors have been underlined for greater visibil-
ity. We now consider the consequences of results A and B in
the algorithm. Examining,1 , it contains a single factoru0

21,
which yields a single forward pointing escape segment at
ni51, as shown in Fig. 7~a!. Iterating forward to,2 , this
ni51 escape segment corresponds to the factoru1

21 in Eq.
~10c!; on either side of this factor are factorsu0 and u0

21,
corresponding, respectively, to backward and forward point-
ing segments that escape atni52. Iterating once more,,3

has fouru0-factors~eitheru0 or u0
21) corresponding to four

escape segments atni53 and with relative positions and
directions shown in Fig. 7~a!.

Considering now an arbitraryD, ,05cD propagates for-
ward as

,05cD , ~11a!

,15cD115F21u0
21F, ~11b!

,25cD125~F21u0c1!u1
21~c1

21u0
21F !, ~11c!

,35cD135~F21u0c1u1c2!u2
21~c2

21u1
21c1

21u0
21F !,

~11d!

FIG. 6. We illustrate the convention for assigning a direction to each escape
segment. Each of the two bold segments shown has a first and second end
point; the first end point precedes the second end point as one moves for-
ward along the pathEn8 . The direction of each segment points from the
second to the first end point.
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,45cD145~F21u0c1u1c2u2c3!u3
21

3~c3
21u2

21c2
21u1

21c1
21u0

21F !, ~11e!

A

,n5cD1n5~F21u0c1u1c2 . . . un22cn21!un21
21

3~cn21
21 un22

21 . . . c2
21u1

21c1
21u0

21F !, ~11f!

A

,D115c2D115~F21u0c1u1c2 . . . uD21cD!uD
21

3~cD
21uD21

21 . . . c2
21u1

21c1
21u0

21F !, ~11g!

,D125c2D125~F21u0c1u1c2 . . . uD21cD!

3~uDF21u0
21FuD11

21 F21u0FuD
21!

3~cD
21uD21

21 . . . c2
21u1

21c1
21u0

21F !. ~11h!

The minimal set of escape segments for,05cD , as con-
structed from results A and B in the algorithm, is shown
schematically in Fig. 7~b!. The set contains an upward- and a
downward-converging epistrophe, with two additional seg-
ments atni5D12. These two segments are the beginnings
of two new epistrophes spawnedD5D11 iterates after the
first segment. This spawning behavior is also visible in Fig.
7~a! for D5D1152. In the next section we show that all
lines of initial conditions have a minimal set that eventually
displays such spawning behavior.

F. The Epistrophe Start Rule

After a certain number of iterates, the minimal set for
any L0 has a simple recursive structure described by the
following theorem, which is proved in Appendix B.

Theorem 1: Let M be a ‘‘saddle-center map’’ satisfying
Assumptions 1–5 of Paper I (Ref. 26) and having an arbi-
trary minimum delay time D>1. Let L0 be the line of initial
conditions. There exists some iterate N0.0 such that the
minimal set of escape segments at all N>N0 iterates can be
constructed from the following two recursive rules.

~i! Epistrophe Continuation Rule:Every segment (in the
minimal set) that escapes at N21 iterates has on its
immediate positive side a segment that escapes at N
iterates and which has the same direction.

~ii ! Epistrophe Start Rule:Every segment that escapes at
N2D iterates (D5D11) spawns immediately on
both of its sides a segment that escapes at N iterates
and which points toward the spawning segment.

Explicitly, N05max$2nc11,2nu ,0%1D12, where nc and
nu are, respectively, the lowest indices of the cn- and
un-factors in the expansion of the path-class,0 of L0 in the
untangled basis.

To say that anen1
-segment lies ‘‘on the immediate

positive/negative side of’’ anen2
-segment means that in the

minimal set there is no earlieren3
-segment, n3

<max$n1,n2%, between the two. Notice that new epistrophes
are spawned by the Epistrophe Start Rule; the Epistrophe
Continuation Rule simply propagates those epistrophes
started earlier. Notice also that segments of an epistrophe
point in the direction of convergence of the epistrophe. The
early structure of the minimal set~beforeN0) can be com-
puted using the algorithm in Sec. III D. Thus, the algorithm
gives the early behavior of the minimal set, and the simpler
recursive rules give the subsequent behavior.

IV. EXAMPLES

Using the mapM discussed in Sec. II and illustrated by
Fig. 1, we consider the escape-time plots for two different
lines of initial conditions.

A. Line 1

We consider the line of initial conditionsL0 in Fig. 1.
First we determine the homotopy class ofL0 . Since neither
end point ofL0 is in a, we must shift each end point as
described in Sec. III B. Since the initial~southernmost! end
point is on the curveU23 ~the southern boundary ofE23),
we can shift it either east toP23 or west toQ23 ; we choose
Q23 since this will guarantee that the beginning ofL0 still
intersectsE23 . Since the final~northernmost! end point is on
the curveS3 ~the northern boundary ofC3), it does not mat-
ter whether we shift it east toP3 or west toQ2 ; we choose
Q2 . Following step 1 in the algorithm, we scrutinize Fig. 1
to determine that the homotopy class,0PP(A* ,a) of the
adjusted curve is,05c22u22c21u21c0e0Fe5

21s5
21e4

21s4
21

3e3
21s3

21. ~The reader is invited to verify this by drawing a

FIG. 7. The escape-time plots are shown qualitatively for,05cD where~a!
D51 and~b! D is arbitrary. At eachni , a segment~in the minimal set! that
escapes inni iterates is represented by an arrow giving the direction of the
segment;,0 itself points up. The minimal set is determined by Eq.~10d! for
~a! and Eq.~11h! for ~b!. Note that two new segments are spawnedD5D
11 iterates beyond the first segment, an example of the Epistrophe Start
Rule.
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large copy of Fig. 1, putting in the holes, and constructing
the curve resulting from the formula.! After omitting en- and
sn-factors, this simplifies to

,05c22u22c21u21c0F. ~12!

Following step 2, we map,0 forward using Eqs.~1b!, ~1c!,
~7!, and~9! with D55,

,15c21u21c0F, ~13a!

,25c0F, ~13b!

,35u0
21F, ~13c!

,45u1
21c1

21u0
21F, ~13d!

,55u2
21c2

21u1
21c1

21u0
21F, ~13e!

,65u3
21c3

21u2
21c2

21u1
21c1

21u0
21F, ~13f!

,75u4
21c4

21u3
21c3

21u2
21c2

21u1
21c1

21u0
21F, ~13g!

,85u5
21c5

21u4
21c4

21u3
21c3

21u2
21c2

21u1
21c1

21u0
21F,

~13h!

,95u6
21F21u0Fu5

21c5
21u4

21c4
21u3

21c3
21

3u2
21c2

21u1
21c1

21u0
21F. ~13i!

For greater visibility, we have underlined eachu0-factor.
Mapping forward once more, we find

,10
ni

5u7
21

3W

F21 u0

10Q
c1 u1

9Q
c1

21 u0
21

10W

F u6
21

4W

F21

3u0

10Q
F u5

21

5W

c5
21u4

21

6W

c4
21 u3

21

7W

c3
21 u2

21

8W

c2
21

3u1
21

9W

c1
21 u0

21

10W

F. ~14!

Below eachun-factor in Eq.~14!, we have recorded the num-
ber of iterates to escape; the arrow indicates whether the
segment is forward- or backward-pointing. The results of
Eqs.~13! and ~14! are shown qualitatively in Fig. 8~a!; they
should be compared with the calculation in Fig. 2. We exam-
ine these results in detail.

~1! As stated in Algorithm 1, eachun or un
21 factor in,N

corresponds to a segment ofL0 that escapes inni5N2n
iterates. Equation~14! gives the minimal set of escape seg-
ments up toni510. ~2! After a certain iterateN0 , we can
determine the minimal set using the Epistrophe Continuation
Rule and Epistrophe Start Rule in Theorem 1. Explicitly,
N05max$2nc11,2nu ,0%1D12; examining Eq.~12! we
seenc5nu522, and sinceD55, N0510. So, for all iter-
atesni>10, Algorithm 1 and Theorem 1 give identical re-
sults.~3! Direct computation~Fig. 2! indicates that up toni

514, there are no additional escape segments outside the
minimal set. The first segment in the computation which is
not in the minimal set is indicated by an asterisk in Fig. 2 at
ni515; it is an example of what we call a strophe.~4! No
epistrophe converges upon the lower end point of theni53

segment, either in the minimal set@Fig. 8~a!# or the numeri-
cal data~Fig. 2!, because this point is an intersection be-
tweenL0 and theunstablemanifold.

B. Line 2

We consider the line of initial conditionsL0 in Fig. 1 of
Paper I. In order to define the homotopy class of this line, it
must first be adjusted. From Fig. 1, Paper I, we see thatL0

intersects the holesH215E21ùC5 and H255E25ùC1 .
We adjustL0 within each of these holes so that it runs along
the boundary of the hole, on either the east or west side, and
not through the hole itself. For the northern holeH25 , we
adjustL0 to run along the eastern boundary, so that it still
passes throughE25 . For the southern holeH21 , we adjust
L0 to run along the western boundary. As in Sec. IV A, the

FIG. 8. The escape-time plots are shown qualitatively for two example lines
of initial conditions: ~a! and ~b! are determined by Eqs.~14! and ~17!,
respectively. In each plot we indicate the value ofN0 after which all seg-
ments in the minimal set can be deduced using Theorem 1.
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end points ofL0 must also be adjusted, so that they lie ina.
We shift the southern end point toP21 and the northern end
point to P1 .

The homotopy class,0PP(A* ,a) of the adjusted curve
is ,05u21c0e0c1 , which simplifies to

,05u21c0c1 . ~15!

Then,0 maps forward as

,15u0c1c2 , ~16a!

,25u1c2c3 , ~16b!

,35u2c3c4 , ~16c!

,45u3c4c5 , ~16d!

,55u4c5F21u0
21F, ~16e!

,65u5F21c1u1
21c1

21u0
21F, ~16f!

,75u6F21u0c1c2u2
21c2

21u1
21c1

21u0
21F, ~16g!

,85u7F21u0c1u1c2c3u3
21c3

21u2
21c2

21u1
21c1

21u0
21F,

~16h!

,95u8F21u0c1u1c2u2c3c4

3u4
21c4

21u3
21c3

21u2
21c2

21u1
21c1

21u0
21F, ~16i!

,105u9F21u0c1u1c2u2c3u3c4c5

3u5
21c5

21u4
21c4

21u3
21c3

21u2
21c2

21u1
21c1

21u0
21F,

~16j!

and

,11
ni

5u10

1Q
F21 u0

11Q
c1 u1

10Q
c2 u2

9Q
c3 u3

8Q
c4 u4

7Q
c5F21

3u0
21

11W

F u6
21

5W

F21 u0

11Q
F u5

21

6W

c5
21 u4

21

7W

c4
21

3u3
21

8W

c3
21 u2

21

9W

c2
21 u1

21

10W

c1
21 u0

21

11W

F. ~17!

The data from Eq.~17! are summarized in Fig. 8~b!. This
should be compared with the numerical calculation in Fig. 2
of Paper I.

Equation~17! gives the minimal set of escape segments
up to ni511. In this case, examining Eq.~15!, nc50 and
nu521, yielding N05max$1,1,0%151258. Therefore for
ni>8, the minimal set can be generated from Theorem 1
rather than the algorithm. The first numerically computed
segment which is not in the minimal set~a strophe! does not
occur untilni516; it is indicated by an asterisk in Fig. 2 of
Paper I. As above, no epistrophe converges upon the lower
end point of theni51 segment because it is an intersection
betweenL0 and the unstable manifold.

V. CONCLUSIONS

The results of the present paper combine with the results
of Paper I1 to create a detailed picture of escape-time plots.
On the one hand, the present study predicts the existence of

a minimal set of escape segments~Algorithm 1!. After some
number of iterates, this set has a simple recursive pattern
~Theorem 1! described by:~1! at each iterate, add new seg-
ments that perpetuate all earlier epistrophes;~2! at D5D
11 iterates after a given segment, spawn two new epistro-
phes on either side of this segment. These results say nothing
about the lengths of segments or the separation between seg-
ments, and in particular say nothing about convergence prop-
erties of epistrophes. On the other hand, the results of Paper
I do address such issues, and we find that epistrophes con-
verge geometrically upon the end points of the segments that
spawn them and furthermore that all epistrophes differ as-
ymptotically by an overall scale factor~Epistrophe Theorem,
Paper I!.

The minimal set of escape segments typically omits
some segments~strophes! that appear in the actual numeri-
cally computed escape-time plot. Nevertheless, the results of
Paper I apply to such strophic segments as well. There will
be an epistrophe which converges upon an end point of a
strophe~Epistrophe Theorem!. However, we cannot in gen-
eral predict at which iterate such an epistrophe will begin.
On the other hand, the numerical evidence of Fig. 2 and of
Fig. 2 in Paper I is suggestive that even in this case, the
epistrophes often beginD iterates beyond the strophe.

Strophes occur due to structure in the lobesE2n that we
have ignored in our simple topological picture of the tangle.
For example, En may develop additional ‘‘fingers’’ or
‘‘branches’’ as it is mapped backwards. These fingers spread
out into the phase space, creating additional intersections
with the line of initial conditions.~In some cases, such fin-
gers can be connected with the presence of an island chain
inside the complex, such as the prominent period-5 chain in
Fig. 1.! In general, a countable infinity of topological param-
eters is needed to completely describe the fingers,9,17–19

though we expect a finite number of parameters to suffice for
the escape-time plot up to a given finite number of iterates.
The homotopy formalism presented here can be generalized
to incorporate these additional topological parameters,
thereby predicting at least some of the strophe segments. We
will address these issues in a future paper.

In future work, we will also study winding numbers,
explaining the patterns shown in Fig. 2. In addition, we will
apply our results to the ionization of hydrogen in parallel
electric and magnetic fields.
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APPENDIX A: PROOF OF ALGORITHM 1

We need only verify statements A and B in Algorithm 1.
These are certainly true when all elements of the untangled
basis are allowed in the expansion of,N ~i.e., we do not omit
the factors specified in step 1!. This fact is evident by simply
considering how a path is constructed from a reduced prod-
uct of the basis paths shown in Fig. 5; at each occurrence of
a un-factor, the path must cross under the hole and hence
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throughEn , thus creating an escape segment at the specified
location~and with the specified direction!. Theun-factors are
thus the key to determining the minimal set of escape seg-
ments. Thecn basis elements (n<D) create newun-factors
via Eqs.~1b! and ~3! and are thus themselves critical in de-
termining the minimal set. However, theen (n>0) andsn

(2`,n,`) basis elements are ‘‘inert,’’ mapping forward
via Eqs. ~1a! and ~1d!, never producing anyun-factor. We
thus lose nothing by eliminating them altogether from any
expression which might contain them, as we have done in
Eqs.~7!–~9!. ~One can verify that making these eliminations
does not produce spurious cancellations ofcn- or un-factors.!

APPENDIX B: PROOF OF THEOREM 1

Defining the two path-classes

g5u0c1u1 , ~B1!

h5u0
21FuD

21F21u0 , ~B2!

we have the following lemma~recalling that allsn and en

basis elements are omitted from our formulas!.
Lemma: For any N>N0 , ,N can be expressed as a

product of elements in the set S5(c1 , . . . ,cD ; h,h,
u2 , . . . ,uD ,h,uD12 , . . . ; g,h), assuming D.1; for D
51, S5(c1 ; h,h,h,u3 ,u4 , . . . ; g,h). ~The symbol
h emphasizes the absence of the classes u0 , u1 , uD .)

Proof of Lemma:It follows from the propagation formu-
las~1b!, ~1c!, and~7! and the definitions ofnc andnu that for
N>max$2nc11,2nu ,0%, ,N can be expressed as a product
of the elements (c1 , . . . ,cD ; u0 ,u1 , . . . ). Thus, for N
>N0 , ,N can be expressed as a product of the elements
(cD13 , . . . ,c2D12 ; uD12 ,uD13 , . . . ). Since the elements
uD12 ,uD13 , . . . are in the setS, we need only verify that
the elementscD13 , . . . ,c2D12 can be expressed as products
of elements inS, a fact which follows from rewriting Eqs.
~11d!–~11h! as

cD135~F21g!~c2u2
21c2

21!~g21F !, ~B3a!

cD145~F21gc2u2!~c3u3
21c3

21!~u2
21c2

21g21F !, ~B3b!

A

cD1n5~F21gc2u2 . . . cn22un22!~cn21un21
21 cn21

21 !

3~un22
21 cn22

21 . . . u2
21c2

21g21F !, ~B3c!

A

c2D115~F21gc2u2 . . . cD21uD21!~cDuD
21cD

21!

3~uD21
21 cD21

21 . . . u2
21c2

21g21F !, ~B3d!

c2D125~F21gc2u2 . . . cDuD!~F21hF !

3~uD
21cD

21 . . . u2
21c2

21g21F !, ~B3e!

for the case D.1. For D51, Eq. ~10d! yields c4

5c1
21gc1

21hc1g21c1 . This completes the proof of the
lemma.

For N>N0 , we expand,N as a product of elements in
S. By using Eqs.~B1! and ~B2! to eliminateg and h, we
obtain the expansion of,N in the untangled basis. It is easy

to verify that when making these substitutions, there are no
cancellations of anyun-factors.~Here, we use the fact that
powers ofh, such ash2, cannot occur in the expansion of,N

since this would imply thatL0 has a self-intersection.!
The theorem is now a trivial consequence of the repre-

sentation of,N as a product of elements in the setS. Spe-
cifically, each occurrence ofg in the product yields a single
segment which escapes atN21 iterates, corresponding to
the u1-factor of g in Eq. ~B1!, and a single segment which
escapes atN iterates, corresponding to theu0-factor of g.
The form of Eq.~B1! also implies that the directions and
relative positions of these two segments obey the Epistrophe
Continuation Rule.

Similarly, Eq. ~B2! implies that each occurrence ofh in
the representation of,N yields a segment which escapes at
N2D iterates and two segments which escape atN iterates;
the directions and relative positions of these segments obey
the Epistrophe Start Rule. Since the basis elementsu0 , u1 ,
anduD occur in the expansion of,N only within theg- and
h-factors, these two rules completely determine the minimal
set of escape segments atN iterates.QED
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